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COMPUTING CERTAIN GROMOV-WITTEN

INVARIANTS OF THE CREPANT

RESOLUTION OF P(1,3,4,4)

SAMUEL BOISSIÈRE, ÉTIENNE MANN, and FABIO PERRONI

Abstract. We prove a formula computing the Gromov-Witten invariants of
genus zero with three marked points of the resolution of the transversal A3-
singularity of the weighted projective space P(1,3,4,4) using the theory of
deformations of surfaces with An-singularities. We use this result to check
Ruan’s conjecture for the stack P(1,3,4,4).

§1. Introduction

The main results of this paper concern the weighted projective space

P(1,3,4,4). The singular locus of its coarse moduli space |P(1,3,4,4)| is

the disjoint union of an isolated singularity of type (1/3)(1,1,1) (we use

Reid’s notation in [17]) and a transversal A3-singularity. Using toric meth-

ods, we construct a crepant resolution Z of |P(1,3,4,4)|. In Theorem 3.3.1,

we determine a formula for certain Gromov-Witten invariants of Z over the

A3-singularity using the theory of deformations of surfaces with rational

double points and the deformation invariance property of Gromov-Witten

invariants. We then apply this result in Theorem 5.2.1 to construct a ring

isomorphism—predicted in [18] by Ruan’s cohomological crepant resolution

conjecture —between the quantum corrected cohomology ring of Z and the

Chen-Ruan orbifold cohomology of P(1,3,4,4), after evaluating the quan-

tum parameters related to the transversal A3-singularity to a fourth root

of the unity and putting the last parameter to zero. This last evaluation is

quite surprising (in [2], we show that this parameter can be evaluated to 1).

To confirm this property, we show in Proposition 5.3.1 that, for all weighted

projective spaces P(1, . . . ,1, n) with n weights equal to 1 which have only
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one isolated singular point (1/n)(1, . . . ,1), the predicted ring isomorphism

can be obtained simply by putting the quantum parameter to zero.

§2. Weighted projective spaces

Let n ≥ 1 be an integer, and let w = (w0, . . . ,wn) be a sequence of integers

greater than or equal to 1. The multiplicative group C⋆ acts on Cn+1 \ {0}
by

λ · (x0, . . . , xn) := (λw0x0, . . . , λ
wnxn).

The weighted projective space P(w) is defined as the quotient stack [Cn+1 \
{0}/C⋆]. It is a smooth Deligne-Mumford stack whose coarse moduli space,

denoted |P(w)|, is a projective variety of dimension n.

According to Borisov, Chen, and Smith [4], P(w) is a toric stack associated

to the stacky fan

(1)
(

N := Zn+1/
n
∑

i=0

wivi, β : Zn+1 → N, Σ
)

,

where v0, . . . , vn is the standard basis of Zn+1, β is the canonical projection,

and Σ ⊂ N ⊗Z Q is the fan whose cones are generated by any proper subset

of the set {β(v0) ⊗ 1, . . . , β(vn) ⊗ 1}.

The weighted projective space P(w) comes with a natural invertible sheaf

OP(w)(1) defined as follows: for any scheme Y and any morphism Y → P(w)

given by a principal C⋆-bundle P → Y and a C⋆-equivariant morphism P →
Cn+1 \ {0}, OP(w)(1)Y is the sheaf of sections of the associated line bundle

of P .

Recall that an orbifold is by definition a smooth Deligne-Mumford stack

over C with generically trivial stabilizers. A Gorenstein orbifold is an orb-

ifold such that, at each point, the stabilizer acts with determinant 1 on the

tangent space. This implies that the coarse moduli space is a Gorenstein

variety, but that it is not equivalent. For instance, the variety |P(1,3)| is

Gorenstein (in fact, smooth, isomorphic to P1) but P(1,3) is not a Goren-

stein orbifold, as is easily seen using the following classical result.

Proposition 2.0.1. We have the following.

(1) The Deligne-Mumford stack P(w) is an orbifold if and only if the great-

est common divisor of w0, . . . ,wn is 1.

(2) An orbifold P(w) is Gorenstein if and only if wi divides
∑n

j=0 wj for

any i.
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In dimension n, the problem of determining all Gorenstein orbifolds P(w)

is equivalent to the problem of Egyptian fractions, that is, the number of

solutions of 1 = 1/x0 + · · · + 1/xn with 1 ≤ x0 ≤ · · · ≤ xn (see [19]). Hence,

there is a finite number of such P(w) (only P1 in dimension 1, three in

dimension 2, and 14 in dimension 3). All weighted projective spaces that we

will be considering satisfy these two conditions.

§3. Gromov-Witten invariants of the resolution of |P(1,3,4,4)|

3.1. The Mori cone

Let X be a Gorenstein orbifold with coarse moduli space X . Recall that a

resolution of singularities ρ : Z → X is called crepant if ρ∗KX
∼= KZ . Assume

furthermore that X and Z are projective. Let N+(Z) ⊂ A1(Z;Z) be the

cone of effective 1-cycles in Z, and set Mρ(Z) := Ker(ρ⋆) ∩ N+(Z), where

ρ⋆ : A⋆(Z;Z) → A⋆(X;Z) is the morphism of Chow groups induced by ρ.

The set Mρ(Z) is called the Mori cone of contracted effective curves.

Lemma 3.1.1. Let P(w) be a Gorenstein orbifold, and let ρ : Z → |P(w)|
be a toric crepant resolution associated to a subdivision Σ′ of Σ and the

identity morphism of N . Then the cone Mρ(Z) is polyhedral.

