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Abstract

A well-known problem in Malliavin calculus concerns the relation between

the determinant of the Malliavin matrix of a random vector and the determi-

nant of its covariance matrix. We give an explicit relation between these two

determinants for couples of random vectors of multiple integrals.
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1 Introduction

The original motivation of the Malliavin calculus was to study the existence and
the regularity of the densities of random variables. In this research direction, the
determinant of the so-callled Malliavin matrix plays a crucial role.
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We give here an explicit formula that connects the determinant of the Malliavin
matrix and the determinant of the covariance matrix of a couple of multiple stochastic
integrals. This is related to two open problems stated in [1]. In this reference, the
authors showed that, if F = (F1, .., Fd) is a random vector whose components belong
to a finite sum of Wiener chaoses, then the law of F is not absolutely continuous
with respect to the Lebesque measure if and only if E det Λ = 0. Here Λ denotes the
Malliavin matrix of the vector F . In particular, they proved that a couple of multiple
integrals of order 2 either admits a density or its components are proportional.

They stated two open questions (Questions 6.1 and 6.2 in [1]): if C is the
covariance matrix and Λ the Malliavin matrix of a vector of multiple stochastic inte-
grals,

• is there true that E det Λ ≥ c detC, with c > 0 an universal constant?

• is there true that the law of a vector of multiple integrals with components in the
same Wiener chaos is either absolutely continuous with respect to the Lesque
measure or its components are proportional?

We make a first step in order to answer to these two open problems. The
basic idea is to write the Malliavin matrix as a sum of squares and to compute the
dominant term of its determinant.

We organized our paper as follows. Section 2 contains some preliminaries on
analysis on Wiener chaos. Section 3 is devoted to express the Malliavin matrix as the
sum of the squares of some random variables and in Section 4 we derive an explicit
formula for the determinant of Λ which also involves the determinant of the covariance
matrix.

2 Preliminaries

We briefly describe the tools from the analysis on Wiener space that we will need
in our work. For complete presentations, we refer to [4] or [2]. Let H be a real and
separable Hilbert space and consider (W (h), h ∈ H) an isonormal process. That is,
(W (h), h ∈ H) is a family of centered Gaussian random variables on the probability
space (Ω,F , P ) such that EW (h)W (g) = 〈f, g〉H for every h, g ∈ H . Assume that
the σ-algebra F is generated by W .

Denote, for n ≥ 0, byHn the nth Wiener chaos generated byW . That is, Hn is
the vector subspace of L2(Ω) generated by (Hn(W (h)), h ∈ H, ‖h‖ = 1) where Hn the
Hermite polynomial of degree n. For any n ≥ 1, the mapping In(h

⊗n) = Hn(W (h))
can be extended to an isometry between the Hilbert space H⊗n endowed with the
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norm
√
n!‖ · ‖H⊗n and the nth Wiener chaos Hn. The random variable In(f) is called

the multiple Wiener Itô integral of f with respect to W .
Consider (ej)j≥1 a complete orthonormal system in H and let f ∈ H⊗n, g ∈

H⊗m be two symmetric functions with n,m ≥ 1. Then

f =
∑

j1,..,jn≥1

λj1,..,jnej1 ⊗ ...⊗ ejn (1)

and
g =

∑

k1,..,km≥1

βk1,..,kmek1 ⊗ ..⊗ ekm (2)

where the coefficients λi and βj satisfy λj
σ(1),...jσ(n)

= λj1,..,jn and βk
π(1),...,kπ(m)

= βk1,..,km

for every permutation σ of the set {1, ..., n} and for every permutation π of the set
{1, .., m}. Actually λj1,..,jn = 〈f, ej1 ⊗ ...⊗ ejn〉 and βk1,..,km = 〈g, ek1 ⊗ ..⊗ ekm〉 in (1)
and (2). Note that, throughout the paper we will use the notation 〈·, ·〉 to indicate
the scalar product in H⊗k, independently of k.

