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Sur la dynamique de corps solides immergés dans un fluide incompressible

Cet exposé présente quelques résultats récents obtenus par l'auteur en collaboration avec Olivier Glass,

Introduction

Commençons par quelques rappels sur la dynamique d'un solide, puis sur deux modèles classiques en mécanique des fluides, donnés respectivement par les équations de Navier-Stokes et d'Euler, et enfin sur les équations newtoniennes qui régissent la dynamique d'un solide immergé.

Dynamique d'un solide

Considérons un corps solide occupant initialement un sous-ensemble fermé borné connexe et simplement connexe S 0 ⊂ R 3 avec une frontière régulière. Il se déplace de manière rigide de telle sorte qu'au temps t il occupe un domaine noté S (t) isométrique à S 0 . Plus précisément, notant h(t) la position du centre de masse du solide au temps t, alors il existe une rotation Q(t) ∈ SO(3), telle que la position τ(t, x) ∈ S (t) au temps t du point attaché au solide avec une position initiale x ∈ S 0 est τ(t, x) := h(t) + Q(t)(xh(0)).

(

) 1 
Evidemment Q(0) = Id. De plus comme (Q T Q ′ )(t) est anti-symétrique il existe un et un seul r(t) ∈ R 3 tel que pour tout x ∈ R 3 , (Q T Q ′ )(t)x = r(t) ∧ x. Par conséquent la vitesse (eulérienne) dans le solide est donnée par u S (t, x) := (∂ t τ)(t, τ(t, •) -1 (x)) = ℓ(t) + r(t) ∧ (xh(t)) avec ℓ(t) := h ′ (t) et r(t) := Q(t)r(t).

Etant donné une fonction strictement positive ρ S 0 , disons dans L ∞ (S 0 ; R), décrivant la densité initiale dans le solide, la densité ρ S (t, •) dans le solide au temps t est donnée pour tout x ∈ S (t) par ρ S (t, x) = ρ S 0 (t, τ(t, •) -1 (x)). La masse du solide m > 0, le centre de masse h(t) et la matrice d'inertie J (t) peuvent être calculés comme les premiers moments :

m := S (t) ρ S (t, x)dx = S 0 ρ S 0 (x)dx > 0, mh(t) := S (t)
xρ S (t, x)dx,

J (t) := S (t) ρ S (t, x) |x -h(t)| 2 Id 3 -(x -h(t)) ⊗ (x -h(t)) dx.
Il s'ensuit que J (t) est symétrique définie positive et satisfait la loi de Sylvester : J (t) = Q(t)J 0 Q T (t), où J 0 est la valeur initiale J 0 := J (0) de J . De la même manière nous notons h 0 := h(0) la position initiale du centre de masse.

L'énergie cinétique du solide est donnée par E S (t) := 1 2 S (t) ρ S (t, x)u S (t, x) 2 dx = 1 2 mℓ(t) 2 + 1 2 J 0 r(t) • r(t) = 1 2 mℓ(t) 2 + 1 2 J (t)r(t) • r(t).

(2)

Modèles fluides considérés

Dans la suite nous étudions le cas d'un solide immergé dans un fluide newtonien incompressible homogène, de densité ρ F = 1, de telle sorte que le système fluide-corps rigide occupe un ensemble Ω de R 3 qui est soit un ouvert borné contenant S 0 , soit R 3 tout entier. Le fluide occupe donc au temps t l'ouvert F (t) := Ω \ S (t) et initialement l'ouvert F 0 := Ω \ S 0 .

Suivant que nous prenons en compte la viscosité cinématique ou non, nous sommes amenés à considérer soit les équations de Navier-Stokes soit les équations d'Euler. Plus précisément si nous désignons respectivement par u : (t, x) ∈ F T → R 3 et p : (t, x) ∈ F T → R, la vitesse et la pression dans le fluide, où F T := ∪ t∈[0,T ] {t} × F (t) avec T > 0, ces équations s'écrivent :

∂ u ∂t + (u • ∇)u + ∇p = ν∆u pour x ∈ F (t), (3) 
div u = 0 pour x ∈ F (t), (4) 
dans le cas visqueux, ce sont les équations de Navier-Stokes incompressible ; et

∂ u ∂t + (u • ∇)u + ∇p = 0 pour x ∈ F (t), (5) 
div u = 0 pour x ∈ F (t), (6) 
dans le cas non-visqueux ou parfait, ce sont les équations d'Euler incompressible. La différence tient donc dans le terme supplémentaire dans le membre de droite de (3) qui traduit l'effet dissipatif de la viscosité et où ν est un coefficient strictement positif. La contrainte d'incompressibilité est quant à elle traduite par les équations (4) et [START_REF] Chemin | Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace[END_REF] qui sont des formes dégénérées de la loi de conservation de la masse.

Les équations d'Euler correspondent au cas limite où le coefficient ν est nul. Cependant cette limite est singulière, en particulier, parce que l'ordre du système dégénère, les différences de comportement des solutions peuvent être conséquentes, en particulier au voisinage d'un bord solide.

Notamment les conditions aux limites sur un bord solide sont différentes suivant que nous considérons le cas ν > 0 ou ν = 0. Commençons par évoquer le cas d'un bord fixe, cela est utile notamment dans le cas où nous considérons que le système est contenu dans un ouvert borné Ω.

Dans le cas des équations d'Euler, il y a peu d'équivoque : il est naturel de prescrire la condition de non-pénétration sur ∂ Ω : u • n = 0, où n(x) désigne la normale, disons unitaire sortante, du domaine fluide.

En revanche, pour les équations de Navier-Stokes, il s'agit d'avantage d'un choix. Les conditions les plus courantes sont -la condition d'adhérence : u = 0, -la condition de Navier u

• n = 0 et (D(u) • n) tan = -αu tan , où α 0 est le coefficient de frottement, D(u)
est le tenseur des deformations

D(u) := 1 2 ∇u + (∇u) T = ( 1 2 (∂ j u i + ∂ i u j )) i, j , (7) 
et l'indice "tan" indique que nous considérons la composante tangentielle. Si nous considérons maintenant le cas du bord d'un solide S (t) en mouvement avec un champ de vitesse eulérien u S (t, x), alors les conditions précédentes doivent être adaptées de la façon suivante pour -la condition de non-pénétration :

u • n = u S • n, -la condition d'adhérence : u = u S ,
-la condition de Navier :

u • n = u S • n et (D(u) • n) tan = -α(u -u S )
. Notons que la normale n = n(t, x) dépend ici évidemment encore de la position x sur le bord mais aussi du temps.

Dynamique d'un solide immergé

Considérons maintenant la dynamique d'un solide immergé dans un fluide incompressible. Nous supposons que la seule force agissant sur le solide est la force exercée par le fluide à sa surface, de sorte que les lois newtoniennes de conservation des quantités de mouvement linéaire et angulaire s'écrivent :

mh ′′ (t) = - ∂ S (t) Σn ds, (8) 
(J r) ′ (t) = - ∂ S (t) (x -h) ∧ Σn ds. (9) 
Nous notons ds la mesure de surface sur ∂ S (t). Evidemment cette mesure dépend du temps mais nous choisissons ici délibérément de ne pas mettre d'indice de temps pour ne pas trop alourdir les notations. Dans le membre de droite des équations ( 8) et ( 9) apparaît la quantité Σ, c'est le tenseur de Cauchy, qui est défini par

Σ := Σ(u, p) := -p Id + 2νD(u).
Dans le cas des équations d'Euler, le coefficient ν ci-dessus s'annule et nous constatons donc que seule la pression du fluide intervient dans les membres de droite des équations ci-dessus.