Proof. Let Σ′(n − 1) be the set of (n − 1)-dimensional cones of Σ′. Then

Mρ(Z) =
{

∑

ν∈Σ′(n−1)

γν [V(ν)]
∣

∣

∣ γν ∈ N, ρ⋆

(

∑

ν∈Σ′(n−1)

γν [V(ν)]
)

= 0
}

,

where, for any ν ∈ Σ′(n − 1), V(ν) denotes the rational curve in Z stable

under the torus action which is associated to ν, and where [V(ν)] is the

induced Chow class (see Fulton [11]). Now let L ∈ Pic(|P(w)|) be an ample

line bundle. From standard intersection theory, we have (see, e.g., [12])

ρ⋆

(

∑

ν∈Σ′(n−1)

γν [V(ν)]
)

= 0 if and only if

c1(ρ
⋆L) ∩

(

∑

ν∈Σ′(n−1)

γν [V(ν)]
)

= 0.

Since c1(ρ
⋆L) ∩ [V(ν)] ≥ 0 for any ν, it follows that

Mρ(Z) =
{

∑

ν∈Σ′(n−1)

γν [V(ν)]
∣

∣

∣ γν ∈ N, ρ⋆([V(ν)]) = 0
}

,

hence the claim.
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3.2. Crepant resolution of |P(1,3,4,4)|
The coarse moduli space of P(1,3,4,4) has a transversal A3-singularity on

the line {[0 : 0 : x2 : x3]} ∼= P1 and an isolated singularity of type (1/3)(1,1,1)

at the point [0 : 1 : 0 : 0]. We identify the stacky fan (N,β,Σ) with
(

Z3,

{Λ(β(vi))}i∈ {0,1,2,3},Σ
)

, where the vi are defined in (1) and where Λ: N →
Z3 is the isomorphism defined by sending v0 
→ (−3, −4, −4), v1 
→ (1,0,0),

v2 
→ (0,1,0), and v3 
→ (0,0,1). A crepant resolution of |P(1,3,4,4)| can be

constructed using standard methods in toric geometry. Consider the integral

points

P1 := (0, −1, −1) =
3

4
Λ
(

β(v1)
)

+
1

4
Λ
(

β(v0)
)

,

P2 := (−1, −2, −2) =
1

2
Λ
(

β(v1)
)

+
1

2
Λ
(

β(v0)
)

,

P3 := (−2, −3, −3) =
1

4
Λ
(

β(v1)
)

+
3

4
Λ
(

β(v0)
)

,

P4 := (−1, −1, −1) =
1

3
Λ
(

β(v0)
)

+
1

3
Λ
(

β(v2)
)

+
1

3
Λ
(

β(v3)
)

,

and subdivide Σ by inserting the rays generated by P1, P2, P3, and P4 as

shown in Figure 1. Let Σ′ be the fan obtained after this subdivision, let Z be

Figure 1: Polytope of P(1,3,4,4) and of the crepant resolution Z
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the associated toric variety, and let ρ : Z → |P(1,3,4,4)| be the birational

morphism associated to the identity on Z3. One checks easily that Z is

smooth and ρ is crepant. This follows from the existence of a continuous

piecewise linear function |Σ| → R, which is linear when restricted to each

cone of Σ and associates the value −1 to the minimal lattice points of the

rays of Σ′ (see [11, Section 3.4]).

Remark 3.2.1. In [2, Proposition 2.2], we showed that the coarse moduli

space |P(1,3,4,4)| admits a unique crepant resolution, up to isomorphism.

So the toric crepant resolution Z constructed above is unique.

3.3. Statement of the main result

By Lemma 3.1.1, the cone Mρ(Z) can be directly determined from the

combinatorial data Σ and Σ′. In our case, Mρ(Z) is generated by four curves:

an A3-chain Γ1, Γ2, Γ3 over the transversal A3-singularity and one curve Γ4

over the isolated singularity (see Section 5.2 for the toric equations of these

curves). We compute the Gromov-Witten invariants of the crepant resolu-

tion Z of genus zero, homology class Γ = d1Γ1 + d2Γ2 + d3Γ3, and without

marked points. We denote by M0,0(Z,Γ) the corresponding moduli space.

Note that the expected dimension is zero. Our result confirms Perroni’s

conjecture [16, Conjecture 5.1].

Theorem 3.3.1. Let ρ : Z → |P(1,3,4,4)| be the crepant resolution of

|P(1,3,4,4)| defined in Section 3.2, and let Γ = d1Γ1 + d2Γ2 + d3Γ3. Then

deg[ M0,0(Z,Γ)]vir

=

{

1/d3 if Γ = d
∑ν

i=μ Γi, with 1 ≤ μ ≤ ν ≤ 3 and d ∈ N∗,

0 otherwise.

§4. Proof of Theorem 3.3.1

To prove Theorem 3.3.1, we use the deformation invariance property of

the Gromov-Witten invariants. We define an open neighborhood V of the

singular locus
{

[0 : 0 : x2 : x3] ∈ |P(1,3,4,4)|
} ∼= P1

of |P(1,3,4,4)|, we construct an explicit deformation of V , and then we

construct a simultaneous resolution. This gives a deformation of ρ−1(V ),

a neighborhood of the component of the exceptional divisor which lies over

|P(4,4)|. We will denote this deformation by Graph(μ)t, t ∈ Δ. Then we
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relate the Gromov-Witten invariants of Z we are interested in with some

Gromov-Witten invariants of Graph(μ)t that we can explicitly compute.

4.1. The neighborhood

By abuse of notation, for any a ∈ Z, we denote by the same symbol

O(a) the sheaf OP1(a) and the corresponding vector bundle, and we identify

O(a) ⊗ O(b) with O(a+ b) using the canonical isomorphism. For any vector

bundle E, we denote by 0E its zero section.

