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Existence of global strong solution for Korteweg system with large infinite energy initial data

), which can be used as a phase transition model. We will prove the existence of local and global (under a condition of smallness on the initial data) strong solutions with discontinuous initial density where ln ρ 0 belongs to the Besov space

) which enables us to improve the previous result and by obtaining the existence of global strong solution with large initial velocity in B N 2 -1 2,∞ (in particular when N = 2 it implies the existence of global strong solution with large energy data). As a corollary, we get global existence (and uniqueness) for highly compressibleKorteweg system when N ≥ 2. It means that for any large initial data (under an irrotational condition on the initial velocity) we have the existence of global strong solution provided that the pressure is sufficiently highly compressible.

Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model we consider originates from the XIXth century work by Van der Waals and Korteweg 1 [START_REF] Van Der Waals | Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung[END_REF][START_REF] Korteweg | Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité[END_REF] and was actually derived in its modern form in the 1980s using the second gradient theory, see for instance [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF][START_REF] Jamet | The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change[END_REF][START_REF] Truedell | The nonlinear field theories of mechanics[END_REF]. The first investigations begin with the Young-Laplace theory which claims that the phases are separated by a hypersurface and that the jump in the pressure across the hypersurface is proportional to the curvature of the hypersurface. The main difficulty consists in describing the location and the movement of the interfaces. Another major problem is to understand whether the interface behaves as a discontinuity in the state space (sharp interface) or whether the phase boundary corresponds to a more regular transition (diffuse interface, DI). The diffuse interface models have the advantage to consider only one set of equations in a single spatial domain (the density takes into account the different phases) which considerably simplifies the mathematical and numerical study (indeed in the case of sharp interfaces, we have to treat a problem with free boundary). Another approach corresponds to determine equilibrium solutions which classically consists in the minimization of the free energy functional. Unfortunately this minimization problem has an infinity of solutions, and many of them are physically wrong (some details are given later). In order to overcome this difficulty, Van der Waals in the XIX-th century was the first to add a term of capillarity to select the physically correct solutions, modulo the introduction of a diffuse interface. This theory is widely accepted as a thermodynamically consistent model for equilibria. Korteweg-type models are based on an extended version of nonequilibrium thermodynamics, which assumes that the energy of the fluid not only depends on standard variables but also on the gradient of the density. Alternatively, another way to penalize the high density variations consists in applying a zero order but non-local operator to the density gradient ( see [START_REF] Rohde | A local and low-order Navier-Stokes-Korteweg system[END_REF], [START_REF] Rohde | On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions[END_REF], [START_REF] Rohde | Approximation of Solutions of Conservation Laws by Non-Local Regularization and Discretization[END_REF]). For more results on non local Korteweg system, we refer also to [START_REF] Charve | Convergence of a low order non-local Navier-Stokes-Korteweg system: the order-parameter model[END_REF][START_REF] Charve | Convergence of capillary fluid models: from the nonlocal to the local Korteweg model[END_REF][START_REF] Charve | On a Lagrangian method for the convergence of a non-local to a local Korteweg capillary fluid model[END_REF][START_REF] Haspot | Cauchy problem for viscous shallow water equations with a term of capillarity[END_REF][START_REF] Haspot | Existence of global weak solution for compressible fluid models with a capillary tensor for discontinuous interfaces[END_REF]. Let us now consider a fluid of density ρ ≥ 0, velocity field u ∈ R N , we are now interested in the following compressible capillary fluid model, which can be derived from a Cahn-Hilliard like free energy (see the pioneering work by J.-E. Dunn and J. Serrin in [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF] and also in [START_REF] Anderson | Diffuse-interface methods in fluid mech[END_REF][START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF][START_REF] Gurtin | Two-phases binary fluids and immiscible fluids described by an order parameter[END_REF]). The conservation of mass and of momentum write:

     ∂ ∂t ρ + div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) -div(2µ(ρ)D(u)) -∇ λ(ρ))divu + ∇P(ρ) = divK, (1.1) 
where the Korteweg tensor read as following:

divK = ∇ ρκ(ρ)∆ρ + 1 2 (κ(ρ) + ρκ (ρ))|∇ρ| 2 -div κ(ρ)∇ρ ⊗ ∇ρ . (1.2)
κ is the coefficient of capillarity and is a regular function. The term divK allows to describe the variation of density at the interfaces between two phases, generally a mixture liquid-vapor. P is a general increasing pressure term. D(u) = (∇u + t ∇u) defines the stress tensor, µ and λ are the two Lamé viscosity coefficients depending on the density ρ and satisfying: µ > 0 and 2µ + N λ ≥ 0.

Here we are interested in investigating the Cauchy problem of the existence of global strong solution for the system (1.1) when we authorize jump in the pressure across the interfaces. In order to obtain a such result, we are going to show the existence of strong solutions in critical space (it means in spaces as large as possible) for the scaling of the equations with an initial density which is not necessary continuous. Before detailing this program, let us recall briefly the classical energy estimates for the system (1.1). Let ρ > 0 be a constant reference density (in the sequel we will assume that ρ = 1), and let Π be defined by: Π(s) = s s ρ P (z) z 2 dz -P (ρ) ρ , so that P (s) = sΠ (s) -Π(s) , Π (ρ) = 0. Multiplying the equation of momentum conservation in the system (1.1) by u and integrating by parts over (0, t) × R N , we obtain the following estimate:

R N 1 2 ρ|u| 2 + (Π(ρ) -Π(ρ)) + 1 2κρ |∇ρ| 2 (t)dx + 1 2 t 0 R N µ(ρ)|D(u)| 2 dxdt ≤ R N |m 0 | 2 2ρ + (Π(ρ 0 ) -Π(ρ)) + 1 2κρ 0 |∇ρ 0 | 2 dx.
(1.

3)

It follows that assuming that the initial total energy is finite:

E 0 = R N |m 0 | 2 2ρ + (Π(ρ 0 ) -Π(ρ)) + κ(ρ 0 ) 2 |∇ρ 0 | 2 dx < +∞ ,
then we have the a priori following bounds when P (ρ) = aρ γ with γ > 1:

(ρ -1) ∈ L ∞ (L γ 2 ), and ρ|u| 2 ∈ L 1 (0, ∞, L 1 (R N )), κ(ρ)∇ρ ∈ L ∞ (0, ∞, L 2 (R N )) N , and ∇u ∈ L 2 (0, ∞, R N ) N 2 .

We refer to [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF] for the definition of the Orlicz spaces. Let us now recall the notion of scaling for the Korteweg's system (1.1). Such an approach is now classical for incompressible Navier-Stokes equation and yields local well-posedness (or global well-posedness for small data) in spaces with minimal regularity. In our situation we can easily check that, if (ρ, u) solves (1.1), then (ρ λ , u λ ) solves also this system:

ρ λ (t, x) = ρ(λ 2 t, λx) , u λ (t, x) = λu(λ 2 t, λx)
provided the pressure laws P have been changed into λ 2 P .

Definition 1.1 We say that a functional space is critical with respect to the scaling of the equation if the associated norm is invariant under the transformation:

(ρ, u) -→ (ρ λ , u λ )

(up to a constant independent of λ).

This suggests us to choose initial data (ρ 0 , u 0 ) in spaces whose norm is invariant for all λ > 0 by the transformation (ρ 0 , u 0 ) -→ (ρ 0 (λ•), λu 0 (λ•)). A natural candidate is the Besov space (see the section 2 for some definitions of Besov spaces)

B N/2 2,∞ × (B N/2-1 2,∞ ) N , however since B N/2
2,∞ is not included in L ∞ , we cannot expect to get a priori L ∞ estimate on the density when ρ 0 ∈ B N/2 2,∞ (in particular it makes the study of the non linear term delicate since it appears impossible to use composition theorems) . Typically except in the case of specific pressure we are not able to deal with this last one. An other difficulty concerns the control of the vacuum or more precisely of the L ∞ norm of 1 ρ , indeed it is crucial to avoid vacuum in order to involve the parabolicity of the momentum equation. An other candidate of initial data space would be (B

N/2 2,∞ ∩ L ∞ ) × (B N/2-1 2,∞
) N , it will be typically in this last type of space that we shall prove some result of global strong solution by considering specific physical coefficients. Indeed controlling the L ∞ norm of the density for general physical coefficients is generally an hard task in fluid mechanics, even if the Korteweg system allows to obtain regularizing effects on the density. This is the reason why in the literature the authors consider initial density which are in Banach spaces imbedded in L ∞ and such that the regularity is propagate via the parabolic structure of the system. Let us briefly mention that the existence of strong solutions for N ≥ 2 is known since the works by H. Hattori and D. Li [START_REF] Hattori | The existence of global solutions to a fluid dynamic model for materials for Korteweg type[END_REF][START_REF] Hattori | Global Solutions of a high-dimensional system for Korteweg materials[END_REF]. R. Danchin and B. Desjardins in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] improve this result by working in critical spaces for the scaling of the equations, more precisely the initial data (q 0 , ρ 0 u 0 ) belong to

B N 2 2,1 × B N 2 1
2,1 (as mentioned previously, let us emphasize on the fact that B N 2 2,1 is embedded in L ∞ and it plays a crucial role in order to control the vacuum and the L ∞ norm of the density). In [START_REF] Kotschote | Strong solutions for a compressible fluid model of Korteweg type[END_REF], M. Kotschote showed the existence of strong solution for the isothermal model in bounded domain by using Doreâ-Venni Theory and H ∞ calculus. In [START_REF] Hattori | The existence of global solutions to a fluid dynamic model for materials for Korteweg type[END_REF], we generalize the results of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] in the case of non isothermal Korteweg system with physical coefficients depending on the density and the temperature.

Mathematical results

We now are going to state our main results. As we explained previously, one of the main difficulty to obtain strong solutions for Korteweg's system in very general Besov spaces consists in dealing with Besov space B N 2 mathematical community is interested in building solitons for this type of problem (one of the main other reasons correspond to give a negative answer to the problem of scattering and to study the stability of the soliton, we refer to [START_REF] Bethuel | Travelling waves for the Gross-Pitaevskii equation II[END_REF]). We would also like to mention very interesting results of global weak solutions for the compressible quantic Euler equation with a regime κ(ρ) = 1 ρ due to Antonelli and Marcati (see [START_REF] Antonelli | On the finite energy weak solutions to a system in quantum fluid dynamics[END_REF]). To finish let also mention that we prove in [START_REF] Charve | Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[END_REF] that it exits global strong solutions in one dimension for the system (1.1) when κ(ρ) = µ 2 ρ and µ(ρ) = µρ, λ(ρ) = 0 and furthermore these solutions converge to a global weak entropy solution of the compressible Euler system when µ goes to 0. It shows in particular that the Korteweg system is relevant to select the physical solution of the compressible Euler system via a viscosity-capillarity vanishing process.

When κ(ρ) = κ ρ , we rewrite the capillarity tensor as follows (see the appendix for more details on the computations):

K(ρ) =κρ(∇∆(ln ρ) + 1 2 ∇(|∇ ln ρ| 2 )).
We now want to consider the eulerian form of the system (1.1) when κ(ρ) = κ ρ with κ > 0, we obtain then by dividing by ρ the momentum equation the following system:

     ∂ t ln ρ + u • ∇ ln ρ + divu = 0, ∂ t u + u • ∇u -1 ρ div(2µ(ρ)Du) -1 ρ ∇(λ(ρ)divu) + ∇F (ρ) = κ∇∆(ln ρ) + κ 2 ∇(|∇ ln ρ| 2 ), (ln ρ, u) t=0 = (ln ρ 0 , u 0 ). (1.4) 
with F (ρ) defined by F (ρ) ρ = P (ρ). In the sequel we will use the following definition.

Definition 1.2 We now set: q = ln ρ.

One can now state the main results of the paper. In the first theorem we prove the existence of global strong solution for (1.4) with small initial data and of strong solution in finite time with large initial data when we choose specific viscosity coefficients and pressure terms. More precisely we shall deal with the shallow water viscosity coefficients:

µ(ρ) = µρ, λ(ρ) = λρ,
with µ > 0 and 2µ + λ > 0. It leads to the following system:

           ∂ t q + u • ∇q + divu = 0, ∂ t u + u • ∇u -µ∆u -2µ∇q • D(u) -(λ + µ)∇divu -λdivu∇q + ∇F (ρ) = κ∇∆q + κ 2 ∇(|∇q| 2
), (q, u) t=0 = (ln ρ 0 , u 0 ).

(1.5) Let us now state our main results, we refer to the section 2 for the definitions of the Besov space and the Hybrid Besov spaces.

Theorem 1.1 Let N ≥ 2. Assume that µ(ρ) = µρ, λ(ρ) = λρ with µ > 0, 2µ + λ > 0 and P (ρ) = Kρ with K > 0. We also suppose that:

q 0 ∈ B N 2 2,∞ and u 0 ∈ B N 2 -1 2,∞ .
There exists a time T such that (1.5) has a unique solution (q, u) on (0, T ) with:

q ∈ L ∞ T (B N 2 2,∞ ) ∩ L 1 T (B N 2 +2 2,∞ ), and u ∈ L ∞ T (B N 2 -1 2,∞ ) ∩ L 1 T (B N 2 +1 2,∞ ).
Furthermore it exists ε 0 such that if in addition

q 0 ∈ B N 2 -1
2,∞ and:

q 0 B N 2 -1, N 2 2,∞ + u 0 B N 2 -1 2,∞ ≤ ε 0 .
then the solution (q, u) is global with:

q ∈ L ∞ ( B N 2 -1, N 2 2,∞ ) ∩ L 1 ( B N 2 +1, N 2 +2 2,∞ ), and u ∈ L ∞ (B N 2 -1 2,∞ ) ∩ L 1 (B N 2 +1 2,∞ ). (1.6)
If in addition with the previous smallness hypothesis we assume that (q 0 , u 0 ) belongs in

B N 2 2,2 × B N 2 -1 2,2
and that q 0 ∈ L ∞ then there exists a unique solution (ρ, u) of the system (1.1) with q = ln ρ. Furthermore for any T it exists C T such that:

1 ρ L ∞ T (L ∞ ) + ρ L ∞ T (L ∞ ) ≤ C T .
Remark 2 We want to point out that in the first part of the theorem 1.1, we solve the system (1.5) and not the system (1.1). Indeed we do not assume any control on q 0 in L ∞ , it means that we have no information on the vacuum of the density. So it is not clear that a solution from (1.5) is also a solution from (1.1) when there is vacuum. This result proves in a certain way that the good variable to consider is not the density ρ but rather ln ρ. Let us emphasize on the fact that this result is the first (up our knowledge) for compressible system where we are able to work with such general critical initial data

(in particular u 0 ∈ B N 2 -1
2,∞ , on the contrary this regularity is classical for incompressible Navier-Stokes equations, see [START_REF] Cannone | On the Regularity of the Bilinear Term for Solutions to the Incompressible Navier-Stokes Equations[END_REF]). In the second part of theorem we assume additional hypothesis on the density since q 0 belongs also in

L ∞ ∩ B N 2 22 and u 0 ∈ B N 2 -1 22
, in counter part we are able to show that with such initial data we have existence of strong solution for the "real" Korteweg system (1.1). The main difficulty consists in proving L ∞ estimates on q by splitting the solution q in the sum of the solution of the linearized system q L and a remainder term q taking into account the non linear terms. We combine some maximum principle results on q L and regularizing effect on q on the third index of the Besov space to show that q is well controlled in L ∞ . This part is quite technical and involves new ideas for developing some results of maximum principle type, to do this we show in particular a characterization of Besov spaces in terms of the semi group associated to the linear system related to (1.1).

Let us finish by observing that in this theorem we authorize that the initial density is not necessary continuous as in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF], this is one of the main motivation of this paper. Indeed we can deal with initial density which have some jump, we observe that the density is immediately regularized in the sense that ρ is in C ∞ ((0, T ), R N ) for any T > 0. This is due to the fact that the interfaces are diffuse.

Remark 3

The second interest of this theorem it to obtain the existence of global strong solution with subcritical smallness on the initial data. More precisely we assume that

(q 0 , u 0 ) belongs in (B N 2 -1 2,∞ ∩B N 2 2,2 ∩L ∞ )×B N 2 -1 2,2
but we require only a smallness assumption in

B N 2 -1, N 2 2,∞
. In particular it allows us to prove the existence of global strong solution with large initial data in the energy space when N = 2, this is up our knowledge the first result of global strong solution with large initial energy data for the Korteweg system when N = 2. We give a example of such initial data in the corollary 3 where u 0,ε,l 0 can be chose as small as possible in

B N 2 -1 2,∞ but very large in B N 2 -1 2,2 . Let us recall that when N = 2, B N 2 -1 2,2
corresponds to L 2 which is the energy space for u 0 (see (1.3)).