Dans cet exposé nous n'évoquons pas la limite ν → 0, pour laquelle nous renvoyons aux articles [START_REF] Sueur | A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body[END_REF] et [START_REF] Planas | On the "viscous incompressible fluid + rigid body" system with Navier conditions A paraître aux Ann[END_REF] respectivement pour les conditions de de Dirichlet et pour celles de Navier. Mentionnons ici seulement que cette problématique est liée à l'analyse des couches limites et que les équations de Navier-Stokes sont plus proches des équations d'Euler dans le cas des conditions de Navier que dans celui des conditions de Dirichlet.

Dans la suite, nous fixons, dans le cas visqueux, ν = 1 pour simplifier.

2 Solutions faibles dans le cas visqueux

Existence de solutions

Dans le cas des fluides visqueux, régis par les équations de Navier-Stokes incompressible, nous disposons de la théorie des solutions faibles de Leray, cf. [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Leray | Étude de diverses équations intégrales non linéaires et de quelques problèmes de l'hydrodynamique[END_REF], qui utilise de manière cruciale l'énergie du fluide

E F (t) := 1 2 F (t) u(t, x) 2 dx. (10) 
Cette théorie s'adapte très bien au cas d'un solide immergé dans un fluide en considérant l'énergie totale du système E S (t) + E F (t). En particulier il est tout à fait notable que l'on puisse donner une formulation faible globale, au sens où les équations du solide et du fluide se trouvent condensées en une seule égalité variationnelle où la vitesse solution comme la vitesse test sont des vitesses solénoïdales définies dans tout l'espace avec la contrainte d'être rigides sur le domaine occupé par le solide. Nous considérons donc une vitesse initiale dans le système appartenant à l'espace suivant :

H := {u ∈ L 2 (Ω)/ div u = 0 dans Ω et D(u) = 0 dans S 0 }.
Dans le cas où nous considérons la condition de Dirichlet à l'interface fluide-solide, nous disposons maintenant d'une théorie complète d'existence de solutions faibles u ∈ C w ([0, T ]; H ) ∩ L 2 (0, T ; H 1 (Ω)), notamment grâce aux contributions de Judakov [START_REF] Judakov | The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid (in Russian)[END_REF], de Serre [START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF], de Desjardins et Esteban [START_REF] Desjardins | On weak solutions for fluid-rigid structure interaction : compressible and incompressible models[END_REF], de Conca, San Martin et Tucsnak [START_REF] Conca | Existence de solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF], de San Martin , Starovoitov et Tucsnak [START_REF] San Martin | Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid[END_REF], et de Feireisl [START_REF] Feireisl | On the motion of rigid bodies in a viscous incompressible fluid. Dedicated to Philippe Bénilan[END_REF].

Le cas où une condition de Navier est considérée à l'interface fluide-solide a été abordé récemment dans [START_REF] Planas | On the "viscous incompressible fluid + rigid body" system with Navier conditions A paraître aux Ann[END_REF], dans le cas où Ω = R 3 , et par Gérard-Varet et Hillairet dans [START_REF] Gérard-Varet | Existence of weak solutions up to collision for viscous fluid-solid systems with slip[END_REF] dans le cas où Ω est un domaine borné de R 3 . Dans ce dernier cas l'existence est assurée tant qu'il n'y a pas de collision.

Une propriété de régularité dans le cas des conditions de Navier

Avec Gabriela Planas nous avons montré dans [START_REF] Planas | On the "viscous incompressible fluid + rigid body" system with Navier conditions A paraître aux Ann[END_REF], dans le cas où Ω = R 3 et avec des conditions de Navier à l'interface fluide-solide, que la dynamique du solide bénéficie d'une remarquable propriété de régularité : alors que la théorie faible ne donne a priori que des vitesses ℓ et r de translation et de rotation du solide faiblement continues, il est en fait possible de montrer que celles-ci sont H 1 .

Proposition 1 ([56]

). Soit u 0 ∈ H et T > 0. Soit une solution faible u du système "Navier-Stokes+solide" associée à u 0 sur [0, T ]. Alors ℓ et r sont dans H 1 (0, T ; R 3 ).

La preuve de cette propriété repose sur la constatation que dans la force qu'exerce le fluide sur la paroi du solide, nous pouvons isoler une contribution qui a pour effet d'augmenter, virtuellement, l'inertie du solide. Cela traduit le phénomène de "masse ajoutée", qui correspond à l'idée intuitive qu'un solide en mouvement dans un fluide incompressible semble avoir une inertie plus grande puisque le fluide environnant doit également être accéléré pour faire place au solide. Ce phénomène est d'ailleurs crucial à plusieurs reprises dans cet exposé. Pour mettre ceci en équations, nous introduisons les fonctions Φ i , souvent appelées potentiels de Kirchhoff, comme les solutions de -∆Φ i = 0 dans F 0 , avec pour conditions aux limites

Φ i → 0 pour |x| → +∞ et ∂ Φ i ∂ n = K i pour x ∈ ∂ S 0 , où K i := n i si i = 1, 2, 3 et K i := [x∧n] i-3 si i = 4, 5, 6.
Nous introduisons alors la fonction v i , définie dans F 0 par v i := ∇Φ i et dans S 0 par v i := e i si i = 1, 2, 3, et v i := e i-3 ∧x si i = 4, 5, 6. Ces fonctions ne dépendent que du compact S 0 , et le point clé ici est que ces fonctions v i sont dans l'espace des fonctions tests associé à la formulation faible dans le cas des conditions de Navier (en revanche elles ne sont pas dans l'espace des fonctions tests correspondant à la condition de Dirichlet car la composante tangentielle de v i est discontinue à l'interface). Il est alors judicieux de réécrire les équations du solide en faisant intervenir la matrice

M := m Id 3 0 0 J 0 + F 0 ∇Φ i • ∇Φ j dx i, j∈{1,...,6}
.

Cette matrice M , qui est symétrique définie positive, dépend de la masse, de l'inertie et de la géométrie, s'interprète alors comme l'inertie ajoutée du solide. Cette expression de l'inertie ajoutée est d'ailleurs bien connue dans le cas d'un solide immergé dans un fluide parfait incompressible irrotationnel cf. [START_REF] Childress | An introduction to theoretical fluid mechanics[END_REF]. Il n'est en revanche pas clair que la Proposition 1 puisse être étendue au cas des conditions de Dirichlet, car le phénomène de masse ajoutée semble plus subtile, notamment par une contribution retardée, cf. [START_REF] Galdi | On the motion of a rigid body in a viscous liquid : a mathematical analysis with applications[END_REF][START_REF] Geissert | Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids[END_REF].

Unicité en dimension 2

Comme Leray a montré l'unicité des solutions faibles des équations de Navier-Stokes dans le cas de la dimension 2, il est naturel de se demander si cela est encore vrai dans le cas où un solide est immergé dans le fluide.

