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Abstract

We present here an overview of a research project which is ongoing at
University College Cork. Information filtering software is being constructed
which interfaces to the USENET Net News utility and which screens out
irrelevant articles prior to their being presented to a user. The system
is based on an intelligent agent approach and embodies machine learn-
ing, adaptation and relevance feedback techniques in its construction. A
weighted graph representation is used for articles, and graph manipulation
algorithms are used in the processing.

1 Introduction

Together with the much-vaunted benefits of the ‘information superhighway’ has
come one major drawback: information overload. It is generally acknowledged
that the volume of information which is accessible over various networks has ex-
ceeded the capability of users to sift through it in order to access that which
is relevant to them. Taking the Internet as an example, the increase in node
numbers by approximately 9% per month suggests that the problem is rapidly es-
calating. This problem has led to the productivity paradox, whereby making more
and more information available to online users has actually resulted in reducing
the productivity of these users.

We would claim that what is required is the provision of sophisticated informa-
tion retrieval software (for accessing long-term online databases) and information
filtering software (for routing more transiently occurring information on a net-
work). It is to this latter process of filtering information to relevant users that we
address ourselves. In particular, we aim to build an information filter which can
be personalised by individual users and which models the user’s interests so as to
route through to him/her those articles which are deemed as relevant. The user
may evaluate the significance of received information, thus providing relevance
feedback which is used in fine-tuning the filter (or user profile) so as to improve its
precision and to better model a user’s changing interests. In this sense, the profile
learns of a user’s preferences through assimilation of an initial set of interesting



documents and continues this learning process via relevance feedback throughout
its lifetime.

As a testbed for this filtering application, we chose the USENET Net News
service, which is the primary information server to Internet users. While the
organisation of this service into newsgroups represents a first level of filtering, an
empirical study has shown that reading just a few newsgroups requires perusing
megabytes of information each month [FS91]. Clearly, then, this represents a case

where accurate filtering of information might repay the user in terms of reduced
browsing time.

2 Information Filtering

While the concept of information filtering is not new, the widespread access to
computer networks (particularly the Internet) has heightened interest in practical
filtering software. Simple filtering systems have been based on manual keyword in-
dexing or string matching techniques, generally augmented by the use of thesauri
to cater for synonymy. More recent research efforts have evolved from perceived
similarities between filtering and the more mature field of information retrieval.
[BCI3]. Information retrieval (IR) has a long history, the manual indexing of
books and documents in libraries being a well-known example. As computers in-
creased in power, researchers began looking at automatic techniques for indexing
and retrieving information. Today researchers in IR are well aware of the inade-
quacies of these approaches and powerful techniques involving statistical analysis
and artificial intelligence have been developed. These either pay more attention
to the ambiguity and vagaries that exist in natural language text, or they take
greater advantage of the structure and position of words in the texts.

Evolving primarily from the word frequency model [Luh58], techniques adopted
in IR have included the Boolean retrieval model for article indexing and fuzzy logic
extensions of same [SFW92]. Queries consist of expressions involving the logical
operators and, or, and not, with the possibility of terms being weighted. A
more recent research vehicle has employed the vector space approach and varia-
tions thereof. The Smart system is an example of a text processing and retrieval
system based on this approach [SM83]. Latent Semantic Indexing (LSI) [Fol90]
represents a more sophisticated statistical framework for vector space systems.
Methods based on Bayesian networks, such as the Inference Net system of Turtle
and Croft [TC91], have given good performance results. All of these methods,
and others, have been adopted for use in information filtering. Other informa-
tion filtering systems worthy of mention are Tapestry [GNOT92], a system which
supports collaboration between a community of users, and the email-based News
filter currently accessible at Stanford University.



3 Intelligent Agent Approach

In the recent past, the field of software engineering has witnessed the emergence
of agent based computing. This may be viewed as an extension to conventional
structured software design and its more modern counterpart, object-oriented soft-

ware engineering, and is based on the premise that complex systems can be best
viewed as a society of autonomous software agents which communicate and co-
operate in order to fulfil their desired task. These agents have been shown to be
particularly pertinent within distributed environments.

We are concerned with a specific category of these agent systems which has
come to the fore very recently: intelligent agents [MCFT94]. These are agents
which embody techniques derived from the field of artificial intelligence (AI) such
as machine learning, adaptation and user modelling. Intelligent agents have found

use in such diverse areas as VLSI design, user interface design, mail routing and
network management. The basic assumption is that a software agent acts on
behalf of the user - embodying his/her beliefs, intentions and goals - acting as an
intermediary between the user and the system with which he/she is interacting.
The agent adapts to a user’s changing needs using the Al techniques listed above
[Mae94].