An other interesting point is that compared with [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF], we can choose initial density with a large L ∞ norm.

Remark 4

We now want to point out the specificity of the different physical coefficients, it is typically the case for the pressure and the viscosity coefficients where P (ρ) = Kρ and µ(ρ) = µρ. Indeed under this form we can check that the variable ln ρ appears naturally everywhere but also that there is no non-linear terms in the density such that it would be necessary to have L ∞ control on the density for dealing with these terms. Let us mention that it is not possible to obtain the same type of result for compressible Navier-Stokes equations as we have no regularizing effects on the density. Indeed in this case it would be not possible to deal with the following term ∇ ln ρ • ∇u and to prove that it remains in

L 1 (B N 2 -1 2,∞ ).
In the following theorem we are going to extend the previous analysis to general physical coefficients.

Remark 5

We would like to mention that we could easily extend the result of strong solution in finite time to the framework of Besov spaces constructed on general L p spaces when the initial data verify:

q 0 ∈ B N p p,∞ and u 0 ∈ B N p -1 p,∞ ,
Concerning the existence of global strong solution we shall assume that q 0 is in

B N 2 -1 N p 2,p,∞ and u 0 ∈ B N 2 -1, N p -1 2,p,∞
, the main difficulty would concern the proof of estimate for the linear system associated to the Korteweg system with such initial data (we refer to [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fuids[END_REF] for a such study in the framework of the compressible Navier Stokes equations).

The previous theorem takes into account in an essential way the structure of the viscosity, capillary and pressure coefficients, indeed it allows us to assume a smallness hypothesis only on initial data in

B N 2 -1, N 2 2,∞ ×B N 2 -1
2,∞ in order to obtain global strong solution. Furthermore with such physical coefficients we are able to prove the existence of global strong solution for the system (1.4) by assuming only that (q 0 , u 0 ) belongs in

B N 2 -1, N 2 2,∞ × B N 2 -1 2,∞
with a smallness assumption in this space. We would like to extend this result to general physical coefficients and in particular dealing with the case of the constant capillary coefficient in order to improve the results of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]. Let us state a new theorem dealing with general pressure and with the capillary coefficient such that κ(ρ) = κ ρ or κ with κ > 0.

Theorem 1.2 Let N ≥ 2. Assume that µ(ρ) = µρ or µ, λ(ρ) = λρ or λ with µ > 0, 2µ + λ > 0 and P a regular function such that P (1) > 0. Furthermore we suppose that ρ 0 = 1 + h 0 :

h 0 ∈ B N 2 -1, N 2 2,2 ∩ B N 2 -2 2,1 ∩ L ∞ and u 0 ∈ B N 2 -2 2,1 ∩ B N 2 -1 2,2 .
There exists ε 0 such that if:

h 0 B N 2 -1, N 2 2,2 ∩B N 2 -2 2,1 ∩L ∞ + u 0 B N 2 -2 2,1 ∩B N 2 -1 2,2 ≤ ε 0 .
then it exists a global unique solution (ρ, u) of the system (1.1) with ρ = 1 + h and:

h ∈ L ∞ ( B N 2 -1, N 2 2,2 ∩ B N 2 -2 2,1 ) ∩ L 1 ( B N 2 +1, N 2 +2 2,2 ∩ B N 2 2,1 ) ∩ L ∞ (L ∞ ) and u ∈ L ∞ (B N 2 -1 2,2 ∩ B N 2 -2 2,1 ) ∩ L 1 (B N 2 +1 2,2 ∩ B N 2
2,1 ).

(1.7) Remark 6 We would like to mention that this theorem improve the results of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] in terms of rough regularity on the initial data. Here we assume only that u 0 belongs in

B N 2 -1 2,2 instead B N 2 -1
2,1 , the main task as in the previous theorem 1.1 consists in getting a control of the density in L ∞ without assuming h 0 ∈ B N 2

2,1 as it is the case in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]. To do this we have to study precisely the linearized system of (1.1) and involving some results of maximum principle type, in addition the solution are the sum of solution for the linear system associated to (1.1) and remainder terms taking into account the non linearities. These remainders terms benefit from regularizing effects on the third index of the Besov space which will ensure a L ∞ control on the density. For more details we refer to the proof of theorem 1.2. Let us mention that for the first time up my knowledge we can choose initial density which are not continuous as in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF], in particular we authorize some jump on the initial density which is immediately regularized.

Remark 7 Let us point out that in the previous theorem 1.2 we ask additional regularity in low frequencies on (h 0 , u 0 ), indeed we assume that (h 0 , u 0 ) are in

B N 2 -2 2,1 × (B N 2 -2 2,1
) N . This is essentially due to the fact that we have shown maximum principle for the system (N ) p18 and not for the system (N 1) p 20 (see the proposition 3.93). We think that it would be possible to extend the proposition 3.93 to the system (N 1). In particular it will allow to avoid this additional regularity on the initial data in low frequencies. For more explanations we refer to the remark 20.

We are now interested in dealing with the specific case κ = µ 2 where we can exhibit a specific structure on the system (1.1), we obtain from system (1.5) (when λ = 0) the following simplified model by assuming that v = u + µ∇ ln ρ (we refer to the appendix for more details on the computation or [START_REF] Haspot | New entropy for Kortewegs system, existence of global weak solution and Prodi-Serrin theorem[END_REF])):

∂ t ρ -µ∆ρ = -div(ρv), ρ∂ t v + ρu • ∇v -div(µρ ∇v) + ∇P(ρ) = 0, (1.8) 
which is equivalent to the following system if we control the vacuum on the density ρ with q = ln ρ:

∂ t q -µ∆q + v • ∇q = -divv + µ|∇q| 2 , ∂ t v + u • ∇v -µ∆v -µ∇q • ∇v + ∇F (ρ) = 0, (1.9) 
In this particular case we are able to use a new tool developed in [START_REF] Haspot | Global existence of strong solution for the Saint-Venant system with large initial data on the irrotational part[END_REF][START_REF] Haspot | Existence of global strong solutions for the barotropic Navier Stokes system system with large initial data on the rotational part of the velocity[END_REF][START_REF] Haspot | Global existence of strong solution for shallow water system with large initial data on the irrotational part[END_REF][START_REF] Haspot | Global existence of strong solution for shallow water system with large initial data on the rotational part[END_REF][START_REF] Haspot | Porous media, Fast diffusion equations and the existence of global weak solution for the quasi-solution of compressible Navier-Stokes equations[END_REF] called the quasi-solutions. More precisely we can check that it exists a particular solution of the following system (where we have canceled out the pressure P ):

∂ t ρ -µ∆ρ = -div(ρv), ρ∂ t v + ρu • ∇v -div(µρ ∇v) = 0, (1.10) 
Indeed we verify that (ρ 1 , -µ∇ ln ρ 1 ) is a particular solution of (1.10) if the density ρ 1 verifies the following heat equation:

∂ t ρ 1 -µ∆ρ 1 = 0. (1.11)
The idea will consists in working around this quasi-solution which allows us to prove the existence of global strong solution with small initial data in subcritical norms. Indeed we are going to search solution under the form:

q = ln ρ = ln ρ 1 + h 2 with ρ 1 = 1 + h 1 and u = -µ∇ ln ρ 1 + u 2 .
We deduce from (1.9) that (h 2 , u 2 ) verifies the following system:

           ∂ t h 2 + divu 2 -µ∇ ln ρ 1 • ∇h 2 + u 2 • ∇ ln ρ 1 = F (h 2 , u 2 ), ∂ t u 2 -µ∆u 2 -µ∇divu 2 -κ∇∆h 2 + K∇h 2 -2µ∇ ln ρ 1 • Du 2 -2µ∇h 2 • Du 1 + u 1 • ∇u 2 + u 2 • ∇u 1 -µ 2 ∇(∇ ln ρ 1 • ∇h 2 ) = G(h 2 , u 2 ), (h 2 (0, •), u 2 (0, •)) = (h 2 0 , u 2 0 ).
(1.12) with:

F (h 2 , u 2 ) = -u 2 • ∇h 2 , G(h 2 , u 2 ) = -u 2 • ∇u 2 + 2µ∇h 2 • Du 2 -K∇ ln ρ 1 + µ 2 2 ∇(|∇h 2 | 2 ).
(1.13)

Let us state our main theorem for the system (1.12).

Theorem 1.3 Let N ≥ 2. Assume that µ(ρ) = µρ, κ(ρ) = µ 2
ρ and λ(ρ) = 0 with µ > 0 and P (ρ) = Kρ with K > 0. Furthermore we suppose that u 0 = -µ∇[ln ρ 0 1 ] + u 0 2 and ln ρ 0 = ln(ρ 0 1 ) + h 0 2 such that ρ 0 1 = 1 + h 1 0 and it exits c 1 > 0 such that ρ 0 1 ≥ c 1 > 0. In addition we assume that:

h 0 1 ∈ B N 2 -2, N 2 2,1 h 0 2 ∈ B N 2 -1, N 2 2,1
and

u 2 0 ∈ B N 2 -1
2,1 . Furthermore it exists ε 0 , C > 0 and two regular function g, g 1 such that if:

Cg( (ρ 0 1 , 1 ρ 0 1 ) L ∞ ) h 0 1 B N 2 -2 2,1
exp Cg 1 ( (ρ 0 1 ,

1 ρ 0 1 ) L ∞ ) h 0 1 B
then it exists a global unique solution (ρ, u) of the system (1.1) with: u = -µ∇ ln ρ 1 + u 2 and ln ρ = ln ρ 1 + h 2 with ρ 1 = 1 + h 1 verifying the following system:

∂ t ρ 1 -µ∆ρ 1 = 0, ρ 1 (0, •) = ρ 0 1 = 1 + h 0 1 .
Furthermore we have:

h 2 ∈ L ∞ ( B N 2 -1, N 2 2,1 
)

∩ L 1 ( B N 2 +1, N 2 +2 2,1 ) and u 2 ∈ L ∞ (B N 2 -1 2,1 ) ∩ L 1 (B N 2 +1
2,1 ).

(1.15)

Remark 8 Let us mention that in this theorem by a very accurate study on the linear system associated to the system (1.12) (see the proposition 3.9), it would be probably possible to improve the initial condition on h 0 1 by assuming only

h 0 1 in B N 2 -2 2,1 ∩B N 2
2,2-ε ∩L ∞ with ε > 0 (see the remark [START_REF] Haspot | New entropy for Kortewegs system, existence of global weak solution and Prodi-Serrin theorem[END_REF]). In particular it would allow to choose initial density not necessary continuous.

Remark 9 Let us mention than the main interest of this theorem is to prove the existence of global strong solution with large initial data for the scaling of the equation which is completely new up our knowledge. Indeed it suffices to choose h 0

1 (x) = ϕ(λx) with ϕ ∈ B N 2 -2, N 2 2,1
such that 1 + ϕ ≥ c > 0 we then verify easily that:

                   h 0 1 B N 2 2,1 = ϕ B N 2 2,1 , ρ 0 1 L ∞ = 1 + ϕ L ∞ , 1 ρ 0 1 L ∞ = 1 1 + ϕ L ∞ , h 0 1 B N 2 -2 2,1 = 1 λ 2 ϕ B N 2 -2 2,1
.

(1.16)

It implies that h 0 1 verifies (1.14) by choosing λ large enough. In particular it implies that by taking ϕ large in B N 2 2,1 that our initialdensity h 0 1 is large in the critical Besov space B N 2 2,1 for the scaling of the initial data. It is also possible to choose ϕ large in B 1 2,2 which shows that there is existence of global strong solution for large initial data in the energy space when N = 2. This is certainly the main novelty of this paper. We could also to choose h 0 1 (x) = ln(λ)ϕ(λx) with λ > 0 which shall still improve the previous estimates in term of large initial data in B N 2 2,2 . let us also emphasize that we can take ϕ large in

B N 2 2,∞ , in particular it implies that h 0 1 is large in B N 2 
2,∞ however we obtain the existence of global strong solution, it improves from this point of view the results of theorem 1.1. We would like also to point out that the condition (1.14) is in the same spirit that smallness condition in [START_REF] Chemin | On the global wellposedness of the 3-D incompressible Navier-Stokes equations[END_REF][START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] for incompressible Navier-Stokes equations.

Remark 10

We think that we could improve the condition on initial density

h 0 1 ∈ B N 2 -2 2,1
by working around the quasi solution only in high frequencies and by working in low frequencies directly with ρ -1 in the spirit of [START_REF] Haspot | Existence of global strong solutions in critical spaces for barotropic viscous fuids[END_REF]. It would be then possible to assume that h 0 1 belongs only in

B N 2 -1 2,1 .
Remark 11 It may be also probably possible to work with general regular pressure, it would make the proof technically more difficult.

We are going to finish by presenting a result of global strong solution with large initial data when we assume the system (1.1) highly compressible.

Corollary 1 Let N ≥ 2. Assume that µ(ρ) = µρ, κ(ρ) = µ 2
ρ and λ(ρ) = 0 with µ > 0 and P (ρ) = Kρ with K > 0. Furthermore we suppose that u 0 = -µ∇[ln ρ 0 1 ] + u 0 2 and ln ρ 0 = ln(ρ 0 1 ) + h 0 2 such that ρ 0 1 = 1 + h 0 1 and it exits c 1 > 0 such that ρ 0 1 ≥ c 1 > 0. In addition we suppose that:

h 0 1 ∈ B N 2 -2, N 2 2,1 h 0 2 ∈ B N 2 -1, N 2 2,1 and u 0 2 ∈ B N 2 -1 2,1 .
Furthermore it exists ε 0 > 0 (depending on h 0 1 and the viscosity coefficient µ) such that for any

K ≤ ε 0 it exits ε 1 > 0 such that if h 0 2 B N 2 -1, N 2 2,1 + u 0 2 B N 2 -1 2,1 ≤ ε 1 . (1.17)
then it exists a global unique solution (ρ, u) of the system (1.1) with: u = -µ∇ ln ρ 1 + u 2 and ln ρ = ln ρ 1 + h 2 with ρ 1 = 1 + h 1 verifying the following system:

∂ t ρ 1 -µ∆ρ 1 = 0, ρ 1 (0, •) = ρ 0 1 = 1 + h 0 1 .
Furthermore we have:

h 2 ∈ L ∞ ( B N 2 -1,N 2,1 ) ∩ L 1 ( B N 2 +1, N 2 +2 2,1 ) and u 2 ∈ L ∞ (B N 2 -1 2,1 ) ∩ L 1 (B N 2 +1
2,1 ).

(1.18)

Remark 12

The main interest of this theorem is to prove the existence of global strong solution for any large initial data provided that K is sufficiently small with P (ρ) = Kρ.

In other terms we get global existence (and uniqueness) for highly compressible fluids in any dimension N ≥ 2. Up my knowledge it is the first time that we have a result of global strong solution with large initial data in dimension 3 (under a condition of course of high compressibility, which means that K must be small in function of the initial data and in function of µ). Roughly speaking K tends to be very small when h

0 1 B N 2 -2, N 2 2,1 is very large.
This article is structured in the following way, first of all we recall in the section 2 some definitions an theorems related to the Littlewood-Paley theory. Next we will concentrate in the section 3 on the proof of theorem 1.1 and 1.2. In section 4, we shall prove the theorem 1.3 by introducing the notion of quasi solution which will play a crucial role. In the section 4 we show the corollary 1. We postpone in appendix (see section 6) some technical computation on the capillarity tensor and some extensions on the previous results.

Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the context. The notation A B means that A ≤ CB. For all Banach space X, we denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For p ∈ [1, +∞], the notation L p (0, T, X) or L p T (X) stands for the set of measurable functions on (0, T ) with values in X such that t → f (t) X belongs to L p (0, T ). Littlewood-Paley decomposition corresponds to a dyadic decomposition of the space in Fourier variables. We can use for instance any

ϕ ∈ C ∞ (R N ) and χ ∈ C ∞ (R N ) , supported respectively in C = {ξ ∈ R N / 3 4 ≤ |ξ| ≤ 8 3 } and B(0, 4 
3 ) such that:

l∈Z ϕ(2 -l ξ) = 1 if ξ = 0,
and:

χ(ξ) + l∈N ϕ(2 -l ξ) = 1 if ∀ξ.
Denoting h = F -1 ϕ, we then define the dyadic blocks by:

∆ l u = ϕ(2 -l D)u = 2 lN R N h(2 l y)u(x -y)dy and S l u = k≤l-1 ∆ k u .
Formally, one can write that:

u = k∈Z ∆ k u .
This decomposition is called homogeneous Littlewood-Paley decomposition. Let us observe that the above formal equality does not hold in S (R N ) for two reasons:

1. The right hand-side does not necessarily converge in S (R N ).

2. Even if it does, the equality is not always true in S (R N ) (consider the case of the polynomials).

For the non homogeneous decomposition, we define the dyadic blocks as follows:

∆l u = 0 for l ≤ -2, ∆-1 u = χ(D)u, ∆l u = ϕ(2 -l D)u = 2 lN R N h(2 l y)u(x -y)dy, for l ≥ 0.
Formally, one can write that:

u = k∈Z ∆ k u .
This decomposition is called non homogeneous Littlewood-Paley decomposition.