Lorsque le fluide n'est pas borné extérieurement, c'est-à-dire quand Ω = R 2 , il est alors possible de réécrire le système dans un référentiel indépendant du temps par un changement de variable "rigide" (cf. [START_REF] Serre | Chute libre d'un solide dans un fluide visqueux incompressible[END_REF]), qui conserve en grande partie la structure du système. La preuve de l'unicité de Leray s'adapte alors très facilement. Rappelons que l'un des points clés est que u ∈ L 4 (F T ; R 2 ).

Dans le cas où Ω est un ouvert borné de R 2 , la question est plus délicate. Rappelons d'abord la forme que prennent les équations en deux dimensions, dans cas des conditions de Dirichlet. Notons que le nombre de degrés de liberté du solide est diminué de moitié : la position h(t) du centre de masse est un vecteur de R 2 , la matrice de rotation du solide Q(t) est alors un élément de SO(2), la vitesse de rotation r(t) est un scalaire défini par (Q ′ Q T )(t)x = r(t)x ⊥ . Ici la notation x ⊥ désigne x ⊥ := (-x 2 , x 1 ), quand x = (x 1 , x 2 ). La vitesse dans le solide est donnée par u S (t, x) := ℓ(t) + r(t)(xh(t)) ⊥ , avec là encore ℓ(t) := h ′ (t), l'inertie J 0 est un scalaire indépendant du temps et l'énergie cinétique du solide s'écrit alors E S (t) := 1 2 mℓ(t

) 2 + 1 2 J 0 r(t) 2 .
Le système s'écrit alors :

∂ u ∂t + (u • ∇)u -∆u + ∇p = 0 pour x ∈ F (t), (11) 
div u = 0 pour x ∈ F (t), (12) 
u = u S pour x ∈ ∂ S (t), (13) 
u = 0 pour x ∈ ∂ Ω, (14) 
mℓ ′ (t) = - ∂ S (t)
Σn ds,

J 0 r ′ (t) = - ∂ S (t) (x -h) ⊥ • Σn ds. ( (15) 
) 16 
Avec Olivier Glass nous avons montré le résultat d'unicité suivant.

Théorème 1 ( [START_REF] Glass | Uniqueness results for weak solutions of two-dimensional fluid-solid systems[END_REF]). Soit T > 0 et (ℓ, r, u) une solution faible de (11)-( 16) sur [0, T ]. Supposons que pour tout t ∈ [0, T ], dist(S (t), ∂ Ω) > 0. Soit ( l, r, ũ) une autre solution faible de (11)-( 16) sur [0, T ] associée à la même donnée initiale. Alors ( l, r, ũ) = (ℓ, r, u).

Le théorème 1 prouve donc l'unicité des solutions faibles tant qu'il n'y a pas de collision. Ceci améliore le résultat [START_REF] Takahashi | Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain[END_REF] de Takahashi où il est supposé de plus que la vitesse initiale du fluide est H 1 .

Notons que pour certaines géométries il est possible de déterminer si une collision arrive ou pas, voir par exemple l'article [START_REF] Hillairet | Lack of collision between solid bodies in a 2D incompressible viscous flow[END_REF] de Hillairet, la thèse de doctorat de Hesla [START_REF] Hesla | Collisions of Smooth Bodies in Viscous Fluids : A Mathematical Investigation[END_REF], et l'article [START_REF] Gérard-Varet | Regularity issues in the problem of fluid structure interaction[END_REF] de Gérard-Varet et Hillairet.

D'un autre côté les résultats de [START_REF] Hoffmann | On a motion of a solid body in a viscous fluid. Two-dimensional case[END_REF][START_REF] Starovoitov | Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid[END_REF] prouvent que de telles solutions faibles ne peuvent pas être uniques s'il y a une collision. Donnons quelques éléments de la preuve du théorème ci-dessus. Cherchant à comparer deux solutions ( l, r, ũ) et (ℓ, r, u), nous utilisons d'abord un changement de variables, introduit dans [START_REF] Inoue | On existence of solutions of the Navier-Stokes equation in a time dependent domain[END_REF] par Inoue et Wakimoto, pour que les deux champs de vitesse considérés soient rigides au même endroit. Ce changement de variable raccorde en quelque sorte de manière régulière le changement de variable "rigide" évoqué plus haut, dans le cas où Ω = R 2 , au voisinage du solide à la transformation identité au voisinage du bord extérieur du système, tout en conservant, partout, le caractère solénoïdal des champs de vecteurs vitesses.

Nous obtenons alors une nouvelle équation à l'intérieur du fluide avec quelques termes supplémentaires qui peuvent sembler, à première vue, disqualifier la méthode d'énergie. Cependant, les termes parasites, créés par le changement de variables, dépendent, de la différence des positions solides. Comme la méthode d'énergie consiste ici à comparer la différence des vitesses des deux solutions, supposées issues de la même donnée initiale, nous pouvons faire apparaître dans ces termes parasites la différence des vitesses solides et gagner au passage un facteur t.

Les pires de ces termes contiennent aussi des facteurs, a priori très singuliers, comme ∂ t u, ∇p et ∆u. Comme la méthode d'énergie consiste à multiplier l'équation par uũ ∈ L 4 (F T ; R 2 ), le point clé est d'obtenir une estimée de ces facteurs pour l'exposant d'intégrabilité conjugué. C'est ce que permet justement le facteur t, grâce à l'effet régularisant de la viscosité :

Proposition 2 ([30]). Soit T > 0 et (ℓ, r, u) une solution faible de (11)-(16) sur [0, T ] telle que pour tout t ∈ [0, T ], dist(S (t), ∂ Ω) > 0. Alors (t∂ t u,t∇p,t∆u) ∈ L 4 3 (F T ; R 6 ).
Ebauche de preuve de la Proposition 2. La preuve repose de manière cruciale sur le système auxiliaire sui-vant d'inconnue (l, r, v) :

∂ v ∂t -∆v + ∇q = g pour x ∈ F (t), (17) 
div v = 0 pour x ∈ F (t), ( 18 
) v = v S pour x ∈ ∂ S (t), (19) 
v = 0 pour x ∈ ∂ Ω, (20) 
ml

′ (t) = - ∂ S (t) Σ(v, q)n ds + mg 1 , (21) 
J r ′ (t) = - ∂ S (t) Σ(v, q)n • (x -h(t)) ⊥ ds + J g 2 , (22) 
v S (t, x) := l + r(x -h(t)) ⊥ , (23) 
où g, g 1 et g 2 sont des termes sources et où les domaines fluides et solides F (t) et S (t) sont associés à la solution de Leray considérée et sont donc prescrits.

Expliquons comment ce système entre en jeu. En utilisant les équations ( 11)-( 16) nous obtenons que (l, r, v) := (tℓ,tr,tu) est solution de ( 17)-( 23), en un sens faible avec des données initiales nulles et des termes sources

g := u -t(u • ∇)u et (g 1 , g 2 ) := (ℓ, r) ∈ L 4 3 (0, T ; R 3 ).
En utilisant que Ω est borné, l'inégalité de Hölder et le théorème de plongement de Sobolev nous obtenons facilement ((u

• ∇)u, u) ∈ L 4 3 (F T ; R 4 ), et donc g ∈ L 4 3 (F T ; R 2 ).
Or nous avons le résultat suivant d'existence de solutions régulières au système ( 17)-( 23).