The transversal A3-singularity of |P(1,3,4,4)| is identified with P1 by the

morphism [z0 : z1] 
→ [0 : 0 : z0 : z1]. We set

Vi :=
{

[x0 : x1 : x2 : x3] ∈ |P(1,3,4,4)| such that xi �= 0
}

for any i ∈ {0,1,2,3}, and we set V := V2 ∪ V3 ⊂ |P(1,3,4,4)|.
Consider the bundle morphism

ψ : O(1) ⊕ O(3) ⊕ O(1) −→ O(4)

(ξ, η, ζ) 
−→ ξ ⊗ η − ζ⊗4,

and consider the inverse image under ψ of the zero section of O(4)

ψ−1
(

Im(0O(4))
)

⊂ O(1) ⊕ O(3) ⊕ O(1).

Lemma 4.1.1. The variety V is isomorphic to ψ−1(Im(0O(4))).

Proof. Let U4 ⊂ C⋆ be the group of fourth roots of the unity acting lin-

early on C3 with weights (1,3,0). We have the identification

C3/U4 −→ V2

(2)
[(x0, x1, x3)] 
−→ [x0 : x1 : 1 : x3],

where (x0, x1, x3) are coordinates on C3 and where [(x0, x1, x3)] denotes the

equivalence class of the corresponding point. On the other hand, we have

the isomorphism

(3) C3/U4 −→ Spec
(

C[s,u, v,w]/(uv − w4)
)

given by setting s := x3, u := x4
0, v := x4

1, and w := x0x1. The composition

of the inverse of (2) with (3) gives the isomorphism V2 ≃ Spec(C[s,u, v,w]/

(uv − w4)). In the same way, by setting t := x2, x := x4
0, y := x4

1, and z :=
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x0x1, we have the isomorphism V3 ≃ Spec(C[t, x, y, z]/(xy − z4)). The affine

open subvarieties V2, V3 ⊂ V glue together by means of the ring isomorphism

C[s, 1
s , u, v,w]

(uv − w4)
−→ C[t, 1

t , x, y, z]

(xy − z4)

s 
−→ 1

t

u 
−→ 1

t
x

v 
−→ 1

t3
y

w 
−→ 1

t
z.

On the other hand, consider a trivialization of the bundle O(1) ⊕ O(3) ⊕ O(1)

on W0 = {[z0, z1] ∈ P1 | z0 �= 0}. On such a trivialization, the morphism ψ is

given by

W0 × C3 −→ W0 × C

(s, v1, v2, v3) 
−→ (s, v1v2 − v4
3).

Hence we have that, over W0, ψ−1(Im(0O(4))) is Spec(C[s, v1, v2, v3]/(v1v2 −
v4
3)). If we do the same over W1 = {[z0, z1] ∈ P1 | z1 �= 0}, we deduce that V

and ψ−1(Im(0O(4))) are a union of the same affine varieties with the same

gluing. This proves that they are isomorphic.

4.2. The deformation

We now construct a deformation of V . The construction is inspired by the

theory of deformations of surfaces with An-singularities (see Tyurina [20]).

Consider the fibration f : V → P1 defined as the composition of the iso-

morphism V
∼−→ ψ−1(Im(0O(4))) in Lemma 4.1.1, followed by the inclusion

ψ−1(Im(0O(4))) ⊂ O(1) ⊕ O(3) ⊕ O(1), and then the bundle map. The mor-

phism f : V → P1 exhibits V as a 3-fold fibered over P1 with fibers iso-

morphic to a surface A3-singularity. Furthermore, the fibration is locally

trivial.

The aim is to extend some of the results of Tyurina [20] to V , when

viewed as a family of such surfaces with respect to f : V → P1. Consider the
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bundle morphism

χ : O(1)⊕4 −→ O(1)

(δ1, . . . , δ4) 
−→ δ1 + · · · + δ4,

and set F := χ−1(Im(0O(1))). Then consider the bundle morphism

π : O(1) ⊕ O(3) ⊕ O(1) ⊕ F −→ O(4)

(ξ, η, ζ, δ1, . . . , δ4) 
−→ ξ ⊗ η −
4
⊗

i=1

(ζ + δi),

and set VF := π−1(Im(0O(4))). We obtain a Cartesian diagram

V

f

VF

F

P1
0F

F

where the arrow F is the composition of the inclusion VF → O(1) ⊕ O(3) ⊕
O(1) ⊕ F followed by the projection O(1) ⊕ O(3) ⊕ O(1) ⊕ F → F . Note

that F : VF → F is a family of surfaces. We now construct a simultaneous

resolution. Consider the rational map

μ : VF ��� P
(

O(1) ⊕ O(1)
)

× P
(

O(1) ⊕ O(2)
)

× P
(

O(1) ⊕ O(3)
)

(ξ, η, ζ, δ1, . . . , δ4) 
−→ (ξ, ζ + δ1) ×
(

ξ, (ζ + δ1) ⊗ (ζ + δ2)
)

×
(

ξ,
3
⊗

i=1

(ζ + δi)
)

,

and let Graph(μ) be the graph of μ. We denote by Graph(μ) the closure

of Graph(μ) in VF ×
(×3

i=1 P(O(1) ⊕ O(i))
)

. Let R : Graph(μ) → VF be

the composition of the inclusion Graph(μ) → VF ×
(×3

i=1 P(O(1) ⊕ O(i))
)

followed by the projection on the first factor VF ×
(×3

i=1 P(O(1) ⊕ O(i))
)

→
VF .
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Lemma 4.2.1. The diagram

(4)

Graph(μ)
R

F ◦R

VF

F

F
id

F

is a simultaneous resolution of F : VF → F .

Proof. The property of being a simultaneous resolution is local in F .

Diagram (4) is fibered over P1. If we restrict it to an open subset of P1

where O(1) is trivial, then the assertion is exactly the result obtained by

Brieskorn [5].