Homogeneous and non homogeneous Besov spaces and first properties

Definition 2.3 We denote by S h the space of temperate distribution u such that:

lim S j u j→+∞ = 0 in S . Definition 2.4 For s ∈ R, p ∈ [1, +∞], q ∈ [1, +∞],
and u ∈ S (R N ) we set:

u B s p,q = ( l∈Z (2 ls ∆ l u L p ) q ) 1 q .
The homogeneous Besov space B s p,q is the set of distribution u in S h such that u B s p,q < +∞.

Remark 13

The above definition is a natural generalization of the homogeneous Sobolev and Hölder spaces: one can show that B s ∞,∞ is the homogeneous Hölder space C s and that B s 2,2 is the homogeneous space H s .

Proposition 2.1 The following properties holds:

1. there exists a constant universal C such that:

C -1 u B s p,r ≤ ∇u B s-1 p,r ≤ C u B s p,r . 2. If p 1 < p 2 and r 1 ≤ r 2 then B s p 1 ,r 1 → B s-N (1/p 1 -1/p 2 ) p 2 ,r 2 . 3. B s p,r 1 → B s p,r if s > s or if s = s and r 1 ≤ r.
Let now recall a few product laws in Besov spaces coming directly from the paradifferential calculus of J-M. Bony (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF][START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]).

Proposition 2.2

We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1, +∞] 2 we have: uv B s p,r ≤ C( u L ∞ v B s p,r + v L ∞ u B s p,r ) . (2.19) • Let (p, p 1 , p 2 , r, λ 1 , λ 2 ) ∈ [1, +∞] 2 such that: 1 p ≤ 1 p 1 + 1 p 2 , p 1 ≤ λ 2 , p 2 ≤ λ 1 , 1 p ≤ 1 p 1 + 1 λ 1 and 1 p ≤ 1 p 2 + 1 λ 2 .
We have then the following inequalities: if

s 1 + s 2 + N inf(0, 1 -1 p 1 -1 p 2 ) > 0, s 1 + N λ 2 < N p 1 and s 2 + N λ 1 < N p 2 then: uv B s 1 +s 2 -N ( 1 p 1 + 1 p 2 -1 p ) p,r u B s 1 p 1 ,r v B s 2 p 2 ,∞ , (2.20 
)

when s 1 + N λ 2 = N p 1 (resp s 2 + N λ 1 = N p 2 ) we replace u B s 1 p 1 ,r v B s 2 p 2 ,∞ (resp v B s 2 p 2 ,∞ ) by u B s 1 p 1 ,1 v B s 2 p 2 ,r (resp v B s 2 p 2 ,∞ ∩L ∞ ), if s 1 + N λ 2 = N p 1 and s 2 + N λ 1 = N p 2 we take r = 1. If s 1 + s 2 = 0, s 1 ∈ ( N λ 1 -N p 2 , N p 1 -N λ 2 ] and 1 p 1 + 1 p 2 ≤ 1 then: uv B -N ( 1 p 1 + 1 p 2 -1 p ) p,∞ u B s 1 p 1 ,1 v B s 2 p 2 ,∞ . (2.21)
If |s| < N p for p ≥ 2 and -N p < s < N p else, we have:

uv B s p,r ≤ C u B s p,r v B N p p,∞ ∩L ∞ . (2.22)
Remark 14 In the sequel p will be either p 1 or p 2 and in this case

1 λ = 1 p 1 -1 p 2 if p 1 ≤ p 2 , resp 1 λ = 1 p 2 -1 p 1 if p 2 ≤ p 1 . Corollary 2 Let r ∈ [1, +∞], 1 ≤ p ≤ p 1 ≤
+∞ and s such that:

• s ∈ (-N p 1 , N p 1 ) if 1 p + 1 p 1 ≤ 1, • s ∈ (-N p 1 + N ( 1 p + 1 p 1 -1), N p 1 ) if 1 p + 1 p 1 > 1, then we have if u ∈ B s p,r and v ∈ B N p 1 p 1 ,∞ ∩ L ∞ : uv B s p,r ≤ C u B s p,r v B N p 1 p 1 ,∞ ∩L ∞ .
The study of non stationary PDE's requires space of type L ρ (0, T, X) for appropriate Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural to localize the equation through Littlewood-Payley decomposition. But, in doing so, we obtain bounds in spaces which are not type L ρ (0, T, X) (except if r = p). We are now going to define the spaces of Chemin-Lerner in which we will work, which are a refinement of the spaces L ρ T (B s p,r ).

Definition 2.5 Let ρ ∈ [1, +∞], T ∈ [1, +∞] and s 1 ∈ R. We set: u L ρ T (B s 1 p,r ) = l∈Z 2 lrs 1 ∆ l u(t) r L ρ (L p ) 1 r .
We then define the space L ρ T (B s 1 p,r ) as the set of temperate distribution u over (0,

T ) × R N such that u L ρ T (B s 1 p,r ) < +∞. We set C T ( B s 1 p,r ) = L ∞ T ( B s 1 p,r ) ∩ C([0, T ], B s 1 p,r
). Let us emphasize that, according to Minkowski inequality, we have:

u L ρ T (B s 1 p,r ) ≤ u L ρ T (B s 1 p,r ) if r ≥ ρ, u L ρ T (B s 1 p,r ) ≥ u L ρ T (B s 1 p,r ) if r ≤ ρ.
(2.23)

Remark 15 It is easy to generalize propositions 2.2, 2 to L ρ T (B s 1 p,r ) spaces. The indices s 1 , p, r behave just as in the stationary case whereas the time exponent ρ behaves according to Hölder inequality.

In the sequel we will need of composition lemma in L ρ T (B s p,r ) spaces (we refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for a proof).

Proposition 2.3 Let s > 0, (p, r) ∈ [1, +∞] and u ∈ L ρ T (B s p,r ) ∩ L ∞ T (L ∞ ). 1. Let F ∈ W [s]+2,∞ loc (R N ) such that F (0) = 0. Then F (u) ∈ L ρ T (B s p,r
). More precisely there exists a function C depending only on s, p, r, N and F such that:

F (u) L ρ T (B s p,r ) ≤ C( u L ∞ T (L ∞ ) ) u L ρ T (B s p,r ) . 2. Let F ∈ W [s]+3,∞ loc (R N ) such that F (0) = 0. Then F (u) -F (0)u ∈ L ρ T (B s p,r
). More precisely there exists a function C depending only on s, p, r, N and F such that:

F (u) -F (0)u L ρ T (B s p,r ) ≤ C( u L ∞ T (L ∞ ) ) u 2 L ρ T (B s p,r ) .
Now we give some result on the behavior of the Besov spaces via some pseudodifferential operator (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]).

Definition 2.6 Let m ∈ R. A smooth function function f : R N → R is said to be a S m multiplier if for all muti-index α, there exists a constant C α such that:

∀ξ ∈ R N , |∂ α f (ξ)| ≤ C α (1 + |ξ|) m-|α| .
Proposition 2.4 Let m ∈ R and f be a S m multiplier. Then for all s ∈ R and 1 ≤ p, r ≤ +∞ the operator f (D) is continuous from B s p,r to B s-m p,r .

Let us now give some estimates for the heat equation:

Proposition 2.5 Let s ∈ R, (p, r) ∈ [1, +∞] 2 and 1 ≤ ρ 2 ≤ ρ 1 ≤ +∞. Assume that u 0 ∈ B s p,r and f ∈ L ρ 2 T (B s-2+2/ρ 2 p,r
). Let u be a solution of:

∂ t u -µ∆u = f u t=0 = u 0 .
Then there exists C > 0 depending only on N, µ, ρ 1 and ρ 2 such that:

u L ρ 1 T ( B s+2/ρ 1 p,r ) ≤ C u 0 B s p,r + µ

Hybrid Besov spaces

The homogeneous Besov spaces fail to have nice inclusion properties: owing to the low frequencies, the embedding B s p,1 → B t p,1 does not hold for s > t. Still, the functions of B s p,1 are locally more regular than those of B t p,1 : for any φ ∈ C ∞ 0 and u ∈ B s p,1 , the function φu ∈ B t p,1 . This motivates the definition of Hybrid Besov spaces introduced by R. Danchin (see a definition in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) where the growth conditions satisfied by the dyadic blocks and the coefficient of integrability are not the same for low and high frequencies. Hybrid Besov spaces have been used by R. Danchin in order to prove global well-posedness for compressible gases in critical spaces (we refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for an elegant proof of this result). We generalize here a little bit the definition by allowing for different Lebesgue norms in low and high frequencies.

Definition 2.7 Let l 0 ∈ N, s, t, ∈ R, (r, r 1 ) ∈ [1, +∞] 2 and (p, q) ∈ [1, +∞]. We set: u B s,t p,q,1 = l≤l 0 2 ls ∆ l u L p + l>l 0 2 lt ∆ l u L q ,
and:

u B s,t (p,r),(q,r 1 ) 
= l≤l 0 (2 ls ∆ l u L p ) r 1 r + l>l 0 (2 lt ∆ l u L q ) r 1 1 r 1 .
Remark 16 It will be important in the sequel to chose l 0 big enough.

Notation 1 We will often use the following notation:

u BF = l≤l 0 ∆ l u and u HF = l>l 0 ∆ l u.
Remark 17 We have the following properties:

• We have B s,s p,p,1 = B s p,1 .

• If s 1 ≥ s 3 and s 2 ≥ s 4 then B s 3 ,s 2 p,q,1 → B s 1 ,s 4 p,q,1 .

Remark 18

In the sequel we shall often use this hybrid Besov space in order to distinguish the behavior of our solution in low and high frequencies, in particular we would like to mention that we can prove results analogous to propositions 2.2 and 2.

We shall conclude this section by some example of initial data verifying the theorem 1.1 with large energy initial data when N = 2.More generally we are interested in defining initial data which are small in

B N 2 -1, N 2 2,∞ but large in B N 2
2,2 . It implies in particular that your initial data ∇ √ ρ 0 have large energy data when N = 2, furthermore ln ρ 0 is large in

B N 2
2,2 which is a scaling invariant space (it improves in particular the results of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] where the initial density is assumed small in B N 2 2,1 ). Let us start with recalling a classical example of function in B s p,∞ , by sake of completness we are going to recall the proof (see also [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). 

σ = | • | -σ belongs to B N -σ 1,∞ .
Let us introduce a smooth compactly supported function χ which is identically equal to 1 near the unit ball and such that u is splitting as follows:

u σ = u 0 + u 1 with u 0 (x) = χ(x)|x| -σ and u 1 (x) = (1 -χ(x))|x| -σ .
Clearly u 0 is in L 1 and u 1 belongs in L q whenever q > N σ . The homogeneity of the function u σ gives via a change of variable:

∆ j u σ = 2 jN u σ * h(2 j •) = 2 j(N +σ) u σ (2 j •) * h(2 j •) = 2 jσ (∆ 0 u σ )(2 j •). (2.24) Therefore, 2 j(N -σ) ∆ j u σ L 1 = ∆ 0 u σ L 1 , it reduces the problem to show that ∆ 0 u σ is in L 1 . As u 0 is in L 1 , ∆ 0 u 0 is also in L 1
according the continuity of the operator ∆ 0 on Lebesgue spaces. By Bernstein inequalities, we have:

∆ 0 u 1 L 1 ≤ C k D k ∆ 0 u 1 L 1 ≤ C k D k u 1 L 1 . Leibniz's formula ensures that D k u 1 -(1 -χ)D k u σ
is a smooth compactly supported function. We then complete the proof by choosing k such that k > N -σ.

We can now deduce from the previous proposition suitable functions verifying the theorem 1.1.

Corollary 3 Let us consider:

u 0,ε,l 0 (x) = S( 1 |x| 1-ε ),
with S defined by S û(ξ) = 1 {ξ∈R N σB(0,2 l 0 ) (ξ)û(ξ). Then for all r ∈ [1, +∞[, for all M > for all ε 1 > 0 it exits ε > 0, it exits l 0 > 0 such that:

u 0 B N 2 -1 2,∞ ≤ ε 1 , u 0 B N 2 -1 2,r ≥ M.
(2.25)

Proof: In the sequel in order to simplify the notation we shall write u 0 for u 0,ε,l 0 . Let us denote by u σ the function 1 |x| σ with σ ∈]0, N [. By (2.24) we observe that:

∆ l u σ L 2 = 2 l(σ-N 2 ) ∆ 0 u σ L 2 . (2.26)
It implies that for l ≥ l 0 we have for M 0 independent on ε when ε ≤ 1 10 :

2 l( N 2 -1+ε) ∆ l u 0 L 2 = ∆ 0 u 1-ε L 2 ≤ M 0 .
Indeed using the same arguments than in the proof of the proposition 2.6 we have by Bernstein inequality for C > 0:

∆ 0 u 1-ε L 2 ≤ C ∆ 0 u 1-ε L 1 , ≤ C( χu 1-ε L 1 + C k D k ((1 -χ)u 1-ε ) L 1 ), ≤ M 0 .
According to (2.26) we deduce that for all l ≥ l 0 :

2 l( N 2 -1) ∆ l u 0 L 2 = 2 -lε ∆ 0 u σ L 2 ≤ M 0 2 -l 0 ε .
It implies in particular since ∆ l u 0 = 0 for l < l 0 that:

u 0 B N 2 -1 2,∞ ≤ M 0 2 -l 0 ε . (2.27) Let us now estimate the norm of u 0 in B N 2 -1 2,r with r ∈ [1, +∞[: u 0 B N 2 -1 2,r = ( l∈Z 2 rl( N 2 -1) ∆ l u 0 r L 2 ) 1 r , = ( l≥l 0 2 -rlε M r ε ) 1 r , = M ε 2 -l 0 ε ( 1 1 -2 -rε ) 1 r , (2.28) 
It implies that for all M > 0, for all r > 0 it exits ε > 0 small enough such that:

( 1 1 -2 -rε ) 1 r ≥ M.
(2.29)

We fix now l 0 such that:

M 0 2 -l 0 ε = ε 1 . (2.30)
Let us prove now that when ε ≤ 1 10 it exist α > 0 such that M ε ≥ α > 0. Assume by the absurd that this is wrong. It implies that it exists a sequel (ε n ) n∈N which converges to 0 when n goes to infinity such that M εn = ∆ 0 u 1-εn L 2 goes to 0 when n goes to infinity. By Plancherel theorem and the fact that we know the Fourier transform of | • | -1+ε (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] p 23) it implies that:

F∆ 0 u 1-εn L 2 = c N,1-εn ϕ| • | 1-εn-N L 2 → n→+∞ 0.
Since we can bound by below ϕ| • | 1-εn-N L 2 independently of n, it implies that c N,1-εn goes to 0 when n goes to infinity and this is absurd. We obtain finally from (2.27), (2.30) and (2.28), (2.29) that:

u 0 B N 2 -1 2,∞ ≤ ε 1 , u 0 B N 2 -1 2,∞ ≥ M ε 1 α M 0 .
(2.31)

It concludes the proof of the corollary.