Lemme 1 ([30]

). Il existe une unique solution de (17)-( 22) sur [0, T ] avec données initiales nulles qui satisfait

(∂ t v, ∇q, ∆v) ∈ L 4 3 (F T ; R 6 ), (l, r) ∈ W 1, 4 3 ((0, T ); R 3 ).
Le Lemme 1 est essentiellement une adaptation d'un résultat obtenu par Geissert, Götze et Hieber, cf. [START_REF] Geissert | Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids[END_REF]Théorème 2.4].

Finalement nous prouvons un résultat d'unicité pour les solutions faibles du système ( 17)-( 23) de telle sorte que (l, r, v) satisfait donc aussi les estimées données par le Lemme 1, ce qui termine la preuve de la Proposition 2.

Solutions fortes et faibles dans le cas non visqueux

Comme les équations d'Euler ne bénéficie pas de l'effet régularisant de la viscosité, le traitement des non-linéarités est plus délicat et une démarche naturelle est de commencer par examiner les solutions classiques, puis de voir si la structure particulière des non-linéarités permet, par des propriétés de compacité, de construire des solutions plus faibles.

Solutions classiques en dimension 3

Caractère bien posé

Les premiers résultats concernant les fluides non irrotationnels sont ceux d'Ortega, Rosier et Takahashi [START_REF] Ortega | Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid[END_REF]- [START_REF] Ortega | On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid[END_REF] en dimension deux avec énergie finie, de Rosier et Rosier [START_REF] Rosier | Smooth solutions for the motion of a ball in an incompressible perfect fluid[END_REF] pour le cas d'un solide sphérique immergé dans R 3 et plus récemment de Wang et Zang [START_REF] Wang | Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid[END_REF] qui traite le cas d'un solide de forme quelconque. Dans le cas où le système "fluide + solide" occupe un ouvert borné Ω de R 3 l'existence et l'unicité d'une solution classique ont été obtenus par Houot, San Martin et Tucsnak dans le travail [START_REF] Houot | Existence and uniqueness of solutions for the equations modelling the motion of rigid bodies in a perfect fluid[END_REF]. Avec Olivier Glass et Takéo Takahashi, nous avons donné dans l'appendice de [START_REF] Glass | Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid[END_REF] une autre preuve de ce résultat, que nous énonçons maintenant. Pour cela introduisons, pour (l, λ ) ∈ N × (0, 1), l'espace :

C l,λ σ (F 0 , h 0 ) := (ℓ 0 , r 0 , u 0 ) ∈ R 3 × R 3 ×C l,λ (F 0 ) div u 0 = 0 dans F 0 , u 0 • n = 0 sur ∂ Ω et u 0 • n = (ℓ 0 + r 0 ∧ (x -h 0 )) • n sur ∂ S 0 . Théorème 2 ([32]). Il existe une constante C * > 0 telle que pour tout (ℓ 0 , r 0 , u 0 ) dans C l+1,λ σ (F 0 , h 0 ), T > T * := C * (ℓ 0 , r 0 ) R 3 ×R 3 + u 0 C 1,λ (F 0 ) , (24) 
tel que le système "Euler+solide" :

∂ u ∂t + (u • ∇)u + ∇p = 0 pour x ∈ F (t), ( 25 
)
div u = 0 pour x ∈ F (t), ( 26 
)
u • n = u S • n pour x ∈ ∂ S (t), ( 27 
)
u • n = 0 pour x ∈ ∂ Ω, (28) 
mh ′′ (t) = ∂ S (t) p n ds, (29) 
(J r) ′ (t) = ∂ S (t) p (x -h(t)) ∧ n ds, (30) 
u| t=0 = u 0 , h| t=0 = h 0 , h ′ | t=0 = ℓ 0 , r| t=0 = r 0 . (31) 
admette une unique solution

(ℓ, r, u) ∈ C([0, T ]; R 3 ) ×C([0, T ]; R 3 ) × L ∞ ([0, T ];C l+1,λ (F (t))).
De plus

(ℓ, r) ∈ C 1 ([0, T ]; R 3 ) ×C 1 ([0, T ]; R 3 ), u ∈ C w ([0, T ];C l+1,λ (F (t))) et u ∈ C([0, T ];C l+1,λ ′ (F (t))),
pour λ ′ ∈ (0, λ ) ; et la même chose est vraie pour ∂ t u au lieu de u avec l à la place de l + 1.

Ci-dessus, C w désigne la continuité par rapport à la topologie faible- * de C l+1,λ . Le résultat ci-dessus n'est que local en temps, l'existence globale en temps de solutions classiques en trois dimensions est une question ouverte. Insistons sur le fait que la constante C * ci-dessus ne dépend que de la géométrie, c'est-à-dire de Ω et de S 0 , et de l'inertie initiale du solide. En particulier, le temps de vie donné par (24) ne dépend de u 0 qu'à travers sa norme dans C 1,λ (F 0 ), quelle que soit la valeur de l dans N. Cependant le temps de vie peut être aussi limité par la géométrie, en particulier par une collision entre le solide et le bord extérieur ∂ Ω. En fait en dimension deux une telle collision est la seule limitation possible du temps de vie des solutions classiques.

Nous pourrions bien sûr aussi considérer d'autres types d'espaces comme, disons, les espaces de Sobolev H s pour s > 5/2 ou des espaces de Besov inhomogènes B s p,q , avec 1 p, q +∞ et avec s > 3 p + 1 où s 3 p + 1 si q = 1 (de sorte que B s p,q s'injecte continûment dans l'espace des fonctions lipschitziennes). Notre analyse étend en quelque sorte la stratégie de Lichtenstein [START_REF] Lichtenstein | Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze[END_REF][START_REF] Lichtenstein | Über einige Existenzprobleme der Hydrodynamik[END_REF], de Günter [START_REF] Günther | Über ein Hauptproblem der Hydrodynamik[END_REF] et de Wolibner [START_REF] Wolibner | Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long[END_REF] pour le cas d'un fluide seul. En particulier elle repose sur le transport de la vorticité et sur le point de vue lagrangien, qui consiste à suivre l'évolution des particules du fluide. Nous associons au champ de vecteurs vitesse u le flot η défini comme solution de

∂ t η(t, x) = u(t, η(t, x)) et η(0, x) = x.
Alors η(t, x) indique la position occupée au temps t par une particule de fluide initialement en x. C'est donc l'analogue pour le fluide de la fonction τ introduite en (1) pour la dynamique du solide. Notons qu'une conséquence de l'incompressibilité est que, pour tout t, la fonction η(t, •) préserve le volume et l'orientation.

En fait cette analyse donne non seulement l'existence et l'unicité d'une solution classique mais aussi la dépendance continue des données initiales. Pour l'énoncer, introduisons pour R > 0, l'ensemble

C l,λ σ ,R (F 0 , h 0 ) := (ℓ 0 , r 0 , u 0 ) ∈ C l,r σ (F 0 , h 0 ) (ℓ 0 , r 0 ) R 3 ×R 3 + u 0 C l,λ (F 0 ) < R ,
de façon à disposer d'un temps de vie

T * ,R := C * R > 0
commun pour les solutions issues de ces données initiales.