Intelligent agents have been advocated and developed for information locat-
ing, routing and filtering, particularly on the Internet [EW94, SM93]. Maes has
designed some agents which she specifically employs for News filtering [12]. We
would view our system in such a light: a user agent represents a user’s interests,
having induced those interests from an initial set of relevant articles; this agent
then filters incoming News articles, passing them on to the user or filtering them
out, depending on their perceived relevance; as a result of relevance feedback (con-
cerning received articles) on the part of the user, the agent behaviour is adapted
so as to improve filtering precision and to better reflect a user’s changing interests.
We would see our system differing from those of Maes and others in several signif-
icant ways. Other approaches have been largely concerned with simple keyword
searching, on the basis that a News article will contain a SUBJECT entry citing
the important keywords to appear in the text. We would claim that this entry
is generally either non-existent or is inadequately filled in. Our user profile is to
be based on a more comprehensive and semantically rich analysis of relevant and
incoming articles, and considers the context of terms occurring in the text rather
than just their frequency of occurrence. The comparison techniques (between the
profile and an incoming article) will be considerably more complex than that used
by Maes et al. Finally, adaptation in previous models has been somewhat simplis-
tic due to the simple structure of the user profile - in our system, we shall employ
more sophisticated hybrid learning strategies.

4 System Architecture

Development of the system has been ongoing for more than a year. An initial
prototype is approaching completion. After testing and evaluation, we would see
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Figure 1: The Agent Architecture

this prototype being developed into a more comprehensive and robust package.
Nevertheless, we do not envisage the finished product deviating much from the
prototype architecture described below.

Fig. 1 depicts the overall high-level architecture of the system!. Because
the initial set of relevant articles and, more importantly, the incoming articles will
comprise free-text documents, we require a natural language preprocessor for early
morphological analysis. From the initially presented documents, we produce a user
profile which acts as a representation of a user’s interests and can serve as an index
into the set of subsequently received documents?. These incoming documents must

'While we would view our system in the context of it being an intelligent agent, it is in fact
comprised of a society of sub-agents. For example, we have separate agents acting as interfaces
to the user and to the system resident news server.

2In reality, a number of user profiles may exist for each individual, corresponding to a set of



also be analysed to produce a document representation. Once this representation

is complete, it can be compared with the user profile to determine the likely
relevance of the article to the user. This comparison involves techniques derived
from memory-based reasoning [SW86, Kol84]. The results of this comparison are
presented to the user via a user interface agent, through which the user also returns
relevance feedback as to the accuracy of the system. This relevance feedback then
results in modifying the user profile.

4.1 Natural Language Processor

The primary use of this module lies in the analysis of incoming documents prior to
the construction of a user profile or document representation. It essentially com-
prises a lexical analyser, a stemming algorithm and a stopword removal algorithm
for noise reduction.

The lexical analyser tokenises the input file, extracting words and dealing with
punctuation. The stemming algorithm strips inflectional and derivational word
endings. Research in information retrieval has shown that the employment of a
stemming algorithm increases recall [Pai94]. We use Lovins’ algorithm [Lov68].
Also, it is a well established fact that the resolving power of significant words in
an article follows a hyperbolic function [Luh58]. If the distinct words are ranked
by frequency, words with very low or very high frequency are poor indicators
of the subject matter of an article. Stopword removal is aimed at the removal
of high-frequency words, while the low-frequency words will be naturally filtered
out.

4.2 User Profile Representation

We have adopted a connectionist approach to the representation of user profiles.
A connectionist network is constructed containing as nodes the primary terms,
or words, in which a user is interested and organising these terms into relevant
phrases through a set of weighted links.

Connectionist networks differ from the semantic networks used widely in Al
and cognitive science. Semantic networks have different generic link types such
as synonymy, superclass—subclass, association and also possibly disjunctive and
conjunctive sets of links. Contrasting with this, connectionist networks (best
exemplified by artificial neural systems) have only a single link type, a weighted
edge. The semantics in this case are implicit in the structure of the network and
the parameters associated with the processing.