3 Proof of theorems 1.1 and 1.2

In this part we are interested in proving the theorems 1.1 and 1.2 of existence of strong solutions in critical space for the scaling of the equations. We want to point out that in the theorem 1.1 the viscosity and the capillarity coefficients are chosen with a very specific structure. This fact will be crucial in the sequel of the proof in order to obtain estimates on the density without assuming any control on the vacuum or on the L ∞ norm of the density for the theorem 1.1. Indeed when µ(ρ) = µρ and κ(ρ) = κ ρ with κ > 0 then the system depends only on the unknown ln ρ in a linear way and provides a new entropy (see [START_REF] Haspot | New entropy for Kortewegs system, existence of global weak solution and Prodi-Serrin theorem[END_REF] for more details). In a second time in order to prove the second part of the theorem 1.1, we are going to estimate the vacuum (which means the L ∞ norm of 1 ρ ) and the L ∞ norm of the density. More precisely we are going to write a solution (q, u) under the form:

(q, u) = (q L , u L ) + (q, ū), with (q L , u L ) the solution of the linearized part of the system (1.5). We shall combine maximum principle arguments on q L in order to bound q L in L ∞ norm and regularizing effect on the third index of Besov space for q. Indeed we will prove that q is in L

∞ T (B N 2 2,1 ) for any T > 0 which is embedded in L ∞ T (L ∞ ).
Let us mention that in order to prove that q L is bounded in L ∞ norm we shall prove a very accurate characterization of the Besov space in term of the semi group associated to the linearized part of the system (1.5) (see the proposition 3.11). For more details on this part which is the main difficulty of the proof we refer to the subsection 3.4.1 and 3.4.2. As a first step of the proof of theorems 1.1 and 1.2, let us start with studying the linear part of the system (1.5) (when we are interested in proving the existence of strong solution in finite time with large initial data, in particular it implies that we do not consider the low frequencies terms coming from the pressure) which corresponds to the following system:

(N ) ∂ t q + divu = F, ∂ t u -a∆u -b∇divu -c∇∆q = G,

Study of the linearized equation

We want to prove a priori estimates in Chemin-Lerner spaces for system (N ) with the following hypotheses on a, b, c which are constant:

0 < a < ∞, 0 < a + b < ∞ and 0 < c < ∞.
This system has been studied by Danchin and Desjardins (see [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]) in the framework of the Besov space B s 2,1 , the following proposition uses exactly the same type of arguments used in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] excepted that we extend the result to general Besov spaces B s 2,r with r ∈ [1, +∞]. By sake of completness we are going to show the following proof. Proposition 3.7 Let 1 ≤ r ≤ +∞, s ∈ R, and we assume that (q 0 , u 0 ) belongs in

B N 2 +s 2,r × (B N 2 -1+s 2,r ) N with the source terms (F, G) in L 1 T (B N 2 +s 2,r ) × ( L 1 T (B N 2 -1+s 2,r )) N . Let (q, u) ∈ ( L 1 T (B N 2 +s+2 2,r ) ∩ L ∞ T (B N 2 +s 2,r )) × L 1 T (B N 2 +s+1 2,r ) ∩ L ∞ T (B N 2 +s-1 2,r
) N be a solution of the system (N ), then there exists a universal constant C such that for any T > 0:

(∇q, u)

L 1 T (B N 2 +1+s 2,r )∩ L ∞ T (B N 2 -1+s 2,r ) ≤ C( (∇q 0 , u 0 ) B N 2 -1+s 2,2
+ (∇F, G)

L 1 T (B N 2 -1+s 2,r
)

).

Proof: As we mentioned previously, we are going to follow the arguments developed in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]. Let us apply to the system (N ) the operator ∆ l which gives:

∂ t q l + divu l = F l (3.32) ∂ t u l -div(a∇u l ) -∇(b divu l ) -c∇∆q l = G l (3.33)
Performing integrations by parts and using (3.32) we have:

-c R N u l • ∇∆q l dx = c R N divu l ∆q l dx, = -c R N ∂ t q l ∆q l dx + c R N F l ∆q l dx, c = R N ∂ t ∇q l • ∇q l dx -c R N ∇F l • ∇q l dx, = c 2 d dt R N |∇q l | 2 dx -c R N ∇q l .∇F l dx.
Next, we take the inner product of (3.33) with u l and using the previous equality, it yields:

1 2 d dt u l 2 L 2 + c R N |∇q l | 2 dx + R N (a|∇u l | 2 + b|divu l | 2 )dx = R N G l .u l dx + c R N ∇q l .∇F l dx . (3.34)
In order to recover some terms in ∆q l we take the inner product of the gradient of (3.32) with u l , the inner product scalar of (3.33) with ∇q l and we sum, we obtain then:

d dt R N ∇q l .u l dx + c R N (∆q l ) 2 dx = R N (G l .∇q l + |divu l | 2 + u l .∇F l -a∇u l : ∇ 2 q l -b∆q l divu l )dx. (3.35)
Let α > 0 small enough. We define k l by:

k 2 l = u l 2 L 2 + c ∇q l 2 L 2 + 2α R N ∇q l .u l dx . (3.36) 
By using (3.34), (3.35) and the Young inequalities, we have by summing and the fact that α is chosen small enough:

1 2 d dt k 2 l + 1 2 R N (a|∇u l | 2 + b|divu l | 2 + 2αc|∆q l | 2 )dx G l L 2 (2α ∇q l L 2 + u l L 2 ) + ∇F l L 2 (2α u l L 2 + ∇q l L 2 ). (3.37)
For small enough α and applying the Young inequality, we have according (3.36):

1 2 k 2 l ≤ u l 2 + c ∇q l 2 L 2 ≤ 3 2 k 2 l . (3.38)
Hence according to (3.37) and (3.38) there exists K > 0 small enough, C > 0 such that:

1 2 d dt k 2 l + K2 2l k 2 l ≤ C k l ( G l L 2 + ∇F l L 2 ).
By integrating with respect to the time, we obtain:

k l (t) ≤ e -K2 2l t k l (0) + C t 0 e -K2 2l (t-τ ) ( ∇F l (τ ) L 2 + G l (τ ) L 2 )dτ .
Using convolution inequalities we get for 1 ≤ ρ 1 ≤ ρ ≤ +∞:

k l L ρ ([0,T ]) 2 -2l ρ k l (0) + 2 -2l(1+ 1 ρ -1 ρ 1 ) (∇F l , G l ) L ρ 1 T (L 2 ) . (3.39) 
Moreover since we have:

C -1 k l ≤ ∇q l L 2 + u l L 2 ≤ C k l ,
multiplying by 2

( N 2 -1+s+ 2 
ρ )l , taking the l r norm and using (3.38), we end up with:

(∇q, u)

L ρ T (B N 2 -1+s+ 2 ρ 2,r ) ≤ (∇F, G) L ρ 1 T (B N 2 -3+s+ 2 ρ 1 2,r ) + (∇q 0 , u 0 ) B N 2 -1+s 2,r .
It conclude the proof of the proposition.

Let us extend the result of the proposition 3.7 to the case where we include the pressure term inside of the linearized system. This is necessary when we are interested in dealing with the existence of global strong solution with small initial data. Indeed in this case it is very important to take into account the behavior in low frequencies of the density and in particular the pressure term which provides the behavior of the density in low frequencies. More precisely we will consider the following linear system:

(N 1) ∂ t q + divu = F, ∂ t u -a∆u -b∇divu -c∇∆q + d∇q = G,
We now want to prove a priori estimates in Chemin-Lerner spaces for system (N 1) with the following hypotheses on a, b, c, d which are constant:

0 < a < ∞, 0 < a + b < ∞, 0 < c < ∞ and 0 < d < ∞.
This system has also been studied by Danchin and Desjardins in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] in the framework of Besov spaces of the type B s 2,1 with s ∈ R, the following proposition extends the results of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] to the case of general Besov spaces B s 2,r with r ∈ [1, +∞] by using similar arguments.

Proposition 3.8 Let 1 ≤ r ≤ +∞, s ∈ R, and we assume that (q 0 , u 0 ) belongs in

B N 2 -1+s, N 2 +s 2,r × (B N 2 -1+s 2,r
) N . Furthermore we suppose that the source terms (F, G) are in

L 1 T ( B N 2 -1+s, N 2 +s 2,r ) × ( L 1 T (B N 2 -1+s 2,r )) N . Let (q, u) ∈ ( L 1 T ( B N 2 +s+1, N 2 +s+2 2,r ) ∩ L ∞ T ( B N 2 -1+s, N 2 +s 2,r )) × L 1 T (B N 2 +s+1 2,r ) ∩ L ∞ T (B N 2 +s-1 2,r
) N be a solution of the system (N 1), then there exists a universal constant C such that for any T > 0:

q L 1 T ( B N 2 +1+s, N 2 +2+s 2,r ) + q L ∞ T (B N 2 -1+s, N 2 +s 2,r ) + u L 1 T (B N 2 +1+s 2,r ) + u L ∞ T (B N 2 -1+s 2,r ) ≤ C q 0 B N 2 -1+s, N 2 +s 2,r + u 0 B N 2 +s 2,r + F L 1 T ( B N 2 -1+s, N 2 +s 2,r ) + G L 1 T (B N 2 -1+s 2,r
)

.

Proof: It suffices to follow exactly the same lines as the proof of proposition 3.7 except that we have to consider the following k l :

k 2 l = u l 2 L 2 + c ∇q l 2 L 2 + d q l 2 L 2 + 2α R N ∇q l • u l dx.
Now choosing α suitably small , we deduce that:

1 2 k 2 l ≤ u l 2 L 2 + c ∇q l 2 L 2 + d q l 2 L 2 ≤ 3 2 k 2 l . (3.40) 
By combining energy estimates in frequencies space, we show as in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] that it exists c, C > 0 such that:

1 2 d dt k 2 l + c2 2l k 2 l ≤ Ck l ( G l L 2 + (∇F l , F l ) L 2 ).
As in the proof of proposition 3.7 routine computations yield proposition 3.8.

We are now interested in studying the following system with µ > 0 and κ > 0:

           ∂ t h 2 + divu 2 -µ∇ ln ρ 1 • ∇h 2 + u 2 • ∇ ln ρ 1 = F, ∂ t u 2 -µ∆u 2 -µ∇divu 2 -κ∇∆h 2 + K∇h 2 -2µ∇ ln ρ 1 • Du 2 -2µ∇h 2 • Du 1 + u 1 • ∇u 2 + u 2 • ∇u 1 -µ 2 ∇(∇ ln ρ 1 • ∇h 2 ) = G, (h 2 (0, •), u 2 (0, •)) = (h 2 0 , u 2 0 ). ( 3 
.41) Here (h 2 , u 2 ) are the unknowns, ρ 1 and u 1 corresponds to some functions defined in suitable Chemin Lerner Besov space L ρ (B s p,r ) that we will precise below in the proposition 3.9 and F , G are source term (we will also precise their regularity). In order to prove the theorem 1.3 we will need precise estimates on the solution (h 2 , u 2 ) of (3.44) in terms of Chemin Lerner Besov spaces, to do this we are going to prove the following proposition.

Proposition 3.9 Let (h 2 0 , u 2 0 ) ∈ B N 2 -1, N 2 2,1 × B N 2 -1 2,1
and we assume that ln ρ 1 belongs in

L ∞ (R + , B N 2 -1, N 2 2,1 
)

∩ L 1 (R + , B N 2 +1, N 2 +2 2,1 ) and u 1 in L ∞ (R + , B N 2 -1 2,1 ) ∩ L 1 (R + , B N 2 +1 2,1 ). Furthermore (F, G) are in L 1 (R + , B N 2 -1, N 2 2,1 ) × L 1 (R + , B N 2 -1 2,1
). Let (h 2 , u 2 ) the solution of the linear system (3.44) then it exists C > 0 such that (h 2 , u 2 ) verify:

h 2 L 1 T ( B N 2 +1, N 2 +2 2,1 ) + h 2 L ∞ T (B N 2 -1, N 2 2,1 ) + u 2 L 1 T (B N 2 +1 2,1 ) + u 2 L ∞ T (B N 2 -1 2,1 ) ≤ C h 2 0 B N 2 -1, N 2 2,1 + u 2 0 B N 2 2,1 + F L 1 T ( B N 2 -1, N 2 2,1 ) + G L 1 T (B N 2 -1 2,1
)

× exp C R + u 1 4 B N 2 -1 2 2,∞ + u 1 4 3 B N 2 + 1 2 2,∞ + ∇ ln ρ 1 4 B N 2 -1 2 2,∞ + ∇ ln ρ 1 4 3 B N 2 + 1 2 2,∞ (s)ds . (3.42)
Remark 19 Let us mention that in the proposition 3.9 the main estimates (3.42) in-

volves a control of ∇ ln ρ 1 in L 4 3 (R + , B N 2 + 1 2 2,∞ )∩L 4 (R + , B N 2 -1 2 2,∞ ) and of u 1 in L 4 3 (R + , B N 2 + 1 2 2,∞ )∩ L 4 (R + , B N 2 -1 2
2,∞ ). By Minkowski inequality ( see (2.23)) and since l p is embedded in l ∞ for any p ≥ 1, we know that for example:

∇ ln ρ 1 L 4 3 (R + ,B N 2 + 1 2 2,∞ )∩L 4 (R + ,B N 2 -1 2 2,∞ ) ≤ ∇ ln ρ 1 L 4 3 (R + ,B N 2 + 1 2 2, 4 3 
)∩ L 4 (R + ,B N 2 -1 2 2, 4 3 
) (3.43)
Of course when we assume that ln ρ 1 belongs in

L ∞ (R + , B N 2 -1, N 2 2,1 
)

∩ L 1 (R + , B N 2 +1, N 2 +2 2,1 ), it implies by interpolation that ∇ ln ρ 1 is in L 4 3 (R + , B N 2 + 1 2 2, 4 3 ) ∩ L 4 (R + , B N 2 -1 2 2, 4 3 
). In particular it proves that with such assumptions we control the right hand side of the inequality (3.42). Let us mention that since in the theorem 1.3 we will have u 1 = -µ∇ ln ρ 1 with ρ 1 verifying a heat equation, in particular we could improve the condition on the initial data ρ 0 1 = h 0 1 +1 of theorem 1.3 by assuming only

h 1 0 ∈ B N 2 -2 2,1 ∩ B N 2 2, 4 3 
∩ L ∞ and ρ 1 0 ≥ c > 0. Indeed with such condition ∇ ln ρ 1 would verify exactly the quantity on the right hand side of (3.43) which is sufficient to control the right hand side on (3.42). In fact a more accurate proof of the proposition 3.9 by using critical interpolation estimate

would show that h 1 0 ∈ B N 2 -2 2,1 ∩ B N 2 2,2-ε ∩ L ∞ (with ε > 0) and ρ 1 0 ≥ c > 0 is sufficient for the theorem 1.3.
Proof: We observe that (h 2 , u 2 ) are solution of the following system:

       ∂ t h 2 + divu 2 = F (h 2 , u 2 ), ∂ t u 2 -µ∆u 2 -µ∇divu 2 -κ∇∆h 2 + K∇h 2 = G(h 2 , u 2 ), (h 2 (0, •), u 2 (0, •)) = (h 2 0 , u 2 0 ).
(3.44) with:

F (h 2 , u 2 ) = F + µ∇ ln ρ 1 • ∇h 2 -u 2 • ∇ ln ρ 1 , G(h 2 , u 2 ) = G + 2µ∇ ln ρ 1 • Du 2 + 2µ∇h 2 • Du 1 -u 1 • ∇u 2 -u 2 • ∇u 1 + µ 2 ∇(∇ ln ρ 1 • ∇h 2 ).
By applying the proposition 3.8, we have:

h 2 L 1 T ( B N 2 +1, N 2 +2 2,1 ) + h 2 L ∞ T (B N 2 -1, N 2 2,1 ) + u 2 L 1 T (B N 2 +1 2,1 ) + u 2 L ∞ T (B N 2 -1 2,1 ) ≤ C h 2 0 B N 2 -1, N 2 2,1 + u 2 0 B N 2 2,1 + F (h 2 , u 2 ) L 1 T ( B N 2 -1, N 2 2,1 ) + G(h 2 , u 2 ) L 1 T (B N 2 -1 2,1
) .