Set Δ := C. For any section θ ∈ H0(P1, F ), we get a deformation of V

parameterized by Δ

V

f

Vθ

fθ

VF

F

P1 P1 × Δ
Θ

F

where Θ: P1 × Δ → F sends ([z0 : z1], t) to t · θ([z0 : z1]), where Vθ is defined

by the requirement that the diagram is Cartesian, and where the map P1 →
P1 × Δ is the inclusion [z0 : z1] 
→ ([z0 : z1],0). The pullback of diagram (4)

with respect to Θ gives the diagram

(5)

Graph(μ)θ

ρθ

Vθ

fθ

P1 × Δ
id

P1 × Δ

where ρθ is the pullback of R in (4). Observe that (5) is a simultaneous

resolution of Vθ over P1 × Δ.

4.3. Computation of the invariants

We specialize the previous construction in the case where θ is given as

follows. Let δ ∈ H0(P1, O(1)) be a nonzero section, set

δℓ := exp
((2ℓ + 1)πi

4

)

· δ, ℓ ∈ {1, . . . ,4},
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and define θ := (δ1, . . . , δ4) ∈ H0(P1, F ). For any t ∈ Δ, we set Vt := f −1
θ (P1 ×

{t}), ft : Vt → P1 × {t} as the restriction of fθ, and we set Graph(μ)t :=

ρ−1
θ (Vt), ρt : Graph(μ)t → Vt as the restriction of ρθ. We have the following

commutative diagram

ρ−1(V ) = Graph(μ)0

ρ0=ρ

Graph(μ)θ

ρθ

Graph(μ)t

ρt

V

f0=f

Vθ

fθ

Vt

ft

P1 × {0} P1 × Δ P1 × {t}

Lemma 4.3.1. Let δ be a global section of O(1) → P1 that vanishes only

at one point. Then, for t �= 0, the variety Graph(μ)t has only one connected

nodal complete curve of genus zero whose dual graph is of type A3 and which

is contracted by ρt (see the diagram above).

Proof. Without lost of generality, we can assume that δ vanishes only at

the point [1 : 0]. Let W0 := {[z0 : z1] ∈ P1 | z0 �= 0}. As our bundles are trivial

over W0, the restriction of V over W0 is given by W0 × V(xy − z4) ⊂ W0 × C3.

The choice of the δℓ implies that the 3-fold Vt is given by

W0 × V
(

xy −
4
∏

ℓ=1

(z + δℓt)
)

= W0 × V
(

xy − z4 − (tδ)4
)

⊂ W0 × C3.

By means of ft, Vt is viewed as a family of surfaces parameterized by P1.

As t �= 0 and δ([1 : 0]) = 0, the only singular surface of the family is the

surface f −1
t ([1 : 0] × {t}), which is a surface with an isolated A3-singularity.

Since ρt : Graph(μ)t → Vt is a simultaneous resolution over P1 × {t}, the

fiber Graph(μ)([1:0],t) is a smooth surface with only one complete connected

curve of genus zero whose dual graph is of type A3 and which is contracted

by ρt. For any [z0 : z1] �= [1 : 0], the fiber Graph(μ)([z0:z1],t)
is isomorphic

to the smooth surface f −1
t ([z0 : z1] × {t}). Hence, the exceptional locus of

the resolution ρt : Graph(μ)t → Vt has only one connected nodal complete

curve of genus zero whose dual graph is of type A3 and which is contracted

by ρt.
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Let Γ1,Γ2,Γ3 ∈ H2(Graph(μ)t;Z) be the homology classes of the compo-

nents of the connected nodal complete curve of genus zero whose dual graph

is of type A3 and which is contracted by ρt. Let us assume that they are

numbered in such a way that if Γi is the class of Γ̃i, then the intersection

Γ̃i ∩ Γ̃j is empty if |i − j| > 1. Then Lemma 4.3.1 implies that, for t �= 0,

Graph(μ)t satisfies the hypothesis of [8, Proposition 2.10]. Therefore, we

deduce the following formula:

deg
[

M0,0(Graph(μ)t,Γ)
]vir

(6)

=

{

1/d3 if Γ = d(Γμ + Γμ+1 + · · · + Γν), for μ ≤ ν,

0 otherwise.

This formula together with Lemma 4.3.2 completes the proof of Theo-

rem 3.3.1.

Lemma 4.3.2. Let Γ be as in the statement of Theorem 3.3.1. For any

t ∈ Δ, the following equality holds:

deg
[

M0,0

(

Graph(μ)t,Γ
)]vir

= deg[ M0,0(Z,Γ)]vir.

Proof. Since Γ is the homology class of a contracted curve, we have an

isomorphism of moduli stacks (see [16, Lemma 7.1])

(7) M0,0(Z,Γ) ≃ M0,0

(

ρ−1(V ),Γ
)

.

In particular, the right-hand side moduli stack is proper with projective

coarse moduli space. The isomorphism (7) identifies the tangent-obstruction

theories used to define the Gromov-Witten invariants, hence the virtual

fundamental classes [ M0,0(ρ
−1(V ),Γ)]vir and [ M0,0(Z,Γ)]vir have the same

degree. Then it is enough to prove that, for any t ∈ Δ,

(8) deg
[

M0,0(Graph(μ)t,Γ)
]vir

= deg
[

M0,0(ρ
−1(V ),Γ)

]vir
.

Gromov-Witten invariants of projective varieties are invariant under

deformation of the target variety. We now explain why this result holds

for ρ−1(V ) and Graph(μ)t, even if they are not projective.