If f ∈ H⊗n, g ∈ H⊗m are symmetric given by (1), (2) respectively, then the
contraction of order r of F and g is given by

f ⊗r g =
∑

i1,..,ir≥1

∑

j1,..,jn−r≥1

∑

k1,..,km−r≥1

λi1,..,ir,j1,..,jn−r
βi1,..,ir,k1,..,km−r

×
(

ej1 ⊗ ..⊗ ejn−r

)

⊗
(

ek1 ⊗ ..⊗ ekm−r

)

(3)

for every r = 0, .., m ∧ n. In particular f ⊗0 g = f ⊗ g. Note that f ⊗r g belongs to
H⊗(m+n−2r) for every r = 0, .., m∧n and it is not in general symmetric. We will denote
by f⊗̃rg the symmetrization of f ⊗r g. In the particular case when H = L2(T,B, µ)
where µ is a sigma-finite measure without atoms, (3) becomes

(f ⊗r g)(t1, .., tm+n−2r)

=

∫

T r

dµ(u1)..dµ(ur)f(u1, .., ur, t1, .., tn−r)g(u1, .., ur, tn−r+1, .., tm+n−2r) (4)

An important role will be played by the following product formula for multiple
Wiener-Itô integrals: if f ∈ H⊗n, g ∈ H⊗m are symmetric, then

In(f)Im(g) =

m∧n
∑

r=0

r!Cr
mC

r
nIm+n−2r

(

f⊗̃rg
)

. (5)

We will need the concept of Malliavin derivative D with respect to W , but we will
use only its action on Wiener chaos. In order to avoid too many details, we will just
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say that, if f is given by (1) and In(f) denotes its multiple integral of order n with
respect to W , then

DIn(f) = n
∑

j1,..,jn≥1

λj1,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) ej1 .

If F,G are two random variables which are differentiable in the Malliavin sense, we
will denote throughout the paper by C the covariance matrix and by Λ the Malliavin
matrix of the random vector (F,G). That is,

Λ =

(

‖DF‖2H 〈DF,DG〉H
〈DF,DG〉H ‖DF‖2H

)

.

3 The Malliavin matrix as a sum of squares

In this section we will express the determinant of the Malliavin matrix of a random
couple as a sum of squares of certain random variables. This will be useful in order
to derive the exact formula for the determinant of the Malliavin matrix and its con-
nection with the determinant of the covariance matrix for a given random vector of
dimension 2.

Let f ∈ H⊗n and g ∈ H⊗m be given by (1) and (2) respectively, with n,m ≥ 1.
Let F = In(f), G = Im(g) denote the multiple Wiener-Itô integrals of f and g with
respect to W respectively. Then

In(f) =
∑

j1,..,jn≥1

λj1,..,jnIn (ej1 ⊗ ...⊗ ejn) (6)

and
Im(g) =

∑

k1,..,km≥1

βk1,..,kmIm (ek1 ⊗ ..⊗ ekm) . (7)

From (6) and (7) we have

DF = n
∑

j1,..,jn≥1

λj1,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) ej1

and
DG = m

∑

k1,..,km≥1

βk1,..,kmIm−1 (ek2 ⊗ ..⊗ ekm) ek1 .

This implies

‖DF‖2H = n2
∑

i≥1

∑

j2,..,jn≥1

∑

k1,..,kn≥1

λi,j2,..,jnλi,k2,..,knIn−1 (ej2 ⊗ ..⊗ ejn) In−1 (ek2 ⊗ ..⊗ ekn)
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and

‖DG‖2H = m2
∑

l≥1

∑

l,j2,..,jn≥1

∑

l,k2,..,kn≥1

βl,j2,..,jmβl,k2,..,kmIm−1 (ej2 ⊗ ..⊗ ejm) Im−1 (ek2 ⊗ ..⊗ ekm)

and

〈DF,DG〉H = nm
∑

i≥1

∑

j2,..,jn≥1

∑

k1,..,km≥1

λi,j2,..,jnβi,j1,..,jmIn−1 (ej2 ⊗ ..⊗ ejn) Im−1 (ek2 ⊗ ..⊗ ekm) .

Let us make the following notation. For every i ≥ 1, let

Si,f = n
∑

i≥1

∑

j2,..,jn≥1

λi,j2,..,jnIn−1 (ej2 ⊗ ..⊗ ejn) (8)

and
Si,g = m

∑

i≥1

∑

i,k2,..,km≥1

βi,k2,..,kmIm−1 (ek2 ⊗ ..⊗ ekm) . (9)

We can write

‖DF‖2H =
∑

i≥1

S2
i,f , ‖DG‖2H =

∑

l≥1

S2
l,g, 〈DF,DG〉 =

∑

i≥1

Si,fSi,g

and

det(Λ) = ‖DF‖2H‖DG‖2H − 〈DF,DG〉2H =
∑

i,l≥1

S2
i,fS

2
l,g −

(

∑

i≥1

Si,fSi,g

)2

.