(3.45) We have only to deal with the right hand side of (3.45), we have in particular:

∇ ln ρ 1 • ∇h 2 L 1 T ( B N 2 -1, N 2 2,1 ) = R + ∇ ln ρ 1 • ∇h 2 B N 2 -1, N 2 2,1 (s)ds, R + ∇h 2 B N 2 -1 2 , N 2 + 1 2 2,1 ∇ ln ρ 1 B N 2 -1 2 2,∞ + ∇h 2 B N 2 -3 2 , N 2 -1 2 2,1 ∇ ln ρ 1 B N 2 + 1 2 2,∞ (s)ds. 
(3.46) By interpolation see the proposition 2.1 we have:

∇h 2 B N 2 -3 2 , N 2 -1 2 2,1 ∇h 2 3 4 B N 2 -2, N 2 -1 2,1 ∇h 2 1 4 B N 2 , N 2 +1 2,1 , ∇h 2 B N 2 -1 2 , N 2 + 1 2 2,1 ) ≤ ∇h 2 1 4 B N 2 -2, N 2 -1 2,1 ∇h 2 3 4 B N 2 , N 2 +1 2,1 . 
(3.47) By combining (3.47), (3.48) and Young inequality we have for any ε > 0:

∇ ln ρ 1 • ∇h 2 L 1 T ( B N 2 -1, N 2 2,1 ) = R + ∇ ln ρ 1 • ∇h 2 B N 2 -1, N 2 2,1 (s)ds, R + ∇h 2 1 4 B N 2 -2, N 2 -1 2,1 ∇h 2 3 4 B N 2 , N 2 +1 2,1 ∇ ln ρ 1 B N 2 -1 2 2,∞ + ∇h 2 3 4 B N 2 -2, N 2 -1 2,1 ∇h 2 1 4 B N 2 , N 2 +1 2,1 ∇ ln ρ 1 B N 2 + 1 2 2,∞ (s)ds. R + 2ε ∇h 2 B N 2 , N 2 +1 2,1 + C ε ∇ ln ρ 1 4 B N 2 -1 2 2,∞ ∇h 2 B N 2 -2, N 2 -1 2,1 + C ε ∇h 2 B N 2 -2, N 2 -1 2,∞ ∇ ln ρ 1 4 3 B N 2 + 1 2 2,∞ (s)ds. (3.48)
In a similar way by interpolation we have:

u 2 • ∇ ln ρ 1 L 1 T ( B N 2 -1, N 2 2,1 ) = R + u 2 • ∇ ln ρ 1 B N 2 -1, N 2 2,1 (s)ds, R + ∇ ln ρ 1 B N 2 -1 2 , N 2 + 1 2 2,∞ u 2 B N 2 -1 2 2,1 + ∇ ln ρ 1 B N 2 -3 2 , N 2 -1 2 2,∞ u 2 B N 2 + 1 2 2,1 (s)ds. R + ∇ ln ρ 1 B N 2 -1 2 , N 2 + 1 2 2,∞ u 2 3 4 B N 2 -1 2,1 u 2 1 4 B N 2 +1 2,1 + ∇ ln ρ 1 B N 2 -3 2 , N 2 -1 2 2,∞ u 2 1 4 B N 2 -1 2,1 u 2 3 4 B N 2 +1 2,1 (s)ds, (3.49)
Applying Young inequality it yields:

u 2 • ∇ ln ρ 1 L 1 T ( B N 2 -1, N 2 2,1 ) R + 2ε u 2 B N 2 +1 2,1 + C ε ∇ ln ρ 1 4 B N 2 -3 2 , N 2 -1 2 2,∞ u 2 B N 2 -1 2,1 + C ε u 2 B N 2 -1 2,∞ ∇ ln ρ 1 4 3 B N 2 -1 2 , N 2 + 1 2 2,∞ (s)ds. 
(3.50) Let us proceed in a similar way for G(h 2 , u 2 )

L 1 T (B N 2 -1 2,1
)

, we are going only to treat only two terms (the other one will be left to the reader). In a similar way, we have:

∇ ln ρ 1 • Du 2 L 1 T (B N 2 -1 2,1 ) = R + ∇ ln ρ 1 • Du 2 B N 2 -1 2,1 (s)ds, R + ∇ ln ρ 1 B N 2 -1 2 2,∞ Du 2 B N 2 -1 2 2,1 + ∇ ln ρ 1 B N 2 + 1 2 2,∞ Du 2 B N 2 -3 2 2,1 (s)ds, R + 2ε u 2 B N 2 +1 2,1 + C ε ∇ ln ρ 1 4 B N 2 -3 2 , N 2 -1 2 2,∞ u 2 B N 2 -1 2,1 + C ε u 2 B N 2 -1 2,∞ ∇ ln ρ 1 4 3 B N 2 -1 2 , N 2 + 1 2 2,∞ (s)ds. 
(3.51) and: 3.52) we obtain that for C > 0 and ε > 0 small enough such that Cε ≤ 1 2 that:

u 1 • ∇u 2 L 1 T (B N 2 -1 2,1 ) = R + u 1 • ∇u 2 B N 2 -1 2,1 (s)ds, 
R + 2ε u 2 B N 2 +1 2,1 + C ε u 1 4 B N 2 -1 2 2,∞ u 2 B N 2 -1 2,1 + C ε u 2 B N 2 -1 2,1 u 1 4 3 B N 2 + 1 2 2,∞ ( 
h 2 L 1 T ( B N 2 +1, N 2 +2 2,1 ) + h 2 L ∞ T (B N 2 -1, N 2 2,1 ) + u 2 L 1 T (B N 2 +1 2,1 ) + u 2 L ∞ T (B N 2 -1 2,1 ) ≤ C h 2 0 B N 2 -1, N 2 2,1 + u 2 0 B N 2 2,1 + F L 1 T ( B N 2 -1, N 2 2,1 ) + G L 1 T (B N 2 -1 2,1 ) + R + ε u 2 B N 2 +1 2,1 + h 2 L 1 T ( B N 2 +1, N 2 +2 2,1 ) + C ε u 2 B N 2 -1 2,1 + h 2 B N 2 -1, N 2 2,1 × u 1 4 B N 2 -1 2 2,∞ + u 1 4 3 B N 2 + 1 2 2,∞ + ∇ ln ρ 1 4 3 B N 2 + 1 2 2,∞ + ∇ ln ρ 1 4 B N 2 -1 2 2,∞ (s)ds .
(3.53) By a bootstrap argument and the Gronwall lemma, we get for C > 0 large enough:

h 2 L 1 T ( B N 2 +1, N 2 +2 2,1 ) + h 2 L ∞ T (B N 2 -1, N 2 2,1 ) + u 2 L 1 T (B N 2 +1 2,1 ) + u 2 L ∞ T (B N 2 -1 2,1 ) ≤ C h 2 0 B N 2 -1, N 2 2,1 + u 2 0 B N 2 2,1 + F L 1 T ( B N 2 -1, N 2 2,1 ) + G L 1 T (B N 2 -1 2,1
)

× exp C R + u 1 4 B N 2 -1 2 2,∞ + u 1 4 3 B N 2 + 1 2 2,∞ + ∇ ln ρ 1 4 3 B N 2 + 1 2 2,∞ + ∇ ln ρ 1 4 B N 2 -1 2 2,∞ (s)ds . (3.54)
It concludes the proof of the proposition 3.9.

Existence of local solutions for system (1.5)

We now are going to prove the existence of strong solutions in finite time with large initial data verifying the hypothesis of theorem 1.1 for the system (1.5). More precisely we assume that (q 0 , u 0 ) belong in

B N 2 2,∞ × B N 2 -1 2,∞ .

Existence of solutions

The existence part of the theorem is proved by an iterative method. We define a sequence (q n , u n ) as follows:

q n = q L + qn , u n = u L + ūn ,
where (q L , u L ) stands for the solution of:

∂ t q L + divu L = 0, ∂ t u L -Au L -κ∇(∆q L ) = 0, (3.55)
supplemented with initial data:

q L (0) = q 0 , u L (0) = u 0 .
Here A define the Lamé operator Au = µ∆u + (λ + µ)∇divu. Using the proposition 3.7, we obtain the following estimates on (q L , u L ) for all T > 0:

q L ∈ C([0, T ], B N 2 2,∞ ) ∩ L 1 T (B N 2 +2 2,∞ ) and u L ∈ C([0, T ], B N 2 -1 2,∞ ) ∩ L 1 T (B N 2 +1
2,∞ ).

Setting (q 0 , ū0 ) = (0, 0) we now define (q n , ūn ) as the solution of the following system:

(N 1 )      ∂ t qn + div(ū n ) = F n-1 , ∂ t ūn -Aū n -κ∇(∆q n ) = G n-1 ,
(q n , ūn ) t=0 = (0, 0), where:

F n-1 = -u n-1 • ∇q n-1 , G n-1 = -(u n-1 ) * .∇u n-1 + 2µ∇q n-1 • Du n-1 + λ∇q n-1 divu n-1 + κ 2 ∇(|∇q n-1 | 2 ) -K∇q n-1 .

1) First Step , Uniform Bound

Let ε be a small parameter and choose T small enough such that according to the proposition 3.7 we have:

(H ε ) u L L 1 T (B N 2 +1 2,∞ ) + q L L 1 T (B N 2 +2 2,∞ ) ≤ ε, u L L ∞ T (B N 2 -1 2,∞ ) + q L L ∞ T (B N 2 2,∞ ) ≤ CA 0 , with A 0 = q 0 B N 2 2,∞ + u 0 B N 2 -1 2,∞
. We are going to show by induction that:

(P n ), (q n , ūn ) F T ≤ √ ε.
for ε small enough with:

F T = C([0, T ], B N 2 2,∞ ) ∩ L 1 T (B N 2 +2 2,∞ ) × C([0, T ], B N 2 -1 2,∞ ) ∩ L 1 T (B N 2 +1 2,∞ ) N .
As (q 0 , ū0 ) = (0, 0) the result is true for n = 0. We now suppose (P n-1 ) (with n ≥ 1) true and we are going to show (P n ). Applying proposition 3.7 we have:

(q n , ūn ) F T ≤ C (∇F n-1 , G n-1 ) L 1 T (B N 2 -1 2,∞ )
.

(3.56)

Bounding the right-hand side of (3.56) may be done by applying proposition 2.2, lemma 2.3 and corollary 2. We begin with treating the case of

F n-1 L 1 T (B N/2
2,∞ ) , let us recall that:

F n-1 = -u L • ∇q L -ūn-1 • ∇q L -u L • ∇q n-1 -ūn-1 • ∇q n-1 . (3.57)
We are going to bound each term of we have then:

u L • ∇q L L 1 T (B N/2 2,∞ ) ≤ u L L 1 T (B N/2+1 2,∞ ) q L L ∞ T (B N/2 2,∞ ) + q L L 1 T (B N/2+2 2,∞ ) u L L ∞ T (B N/2-1 2,∞
) .

(3.58)

Similarly we obtain:

u L • ∇q n-1 L 1 T (B N/2 2,∞ ) ≤ u L L 1 T (B N/2+1 2,∞ ) qn-1 L ∞ T (B N/2 2,∞ ) + ∇q n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) u L L 4 T (B N 2 -1 2 2,∞ ) , (3.59) ūn-1 • ∇q L L 1 T (B N/2 2,∞ ) ≤ ūn-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q L L 4 T (B N 2 -1 2 2,∞ ) + q L L 1 T (B N/2+2 2,∞ ) ūn-1 L ∞ T (B N/2-1 2,∞ ) , (3.60) 
and:

ūn-1 • ∇q n-1 L 1 T (B N/2 2,∞ ) ≤ ūn-1 L 1 T (B N/2+1 2,∞ ) qn-1 L ∞ T (B N/2 2,∞ ) + qn-1 L 1 T (B N/2+2 2,∞ ) ūn-1 L ∞ T (B N/2-1 2,∞
) .

(3.61) By using the previous inequalities (3.58), (3.59), (3.60), (3.61), (P n-1 ) and by interpolation, we obtain that for C > 0 large enough:

F n L 1 T (B N/2 2,∞ ) ≤ C √ ε(A 3 4 0 ε 1 4 + √ ε(1 + A 0 ) + ε). (3.62) Next we want to control G n L 1 (B N 2 -1 2,∞ )
. According to propositions 2.2, corollary 2 and 3.7, we have:

(u n-1 ) * .∇u n-1 L 1 T (B N 2 -1 2,∞ ) u n-1 L 4 3 T (B N 2 + 1 2 2,∞ ) u n-1 L 4 T (B N 2 -1 2 2,∞ ) , ∇(|∇q n-1 | 2 ) L 1 T (B N 2 -1 2,∞ ) |∇q n-1 | 2 L 1 T (B N 2 2,∞ ) , ∇q n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q n-1 L 4 T (B N 2 -1 2 2,∞ ) , q n-1 L 4 3 
T (B N 2 + 3 2 2,∞ ) q n-1 L 4 T (B N 2 + 1 2 2,∞ )
,

∇q n-1 • Du n-1 L 1 T (B N 2 -1 2,∞ ) ∇q n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) u n-1 L 4 T (B N 2 -1 2 2,∞ ) + u n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q n-1 L 4 T (B N 2 -1 2 2,∞ )
,

∇q n-1 divu n-1 L 1 T (B N 2 -1 2,∞ ) ∇q n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) u n-1 L 4 T (B N 2 -1 2 2,∞ ) + u n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q n-1 L 4 T (B N 2 -1 2 2,∞ ) , ∇q n-1 L 1 T (B N 2 -1 2,∞ ) ≤ T q n-1 L ∞ T (B N 2 2,∞ )
.

(3.63)

Let us recall that we have by interpolation and the condition (P n-1 ):

u n-1 L 4 T (B N 2 -1 2 2,∞ ) ≤ u n-1 3 4 L ∞ T (B N 2 -1 2,∞ ) u n-1 1 4 L 1 T (B N 2 +1 2,∞ ) ≤ A 3 4 0 ε 1 4 + √ ε, u n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ≤ u n-1 1 4 L ∞ T (B N 2 -1 2,∞ ) u n-1 3 4 L 1 T (B N 2 +1 2,∞ ) ≤ A 1 4 0 ε 3 4 + √ ε.
(3.64) Using (3.56), (3.62), (3.63) and (3.64) we obtain for a certain C > 0 large enough:

(q n , ūn ) F T ≤ C √ ε(A 3 4 0 ε 1 4 + √ ε(1 + A 0 ) + ε) + C(A 3 4 0 ε 1 4 + √ ε)(A 1 4 0 ε 3 4 + √ ε) + T (A 0 + √ ε), ≤ C √ ε(A 3 4 0 ε 1 4 + 2 √ ε(1 + A 0 ) + A 3 4 0 ε 1 4 + A 1 4 0 ε 3 4 + ε) + T (A 0 + √ ε).
By choosing T and ε small enough the property (P n ) is verified, so we have shown by induction that (q n , u n ) is bounded in F T .

Second Step: Convergence of the sequence

We will show that (q n , u n ) is a Cauchy sequence in the Banach space F T , hence converges to some (q, u) ∈ F T . Let:

δq n = q n+1 -q n , δu n = u n+1 -u n .
The system verified by (δq n , δu n ) reads:

     ∂ t δq n + divδu n = F n -F n-1 , ∂ t δu n -µ∆δu n -(λ + µ)∇divδu n -κ∇∆δq n = G n -G n-1 ,
δq n (0) = 0 , δu n (0) = 0, Applying propositions 3.7, we obtain:

(δq n , δu n ) F T ≤ C( F n -F n-1 L 1 T (B N/2 2,∞ ) + G n -G n-1 L 1 T (B N/2-1 2,∞
) ).

(3.65)

Tedious calculus ensure that:

F n -F n-1 = -δu n-1 • ∇q n -u n-1 • ∇δq n-1 , G n -G n-1 = -u n • ∇δu n-1 -δu n-1 • ∇u n-1 + µ∇q n • Dδu n-1 + µ∇δq n-1 • Du n-1 + λ∇q n divδu n-1 + λ∇δq n-1 divu n-1 -K∇δq n-1 + ∇ ∇q n • ∇δq n-1 + ∇δq n-1 • ∇q n-1 .
It remains only to estimate the terms on the right hand side of (3.65) by using the same type of estimates than in the previous section and the property (P n ). More precisely we have via the proposition 2.2 and (P n ), it exists C > 0 such that:

F n -F n-1 L 1 T (B N/2 2,∞ ) ≤ δu n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q n L 4 T (B N 2 -1 2 2,∞ ) + δu n-1 L ∞ T (B N 2 -1 2,∞ ) ∇q n L 1 T (B N 2 +1 2,∞ ) + u n-1 L 1 T (B N 2 +1 2,∞ ) ∇δq n-1 L ∞ T (B N 2 -1 2,∞ ) + ∇δq n-1 L 4 3 
T (B N 2 + 1 2 2,∞ ) u n-1 L 4 T (B N 2 -1 2 2,∞ ) ≤ C(A 3 4 0 ε 1 4 + A 1 4 0 ε 3 4 + √ ε + ε) (δq n-1 , δu n-1 ) F T .
(3.66)

In a similar way we show that it exists C > 0 large enough such that:

G n -G n-1 L 1 T (B N/2-1 2,∞ ) ≤ C(A 3 4 0 ε 1 4 + A 1 4 0 ε 3 4 + √ ε + ε + T ) (δq n-1 , δu n-1 ) F T .
(3.67) By combining (3.65), (3.66) and (3.67) , we get for C > 0 large enough:

(δq n , δu n ) F T ≤ C(A 3 4 0 ε 1 4 + A 1 4 0 ε 3 4 + √ ε + ε + T ) (δq n-1 , δu n-1 ) F T .
It implies that choosing ε and T small enough (q n , u n ) is a Cauchy sequence in F T which is a Banach. It provides that (q n , u n ) converges to (q, u) is in F T . The verification that the limit (q, u) is solution of (N HV 1) in the sense of distributions is a straightforward application of proposition 2.2.