Proposition 3. Sous les hypothèses du Théorème 2, soit R > 0. Alors il existe une constante K > 0 telle que pour tout couple de données initiales

(ℓ 1 0 , r 1 0 , u 1 0 ) et (ℓ 2 0 , r 2 0 , u 2 0 ) dans C l+1,λ σ ,R (F 0 , h 0 ), les solutions correspondantes (ℓ 1 , r 1 , u 1 ) et (ℓ 2 , r 2 , u 2 ) du système "Euler+solide" dans [0, T ], avec T = T * ,R , vérifient l'estimation suivante, où η 1 et η 2 désignent les flots associés respectivement à u 1 et u 2 , (ℓ 1 , r 1 ) -(ℓ 2 , r 2 ) L ∞ (0,T ;R 3 ×R 3 ) + η 1 -η 2 L ∞ (0,T ;C l+1,λ (F 0 )) + u 1 (t, η 1 (t, •)) -u 2 (t, η 2 (t, •)) L ∞ (0,T ;C l+1,λ (F 0 )) K (ℓ 1 0 -ℓ 2 0 , r 1 0 -r 2 0 ) R 3 ×R 3 + u 1 0 -u 2 0 C l+1,λ (F 0 ) .

Régularité des trajectoires

Une propriété qualitative, assez surprenante, du système "Euler+solide" est que la trajectoire du solide immergé peut être régulière même si le champ des vitesses dans le fluide n'est lui que très peu régulier. C'est ce que nous montrons avec Olivier Glass et Takéo Takahashi dans l'article [START_REF] Glass | Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid[END_REF]. Au départ, nous savions notamment grâce à des travaux de Chemin [START_REF] Chemin | Sur le mouvement des particules d'un fluide parfait incompressible bidimensionnel[END_REF], [START_REF] Chemin | Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace[END_REF], de Serfati [START_REF] Serfati | Solutions C ∞ en temps, n-log Lipschitz bornées en espace et équation d'Euler[END_REF], [START_REF] Serfati | Équation d'Euler et holomorphies à faible régularité spatiale[END_REF], [START_REF] Serfati | Structures holomorphes à faible régularité spatiale en mécanique des fluides[END_REF], et de Gamblin [START_REF] Gamblin | Système d'Euler incompressible et régularité microlocale analytique[END_REF] que, pour les solutions classiques des équations d'Euler incompressible dans R 3 , les trajectoires des particules sont analytiques en temps (mentionnons aussi les preuves récentes de Shnirelman [START_REF] Shnirelman | On the analyticity of particles trajectories in the ideal incompressible fluid[END_REF] et de Frisch et Zheligovsky [START_REF] Frisch | A very smooth ride in a rough sea[END_REF]). Il était alors tentant d'espérer qu'un solide immergé se comporte de la même manière, bien qu'il ne soit pas ponctuel et possède une masse strictement positive. C'est l'intuition qui a conduit à l'écriture de [START_REF] Glass | Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid[END_REF].

Pour énoncer notre résultat, introduisons, pour T > 0, l ∈ N et λ ∈ (0, 1),

A l,λ S 0 (T ) := C ω ([0, T ]; SE(3) ×C l,λ (F 0 ; R 3 ))
l'espace des fonctions réelles analytiques de [0, T ] à valeurs dans SE(3) ×C l,λ (F 0 ; R 3 ). Nous avons alors le résultat suivant. La preuve du Théorème 3 est assez technique. Elle repose en particulier sur une décomposition de la pression en deux parties qui permet d'exploiter l'effet de masse ajoutée ; et une étude combinatoire fine des défauts de commutation entre les dérivées matérielles itérées et des systèmes de type div-rot posés dans le domaine fluide et qui sont justement des problèmes satisfaits par les deux contributions de la pression.

Notons que notre analyse permet aussi d'améliorer le résultat [START_REF] Kato | On the smoothness of trajectories in incompressible perfect fluids[END_REF] de Kato, qui prouve le caractère C ∞ des trajectoires d'un fluide remplissant un domaine borné régulier, puisqu'elle permet de montrer l'analyticité des trajectoires, quand la frontière est analytique.

Nous avons aussi le corollaire suivant du Théorème 3, qui affirme que les flots dépendent de manière C ∞ des données initiales.

Corollaire 1 ( [START_REF] Glass | Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid[END_REF]). Sous les hypothèses du Théorème 3. Soit R > 0. Alors l'application

(ℓ 0 , r 0 , u 0 ) ∈ C l+1,λ σ ,R (F 0 , h 0 ) → (τ, η) ∈ A l+1,λ S 0 (T * ,R ) est C ∞ .

Une interprétation en terme de géodésique

Depuis l'article [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF] d'Arnold, de nombreux travaux considèrent les fluides parfaits incompressibles avec un point de vue géométrique, réinterprétant les solutions des équations d'Euler incompressible comme les géodésiques d'une variété riemannienne de dimension infinie. Dans le travail [START_REF] Glass | The movement of a solid in an incompressible perfect fluid as a geodesic flow[END_REF] en collaboration avec Olivier Glass, nous avons appliqué cette idée au cas où un corps est immergé dans le fluide, le système "fluide+solide" étant contenu dans un domaine borné Ω ⊂ R 3 ; nous montrons l'équivalence des notions de solution classique du système d'équations aux dérivées partielles et de géodésique au sens où elles sont les points critiques d'une action, qui est l'intégrale en temps de l'énergie cinétique totale du système.

Tout d'abord définissons l'ensemble des configurations possibles du système pour un temps fixé par 

C := (τ, η) ∈ SE(3) ×C 1,λ (F 0 ; R 3 ) tel que τ(S 0 ) ⊂ Ω,
T (τ,η) C = (u S • τ, u • η) où u S ∈ SE(3) et u ∈ C 1,λ (F 0 ; R 3 ) vérifie div u = 0 dans F , u • n = 0 sur ∂ Ω et u • n = u S • n sur ∂ S ; où S := τ(S 0 ) et F := Ω \ S .
Considérons maintenant la dépendance en temps. Etant donné T > 0, (τ 0 , η 0 ) et (τ 1 , η 1 ) dans C nous introduisons

L := (τ, η) ∈ C 1 ([0, T ]; C ) tel que τ(0) = τ 0 , η(0) = η 0 , τ(T ) = τ 1 et η(T ) = η 1 ,
et lorsque (τ, η) ∈ L , nous associons univoquement (u S , u) à (∂ t τ, ∂ t η), et tout aussi univoquement (ℓ, r) à u S . Nous définissons alors l'action suivante sur la variété L :

A (τ, η) := T 0 E S (t) + E F (t) dt,
avec les notations de (2) et [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF]. Comme l'action est une forme quadratique continue sur T (τ,η) L , nous en déduisons que A est différentiable sur L et nous disons, par définition, que (τ, η) ∈ L est une géodésique sur L si la différentielle de A en (τ, η) est nulle.

Nous avons alors :

Théorème 4 ( [START_REF] Glass | The movement of a solid in an incompressible perfect fluid as a geodesic flow[END_REF]). Le triplet (ℓ, r, u) des vitesses eulériennes est une solution classique de (25)-( 30) sur [0, T ] si et seulement si le couple (τ, η) des flots correspondants est une géodésique sur L .