In our system, the networks are constructed by first doing a sentence boundary
disambiguation on the articles so as to isolate individual sentences. Next, each
sentence is viewed as a chain of nodes linked by edges. Terms that occur in the
same article more than once are merged into the same node if the words around
them satisfy some measure of similarity. This similarity judgement is necessary
because of the problem of homographs (words with the same spelling, but different

separate interests that he/she might have.
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Figure 2: A network representation for free-text

meanings). A more extensive natural language processing capability could recog-
nize phrases in a more robust fashion by recognising syntactic relationships, such
as active and passive verb constructions, conjunctions, prepositional phrases, etc.
We are investigating the use of a part-of-speech tagger in this regard.

The links have a certain fixed initial value (held by a system parameter).
These values are later adjusted during the profile adaptation phase. In this way,
our graph models the relationships between terms, both direct and indirect, and
captures these in an appropriate context.

4.2.1 The Process in Motion

A short example will explain the representation more clearly. A paragraph of text,
taken from an article on the comp.ai.neural-nets newsgroup is taken as the in-
put to the graph constructor for our purposes here. Actually the full-text would
be taken, but the representation generated would be too large for illustration of
anything much larger than a paragraph. The rules used in the graph construction
were arrived at empirically to ensure that a scalable scheme was chosen. The cur-
rent set of rules, based on graph node neighbourhoods, has been used successfully
to index both articles constituting a single sentence and articles with thousands
of lines. The text for the example paragraph is given below:

The main principles of using symbolic, fuzzy and neuro systems for problem

solving will be discussed and compared. Then hybrid systems will be
introduced. A hybrid environment will be used for demon-



stration and practical examples will be given as illustrations.
Different techniques for solving difficult problems in a hybrid
environment will be demonstrated. Neural and fuzzy systems can
compliment each other very well.

This 62-word section of text is converted into the 22-node graph shown in
Fig. 2. Empirical trials show that the number of nodes generated for an article
representation is typically 30-40% of the original number of words. This is a figure
similar to the number of distinct words in an article and is not unreasonable on
computer memory requirements in comparison to other indexing schemes. Initially
all edge values are set to 0.1, as can be seen in Fig. 2.

4.3 Document Representation

Again, the connectionist approach is adopted here, with the words and phrases
of each incoming article being organised into a graph-like structure. A document
representation differs from a user profile in two respects: it uses unweighted links,
since the occurrence of a phrase in an incoming article is not a priori known to
be significant; and its nodes, representing terms, have activation levels associated
with them which are initially set to zero but are adjusted during the comparison
process.

4.4 Comparison

The comparison of a user profile with a document representation then involves lo-
calised matching of structural similarity between the networks using profile weights
to influence the activities at incoming article graph nodes. We are essentially em-
ploying a spreading activation model, based on labelled graph comparison mecha-
nisms.

Two basic properties of graphs can be singled out when graph comparison is
the issue: paths and neighbourhoods?. Since we are predominantly concerned with
identifying phrases in articles, associations within neighbourhoods are deemed the
priority. This fact is reflected in the algorithm used.

Once the networks are in place, an appropriate control mechanism is required
to supervise the processing — techniques such as having inhibitory connections
and competitive activation have been used successfully. We use a scheme very like
Mozer’s [Moz84]; here, each unit computes the sum of its incoming activations and
modulates it by its own current unit activity when it has a positive activation level.
This was based on a model of word perception which McClelland and Rumelhardt
developed in parallel distributed processing [RM86]. Other variations on spreading
activation can be found in [DRL90].

The activities at nodes thus represent the fact that a phrase in a document
exists in the profile or its contextual words do. Specifically, the relevance of a

3The neighbourhood of a node is defined as the set of nodes accessible from it, constrained
by a specific path length.



received article — as depicted by its graph activation levels — depends on three
factors:

e the frequency of occurrence of certain phrases within the article
e the relevant importance of those phrases (as depicted by their profile weights)

e the relevance of these phrases based on their context within the article

We believe that our concentration on this last issue is likely to give our system
a significant advantage over the previous agent-based approaches cited above.

4.5 User Interface

Those articles considered relevant to the user’s needs are forwarded by the agent,
while the others are screened out. Forwarded articles are also ranked according
to estimated relevance. There has heen considerable debate as to how such esti-
mations should be made and presented. We have chosen a mechanism whereby
we estimate the percentage of an article considered to be very relevant, possibly
relevant and not relevant to the user. Cut-off values are used for screening out
articles, while these percentages are attached to returned articles.

4.6 Relevance Feedback

Again employing the user interface, the user may provide relevance feedback on
those articles routed to him/her. A tag may be attached to a received article
specifying whether or not it is relevant. Based on this tag, the network weights
are modified using the vector space relevance feedback model [SM83] so as to adapt
the profile to better reflect the user’s requirements.