Third step: Uniqueness

Now, we are going to prove the uniqueness of the solution in F T Suppose that (q 1 , u 1 ) and (q 2 , u 2 ) are solutions with the same initial conditions and belonging in F T where (q 1 , u 1 ) corresponds to the previous solution. We set:

δq = q 2 -q 1 and δu = u 2 -u 1 .
We deduce that (δq, δu) satisfy the following system:

     ∂ t δq + divδu = F 2 -F 1 , ∂ t δu -µ∆δu -(λ + µ)∇divδu -κ∇∆δq = G 1 -G 2 , δq(0) = 0 , δu(0) = 0.
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We now apply proposition 3.7 to the previous system, and by using the same type of estimates than in the previous part, we show that:

(δq, δu)

F N 2 T 1 ( q 1 L 2 T 1 (B N 2 +1 2,∞ ) + q 2 LT 1 2 (B N 2 +1 2,∞ ) + u 1 L 2 T 1 (B N 2 +1 2,∞ ) + u 2 LT 1 2 (B N 2 2,∞ ) ) × (δq, δu) F N 2 T 1
.

We have then for T 1 small enough: (δq, δu) = (0, 0) on [0, T 1 ] and by connectivity we finally conclude that:

q 1 = q 2 , u 1 = u 2 on [0, T ].
3.3 Global solution near equilibrium for system (1.5)

We are now interested in proving the existence of global strong solution with small initial data for the system (1.5). The main difference with the previous proof consists essentially in dealing with the behavior of the density in low frequencies, to do this we shall use the proposition 3.7. More precisely we are going to use a contracting mapping argument for the function ψ defined as follows:

ψ(q, u) = W (t, •) * q 0 u 0 + t 0 W (t -s) F (q, u) G(q, u) ds . (3.68) 
where W is the semi group associated to the linear system (N 1) with a = µ, b = λ + µ, c = κ and d = K. The non linear terms F, G are defined as follows:

F (q, u) = -u • ∇q, G(q, u) = -u.∇u + 2µ∇q • Du + λdivu ∇q + κ 2 ∇(|∇q| 2 ). (3.69) 
We are going to check that we can apply a fixed point theorem for the function ψ in E N 2 defined below, the proof is divided in two step the stability of ψ for a ball B(0, R) in

E N 2
and the contraction property. We define E N 2 by:

E N 2 = L ∞ ( B N 2 -1, N 2 2,∞ ) ∩ L 1 ( B N 2 +1, N 2 +2 2,∞ ) × L ∞ (B N 2 -1 2,∞ ) ∩ L 1 (B N 2 +1 2,∞ ) N .
1) First step, stability of B(0, R):

Let: η = q 0 B N 2 -1, N 2 2,∞ + u 0 B N 2 -1 2,∞ .
We are going to show that ψ maps the ball B(0, R) into itself if R is small enough. According to proposition 3.8, we have:

W (t, •) * q 0 u 0 E N 2 ≤ Cη . (3.70) 
According to the proposition 3.8 it implies also that:

ψ(q, u) E N 2 ≤ C η + F (q, u) L 1 ( B N 2 -1, N 2 2,∞ ) + G(q, u) L 1 (B N 2 -1 2,∞ )
.

(3.71)

The main task consists in using the propositions 2.2 and corollary 2 to obtain estimates on F (q, u)

L 1 ( B N 2 -1, N 2 2,∞ ) , G(q, u) L 1 (B N 2 -1 2,∞ ) .
Let us first estimate F (q, u)

L 1 ( B N 2 -1, N 2 2,∞ 
) . According to proposition 2.2, we have:

u • ∇q L 1 ( B N 2 -1, N 2 2,∞ ) ∇q L 4 3 ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) u L 4 (B N 2 -1 2 2,∞ ) + ∇q L 4 ( B N 2 -3 2 , N 2 -1 2 2,∞ ) u L 4 3 (B N 2 + 1 2 2,∞ ) . (3.72) 
Let us now estimate G(q, u)

L 1 (B N 2 -1 2,∞ )
. Hence by proposition 2.2 it yields:

u • ∇u L 1 (B N 2 -1 2,∞ ) u L 4 3 (B N 2 + 1 2 2,∞ ) u L 4 T (B N 2 -1 2 2,∞ ) . (3.73) 
In the same way we have by proposition 2.2 and the fact that

B N 2 -1 2 , N 2 + 1 2 2,∞ → B N 2 + 1 2 2,∞ , B N 2 -3 2 , N 2 -1 2 2,∞ → B N 2 -1 2 
2,∞ (see the remark 3.3):

∇q • Du L 1 (B N 2 -1 2,∞ ) ∇q L 4 3 ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) Du L 4 (B N 2 -3 2 2,∞ ) + ∇q L 4 ( B N 2 -3 2 , N 2 -1 2 2,∞ ) Du L 4 3 (B N 2 -1 2 2,∞ )
.

∇q divu L 1 (B N 2 -1 2,∞ ) ∇q L 4 3 ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) divu L 4 (B N 2 -3 2 2,∞ ) + ∇q L 4 ( B N 2 -3 2 , N 2 -1 2 2,∞ ) divu L 4 3 (B N 2 -1 2 2,∞ ) . (3.74) 
It now remains only to deal with the capillary terms:

∇(|∇q| 2 ) L 1 (B N 2 -1 2,∞ ) |∇q| 2 L 1 (B N 2 2,∞ ) , ∇q L 4 3 ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) ∇q L 4 ( B N 2 -3 2 , N 2 -1 2 2,∞ ) . (3.75) 
We have previously used the fact that

B N 2 -1 2 , N 2 + 1 2 2,∞ → B N 2 + 1 2 2,∞ and B N 2 -3 2 , N 2 -1 2 2,∞ → B N 2 -1 2 
2,∞ . We are now going to assume that (q, u) belongs in the ball B(0, R) of E 

ψ(q, u) E N 2 ≤ C((C + 1)η + R) 2 .
(3.76)

By choosing R and η small enough we have:

C((C + 1)η + R) 2 ≤ R. (3.77) 
It implies that the ball B(0, R) of E N 2 is stable under ψ, indeed we have:

ψ(B(0, R)) ⊂ B(0, R) ,
2) Second step: Property of contraction

We consider (q 1 , u 1 ), (q 2 , u 2 ) in B(0, R) and we are interested in verifying that ψ is a contraction. According to the proposition 3.8 we have:

ψ(q 2 , u 2 ) -ψ(q 1 , u 1 ) E N 2 ≤ C F (q 2 , u 2 ) -F (q 1 , u 1 ) L 1 ( B N 2 -1, N 2 2,∞ ) + G(q 2 , u 2 ) -G(q 1 , u 1 ) L 1 (B N 2 -1 2,∞ )
.

(3.78)

We set: δq = q 2 -q 1 and δu = u 2 -u 1 .

We have:

F (q 2 , u 2 ) -F (q 1 , u 1 ) = -δu • ∇q 2 -u 1 • ∇δq. G(q 2 , u 2 ) -G(q 1 , u 1 ) = -u 2 • ∇δu -δu • ∇u 1 + µ∇q 2 • Dδu + µ∇δq • Du 1 + λ∇q 2 divδu + λ∇δqdivu 1 + ∇ ∇q 2 • ∇δq + ∇δq • ∇q 1 .
Let us first estimate F (q 2 , u 2 ) -F (q 1 , u 1 )

L 1 ( B N 2 -1, N 2 2,∞ 
) . We have by proposition 2.2 and the remark :

F (q 2 , u 2 ) -F (q 1 , u 1 ) L 1 ( B N 2 -1, N 2 2,∞ ) δu L 4 3 T (B N 2 + 1 2 2,∞ ) ∇q 2 L 4 T ( B N 2 -3 2 , N 2 -1 2 2,∞ ) + δu L ∞ T (B N 2 -1 2,∞ ) ∇q 2 L 1 T ( B N 2 , N 2 +1 2,∞ ) + u 1 L 1 T (B N 2 +1 2,∞ ) ∇δq L ∞ T ( B N 2 -2, N 2 -1 2,∞ ) + ∇δq L 4 3 T ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) u 1 L 4 T (B N 2 -1 2 2,∞ ) ≤ C 2 (q 2 , u 2 ) E N 2 + 2 (q 1 , u 1 ) E N 2 (δq, δu) E N 2 .
(3.79)

Next, we have to bound G(q 2 , u 2 ) -G(q 1 , u 1 )

L 1 (B N 2 -1 2,∞ )
. We treat only one typical term, the others are of the same form.

-

u 2 • ∇δu -δu • ∇u 1 L 1 (B N 2 -1 2,∞ ) ∇δu L 4 3 T (B N 2 -1 2 2,∞ ) u 2 L 4 T (B N 2 -1 2 2,∞ ) + ∇δu L ∞ T (B N 2 -2 2,∞ ) u 2 L 1 T (B N 2 +1 2,∞ ) + ∇u 1 L 1 T (B N 2 2,∞ ) δu L ∞ T (B N 2 -1 2,∞ ) + δu L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇u 1 L 4 T (B N 2 -3 2 2,∞ ) ≤ C 2 (q 2 , u 2 ) E N 2 + 2 (q 1 , u 1 ) E N 2 (δq, δu) E N 2 . (3.80) 
We can bound the other terms of G(q 2 , u 2 ) -G(q 1 , u 1 )

L 1 (B N 2 -1 2,∞ )
. in a similar way and this work is left to the reader. Finally by combining (3.78), (3.79) and (3.80) we obtain for C > 0 large enough:

ψ(q 2 , u 2 ) -ψ(q 1 , u 1 ) E N 2
≤C (δq, δu)

E N 2 (q 1 , u 1 ) E N 2 + (q 2 , u 2 ) E N 2 E N 2
.

If one chooses R small enough such that RC ≤ 3 4 , we end up with using the previous estimate which yields:

ψ(q 2 , u 2 ) -Ψ(q 1 , u 1 ) E N 2 ≤ 3 4 (δq, δu) E N 2
.

We thus have the property of contraction and so by the fixed point theorem, we have the existence of a global solution (q, u) to the system (N HV 1). Indeed we can see easily that E N 2 is a Banach space. Concerning the uniqueness of this solution, it suffices to apply the arguments of the third step of the result of uniqueness in finite time (see the previous section). More precisely if (q, u) is the previous solution and (q 1 , u 1 ) an other solution in E N 2 then by setting δq = q -q 1 and δu = u -u 1 we show that for T small enough: δq = 0 and δu = 0. on [0, T ] and we conclude after by connectivity to get the uniqueness on R + .

Global solution near equilibrium for system (1.1)

We are now interested in proving the existence of global strong solution for the original system (1.1), as explained in the remarka 2 the main difficulty consists in observing that a priori the system (1.1) is not equivalent to the system (1.5). Indeed we need at least to control the L ∞ norm on the density ρ and on the vacuum 1 ρ in order to propagate on the density ρ the regularity proved in theorem 1.1 for the unknown q = ln ρ. Furthermore we shall easily verify that with such regularity on (ρ, u) then (ρ, u) verify the system (1.1) and is a unique solution of (1.1). To do this we are going to assume additional hypothesis on (q 0 , u 0 ) since now (q 0 , u 0 ) is in

B N 2 -1, N 2 2,2
with q 0 = ln ρ 0 ∈ L ∞ (this last condition implies in particular that ρ 0 and 1 ρ 0 belong in L ∞ ). The first part of the proof consists in getting L ∞ estimates for the linear system (N ), and the second part consists in splitting the solution (q, u) under the following form: (q, u) = (q L , u L ) + (q, ū), with (q L , u L ) solution of (N ) with F = G = 0 and (q L (0, •), u L (0, •) = (q 0 , u 0 ). The key points will be to show that q L is belonging in L ∞ T (L ∞ ) for any T > 0 and that q is more regular that q L . More precisely by a regularizing effect on the third index of the Besov space we shall prove that q is in L

∞ T (B N 2 
2,1 ) for any T > 0 with is embedded in L ∞ T (L ∞ ). It will then be sufficient to deduce a control of ln ρ in L ∞ T (L ∞ ) and to propagate the regularity of q on ρ via the proposition 2.3.

Result of maximum principle type for the linear system (N )

Let us start with studying the following system:

     ∂ t q + divu = 0, ∂ t u -µ∆u -(λ + µ)∇divu -κ∇∆q = 0,
(q(0, •), u(0, •)) = (q 0 , u 0 ), (3.81) with µ > 0 and λ + 2µ > 0. We are interesting in characterizing the Besov space in term of the semi group B(t) associated to the system (3.81), it shall be useful in order to obtain L ∞ estimates for q. More precisely we have the following proposition. Proposition 3.10 Let s be a positive real number and (p, r) ∈ [1, +∞] 2 . Let (q, u) the solution of (3.81) with (q, u)(t) = e B(t) (q 0 , u 0 ) and with the following notation:

(∇q, u)(t) = e B(t) (∇q 0 , u 0 ).

Then there exists a constant C > 0 which satisfies:

t s e B(t) (∇q 0 , u 0 ) L p L r (R + , dt t ) ≤ C (∇q 0 , u 0 ) B -2s p,r ∀(∇q 0 , u 0 ) ∈ B -2s p,r . (3.82) 
Proof Apply operator ∆ to the first equation of (3.81) and operators div and curl to the second one; we obtain the following system with ν = 2µ + λ:

         ∂ t ∆q + ∆divu = 0, ∂ t divu -ν∆divu -κ∆ 2 q = 0, ∂ t curlu -µ∆curlu = 0, (q(0, •), u(0, •)) = (q 0 , u 0 ). (3.83)
We observe that the third equation is a heat equation and we know via lemma 2.4 p 54 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] that it exists C, c > 0 such that:

e µt∆ ∆ l curlu 0 L p ≤ Ce -c2 2l µ ∆ l curlu 0 L p ∀p ∈ [1, +∞]. (3.84)
Let us study now the following system:

     ∂ t c + ∆v = 0, ∂ t v -µ∆v -κ∆c = 0, (c(0, •), v(0, •)) = (c 0 , v 0 ). (3.85) 
where c = ∆q and v = divu. Denoting by U (t) the semi-group associated to (3.85), we deduce from Duhamel's formula that:

∂ t q(t, ξ) d(t, ξ) = U (t) q 0 u 0
We are now interested in proving estimate of the same form than (3.84) for e U (t) (∆ l c, ∆ l v), and to do this we are going to prove the following lemma which is a direct consequence of the lemma 3 of [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF]. For the sake of completeness we are going to recall its proof.