Let qθ : Graph(μ)θ → Δ be the composition of fθ ◦ ρθ in (5), followed by

the projection P1 × Δ → Δ. The morphism qθ is smooth, as it is a compo-

sition of smooth morphisms. Moreover, qθ factorizes through an embedding
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followed by a projective morphism. To see this, it is enough to prove the

same statement for the morphism F ◦ R : Graph(μ) → F in (4). By construc-

tion, Graph(μ) is embedded in (O(1) ⊕ O(3) ⊕ O(1) ⊕ F ) ×
(×3

i=1 P(O(1) ⊕
O(i))

)

; moreover, F ◦ R is the restriction of the projection (O(1) ⊕ O(3) ⊕
O(1) ⊕ F ) ×

(×3
i=1 P(O(1) ⊕ O(i))

)

→ F .

Let us now consider the projection O(1) ⊕ O(3) ⊕ O(1) ⊕ F → F . Because

it has a vector bundle structure over F , then it can be seen as a subbundle of

the projective bundle P(O(1) ⊕ O(3) ⊕ O(1) ⊕ F ⊕ OF ) → F , and therefore

we have that F ◦ R factorizes as the composition of an embedding followed

by a projective morphism.

To finish the proof, consider the moduli stack which parameterizes rel-

ative stable maps to qθ : Graph(μ)θ → Δ of homology class Γ and genus

zero. We denote it by M0,0(Graph(μ)θ/Δ,Γ). As Γ is the class of curves

which are contracted by the resolution ρθ and qθ : Graph(μ)θ → Δ factor-

izes through an embedding followed by a projective morphism, Abramovich

and Vistoli’s theorem [1, Theorem 1.4.1] implies that the moduli space

M0,0(Graph(μ)θ/Δ,Γ) is a proper Deligne-Mumford stack. Since the

class Γ is contracted by ρθ, for any t ∈ Δ, the fiber at t of the natural mor-

phism M0,0(Graph(μ)θ/Δ,Γ) → Δ is the proper Deligne-Mumford stack

M0,0(Graph(μ)t,Γ). Then, by applying the same proof as in [14, Theo-

rem 4.2] to this situation, we get (8).

§5. Application to the cohomological crepant resolution conjec-

ture

5.1. The cohomological crepant resolution conjecture

Ruan’s crepant resolution conjecture states that when ρ : Z → X is a

crepant resolution of the coarse moduli space X of a Gorenstein orbifold X ,

the (orbifold) quantum cohomology of X and Z are related by analytic con-

tinuation in the quantum parameters. This conjecture was formulated more

precisely by Bryan and Graber [6] as an isomorphism of Frobenius mani-

folds (under some condition), and then further interpreted in full generality

by Coates, Iritani, and Tseng [10] as a symplectic transformation between

the Givental spaces associated to X and Z. This symplectic transformation

encodes all information on the relationships between the genus zero Gromov-

Witten theories of X and Z. We refer to Iritani [13] for details and references

on this still-evolving conjecture. At a lower level, the conjecture implies the

cohomological crepant resolution conjecture; that is, the quantum corrected
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cohomology ring of Z (deformed by Gromov-Witten invariants computed

on curves contracted by ρ) is isomorphic to the orbifold (Chen-Ruan) coho-

mology ring of X , after evaluation of the quantum parameters to roots of

the unity. In the next sections, we check this conjecture on some weighted

projective spaces.

We briefly recall the definition of the quantum corrected cohomology ring

(see [18]). Assume that Mρ(Z) is generated by a finite number of classes of

rational curves which are linearly independent over Q. This will be the case

for weighted projective spaces by Lemma 3.1.1. Fix a set of such generators

Γ1, . . . ,Γm. Then, any Γ ∈ Mρ(Z) can be written in a unique way as Γ =
∑m

ℓ=1 dℓΓℓ for some nonnegative integers dℓ. Assign a formal variable qℓ

for each Γℓ so that Γ =
∑m

ℓ=1 dℓΓℓ ∈ Mρ(Z) corresponds to the monomial

qd1
1 · · · qdm

m . The quantum 3-points function is by definition

(9) (α1, α2, α3)q(q1, . . . , qm) :=
∑

d1,...,dm>0

ΨZ
Γ (α1, α2, α3)q

d1
1 · · · qdm

m ,

where α1, α2, α3 ∈ H⋆(X,C) and where ΨZ
Γ (α1, α2, α3) is the Gromov-Witten

invariant of Z of genus zero, homology class Γ, and three marked points. One

makes the assumption that (9) defines an analytic function of the variables

q1, . . . , qm on some region of the complex space Cm. The quantum corrected

cup product α1 ∗ρ α2 of two classes α1, α2 ∈ H⋆(Z;C) is then defined by

requiring that, for all α3 ∈ H⋆(Z;C), one has
∫

Z
(α1 ∗ρ α2)α3 =

∫

Z
α1α2α3 + (α1, α2, α3)q(q1, . . . , qm).

The resulting associative, skew-symmetric, graded ring (H⋆(Z;C), ∗ρ) is the

quantum corrected cohomology ring with quantum parameters specialized at

(q1, . . . , qm). It is also denoted by H⋆
ρ (Z;C)(q1, . . . , qm).

Let us fix the notation used for the computations below. Let ρ : Z →
|P(w)| be a crepant resolution defined by a subdivision Σ′ of the fan Σ of

|P(w)|. Set H := c1(OP(w)(1)) ∈ H2(P(w);C) and h := ρ⋆H ∈ H2(Z;C). For

i ∈ {0, . . . , n}, we denote by bi ∈ H2(Z;C) the first Chern class of the line

bundle associated to the torus-invariant divisor corresponding to the ray

of Σ′ generated by β(vi), and similarly e1, . . . , ed ∈ H2(Z;C) for the rays in

Σ′(1) \ Σ(1). Since ρ is crepant, we have h = (1/
∑n

i=0 wi)(
∑n

i=0 bi +
∑d

j=1 ej)

(see Fulton [11]). Since H is an ample line bundle (see [11, Section 3.4]),

Lemma 3.1.1 shows that the Mori cone Mρ(Z) is generated by the set

(10)
{

[V (ν)]
∣

∣ h ∩ [V (ν)] = 0, ν ∈ Σ′(n − 1) \ Σ(n − 1)
}

.
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5.2. The case of |P(1,3,4,4)|
Consider the crepant resolution ρ : Z → |P(1,3,4,4)| defined in Section 3.2.