Solutions faibles en dimension 2

En dimension deux, non seulement les solutions classiques existent globalement mais en plus, les équations d'Euler sont propices à une théorie de solutions plus faibles, comme l'a montré Yudovich en donnant dans [START_REF] Yudovich | Non-stationary flows of an ideal incompressible fluid[END_REF] un résultat d'existence et d'unicité pour une donnée initiale de vorticité bornée. La recherche de solutions faibles a ensuite été redynamisée, sous l'impulsion notamment de Di Perna et Majda, cf. [START_REF] Diperna | Concentrations in regularizations for 2-D incompressible flow[END_REF], qui ont obtenu l'existence de solutions faibles à vorticité L 1 ∩ L p , avec p > 1.

En dimension 2 la vorticité du fluide est une quantité scalaire définie par ω := rot u

:= ∂ 1 u 2 -∂ 2 u 1 et qui satisfait l'équation de transport ∂ t ω + (u • ∇)ω = 0 dans F (t).
La vitesse dans le fluide peut se déduire de la vorticité, de la position et de la vitesse du solide, en résolvant le système :

           rot u = ω dans F (t), div u = 0 dans F (t), u • n = u S • n sur ∂ S (t), u • n = 0 sur ∂ Ω ou lim |x|→+∞ u(t, x) = 0, suivant que Ω est borné ou que Ω = R 2 , ∂ S (t) u(t, x) • τ ds = ∂ S 0 u 0 (x) • τ ds. (32) 
La dernière égalité affirme la conservation de la circulation du fluide autour du solide ; c'est la loi de Kelvin. Notons que si nous appliquons la formule de Green dans S 0 , en s'imaginant que cet ensemble est rempli de fluide, plutôt que par le solide, nous pouvons alors interpréter cette circulation comme la vorticité qui se cache à l'intérieur du solide. Dans [START_REF] Glass | Uniqueness results for weak solutions of two-dimensional fluid-solid systems[END_REF], toujours avec Olivier Glass, nous étendons l'existence et l'unicité de solutions à la Yudovich des résultats précédents au cas où le système "fluide + solide" occupe un domaine borné plan.

Théorème 5 ([30]). Pour tout u

0 ∈ C 0 (F 0 ; R 2 ), (ℓ 0 , r 0 ) ∈ R 2 × R, vérifiant u 0 • n = (ℓ 0 + r 0 (x -h 0 ) ⊥ ) • n sur ∂ S 0 , u 0 • n = 0 sur ∂ Ω, et ω 0 := rot u 0 ∈ L ∞ c (F 0 ), il existe T > 0 et une unique solution correspondante (ℓ, r, u) ∈ C 1 ([0, T ]; R 2 × R) × [L ∞ (0, T ; L L (F (t))) ∩C 0 ([0, T ];W 1,q (F (t)))], ∀q ∈ [1, +∞), du système "Euler+solide" sur [0, T ]. De plus si T < +∞ est maximal, alors dist(S (t), ∂ Ω) → 0 quand t → T -.
La notation L L ci-dessus désigne l'espace des fonctions log-Lipschitz sur F 0 , c'est-à-dire des fonctions bornées qui admettent |x(1 + ln -|x|)| comme module de continuité.

Notons que les solutions données par le Théorème 5 bénéficient elles-aussi d'une propriété de régularité des trajectoires. En particulier nous avons montré avec Olivier Glass dans [START_REF] Glass | On the motion of a rigid body in a two-dimensional irregular ideal flow[END_REF][START_REF] Glass | Uniqueness results for weak solutions of two-dimensional fluid-solid systems[END_REF] que si le bord ∂ Ω du domaine est C ∞ (respectivement Gevrey d'ordre M 1) alors les trajectoires des particules du fluide sont C ∞ (resp. Gevrey d'ordre M + 2) en temps. Ce résultat étend au cas d'un domaine borné des résultats de Gamblin [START_REF] Gamblin | Système d'Euler incompressible et régularité microlocale analytique[END_REF] et Serfati [START_REF] Serfati | Solutions C ∞ en temps, n-log Lipschitz bornées en espace et équation d'Euler[END_REF], [START_REF] Serfati | Équation d'Euler et holomorphies à faible régularité spatiale[END_REF], [START_REF] Serfati | Structures holomorphes à faible régularité spatiale en mécanique des fluides[END_REF] Avec Olivier Glass dans [START_REF] Glass | On the motion of a rigid body in a two-dimensional irregular ideal flow[END_REF] et avec Olivier Glass et Christophe Lacave dans l'appendice de [START_REF] Glass | On the motion of a small body immersed in a two dimensional incompressible perfect fluid[END_REF] nous avons aussi défini des solutions plus faibles en dimension deux d'espace, adaptant au cas d'un solide immergé les travaux de Di Perna et Majda, cf. [START_REF] Diperna | Concentrations in regularizations for 2-D incompressible flow[END_REF], et de Di Perna et Lions, cf. [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF], pour un fluide seul. Autrement dit nous considérons des fluides dont la vorticité est L 1 ∩ L p avec p ∈ (1, +∞).

Notons que ces travaux portent sur le cas où le système "fluide + solide" n'est pas borné extérieurement, et occupe donc Ω = R 2 . A l'instar du cas d'un fluide seul occupant tout le plan, supposer que l'énergie cinétique est finie est alors assez restrictif. Ceci est relié au fait que l'unique champ de vecteurs régulier H qui tend vers 0 à l'infini et tel que

div H = 0 pour x ∈ F 0 , rot H = 0 pour x ∈ F 0 , H • n = 0 pour x ∈ ∂ S 0 , ∂ S 0 H • τ ds = 1, n'est pas dans L 2 (F 0 ).
Il est en fait plus naturel de considérer des vitesses initiales dans la famille des espaces (E β ,F 0 ) β ∈R avec E β ,F 0 := β H + L 2 σ (F 0 ), où L 2 σ (F 0 ) désigne l'espace des champs de vecteurs à divergence nulle dans L 2 (F 0 ) et tangent au bord ∂ S 0 .

Nous pouvons alors montrer que ces espaces (E β ,F 0 ) β ∈R sont préservés par l'équation, la partie L 2 pouvant croitre au plus exponentiellement au cours du temps.

Pour démontrer l'existence d'une solution du système "Euler+solide" associée à une donnée initiale u 0 ∈ E β ,F 0 , pour un réel β et avec une vorticité ω 0 := rot u 0 ∈ L p c (F 0 ), où p > 1, nous utilisons une stratégie très générale qui consiste à régulariser la donnée initiale de sorte que nous avons une suite de données initiales régulières auxquelles nous pouvons associer des solutions classiques, puis à exploiter les propriétés de compacité qu'entraînent des estimations a priori uniformes par rapport au paramètre de régularisation, pour pouvoir passer à la limite dans l'équation, ou du moins dans sa formulation faible. Le point clé est que, grâce à l'effet de masse ajoutée, le contrôle de la partie L 2 de l'énergie suffit à contrôler l'accélération du solide.

La question de l'unicité de ces solutions faibles est, comme dans le cas d'un fluide seul, encore ouverte.