The profile is viewed as a vector of term weights, ﬁj, the weight for each term
being a normalised value calculated from a term’s relative frequency in the profile
and a dataset of articles typical of the newsgroup being exammed An article,
D, given as feedback is also viewed as such a term weight vector D. D is used
to shift the vector P]. Hopefully P] s new position is more representative of the
user’s interests and needs. This is best viewed geometrically, with the vectors
being points in the same multidimensional space.

P 0415;« + 65, if D tagged as relevant;
T aﬁj — 75, if D tagged as not relevant

P;H is the new profile after this iteration of learning.

There is also a facility for incorporating new terms into a profile. This is crucial
if the system is to be adaptive. We use a method similar to the techniques used
in Belew’s neural network information retrieval system [Bel89].

At present, the adaptation rate is parameterised by «,3 and ~; so, a compro-
mise is possible between oscillation and stagnation of user profiles.
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Figure 3: Profile network after one iteration of learning

4.6.1 The Short Example continued...

We now let the paragraph of text given earlier be a user profile. We take another
paragraph from another article in the same newsgroup, comp.ai.neural-nets,
and offer this as relevance feedback. The text of this is given here:

I have been training neural nets (using BP) to predict typing errors.

My approach thus far has been simple: use all the data available (split
into equal training, validation and testing sets), throwing it all at
the network and seeing how well it can cope. I have also considered
using different training techniques like genetic algorithms or possibly
a hybrid system.

Fig. 3 shows the profile graph with the edge weights adjusted. Note also that
a node, with the label “train”, has been automatically added to the profile. An
appropriate place was found using the method outlined previously. This addition
was caused by the repeated occurrence of the word training in the passage given
as feedback. Also note how some edge weights are updated from 0.08 to 0.95: this
resulted from the computation of oz]% + 65, and the translation of these term
values to edge weights.

. il
gkl =



P is the term value ( or weight) for the k-th term in the profile Pj; Py is
the [-th. &, is the new edge weight for an edge joining these two terms if an
edge exists. Negative feedback works similarly, with edge weight decreases. A
mechanism for the removal of nodes with very low edge weights was programmed,
so old interests and information ‘mistakingly’ put in the profile can be pruned.
Some reorganisation of the network is necessary here in the implementation.

5 Current and Projected System Status

At present, a working prototype of the system exists. The natural language pro-
cessing component, network constructor and comparator, relevance estimator and
relevance feedback module all function satisfactorily, together with the interface
agent to the Net News service. Testing has already taken place which we believe
has endorsed the approach we have taken.

We are preparing to carry out detailed comparisons between our system and
other information filters, regardless of their approach or architecture. We also need
to examine the effect of different profile adaptation rates on the performance of the
filter. The fact that this is parameterised will make experimentation easier. To
enable meaningful comparisons to be carried out, we intend to use the TIPSTER
document collection [CC93], for which known statistics exist. The TIPSTER
project is sponsored by the Software and Intelligent Systems Technology Office of
the Defence Advanced Research Projects Agency (DARPA/SISTO) in an effort
to advance the fields of information retrieval and data extraction from real-world
document collections. Specifically we will be using the routing environment which
is concerned with retrieving information based on long-term information needs.
This evaluation is scheduled to take place over the next three months. As a result,
we may need to fine-tune certain parts of the current prototype.

The user interface, at present primarily text-based, also needs to be improved.
We intend to place an X-windows interface on the system, so that relevance esti-
mations can be presented and relevance feedback given in a less obtrusive fashion.
In doing this, we shall heed the advice of [KSC94], whose architectural principles
for bottom-up agent design has already been taken on board.

Finally, we intend to investigate the issue of social learning, and how it might
benefit a system such as this. This feature obtains when learning is not limited
to isolated user profiles, but can take into account similarities between profiles
of different users (e.g. for users organised into work-groups), traffic analysis, etc.
Some initial investigation into this learning strategy has taken place within the
Tapestry project and by Maes, who investigated the role of serendipity in such
systems. More specifically we are investigating the k-means clustering algorithm
to group user profiles according to the topics represented. Users would then have
the option of incorporating terms from profiles in the same cluster into their own
to increase recall. Users need not be aware of the profiles of other users with
whom they are grouped. While we recognise that arguments relating to security
and privacy might arise here, we believe that the topic is worthy of research.
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