Theorem 5.2.1. For (q1, q2, q3, q4) ∈ {(i, i, i,0), (−i, −i, −i,0)}, there is an

explicit ring isomorphism

H⋆
ρ (Z;C)(q1, q2, q3, q4) ∼= H⋆

CR

(

P(1,3,4,4);C
)

which is an isometry with respect to the Poincaré pairing on H⋆
ρ (Z;C)(q1, q2,

q3, q4) and with respect to the Chen-Ruan pairing on H⋆
CR(P(1,3,4,4);C).

Proof. A toric computation shows that the cohomology ring of Z is iso-

morphic to the quotient of the polynomial ring C[h, e1, e2, e3, e4] by the ideal

generated by

3he4, e1e3, e1e4, e2e4, e3e4,

e2
1 − 10he1 − 4he2 − 2he3 + 24h2,

e1e2 + 3he1 + 2he2 + he3 − 12h2,

e2
2 − 6he1 − 12he2 − 2he3 + 24h2,

e2e3 + 3he1 + 6he2 + he3 − 12h2,

e2
3 − 6he1 − 12he2 − 14he3 + 24h2,

16h2e1,16h2e2,16h2e3,16h3 − 1

27
e3
4.

We fix the following basis of the vector space H⋆(Z;C):

1, h, e1, e2, e3, e4, h
2, he1, he2, he3, e

2
4, h

3.

Let Γ1,Γ2,Γ3,Γ4 ∈ Mρ(Z) be the generators defined in Section 3.3 and

whose equations are Γ1 := PD(4he1), Γ2 := PD(4he2), Γ3 := PD(4he3), and

Γ4 := PD(−(1/3)e2
4). We now give a presentation of the quantum corrected

cohomology ring H⋆
ρ (Z;C)(q1, q2, q3,0). First, notice that any curve of

homology class d4Γ4 is disjoint from any other curve of class d1Γ1 + d2Γ2 +

d3Γ3; in other words, M0,0(Z,Γ) is empty if Γ =
∑4

ℓ=1 dℓΓℓ with d4 · (d1 +

d2 +d3) �= 0. From the degree axiom, it follows that we need to consider only

Gromov-Witten invariants ΨZ
Γ (α1, α2, α3) with αi ∈ H2(Z;C), i ∈ {1,2,3}.

Finally, by applying the divisor axiom, we deduce the following expression
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for the quantum 3-points function:

〈α1, α2, α3〉q(q1, q2, q3, q4)

=
∑

d1,d2,d3>0

(

3
∏

i=1

∫

∑3
ℓ=1 dℓΓℓ

αi

)

deg
[

M0,0

(

Z,
3
∑

ℓ=1

dℓΓℓ

)]vir
qd1
1 qd2

2 qd3
3

+
∑

d4>0

(

3
∏

i=1

∫

d4Γ4

αi

)

deg[ M0,0(Z,d4Γ4)]
virqd4

4 .

Since
∫

Γℓ
h = 0 for any ℓ ∈ {1,2,3,4}, one has h ∗ρ α = hα for any α ∈

H⋆(Z;C), and similarly

ei ∗ρ e4 =

{

eie4 = 0 if i �= 4,

ǫ(q4)e
2
4 otherwise,

for some function ǫ(q4) such that ǫ(0) = 1.

Since in the isomorphism of rings that we will define we put q4 = 0, we

only consider classes Γ = d1Γ1 + d2Γ2 + d3Γ3 for di ∈ N. We set Γμν :=

Γμ + · · · + Γν for 1 ≤ μ ≤ ν ≤ 3. Using Theorem 3.3.1, we get

deg[ M0,0(Z,Γ)]vir =

{

1/d3 if Γ = dΓμν for 1 ≤ μ ≤ ν ≤ 3 and d ∈ N∗,

0 otherwise.

Hence, the remaining part of the multiplicative table of H⋆
ρ (Z;C)(q1, q2, q3,0)

is as follows:

e1 ∗ρ e1 = −24h2 +
(

10 + 16
q1

1 − q1
+ 4

q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)

he1

+
(

4 + 4
q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he2

+
(

2 + 4
q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he3,

e1 ∗ρ e2 = 12h2 +
(

−3 − 8
q1

1 − q1
+ 4

q1q2

1 − q1q2

)

he1

+
(

−2 − 8
q2

1 − q2
+ 4

q1q2

1 − q1q2
− 4

q2q3

1 − q2q3

)

he2

+
(

−1 − 4
q2q3

1 − q2q3

)

he3,
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e1 ∗ρ e3 =
(

−4
q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)

he1

+
(

4
q2

1 − q2
− 4

q1q2

1 − q1q2
− 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he2

+
(

−4
q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he3,

e2 ∗ρ e2 = −24h2 +
(

6 + 4
q1

1 − q1
+ 4

q1q2

1 − q1q2

)

he1

+
(

12 + 16
q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3

)

he2

+
(

2 + 4
q3

1 − q3
+ 4

q2q3

1 − q2q3

)

he3,

e2 ∗ρ e3 = 12h2 +
(

−3 − 4
q1q2

1 − q1q2

)

he1

+
(

−6 − 8
q2

1 − q2
− 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3

)

he2

+
(

−1 − 8
q3

1 − q3
+ 4

q2q3

1 − q2q3

)

he3,

e3 ∗ρ e3 = −24h2 +
(

6 + 4
q1q2

1 − q1q2
+ 4

q1q2q3

1 − q1q2q3

)

he1

+
(

12 + 4
q2

1 − q2
+ 4

q1q2

1 − q1q2
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he2

+
(

14 + 16
q3

1 − q3
+ 4

q2q3

1 − q2q3
+ 4

q1q2q3

1 − q1q2q3

)

he3.