A key observation is that

∑

i,l≥1

S2
i,fS

2
l,g −

(

∑

i≥1

Si,fSi,g

)2

=
1

2

∑

i,l≥1

(Si,fSl,g − Sl,fSi,g)
2
. (10)

We obtained

Proposition 1 The determinant of the Malliavin matrix Λ of the vector (F,G) =
(In(f), Im(g)) can be expressed as

detΛ =
1

2

∑

i,l≥1

(Si,fSl,g − Sl,fSi,g)
2

where Si,f , Si,g are given by (8) and (9) respectively.
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Corollary 1 The determinant of the Malliavin matrix Λ of the vector (F,G) =
(In(f), Im(g)) can be expressed as

detΛ =
1

2

∑

i,l≥1

(〈DF, ei〉〈DG, el〉 − 〈DF, el〉〈DG, ei〉)2

Proof: This comes from Proposition 1 and the relations

Si,f = 〈DF, ei〉, Si,g = 〈DG, ei〉

for every i ≥ 1.

4 The determinant of the Malliavin matrix onWiener

chaos

Fix n,m ≥ 1 and f, g in H⊗n, H⊗m respectively defined by (1) and (2). Consider the
random vector (F,G) = (In(f), Im(g)) and denote by Λ its Malliavin matrix and by
C its covariance matrix.

Let us compute E det Λ. Denote, for every i, l ≥ 1

si,f = n
∑

j2,..,jm≥1

λi,j2,..,jnej2 ⊗ ..⊗ ejn (11)

and
sl,g = m

∑

k2,..,km≥1

βl.k2,..,kmek2 ⊗ ..⊗ ekm . (12)

Clearly, for every i, l ≥ 1

Si,f = In−1(si,f), Si,g = Im−1(si,g). (13)

The following lemma plays a key role in our construction.

Lemma 1 If f ∈ H⊗n and g ∈ H⊗m are given by (1) and (2) respectively and si,f , si,g
by (11), (12) respectively, then for every r = 0, .., n− 1

f ⊗r+1 g =
1

nm

∑

i≥1

(si,f ⊗r si,g) .
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Proof: Consider first r = 0. Clearly, by (3)

f ⊗1 g =
∑

i≥1

∑

j2,..,jn≥1

∑

k2,..,km≥1

λi,j2,..,jnβi,k2,..,kmej2 ⊗ ..⊗ ejn ⊗ ek2 ⊗ ..ekm

=
1

nm

∑

i≥1

(si,f ⊗ si,g) .

The same argument applies for every r = 1, .., n− 1. Indeed,

f ⊗r+1 g

=

(

∑

j1,..,jn≥1

λj1,..,jnej1 ⊗ ..⊗ ejn

)

⊗r

(

∑

k1,..,km≥1

βk1,..,kmek1 ⊗ ..⊗ ekm

)

=
∑

i1,..,ir+1

∑

jr+2,..,jn

∑

kr+2,..,km

λi1,..,ir+1,jr+2,..,jnβi1,..,ir+1,kr+2,..,km

(

ejr+2 ⊗ ..⊗ ejn
)

⊗
(

ekr+2, .., ekm
)

and by (3) again

∑

i≥1

si,j ⊗r si,g

= nm
∑

i≥1

(

∑

j2,..,jn≥1

λi,j2,..,jnej2 ⊗ ..⊗ ejn

)

⊗r

(

∑

k2,..,km≥1

βi,k2,..,kmek2 ⊗ ..⊗ ekm

)

= nm
∑

i≥1

∑

i2,..,ir+1

∑

jr+2,..,jn

∑

kr+2,..,km

λi,i2,..,ir+1,jr+2,..,jnβi,i2,..,ir+1,kr+2,..,km

×
(

ejr+2 ⊗ ..⊗ ejn
)

⊗
(

ekr+2, .., ekm
)

= nm
∑

i1,..,ir+1

∑

jr+2,..,jn

∑

kr+2,..,km

λi1,..,ir+1,jr+2,..,jnβi1,..,ir+1,kr+2,..,km

(

ejr+2 ⊗ ..⊗ ejn
)

⊗
(

ekr+2, .., ekm
)

= f ⊗r+1 g.