Avec un peu de symétrie il est possible d'affaiblir encore l'hypothèse de régularité de la donnée initiale jusqu'au cas où la mesure est une vorticité diffuse, c'est le résultat de [START_REF] Sueur | On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data[END_REF] qui étend le travail [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF] de Delort qui traitait le cas d'un fluide dans un domaine fixe. Plus précisément nous supposons que le solide occupe un disque et que les vitesses initiales ℓ 0 et u 0 ont la propriété de symétrie miroir par rapport à l'axe horizontal. Ici la propriété de symétrie miroir pour un champ de vecteurs v(x) := (v 1 (x), v 2 (x)) signifie que pour tout

x = (x 1 , x 2 ), (v 1 , v 2 )( x) = (v 1 , -v 2 )(x) avec x := (x 1 , -x 2 )
. Pour la vitesse solide ℓ 0 ∈ R 2 cela signifie qu'elle est de la forme ℓ 0 = (ℓ 0,1 , 0). De plus la vorticité ω du fluide est impaire par rapport à la variable x 2 et par conséquent son intégrale sur le domaine fluide F 0 s'annule. Aussi la circulation de la vitesse initiale autour du solide s'annule. Dans un tel cas il est naturel de considérer des solutions d'énergies finies. Nous obtenons alors l'existence de solution faible du système "Euler+solide". De plus cette solution préserve la symétrie miroir et satisfait l'inégalité d'énergie et l'accélération du solide est bornée par une fonction de la masse m et de l'énergie initiale. Cette borne est obtenue en exploitant l'effet de masse ajoutée.

Mentionnons que comme la régularité de la pression est très faible dans le résultat de Delort, l'étude de la dynamique d'un solide immergé, qui est précisément déterminée par les forces qu'exercent la pression du fluide sur sa frontière, semble a priori délicate. Cependant dans une formulation faible globale, analogue à celle évoquée dans la Section 2.1 pour le cas visqueux, la pression disparaît. Le désavantage de cette formulation est qu'elle utilise des fonctions tests qui ne s'annulent pas à l'interface fluide-solide, ce qui est inusuel dans l'approche de Delort, où la formulation faible utilise des fonctions tests à support compact dans le domaine ouvert occupé par le fluide et où la condition aux limites est prescrite au sens de la trace.

L'hypothèse de symétrie permet de combler une partie du chemin : lorsque nous considérons une fonction test tangente au bord il est possible de suivre une stratégie "à la Delort" c'est-à-dire de réexprimer cette contribution en terme de la vorticité, de symétriser et d'utiliser un argument de non-concentration de la vorticité jusqu'au bord du solide.

Nous complétons alors la preuve en montrant que pour une fonction test non-tangente au bord, il existe un relèvement de sa valeur au bord du solide par un champ de vecteurs solénoïdal régulier à support compact et variant arbitrairement lentement. Celui-ci conduit à une erreur arbitrairement petite dans la formulation faible.

Petit, nombreux et légères

Dans cette section, nous considérons uniquement le cas de la dimension 2 et nous supposons que le fluide est régi par les équations d'Euler. L'énallage du titre fait référence à trois passages à la limite successifs : nous considérons d'abord le cas d'un petit corps rigide immergé et la limite où celui-ci n'est plus qu'une particule ponctuelle. Nous généralisons ensuite le système limite obtenu au cas de plusieurs solides, et pour décrire la limite de champ moyen nous introduisons un système qui couple les équations d'Euler et de Vlasov. Enfin nous étudions la limite de ce système lorsque la masse individuelle des particules tend vers 0.

Cas d'un petit solide

Nous abordons ici la question du comportement limite du système quand le solide immergé se réduit à une particule ponctuelle. Considérons donc h 0 ∈ R 2 et S 0 un domaine fixe, fermé non vide régulier connexe, et pour ε > 0, notons S ε 0 le domaine donné par S ε 0 -h 0 = ε(S 0 -h 0 ). Prenons S ε 0 comme domaine initialement occupé par le solide, et F ε 0 := R 2 \ S ε 0 celui occupé par le fluide. Il faut aussi prescrire des données initiales pour les vitesses fluides et solides. Nous pourrions être tenté de les prendre indépendantes de ε pour isoler l'influence de la taille du solide. Cependant ces vitesses doivent être compatibles à l'interface entre le fluide et le solide, et cette interface dépend de ε. Une manière de préserver une certaine uniformité en ε est de se donner les membres de droite du système (32), indépendamment de ε, et de considérer les vitesses fluides associées.

Plus précisément nous nous donnons une vorticité initiale ω 0 dans L p c (R 2 ) avec p ∈ (2, +∞), γ et r 0 dans R, et ℓ 0 dans R 2 indépendamment de ε. Il existe alors, pour chaque ε, un unique champ de vecteurs vitesse

u ε 0 ∈ C 0 (F ε 0 ; R 2 ) tel que div u ε 0 = 0, rot u ε 0 = ω ε 0 dans F ε 0 , u ε 0 • n = u S 0 • n sur ∂ S ε 0 , lim |x|→∞ |u ε 0 (x)| = 0, ∂ S ε 0 u ε 0 • τ ds = γ, où u S 0 (x) := ℓ 0 + r 0 (x -h 0 ) ⊥ et ω ε 0 := ω 0|F ε 0 .
Nous introduisons l'angle de rotation θ ε (t) du solide que nous prenons nul à t = 0, autrement dit nous définissons

θ ε (t) := t 0 r ε (s)ds.
Nous nous intéressons à un régime particulier où la masse m ε et l'inertie J ε du solide sont de la forme m ε = m et J ε = ε 2 J 0 , où m et J 0 sont des constantes fixées. C'est le cas par exemple pour un solide homogène avec une masse constante quand ε → 0 + .

Comme mentionné précédemment il existe alors, pour chaque ε, une solution (h ε , θ ε , u ε ) du système "Euler+solide", c'est-à-dire des équations

∂ u ∂t + (u ε • ∇)u ε + ∇p ε = 0 et div u ε = 0 pour x ∈ F ε (t), u ε • n = u ε S • n pour x ∈ ∂ S ε (t), m(h ε ) ′′ (t) = ∂ S ε (t) p ε n ds et J ε (θ ε ) ′′ (t) = ∂ S ε (t) (x -h ε (t)) ⊥ • p ε n ds, u ε S (t, x) := (h ε ) ′ (t) + (θ ε ) ′ (t)(x -h ε (t)) ⊥ , u ε | t=0 = u ε 0 dans F ε 0 , h ε (0) = h 0 , (h ε ) ′ (0) = ℓ 0 , (θ ε ) ′ (0) = r 0 .
Nous nous intéressons à la limite du système quand ε → 0 + . Avec Olivier Glass et Christophe Lacave nous avons obtenu dans [START_REF] Glass | On the motion of a small body immersed in a two dimensional incompressible perfect fluid[END_REF] le résultat suivant.

Théorème 6 ([27]). Quand ε → 0 + , à une sous-suite près, -(h ε , εθ ε ) converge vers (h, 0) faiblement- * dans W 2,∞ (0, T ; R 2 ), -ω ε converge vers ω dans C w ([0, T ]; L p (R 2 )), -u ε converge vers ũ + γ 2π (x -h(t)) ⊥ |x -h(t)| 2 dans C([0, T ]; L q loc (R 2 )) pour q < 2, -on a ∂ ω ∂t + div ũ + γ 2π (x -h(t)) ⊥ |x -h(t)| 2 ω = 0 dans [0, T ] × R 2 , (33) 
mh ′′ (t) = γ h ′ (t) -ũ(t, h(t)) ⊥ , (34) 
ω| t=0 = ω 0 , h(0) = h 0 , h ′ (0) = ℓ 0 , (35) 
ũ = K[ω] (36) 
Ci-dessus la convergence de ω ε et de u ε doit être comprise comme la convergence de leur extension par 0 à l'intérieur du solide. Par ailleurs, nous avons utilisé la notation K[•] pour désigner l'opérateur de Biot-Savart dans le plan donnée par la convolution, en espace, avec

H(x) := 1 2π
x ⊥ |x| 2 .