Lemma 1 For any p ∈ [1, +∞] and any t > 0 we have:

e U (t) (∆ q c 0 , ∆ q v 0 ) L p ≤ Ce -c min(1, 4κ ν 2 )2 2q νt ( ∆ q c 0 L p + ∆ q v 0 L p ). ( 3 

.86)

Proof: Simple calculus show that U (t) = e -tA(D) with:

A(ξ) = 0 -|ξ| 2 κ|ξ| 2 µ|ξ| 2 .
Following [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] we show that:

e -tA(ξ) = e -tν|ξ| 2 2 h 1 (t, ξ) + ν 2 h 2 (t, ξ) h 2 (t, ξ) -κh 2 (t, ξ) h 1 (t, ξ) -ν 2 h 2 (t, ξ)
, with:

h 1 (t, ξ) = cos(ν |ξ| 2 t), h 2 (t, ξ) = sin(ν |ξ| 2 t) ν , if µ 2 < 4κ. h 1 (t, ξ) = 1, h 2 (t, ξ) = t|ξ| 2 ; if ν 2 = 4κ. h 1 (t, ξ) = cos(ν |ξ| 2 t), h 2 (t, ξ) = sin(ν |ξ| 2 t) µ , if ν 2 > 4κ.
and ν = |κ -ν 2 4 |. Let ϕ defined as in the definition of Littlewood-Paley theory, then denoting a ij (t, ξ) the coefficients of the matrix e -tA(ξ) and:

∆ q b ij (t, x) = ∆ q F -1 (a ij )(t, x) = (2π) -N e ix•ξ a ij (t, ξ)ϕ(2 -q ξ)dξ.
Let us show now that:

∆ q (b ij )(t, •) L 1 ≤ Ce -c min(1, 4κ ν 2 )2 2q νt . (3.87)
where c depends only on µ, κ and c is a universal constant. We first remark that ∆ q b ij L 1 = h ijq L 1 with:

h ijq (t, y) = (2π) -N e iy•η a ij (t, 2 q η)ϕ(η)dη.
Let us observe that the functions h ijq can be rewritten under the form:

h q (t, x) = e iy•ξ f (2 q |xi| 2 t)ϕ(ξ)dξ. (3.88) with f ∈ C ∞ (R + )
. By integration by parts and Leibniz' formula, we obtain for all

α ∈ N N , (-ix) α h q (x) = β≤α ( α β ) e ix•ξ ∂ β f (2 q |xi| 2 t)∂ α-β ϕ(ξ)dξ. (3.89)
Next, from Faà-di-Bruno's formula, we deduce that:

∂ β f (2 q |xi| 2 t) = γ 1 +•••+γm=β,|γ i |≥1 f (m) (2 q |xi| 2 t)(2 2q t) m (P i m j=1 ∂ γ j (|xi| 2 )). (3.90)
Let us suppose first that ν 2 > 4κ. Then, we just have to prove that:

h q L 1 ≤ Ce -c2 2q νt , (3.91) 
for f (u) = e iµ u e -µu/2 . We have:

f (m) (u) = (iν - ν 2
) m e iν u e -νu/2 , so that |f (m) (u)| ≤ (ν + ν 2 ) m e -µu/2 . Using (3.89), (3.90), we prove the existence of constant C α,β,m such that:

|x α h q (x)| ≤ β≤α |β| m=1 C α,β,m (2 2q t) m e -νt2 2q /8 .
For any constant c < 1 and m ∈ N, there exists C m such that u m e -u ≤ C m e -cu . This clearly yields (3.91). When ν 2 = 4κ, it suffices to verify (3.91) for f (u) = ue -νu/2 and f (u) = e -νu/2 . This is a direct consequence of (3.90) and Leibniz' formula. When ν 2 > 4κ, we have to check (3.91) for:

f (u) = exp( ν 2 (1 + 1 - 4κ ν 2 )u) and f (u) = exp( ν 2 (1 -1 - 4κ ν 2 )u).
Using again (3.90) we have:

|x α h q (x)| ≤ C max(e -cνt2 2q (1+ 1-4κ ν 2 ) , e -cνt2 2q (1-1-4κ ν 2 ) ) ≤ Ce -c( κ ν )2 2q t
and we conclude to (3.87). We obtain finally by using (3.87) and the Young inequality for the convolution:

e U (t) (∆ q c 0 , ∆ q v 0 ) L p ≤ Ce -c min(1, 4κ ν 2 )2 2q µt ( ∆ q c 0 L p + ∆ q v 0 L p ).

It proves the lemma 1.

Via the Bernstein lemma, the lemma 2.4, (3.84) and (3.86) we obtain that ∀l ∈ Z:

e B(t) (∆ l ∇q 0 , ∆ l u 0 ) L p ≤ Ce -c min(1, 4κ ν 2 )2 2l νt ( ∆ l ∇q 0 L p + ∆ l u 0 L p ). (3.92)
According the estimate (3.92) we have by setting V = (∇q 0 , u 0 ) for c, C > 0:

t s ∆ l e B(t) V L p ≤ Ct s 2 2ls e -ct2 2l 2 -2ls ∆ l V L p .
We are now going to adapt a criterion to define some Besov space in terms of the heat kernel (see theorem 2.34 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) to our case, it means to the semi-group B(t). Since V belongs in S h and the definition of the homogeneous Besov semi norm we have:

t s e tB(t) V L p ≤ l∈Z t s ∆ l e B(t) V L p , ≤ C V B -2s p,r l∈Z t s 2 2ls e -ct2 2l c r,l
where (c rl ) l∈Z is a element of the unit sphere of l r (Z). If r = +∞, we easily show (3.86) by using the following lemma (we left to the reader the proof of this last one).

Lemma 1 For any s, we have:

sup t>0 l∈Z t s 2 2ls e -ct2 2l < +∞.
Let us deal now with the case r < +∞, combining Hölder's inequality with the weight 2 2ls e -ct2 2l and lemma 1, we obtain:

+∞ 0 t rs e B(t) V r L p dt t ≤ C V r B -2s p,r +∞ 0 ( l∈Z t s 2 2ls e -ct2 2l c rl ) r dt t , ≤ C V r B -2s p,r +∞ 0 ( l∈Z t s 2 2ls e -ct2 2l ) r-1 ( l∈Z t s 2 2ls e -ct2 2l c r rl ) dt t , ≤ C V r B -2s p,r +∞ 0 ( l∈Z t s 2 2ls e -ct2 2l c r rl ) dt t
Using Fubini's theorem and the change of variable u = ct2 j , we have:

+∞ 0 t rs e B(t) V r L p dt t ≤ C V r B -2s p,r l∈Z c r rl +∞ 0 t s 2 2ls e -ct2 2l dt t , ≤ CΓ(s) V r B -2s p,r
, with Γ(s) = +∞ 0 t s-1 e -t dt. The proposition 3.10 is thus proved.

Let us prove now L ∞ estimate for the density solution q of the system (3.81). We recall that in the sequel q will correspond roughly speaking to ln ρ, in particular L ∞ estimate on q shall also provide L ∞ estimate on ρ and 1 ρ .

Proposition 3.11 Let q 0 ∈ B N 2 2,2 , u 0 ∈ B N -1 2,2
and q 0 ∈ L ∞ . Let (q, u) the solution of the system 3.81, then we have for all T > 0:

sup t∈[0,T ] ( √ t (∇q, u)(t, •) L ∞ ) ≤ C (∇q 0 , u 0 ) B N 2 -1 2,2 . q L ∞ T (L ∞ ) ≤ q 0 L ∞ + C (∇q 0 , u 0 ) B N 2 -1 2,2 . 
(3.93)

Proof: The first estimate in (3.93) is a direct application of the proposition 3.10 applied to p = +∞, r = +∞, s = 1 2 and using the fact that B

N 2 -1 2,2 is embedded in B -1 ∞,∞
. Let E the fundamental solution of the Laplacian operator, and we define the operator (∆) -1 by the convolution operator (∆) -1 f = E * f with f ∈ S (R N ). By applying the operator (∆) -1 div to the second equation of (3.81) and using the fact that ∆c = divu, we obtain the following system with c = (∆) -1 divu:

   ∂ t q - κ µ ∆q = - 1 µ ∂ t c, ∂ t c -µ∆c -κ∆q = 0.
Let us prove that q belongs in L ∞ T (L ∞ ) for any T > 0; by Duhamel formula we have:

q(t, x) = e κ µ t∆ q 0 - 1 µ t 0 e κ µ (t-s)∆ ∂ t c(s)ds. (3.94)
By the maximum principle for the heat equation, we deduce that: 

e κ µ t∆ q 0 L ∞ (L ∞ ) ≤ q 0 L ∞ (R N ) . ( 3 
e κ µ (t-s)∆ ∂ s c(s) = K( • √ t -s ) * x ∂ s (∆) -1 divu(s, •), = K( • √ t -s ) * x ∂ s [(E * x divu(s, •)] , = K( x √ t -s ) * x [ i ∂ i E * x ∂ s u i (s, •)] , = i K( x √ t -s ) * x ∂ i E * x ∂ s u i (s, •)] , = i ∂ i [K( • √ t -s )] * x E * x ∂ s u i (s, •) = i ∂ i [K( • √ t -s )] * x E * x ∂ s u i (s, •) = i ∂ i [K( • √ t -s )] * x (∆) -1 ∂ s u i (s, •), (3.96) 
with * x the convolution in space and setting μ = κ µ :

K( x √ t ) = 1 (4π μt) N 2 e - |x| 2 
4 μt .

We deduce that:

∂ i [K( • √ t -s )](x) = -2x i π N 2 1 (4μ(t -s)) N 2 +1 e - |x| 2 4 μ(t-s)
We easily check by a change of variable u = x √ 4μ(t-s) that:

∂ i [K( • √ t -s )] L 1 ≤ C √ t -s .
Then by Young's inequality we have for 0 < s < t:

∂ i [K( • √ t -s )] * x (∆) -1 ∂ s u i (s, •) L ∞ x ≤ C √ t -s 1 √ s sup 0<s<t √ s (∆) -1 ∂ s u(s) L ∞ (3.97)
with C > 0. By applying the operator (∆) -1 to the second equation of (3.81) we show that:

∂ t (∆) -1 u = µu + κ∇q. (3.98) 
We conclude as follows by using (3.96), (3.97) and (3.98), then there exists C > 0 such that:

t 0 e κ µ (t-s)∆ ∂ s c(s)ds L ∞ (L ∞ ) ≤ ( sup 0<s<t √ s ∆ -1 ∂ s u(s) L ∞ ) t 0 1 √ t -s 1 √ s ds, ≤ π sup 0<s<t √ s µu(s, •) + κ∇q(s, •) L ∞ , ≤ Cπ sup 0<s<t √ s (u(s, •), ∇q(s, •)) L ∞ .
(3.99) because:

t 0 1 √ t -s 1 √ s ds = π.
By using the first estimate in (3.93) we deduce that by using (3.99) and (3.95) we obtain that for any T > 0, it exists C > 0:

q L ∞ T (L ∞ ) ≤ q 0 L ∞ + C (∇q 0 , u 0 ) B N 2 -1 2,2
.

It achieves the proof of the proposition 3.93.

3.4.2

The unique solution of (1.5) verifies ρ ∈ L ∞ T (L ∞ ) Regularizing effect on the third index of the Besov spaces Let us start by recalling that we are concerned now with initial data such that (q 0 , u 0 ) belong in (B

N 2 2,2 ∩ L ∞ ) × B N 2 -1 2,2
. This additional regularity assumptions on the initial data will be crucial in order to prove L ∞ estimates on ln ρ. We are going to begin with proving additional regularity assumption on the solution (q, u) of the system (1.5) which verify (q, u) ∈ E with E defined as follows:

E = L ∞ (R + , B N 2 -1, N 2 2,∞ ) ∩ L 1 (R + , B N 2 +1, N 2 +2 2,∞ × L ∞ (R + , B N 2 -1 2,∞ ) ∩ L 1 (R + , B N 2 +1 2,∞ ) N .
Indeed we are interested in splitting the unique solution (q, u) constructed in the subsection 3.3 as the following sum:

(q, u) = (q L , u L ) + (q, ū).

with (q L , u L ) the solution of the system (N 1) with F = G = 0 a = µ, b = λ + µ, c = κ, d = K and with initial data (ln ρ 0 , u 0 ). Compared with the subsection 3.3, we are going to show that the remainder term (q, ū) is more regular than (q L , u L ) and is in the space F defined as follows:

F = L ∞ (R + , B N 2 -1, N 2 2,1 ) ∩ L 1 (R + , B N 2 +1, N 2 +2 2,1 ) × L ∞ (R + , B N 2 -1 2,1 ∩ L 1 (R + , B N 2 +1 2,1 ) N .
This type of regularizing effect on the remainder (q, ū) in term of the third index on the Besov spaces has been observed for the first time by Cannone and Planchon in [START_REF] Cannone | On the Regularity of the Bilinear Term for Solutions to the Incompressible Navier-Stokes Equations[END_REF] for the incompressible Navier-Stokes equations. We are going to use similar ideas in your case than [START_REF] Cannone | On the Regularity of the Bilinear Term for Solutions to the Incompressible Navier-Stokes Equations[END_REF], to do this let us use the proposition 3.8 which ensures:

q L L ∞ (R + ,B N 2 -1 2,2 ∩B N 2 2,2 ) + q L L 1 (R + ,B N 2 +1 2,2 ∩B N 2 +2 2,2 ) + u L L ∞ (R + ,B N 2 -1 2,2 ) + u L L 1 (R + ,B N 2 +1 2,2 ) q 0 B N 2 -1, N 2 2,2 + u 0 B N 2 -1 2,2 . 
(3.100)

As in the subsection 3.3, we know that (q, ū) verify the following system:

     ∂ t q + divū = F (q, ū), ∂ t ū -µ∆ū -(λ + µ)∇divū -κ∇∆q + K∇q = G(q, ū), (q, ū)(0, •) = (0, 0), (3.101) 
with:

F (q, ū) = -u • ∇q, G(q, ū) = -u • ∇u + 2µ∇q • Du + λdivu ∇q + κ 2 ∇(|∇q| 2 ).
We are going to apply the proposition 3.8 to (q, ū), it implies that:

q L ∞ (R + , B N 2 -1, N 2 2,1 ) + q 
L 1 (R + , B N 2 +1, N 2 +2 2,1 ) + ū L ∞ (R + ,B N 2 -1 2,1 ) + ū L 1 (R + ,B N 2 +1 2,1 ) F (q, ū) L 1 (R + , B N 2 -1, N 2 2,1 
) + G(q, ū)

L 1 (R + ,B N 2 -1 2,1
) .

(3.102)

It remains only to bound the terms F (q, ū) and G(q, ū) on the right hand side of (3.102). Let us start with F (q, ū)and u • ∇q which that we rewrite under the following form:

u • ∇q = ū • ∇q + u L • ∇q + u L • ∇q L .
According to proposition 2.2 we have:

ū • ∇q L 1 T ( B N 2 -1, N 2 2,1 ) ∇q L 4 3 T ( B N 2 -1 2 , N 2 + 1 2 2,∞ ) ū L 4 T (B N 2 -1 2 2,1 ) + ∇q L 4 T ( B N 2 -3 2 , N 2 -1 2 2,∞ ) × ū L 4 3 T (B N 2 + 1 2 2,1 ) , u L • ∇q L 1 T (B N 2 2,1 ) ∇q L 4 3 
T ( B N 2 -1 2 , N 2 + 1 2 2,1 ) u L L 4 T (B N 2 -1 2 2,∞ ) + ∇q L 4 T ( B N 2 -3 2 , N 2 -1 2 2,1 ) × u L L 4 3 T (B N 2 + 1 2 2,∞ ) , u L • ∇q L L 1 T (B N 2 2,1 ) ∇q L L 4 3 
T ( B N 2 -1 2 , N 2 + 1 2 2,2 ) u L L 4 T (B N 2 -1 2 2,2 ) + ∇q L L 4 T ( B N 2 -3 2 , N 2 -1 2 2,2 ) × u L L 4 3 T (B N 2 + 1 2 2,2
) .

(3.103) Let us deal now with the term G(q, ū) and in particular the term u • ∇u, we have then:

u • ∇u = ū • ∇u + u L • ∇ū + u L • ∇u L .
We have then by proposition 2.2:

ū • ∇u L 1 T (B N 2 -1 2,1 ) ū L ∞ (B N 2 -1 2,1 ) ∇u L 1 (B N 2 2,∞ ) + ∇u L 2 (B N 2 -1 2,∞ ) ū L 2 (B N 2 2,1 ) u L • ∇ū L 1 T (B N 2 -1 2,1 ) u L L ∞ (B N 2 -1 2,∞ ) ∇ū L 1 (B N 2 2,1 ) + ∇ū L 2 (B N 2 -1 2,1 ) u L L 2 (B N 2 2,∞ ) u L • ∇u L L 1 T (B N 2 -1 2,1 ) u L L ∞ (B N 2 -1 2,2 ) ∇u L L 1 (B N 2 2,2 ) + ∇u L L 2 (B N 2 -1 2,2 ) u L L 2 (B N 2 2,2 )
.