We make a first step to compute E det Λ.

Lemma 2 Let f ∈ H⊗n, g ∈ H⊗m be symmetric and denote by Λ the Malliavin
matrix of the vector (F,G) = (In(f), Im(g)). Then we have

E det Λ =

(n−1)∧(m−1)
∑

k=0

Tk

7



where we denote, for k = 0, .., (m− 1) ∧ (n− 1),

Tk :=
1

2

∑

i,l≥1

k!2
(

Ck
m−1

)2 (
Ck

m−1

)2
(m+ n− 2− 2k)!‖si,f⊗̃ksl,g − sl,f⊗̃ksi,g‖2 (14)

and si,f , si,g are given by (11), (12) for i ≥ 1.

Proof: By Proposition 1 and relation (13)

2 detΛ =
∑

i,l≥1

(In−1(si,f)Im−1(sl,g)− In−1(sl,f)Im−1(si,g))
2

=
∑

i,l≥1





(m−1)∧(n−1)
∑

k=0

k!Ck
m−1C

k
n−1Im+n−2−2k

(

si,f⊗̃ksl,g − sl,f⊗̃ksi,g
)





2

where we used the the product formula (5). Consequently, from the isometry of
multiple stochastic integrals,

E det Λ =
1

2

∑

i,l≥1

(n−1)∧(m−1)
∑

k=0

k!2
(

Ck
m−1

)2 (
Ck

n−1

)2
(m+ n− 2− 2k)!‖si,f⊗̃ksl,g − sl,f⊗̃ksi,g‖2

=

(n−1)∧(m−1)
∑

k=0

Tk.

For every n,m ≥ 1 let us denote by

Rn,m :=

(n−1)∧(m−1)
∑

k=1

Tk, Rn := Rn,n. (15)

Remark 1 Obviously all the terms Tk above are positive, for k = 0, .., (n−1)∧(n−1).

We will need two more auxiliary lemmas.

Lemma 3 Assume f1, f3 ∈ H⊗n and f2, f4 ∈ H⊗m are symmetric functions. Then
for every r = 0, .., (m− 1) ∧ (n− 1) we have

〈f1 ⊗n−r f3, f2 ⊗m−r f4〉 = 〈f1 ⊗r f2, f3 ⊗r f4〉.
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Proof: The case r = 0 is trivial, so assume r ≥ 1. Without any loss of the generality,
assume that H is L2(T ;µ) where µ is a sigma-finite measure without atoms. Then,
by (4)

〈f1 ⊗n−r f3, f2 ⊗m−r f4〉
∫

T r

dµr(t1, .., tr)

∫

T r

dµr(s1, .., sr)

(
∫

Tn−r

dµn−r(u1, .., un−r)f1(u1, .., un−r, t1, .., tr)f3(u1, .., un−r, s1, .., sr)

)

(
∫

Tm−r

dµm−r(v1, .., vm−r)f2(v1, .., vm−r, t1, .., tr)f4(v1, .., vm−r, s1, .., sr)

)

=

∫

Tn−r

dµn−r(u1, .., un−r)

∫

Tm−r

dµm−r(v1, .., vm−r)

(f1 ⊗r f2)(u1, .., un−r, v1, .., vm−r)(f3 ⊗r f4)(u1, .., un−r, v1, .., vm−r)

= 〈f1 ⊗r f2, f3 ⊗r f4〉.

Lemma 4 Suppose f1, f4 ∈ H⊗n, f2, f3 ∈ H⊗m are symmetric functions. Then

〈f1⊗̃f2, f3⊗̃f4〉 =
m!n!

(m+ n)!

m∧n
∑

r=0

Cr
nC

r
m〈f1 ⊗r f3, f4 ⊗r f2〉.

Proof: This has been stated and proven in [3] in the case m = n. Exactly the same
lines of the proofs apply for m 6= n.

We first compute the term T0 obtained for k = 0 in (14).

Proposition 2 Let T0 be given by (14) with k = 0.

T0 =

(n−1)∧(m−1)
∑

r=0

mnm!n!Cr
n−1C

r
m−1

[

‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2
]

.