To compute the Chen-Ruan cohomology ring H⋆
CR(X ;C) (here X = P(1,3,

4,4)), we follow Boissière, Mann, and Perroni [3]. The twisted sectors are

indexed by the set T :=
{

exp(2πiγ) | γ ∈ {0,1/3,2/3,1/4,1/2,3/4}
}

. For

g ∈ T , written g = exp(2πiγ) with γ ∈ {0,1/3,2/3,1/4,1/2,3/4}, the age of

g is given by the formula

age(g) = {γ} + {3γ} + {4γ} + {4γ},

where {·} denotes the fractional part. For any g ∈ T, X(g) is a weighted

projective space. Setting I(g) := {i ∈ {0,1,2,3} | gwi = 1}, one has X(g) =
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P(wI(g)), where wI(g) = (wi)i∈I(g). The inertia stack is the disjoint union of

the twisted sectors

IX =
⊔

g∈T

P(wI(g)).

As a vector space, the Chen-Ruan cohomology is the cohomology of the

inertia stack; that is, the graded structure is obtained by shifting the degree

of the cohomology of any twisted sector by twice the corresponding age. We

have

Hp
CR(X ;C) =

⊕

g∈T

Hp−2age(g)
(

P(wI(g));C
)

= Hp
(

P(1,3,4,4);C
)

⊕ Hp−2
(

P(3);C
)

⊕ Hp−4
(

P(3);C
)

(11)

⊕ Hp−2
(

P(4,4);C
)

⊕ Hp−2
(

P(4,4);C
)

⊕ Hp−2
(

P(4,4);C
)

.

A basis of H⋆
CR(X ;C) is easily obtained in the following way, set

H,E1,E2,E3,E4 ∈ H⋆
CR(X ;C)

as the image of c1(OX (1)) ∈ H2(X ;C), 1 ∈ H0(X(exp(πi/2));C), 1 ∈
H0(X(exp(πi));C), 1 ∈ H0(X(exp(πi3/2));C), and 1 ∈ H0(X(exp(2πi/3));C),

respectively, under the inclusion H⋆−2age(g)(P(wI(g))) → H⋆
CR(X ) determined

by the decomposition (11). As a C-algebra, the Chen-Ruan cohomology ring

is generated by H,E1,E2,E3,E4 with the following relations (see [3]):

HE4,E1E1 − 3HE2,E1E2 − 3HE3,E1E3 − 3H2,

E2E2 − 3H2,E2E3 − HE1,E3E3 − HE2,16H3 − E3
4 ,

H2E1,H
2E2,H

2E3,E1E4,E2E4,E3E4.

We see that the following elements form a basis of H⋆
CR(X ;C) which we fix

for the rest of the proof:

1,H,E1,E2,E3,E4,H
2,HE1,HE2,HE3,E

2
4 ,H3.

(Note that the elements of our basis are different from those used in [3] by

a combinatorial factor.)

For cohomology classes α1 and α2, the product α1 ∗ρ α2 ∈ H⋆
ρ (Z;C)(q1, q2,

q3,0) differs from the usual cup product only when α1, α2 ∈ {e1, e2, e3}. We
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now set q1 = q2 = q3 = i, and we compute ei ∗ρ ej in the choosen basis of

H⋆(Z;C) to get

e1 ∗ρ e1 = −24h2 + (−2 + 6i)he1 − 4he2 + (−2 − 2i)he3,

e1 ∗ρ e2 = 12h2 + (−1 − 4i)he1 + (2 − 4i)he2 + he3,

e1 ∗ρ e3 = −2ihe1 − 2ihe3,

e2 ∗ρ e2 = −24h2 + (2 + 2i)he1 + 8ihe2 + (−2 + 2i)he3,

e2 ∗ρ e3 = 12h2 − he1 + (−2 − 4i)he2 + (1 − 4i)he3,

e3 ∗ρ e3 = −24h2 + (2 − 2i)he1 + 4he2 + (2 + 6i)he3.

We now define a linear map

(12) H⋆
ρ (Z;C)(i, i, i,0) → H⋆

CR

(

P(1,3,4,4);C
)

as follows. We send

⎛

⎜

⎜

⎜

⎜

⎝

h

e1

e2

e3

e4

⎞

⎟

⎟

⎟

⎟

⎠


−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0

0 −
√

2 −2i
√

2 0

0 −i
√

2 2i −i
√

2 0

0
√

2 −2i −
√

2 0

0 0 0 0 3exp(2πi
3 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H

E1

E2

E3

E4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(the image of the other elements of the basis is uniquely determined by

requiring that (12) be a ring isomorphism). A direct computation shows

that (12) is a ring isomorphism and that it is an isometry with respect

to the inner products given by the Poincaré duality and the Chen-Ruan

pairing, respectively.

The case q1 = q2 = q3 = −i and q4 = 0 is analogous to the previous one.