(3.104) We can proceed similarly for the terms ∇q • Du and divu ∇q. Let us treat the last term ∇|∇q| 2 we have then:

|∇q| 2 = ∇q • ∇q + ∇q • ∇q L + |∇q L | 2 .
By proposition 2.2, we get:

∇(|∇q| 2 ) L 1 T (B N 2 -1 2,1 ) |∇q| 2 L 1 T (B N 2 2,1 )
, 

|∇q L | 2 L 1 T (B N 2 -1 2,1 ) ∇q L L 4 3 
T (B N 2 + 1 2 2,2 ) ∇q L L 4 T (B N 2 -1 2 2,2 ) , ∇q • ∇q L 1 T (B N 2 -1 2,1 ) ∇q L 4 3 
T (B N 2 + 1 2 2,∞ ) ∇q L 4 T (B N 2 -1 2 2,1 ) + ∇q L 4 3 T (B N 2 + 1 2 2,1 ) ∇q L 4 T (B N 2 -1 2 2,∞ ) , (3.105 
L ∞ (R + ,B N 2 -1 2,1
By choosing ε 0 small enough we can apply a bootstrap argument in (3.106) which implies that it exists C > 0 such that q

L ∞ (R + ,B N 2 -1 2,1 ∩B N 2 2,1 ) + q L 1 (R + ,B N 2 +1 2,1 ∩B N 2 +2 2,1 ) + ū L ∞ (R + ,B N 2 -1 2,1 ) + ū L 1 (R + ,B N 2 +1 2,1 ) ≤ C u L L ∞ (B N 2 -1 2,2 ) + q L L ∞ (B N 2 -1, N 2 2,2 
)

+ u L L 1 (B N 2 +1 2,2 ) + q L L ∞ (B N 2 +1, N 2 +2 2,2 ) ) 2 .
(3.108) It proves finally that (q, ū) is in F and achieves this subsection.

q is bounded in L ∞ T (L ∞ (R N )) for any T > 0 In order to show that q is bounded in L ∞ T (L ∞ (R N )) for any T > 0 we shall use the proposition 3.93. Indeed we have seen in the previous subsection that:

(q, u) = (q L , u L ) + (q, ū), with (q L , u L ) solution of the system (N 1) with F = G = 0 a = µ, b = λ + µ, c = κ, d = K and with initial data (ln ρ 0 , u 0 ). In particular it implies via the definition of the semi group B(t) in the proposition 3.10 and the Duhamel formula that:

(q L (t), u L (t)) = e B(t) (q 0 , u 0 ) + t 0 e B(t-s) (0, K∇q L )(s)ds.

By using propositions 3.7, 3.93 and the embedding of B N 2 2,1 in L ∞ we deduce that for any T > 0 it exists C > 0 independent on T such that (here [•] 1 defines the first coordinate of the vector field): )

q L L ∞ T (L ∞ ) ≤ [e B(t) (q 0 , u 0 )] 1 L ∞ T (L ∞ ) + [
).

(3.109) From proposition 3.8, we know that it exists C > 0 such that:

q L L ∞ ( B N 2 -1, N 2 2,2 
)

+ q L L 1 ( B N 2 +1, N 2 +2 2,2 ) ≤ C( q 0 B N 2 -1, N 2 2,2 + u 0 B N 2 -1 2,2
).

(3.110)

Let us deal now with the term ∇q L

L 1 T (B N 2 -1 2,1
) on the right hand side of (3.109), we have by interpolation for a constant C > 0:

q L (t) B N 2 2,1 ≤ C q L (t) 1 2 B N 2 -1 2,2
q L (t)

1 2 B N 2 +1 2,2
.

It implies that by Hölder's inequality and (2.23) that it exists C, C 1 > 0 large enough such that: q L (t)

L 1 T (B N 2 2,1 ) ≤ C q L 1 2 L 1 T (B N 2 -1 2,2 ) q L 1 2 L 1 T (B N 2 +1 2,2 ) , ≤ CT 3 4 q L 1 2 L ∞ T (B N 2 -1 2,2 ) q L 1 2 L 2 T (B N 2 +1 2,2 ) , ≤ C 1 T 3 4 ( q 0 B N 2 -1, N 2 2,2 + u 0 B N 2 -1 2,2
). 

q L L ∞ T (L ∞ ) ≤ [e B(t) (q 0 , u 0 )] 1 L ∞ T (L ∞ ) + [ t 0
e B(t-s) (0, K∇q L )(s)ds] 1

L ∞ T (B N 2 2,1 )
, ≤ C( ln ρ 0 L ∞ + (∇q 0 , u 0 )

B N 2 -1 2,2 + C 1 T 3 4 ( q 0 B N 2 -1, N 2 2,2 + u 0 B N 2 -1 2,2
).

(3.112) We have then proved that q L belongs in L ∞ lot (L ∞ ). Since we have seen that (q, ū) is in F , it implies in particular that q belongs in L ∞ (B N 2 2,1 ) which is embedded in L ∞ (L ∞ ). We deduce that q = q L + q belongs in L ∞ loc (L ∞ ). It remains only to prove that (ρ, u) = (exp(q), u) is a global strong solution of (1.1) and we define h = exp(q) -1 with ρ = 1 + h. By proposition 2.3 and the fact that ρ and 1 ρ belong in L ∞ loc (L ∞ ) we easily show that h is for any T > 0 in:

H T = L ∞ T ( B N 2 -1, N 2 2,∞ ) ∩ L 1 T ( B N 2 +1, N 2 +2 2,∞ .
With such regularity on h and u, the verification that (ρ, u) is a solution of (1.1) in the sense of distribution is a straightforward application of propositions 2.2 and 2.3. The uniqueness follows also the same line than in the proof of subsection 3.2.

Proof of the theorem 1.2

In the theorem 1.2 we are interested in extending the results of theorem 1.1 to the case of general pressure P and also to the case of constant viscosity and capillary coefficients. It implies in particular that the eulerian form of the system 1.1 does not only depend on the unknown q = ln ρ. Typically the pressure term ∇P (ρ) ρ is non linear in terms of q = ln ρ, that is why we need to control the L ∞ norm of the density in order to estimate this term in Besov space, indeed otherwise we could have a loss of regularity on this term. For this reason it seems impossible to hope a result of global strong solution involving only a smallness hypothesis on q 0 B N 2 2,∞ and u 0

B N 2 -1 2,∞
as it is the case under some specific physical condition in the theorem 1.1. We are going now to explain how to adapt the previous arguments of the proof of theorem 1.1 to this new situation. We are only dealing with the case µ(ρ) = µ, λ(ρ) = λ, κ(ρ) = κ and P a regular function such that P (1) > 0, here µ > 0 2µ + λ > 0 and κ > 0 (the other case are similar to treat). The system 1.1 is equivalent to the following system where we set in this section ρ = 1 + h. We can then rewrite the system (1.1) as follows: Let (h L , u L ) the solution of (N 1) with a = µ, b = λ + µ, c = κ, d = P (1), F = G = 0 and the initial data (h 0 , u 0 ). In the sequel we will consider solution under the form:

     ∂ t h + divu = F (h,
(h, u) = (h L , u L ) + ( h, ū).

In order to prove theorem 1.2 we shall use a fixed point theorem, more precisely we are going to consider the following functional: 

E N 2 = L ∞ ( B N 2 -1, N 2 2,1 
)

∩ L 1 ( B N 2 +1, N 2 +2 2,1 ) × L ∞ (B N 2 -1 2,1 ) ∩ L 1 (B N 2 +1
2,1 )

N .

1) First step, stability of B(0, R):

By using the proposition 3.8 we have: for C > 0:

h L L ∞ T ( B N 2 -1, N 2 2,2 
)

+ h L L 1 T ( B N 2 +1, N 2 +2 2,2 ) + u L L ∞ T (B N 2 -1 2,2
)

+ u L L 1 T (B N 2 +1 2,2 ) ≤ C( h 0 B N 2 -1, N 2 2,2 + u 0 B N 2 -1 2,2
).

(3.116) By combining the proposition 3.93 and 3.8, we have for any T > 0 and C > 0 independent on T :

h l L ∞ T (L ∞ ) ≤ C( h 0 L ∞ + + h 0 B N 2 -2 2,1 + u 0 B N 2 -2 2,1
).

(3.117)

Remark 20 Let us mention that the condition (h 0 , u 0

) ∈ B N 2 -2 2,1 × (B N 2 -2
2,1 ) N plays only a role in the previous estimate (3.117) in order to bound the term P (1)∇h L that we consider as a remainder term for the system (N ). Indeed we are interested in applying proposition 3.93 and the Duhamel formula. It would be possible to avoid this additional regularity by extending the proposition 3.93 to the system (N 1).

It remains only to apply the proposition 3.8 in order to get a priori estimates on ( h, ū), indeed we have for C > 0:

ψ( h, ū) E N 2 ≤ C( F (h, u) L 1 T ( B N 2 -1, N 2 2,1 
) + G(h, u)

L 1 T ( B N 2 -1, N 2 2,1 ) 
).

( It concludes the first part of the lemma.

We now want to prove that we can rewrite the capillarity tensor under the form of a viscosity tensor. To see this, we have: We have then: divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

Proposition 2 . 6

 26 Let σ ∈]0, N [. For any p ∈ [1, +∞], the function | • | -σ belongs to B N p -σ p,∞ . Proof: By proposition 2.1 it suffices to show that u

  s)ds. (3.52) Finally combining (3.45), (3.48), (3.50), (3.51) and (

N 2

 2 with R > 0. Combining the estimates (3.72), (3.73), (3.74) and (3.75) we get:

  ) By collecting the estimates (3.103), (3.104) and (3.105) and by interpolation we obtain that it exists C > 0 such that: q

t 0 e

 0 B(t-s) (0, K∇q L )(s)ds] ln ρ 0 L ∞ + (∇q 0 , u 0 )

( 3

 3 .111) Combining (3.109) and (3.111) we get:

  u), ∂ t u -µ∆u -(µ + λ)∇divu + F (1)∇h -κ∇∆h = G(h, u), (h, u) t=0 = (h 0 , u 0 ), (3.113) with F (ρ) = P (ρ)

F

  (h, u) = -u • ∇h -hdivu, G(h, u) = (F (1) -F (ρ))∇h + ( µ ρ -µ)∆u + ( µ + λ ρ -µ -λ)∇divu -u • ∇u. (3.114) 

W

  (t) is the semi group associated to (N 1) with the following conditions a = µ, b = λ + µ, c = κ, d = P (1). The proof is divided in two step the stability of ψ for a ball B(0, R) in E N 2 defined below and the contraction property. We consider E N 2 defined as follows:

  div(ρ∇(∇ ln ρ)) j = i ∂ i (ρ∂ ij ln ρ), = i [∂ i ρ∂ ij ln ρ + ρ∂ iij ln ρ], = ρ(∆∇ ln ρ) j + i ρ∂ i ln ρ∂ j ∂ i ln ρ), = ρ(∆∇ ln ρ) j + ρ 2 (∇(|∇ ln ρ| 2 )) j , = divK.

  .118) By applying proposition 2.2 and lemma 2.3 (indeed we have seen via the estimate(3.116) and the fact that h is in L ∞ (B ) that h belongs in L ∞ and ρ = 1 + h ≥ c > 0) we have

	N 2 divK = κ∇∆ρ -κdiv( ∆ρ = ρ∆ ln ρ + 1 ρ we have by injecting this expression in (6.151): ρ , we have: But as: divK = κρ∇∆ ln ρ + κ∇ρ∆ ln ρ + κ∇( 1 ρ |∇ρ| 2 ) -κdiv( 1 ρ ∇ρ ⊗ ∇ρ). |∇ρ| 2 , As we have: 2,1 When κ(ρ) = κ κdiv( 1 ρ ∇ρ ⊗ ∇ρ) = κ∆ ln ρ∇ρ + ∇( 1 ρ |∇ ln ρ| 2 ) -κ 1 ρ 2 ρ∇(|∇ ln ρ| 2 ). ∇ρ ⊗ ∇ρ).	(6.151) (6.152)

ρ

-1 f L ρ 2 T (B s-2+2/ρ 2 p,r) .If in addition r is finite then u belongs to C([0, T ], B s p,r ).

)

(3.106) Let us recall that via the first part of the theorem 1.1 and the proposition 3.8 (see the proof in the subsection 3.3) we have for a C > 0 and M > 0 large enough:

(3.107) as in (3.106) for a function C > 0:

.

(3.120)

By choosing R = M ε 0 with M > 2, it suffices to choose ε 0 small enough such that (3.119) ensures that:

The proof of the contraction follows the same lines as in the proof of the theorem 1.1 and is left to the reader. It achieves the proof of the theorem 1.2.

4 Proof of the theorem 1.3

We are now interested in proving the theorem 1.3 where we assume that κ(ρ) = µ 2 ρ , µ(ρ) = µρ and λ(ρ) = 0. We have observed that it exists quasi solution, it means a solution of the form (ρ 1 , -µ∇ ln ρ 1 ) with:

This quasi solution (ρ 1 , -µ∇ ln ρ 1 ) verifies the following system:

We are now interested in working around this quasi solution, more precisely we search global solution of (1.1) under the form:

We deduce from (1.9) that (h 2 , u 2 ) verifies the following system:

with:

(4.123)

We have now to solve the previous system (4.122) and to do this we are going to apply a fixed point theorem. We start with defining the following map ψ:

where W 1 is the semi group associated to the following linear system (4.125):

125) The non linear terms F, G are defined in (4.123). We are going to check that we can apply a fixed point theorem for the function ψ, the proof is divided in two step the stability of ψ for a ball B(0, R) in E N 2 and the contraction property. We define now E N 2 by:

N .

1) First step, stability of B(0, R):

.

We are going to show that ψ maps the ball B(0, R) into itself if R is small enough. By using the proposition 3.9 we have:

)

The main task consists in using the propositions 2.2 and corollary 2 to obtain estimates on F (h, u)

. According to proposition 2.2, we have:

) .

(4.127)

Similarly for G(h, u)

)

we have:

) .

(4.128)

The most important term is certainly K∇ ln ρ 1 which belongs in

2,1 ) since we have assume that ln ρ 0 1 belongs in

∩ L ∞ and the fact that ρ 1 verifies a heat equation (1.11). Using propositions 2.3, 2.5 and the maximum principle it exists a regular function g such that:

∇ ln ρ 1

)

, g( (ρ 0 1 ,

.

(4.129)

We deal with the others terms in a similar way and combining (4.126), (4.127), (4.128) and (4.129) we obtain for a C > 0 large enough and using the fact that (h, u) is in the ball

(s)ds .

(4.130) Let us recall that ρ 1 verifies a heat equation (1.11), we deduce from propositions 2.5 and the maximum principle that it exists a regular function g 1 such that:

From (4.131) we deduce that for a C large enough we have:

In particular it implies that:

).

(4.133) Let us prove now the stability of the functional ψ, from label (4.130) let us choose: R = 4Cη exp(Cg 1 ( (ρ 0 1 ,

). ( 4.134)

and suppose that: 

) + CR 2 exp(Cg 1 ( (ρ 0 1 ,

).

(4.136) From ( 4.136) we need to assume that:

). (4.137)

Indeed combining (4.137), (4.136) and (4.134) shows that:

This concludes the proof of the stability except that it remains to choose η and to verify that it implies the condition 1.14 of theorem 1.3. The condition 4.137 via (4.134) is equivalent to:

) ≤ 2Cη exp(Cg 1 ( (ρ 0 1 ,

).

(4.139) and:

8Cη exp(Cg 1 ( (ρ 0 1 ,

From (4.135) let us choose:

The condition (4.140) implies by using (4.141) that: 8g( (ρ 0 1 ,

Let us point out that this condition corresponds exactly to the condition (1.14) of the theorem 1.3. It concludes the proof of the stability of the functional ψ. Let us prove now some contraction properties of the functional ψ.

2) Second step, contraction properties:

Consider two element (h, u) and (h , u ) in B(0, R), according to proposition 3.9 we have:

)

) 

, we have then by proposition 2.2 and by denoting δh = h -h and δu = u -u :

(4.144)

We proceed similarly for the term G(h, u) -G(h , u )

) (let us mention only that the delicate term K∇ ln ρ 1 disappears by the subtraction). We get finally for a C > 0 large enough by using (4.131): (ρ 0 1 ,

) .

(4.146) In particular we ensure the contraction property via (4.145) if: 

Proof of corollary 1

It suffices to apply the same proof than for the theorem 1.3, in particular to apply a fixed point theorem for the function ψ previously defined. The main difference concerns the way to deals with the remainder term K∇ ln ρ 1 . Following the same arguments than for the estimate (4.129) we have for a regular function g and C > 0:

)

,

, ≤ CKg( (ρ 0 1 ,

.

(5.149) By using exactly the same arguments than in the previous proof we need the following smallness hypothesis with C > 0 and g, g 1 regular function in order to ensure the stability of the functional ψ for a ball B(0, R) with R defined as previously:

16KCg( (ρ 0 1 ,

exp Cg 1 ( (ρ 0 1 ,

) ≤ 1 2 .

(5.150)

If we choose K small enough this last condition will be verified, the rest of the proof follows the same lines as in the proof of theorem 1.3 which achieves the proof of corollary 1.

Appendix

In this appendix, we just give a technical lemma on the computation of the capillarity tensor.

Lemma 2 When κ(ρ) = κ ρ with κ > 0 then: divK = κρ(∇∆ ln ρ + 1 2 ∇(|∇ ln ρ| 2 )).

and: divK = κdiv(ρ∇∇ ln ρ).

Proof: We recall that: divK = ∇ ρκ(ρ)∆ρ + 1 2 (κ(ρ) + ρκ (ρ))|∇ρ| 2 -div κ(ρ)∇ρ ⊗ ∇ρ .