Proof: From (14),

T0 =
1

2
(m+ n− 2)!

∑

i,l≥1

‖si,f⊗̃sl,g − sl,f⊗̃si,g‖2

=
1

2
(m+ n− 2)!

∑

i,l≥1

[

‖si,f⊗̃sl,g‖2 + ‖sl,f⊗̃si,g‖2 − 2〈si,f⊗̃sl,g, sl,f⊗̃si,g〉
]

.
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Let us apply Lemma 4 to compute these norms and scalar products. We
obtain, by letting f1 = si,f = f4 and f2 = sl,g = f3 (note that si,f , si,g ara symmetric
functions in H⊗n, H⊗m respectively)

(m+ n− 2)!〈si,f⊗̃sl,g, si,f⊗̃sl,g〉 = (m+ n− 2)!〈si,f⊗̃sl,g, sl,g⊗̃si,f〉

= (m− 1)!(n− 1)!

(n−1)∧(m−1)
∑

r=0

Cr
n−1C

r
m−1〈si,f ⊗r sl,g, si,f ⊗r sl,g〉

= (m− 1)!(n− 1)!

(n−1)∧(m−1)
∑

r=0

Cr
n−1C

r
m−1‖si,f ⊗r sl,g‖2.

Analogously, for f1 = sl,f = f4 and f2 = si,g = f3 in Lemma 4 we get

(m+ n− 2)!〈sl,f⊗̃si,g, sl,f⊗̃si,g〉

=

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1‖sl,f ⊗r si,g‖2.

Next, with f1 = si,f , f2 = sl,g, f4 = sl,f , f3 = si,g

(m+ n− 2)!〈si,f⊗̃sl,g, sl,f⊗̃si,g〉
= (m+ n− 2)!〈si,f⊗̃sl,g, si,g⊗̃sl,f〉

=

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1〈si,f ⊗r si,g, sl,f ⊗r sl,g〉.
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Then
∑

i,l≥1

(m+ n− 2)!
∑

i,l≥1

‖si,f⊗̃sl,g − sl,f⊗̃si,g‖2

=

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

∑

i,l≥1

[

‖sl,f ⊗r si,g‖2 + ‖si,f ⊗r sl,g‖2 − 2〈si,f ⊗r si,g, sl,f ⊗r sl,g〉
]

= 2

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

∑

i,l≥1

[

‖si,f ⊗r sl,g‖2 − 〈si,f ⊗r si,g, sl,f ⊗r sl,g〉
]

= 2

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

×
[

∑

i,l≥1

‖si,f ⊗r sl,g‖2 − 〈
∑

i≥1

si,f ⊗r si,g,
∑

l≥1

sl,f ⊗r sl,g〉
]

= 2

(n−1)∧(m−1)
∑

r=0

(n− 1)!(m− 1)!Cr
n−1C

r
m−1

[

∑

i,l≥1

‖si,f ⊗r sl,g‖2 − ‖
∑

i≥1

si,f ⊗r si,g‖2
]

.(16)

Notice that, by Lemma 1, for every r = 0, .., n− 1

‖
∑

i≥1

si,f ⊗r si,g‖2 = n2m2‖f ⊗r+1 g‖2. (17)

We apply now Lemma 3 and we get

∑

i,l≥1

‖si,f ⊗r sl,g‖2 =
∑

i,l≥1

〈si,f ⊗r sl,g, si,f ⊗r sl,g〉

=
∑

i,l≥1

〈si,f ⊗n−1−r si,f , sl,g ⊗m−1−r sl,g〉

= 〈
∑

i≥1

〈si,f ⊗n−1−r si,f ,
∑

l≥1

sl,g ⊗m−r−1 sl,g〉

and by Lemma 1 and Lemma 3, this equals

∑

i,l≥1

‖si,f ⊗r sl,g‖2 = n2m2〈f ⊗n−r f, g ⊗m−r g〉

= n2m2‖f ⊗r g‖2. (18)

11



By replacing (17) and (18) in (16) we obtain

T0 =
1

2
(m+ n− 2)!

∑

i,l≥1

‖si,f⊗̃sl,g − sl,f⊗̃si,g‖2

=

(n−1)∧(m−1)
∑

r=0

mnm!n!Cr
n−1C

r
m−1

[

‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2
]

.