We define a linear map

(13) H⋆
ρ (Z;C)(−i, −i, −i,0) → H⋆

CR

(

P(1,3,4,4);C
)

by sending
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h

e1

e2

e3

e4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠


−→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0

0 −
√

2 2i
√

2 0

0 i
√

2 −2i i
√

2 0

0
√

2 2i −
√

2 0

0 0 0 0 3exp(2πi
3 )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H

E1

E2

E3

E4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and extending to the remaining part of the basis (in the unique way) such

that the resulting map is a ring isomorphism. Also, in this case a direct

computation shows that (13) is a ring isomorphism and that it respects the

inner pairings.

Remark 5.2.2. The values q1 = q2 = q3 = ±i were proposed in [16, Con-

jecture 1.9]: thus Theorem 5.2.1 agrees with this conjecture. The change of

variables is inspired by those of Nahm and Wendland [15] (see also [7], [9]).

The fact that one quantum parameter can be put to zero to get the

conjectured isomorphism is strange in regard to the conjecture, and some-

how unsatisfactory. The problem concerns the computation of the function

ǫ(q4) in the proof. In [2], we solve this problem so that the fourth quantum

parameter can be put to 1.

5.3. The case of |P(1, . . . ,1, n)|
The quantum parameter put to zero in the case of P(1,3,4,4) corresponds

to the isolated singularity (1/3)(1,1,1). Surprisingly, this phenomenon can

be observed in any dimension by considering the n-dimensional weighted

projective space P(1, . . . ,1, n) whose coarse moduli space has an isolated

singularity of type (1/n)(1, . . . ,1) at the point [0 : . . . : 0 : 1]. In this example,

a crepant resolution can be constructed for any n.

We identify the stacky fan (N,β,Σ) defined in (1) with
(

Zn, {Λ(β(vi))}n
i=0,

Σ
)

by means of the isomorphism Λ : N → Zn defined by sending v0 to

(−1, . . . , −1, −n) and vi to the ith vector of the standard basis of Zn, for

i ∈ {1, . . . , n}. The crepant resolution is defined as follows. Consider the ray

generated by

P := (0, . . . ,0, −1) =
1

n

n−1
∑

i=0

Λ
(

β(vi)
)

,

and let Σ′ be the fan obtained from Σ (by refinement) by replacing the cone

generated by Λ(β(v0)), . . . ,Λ(β(vn−1)) with the cones generated by P and

the rays Λ(β(v0)), . . . , ̂Λ(β(vi)), . . . ,Λ(β(vn−1)) for any i ∈ {0, . . . , n − 1}. We

draw as an example the polytope for the case n = 3 in Figure 2. Define Z

to be the toric variety associated to Σ′, and define ρ : Z → |P(1, . . . ,1, n)| to

be the morphism associated to the identity in Zn. We have the following.

Proposition 5.3.1. For any n ≥ 2, there is an explicit ring isomorphism

H⋆(Z;C) ∼= H⋆
CR

(

P(1, . . . ,1, n);C
)

.
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Figure 2: Polytope of P(1,1,1,3) and a crepant resolution

Proof. One computes that H⋆(Z;C) ∼= C[b0, . . . , bn, e]/I , where I is gen-

erated by

−b0 + bi for 1 ≤ i ≤ n − 1,

−nb0 − e + bn, ebn, b0 · · · bn−1.

With h := (1/2n)(b0 + · · · + bn + e) = b0 + (1/n)e, one gets a better presen-

tation as

H⋆(Z;C) ∼= C[h, e]
/

〈

hn + (−1)n
( e

n

)n
, he

〉

.

The Mori cone Mρ(Z) is generated by one class Γ1 := PD((h − (e/n))n−2e).

We will set the quantum parameter q1 to zero so that we do not have to

compute any nontrivial Gromov-Witten invariants.

Concerning the Chen-Ruan cohomology ring of X := P(1, . . . ,1, n), the

twisted sectors are indexed by the set T = {exp((2πik/n)) | k ∈ {0, . . . , n −
1}}. For g ∈ T \ {1}, one has X(g)

∼= P(n), whereas X(1)
∼= X . As a vector

space, we have

(14) H⋆
CR(X ;C) :=

⊕

g∈T

H⋆−2age(g)(X(g)).

Let

H,E1 ∈ H2
CR(X ;C)

be the image of c1(OX (1)) ∈ H2(X ;C) and 1 ∈ H0(X(exp(2πi/n));C), respec-

tively, with respect to the inclusion H⋆−2age(g)(X(g)) → H⋆
CR(X ) determined
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by (14). Then we have the following presentation:

H⋆
CR

(

P(1, . . . ,1, n);C
) ∼= C[H,E1]/〈Hn − (E1)

n,HE1〉.

The ring isomorphism

H⋆
CR

(

P(1, . . . ,1, n);C
) ∼−→ H⋆(Z;C)

is obtained by mapping H 
→ h and E1 
→ − exp(iπ/n)(e/n).
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Université de Montpellier 2 CC 5149

Place Eugène Bataillon

34 095 Montpellier

France

emann@math.univ-montp2.fr

Fabio Perroni

Mathematisches Institut

Lehrstuhl Mathematik VIII

Universitätstraße 30

95447 Bayreuth

Germany

fabio.perroni@uni-bayreuth.de

mailto:samuel.boissiere@unice.fr
mailto:emann@math.univ-montp2.fr
mailto:fabio.perroni@uni-bayreuth.de

	Introduction
	Weighted projective spaces
	 Gromov-Witten invariants of the resolution of |P(1,3,4,4)|
	The Mori cone
	Crepant resolution of |P(1,3,4,4)|
	Statement of the main result

	Proof of Theorem 3.3.1
	The neighborhood
	The deformation
	Computation of the invariants

	Application to the cohomological crepant resolution conjecture
	The cohomological crepant resolution conjecture
	The case of |P(1,3,4,4)|
	The case of |P(1,…,1,n)|

	Acknowledgments
	References
	Author's Addresses