As a consequence of the above proof, we obtain a very interesting result with
multiple consequences on the Fourth Moment Theorem and on the existence of den-
sities of random variables.

Proposition 3 For every r = 0, .., (m−1)∧ (n−1) and if si,f , si,g are given by (11),
(12), it holds that

n2m2
n−1
∑

r=0

Cr
m−1C

r
m−1

[

‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2
]

=
∑

i,l≥1

‖si,f⊗̃sl,g − sl,f⊗̃si,g‖2.

As a consequence, for every r = 0, .., (m− 1) ∧ (n− 1) we have

n−1
∑

r=0

Cr
m−1C

r
m−1

[

‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2
]

≥ 0. (19)

Proof: It is a consequence of the proof of Proposition 2.

Let us state the main results of this section.

Theorem 1 Let f ∈ H⊗n, g ∈ H⊗m(n,m ≥ 1) be symmetric and denote by Λ the
Malliavin matrix of the vector (F,G) = (In(f), Im(g)). Then

det Λ =

(n−1)∧(m−1)
∑

r=0

mnm!n!Cr
n−1C

r
m−1

[

‖f ⊗r g‖2 − ‖f ⊗r+1 g‖2
]

+Rn,m

where for every n,m ≥ 1, Rn,m is given by (15). Note that Rn,m ≥ 0 for every
n,m ≥ 1.

Proof: It follows from Proposition 2 and Lemma 2.

In the case when the two multiple integrals live in the same Wiener chaos, we
have a nicer expression.
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Theorem 2 Under the same assumptions as in Theorem 1 but with m = n, we have

det Λ = m2 detC+(mm!)2
[m−1

2 ]
∑

r=1

(

(Cr
m−1)

2 − (Cr−1
m−1)

2
) (

‖f ⊗r g‖2 − ‖f ⊗n−r g‖2
)

+Rm

with Rm given by (15). Here [x] denotes the integer part of x.

Proof: Suppose n ≤ m and that m is odd. The case m even is similar. From we
have

det Λ = (mm!)2





(m−1)
∑

r=0

(

Cr
m−1

)2 ‖f ⊗r g‖2 −
(m−1)
∑

r=0

(

Cr
m−1

)2 ‖f ⊗r+1 g‖2




= (mm!)2





m−1
2
∑

r=0

(

Cr
m−1

)2 ‖f ⊗r g‖2 −
(m−1)
∑

r=m−1
2

(

Cr
m−1

)2 ‖f ⊗r+1 g‖2




+(mm!)2





m−1
∑

m−1
2

(

Cr
m−1

)2 ‖f ⊗r g‖2 −
m−1

2
∑

r=0

(

Cr
m−1

)2 ‖f ⊗r+1 g‖2




= (mm!)2

m−1
2
∑

r=0

(

Cr
m−1

)2 [‖f ⊗r g‖2 − ‖f ⊗n−r g
]

+(mm!)2

m−1
2
∑

r=1

(

Cr
m−1

)2 [‖f ⊗n−r g‖2 − ‖f ⊗r g‖2
]

where we made the change of index r′ = n−1− r in the second and third sum above.
Finally, noticing that for r = 0 we have

m2m!2
(

C0
m−1

)2 [‖f ⊗0 g‖2 − ‖f ⊗n g‖
]

= m2 detC

we obtain the conclusion.

Example 1 Suppose m = n = 2. Then

det Λ = 16
[

‖f ⊗ g‖2 − ‖f ⊗2 g‖2
]

+R2

= 4detC +R2.

We retrieve the formula in [1] with R2 = 32
(

‖f ⊗1 g‖2 − ‖f⊗̃1g‖2
)

.
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Assume m = n = 3. Then

det Λ = 3× 3× 3!× 3!
[(

‖f ⊗ g‖2 − ‖f ⊗3 g‖2
)

+ 9
(

‖f ⊗1 g‖2 − ‖f ⊗2 g‖2
)]

+R3

= 9detC + 9
(

‖f ⊗1 g‖2 − ‖f ⊗2 g‖2
)

+R3.

Suppose m = n = 4. Then

det Λ = 16 detC + 9× 4!× 4!
(

‖f ⊗1 g‖2 − ‖f ⊗3 g‖2
)

+R4.
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