L'équation [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF] décrit l'évolution de la vorticité du fluide : celle-ci est transportée par une vitesse qui est obtenue en appliquant la loi de Biot-Savart, mais à une vorticité qui est la somme de celle du fluide et d'un point vortex placé à la position h(t) où le solide se rétrécit, avec une amplitude égale à la circulation γ autour du solide.

L'équation [START_REF] Grotta Ragazzo | On the motion of two-dimensional vortices with mass[END_REF] signifie que la particule est accélérée par une force similaire à la force de portance mises en lumière par Kutta et Joukowski pour la théorie irrotationnelle : la particule est accélérée dans une direction perpendiculaire à la différence entre sa vitesse et la vitesse virtuelle du fluide à l'endroit occupée par la particule (obtenue par la loi de Biot-Savart appliquée cette fois seulement à la vorticité du fluide), avec un facteur de proportionalité égale à la circulation γ autour de la particule. Nous renvoyons ici aux livres de Childress [START_REF] Childress | An introduction to theoretical fluid mechanics[END_REF] et de Marchioro et Pulvirenti [START_REF] Marchioro | Mathematical theory of incompressible nonviscous fluids[END_REF] pour une discussion de la force de Kutta-Joukowski, et à l'article de Grotta-Ragazzo, Koiller et Oliva [START_REF] Grotta Ragazzo | On the motion of two-dimensional vortices with mass[END_REF].

La preuve du Théorème 6 est assez complexe. Essayons d'en expliquer brièvement les grandes lignes. Nous commençons par réécrire le système avec un changement de variables qui fixe le domaine occupé par le solide. Nous établissons ensuite diverses estimations a priori, en particulier pour la vorticité et pour l'énergie cinétique totale du système. Pour cette dernière il s'agit d'une énergie renormalisée car l'énergie sous sa forme la plus usuelle n'est pas finie dans ce contexte (si bien que sa conservation n'apporte aucune information !). Un des soucis de cette renormalisation est que la quantité conservée obtenue n'est plus la somme de contributions positives. Puisqu'en l'occurrence on espère en tirer un contrôle de la vitesse du solide, il est nécessaire de contrôler par un autre argument les contributions dues au fluide. Il s'avère que c'est le contrôle de la taille du support de la vorticité qui est crucial, et comme celle-ci peut être en retour estimée par les vitesses fluides et solides, nous réalisons vite que nous avons un système d'inégalités qui se combinent pour donner d'assez bonnes estimations a priori.

Nous travaillons ensuite l'expression des forces de pression qui agissent sur le solide, en découplant des effets dus à la masse ajoutée, à la circulation et à la partie distribuée de la vorticité du fluide. Comme c'est un travail bien compris dans la littérature dans le cas de fluides irrotationnels, nous essayons de nous en rapprocher en introduisant une approximation irrotationnelle bien choisie du champ de vitesse fluide. Les contributions de l'écart à l'approximation sur la frontière du solide sont de plus en plus négligeable au fur et à mesure que le solide se rétrécit.

L'idée est alors comme dans la théorie irrotationnelle d'appliquer le lemme de Blasius qui exploite les structures holomorphes sous-jacentes à ce cadre.

Cependant un certain nombre de soucis liés à la rotation se posent encore à la sortie de cette étape. Par chance, nous parvenons, grâce à un lemme de phase stationnaire/instationnaire, à découpler suffisamment ces effets de la rotation des équations pour passer à la limite.

Limite de champ moyen

Généralisons maintenant le système ( 33)-( 36) au cas de N particules ponctuelles de masse m i , de circulation γ i et de position h i (t), pour i = 1, ..., N, en mouvement dans un fluide parfait incompressible plan :

∂ t ω + div x (ωu) = 0, avec u(t, x) = K[ω](t, x) + N ∑ j=1 γ j H(x -h j (t)), et ω| t=0 = ω 0 , et pour i = 1, ..., N, m i h ′′ i (t) = γ i h ′ i (t) -v i (t, h i (t)) ⊥ , avec v i (t, x) = K[ω](t, x) + ∑ j =i γ j H(x -h j (t)), et (h i , h ′ i )(0) = (h i,0 , h i,1 ).
Soulignons que, dans les équations des particules ponctuelles, l'auto-interaction est omise puisque l'indice de sommation ne parcourt que les j = i. En particulier si les masses m i sont nulles le système ci-dessus dégénère en le système "Euler+ points vortex" de Marchioro et Pulvirenti, cf. [START_REF] Marchioro | Mathematical theory of incompressible nonviscous fluids[END_REF]. Avec Ayman Moussa nous nous sommes intéressés à une limite de type champ moyen des équations précédentes, ce qui veut dire que nous considérons le "scaling" suivant :

∂ t ω + div x (ωu) = 0, avec u(t, x) = K[ω](t, x) + 1 N N ∑ j=1 H(x -h j (t)), et ω| t=0 = ω 0 , h ′′ i (t) = h ′ i (t) -v i (t, h i (t)) ⊥ , avec v i (t, x) = K[ω](t, x) + 1 N ∑ j =i H(x -h j (t)), et h i (0) = h i,0 , h ′ i (0) = h i,1 ,
dans la limite où N → +∞. Suivant l'approche initiée par Dobrushin [START_REF] Dobrushin | Vlasov equations[END_REF] (mentionnons aussi Braun et Hepp [START_REF] Braun | The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles[END_REF], Neunzert [START_REF] Neunzert | The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles[END_REF] et plus récemment Hauray et Jabin [START_REF] Hauray | N-particles approximation of the Vlasov equations with singular potential[END_REF]) dans le cas du système de Vlasov-Poisson, nous régularisons le système en substituant à K et H la loi de Biot-Savart régularisée

K[g](x) := R 2 H(x -y)g(y)dy, où H est dans W 1,∞ (R 2 ) avec H(0) = 0.
En introduisons la mesure empirique

f (t, x, ξ ) := 1 N N ∑ i=1 δ (h i (t),h ′ i (t)) (x, ξ ), où (x, ξ ) ∈ R 2 × R 2 , nous obtenons le système ∂ t ω + div x (ωu) = 0, ( 37 
) ∂ t f + div x ( f ξ ) + div ξ ( f (ξ -u) ⊥ ) = 0, (38) 
où

u := K[ω + ρ] et ρ := R 2 f dξ . (39) 
A l'instar de la régularisation du système de Vlasov-Poisson, le système (37)-( 38)-(39) est bien posé dans l'espace des mesures.

Théorème 7 ([52]). (a) Soit (ω 0 , f 0 ) dans M 1 (R 2 ) × P 1 (R 2 × R 2 ). Alors il existe une solution (ω t , f t ) et une seule dans C w ([0, ∞); M 1 (R 2 ) × P 1 (R 2 × R 2 
)) de (37)-( 38)-( 39) avec (ω 0 , f 0 ) comme donnée initiale.

(b) De plus nous avons la propriété de stabilité suivante. Soit deux solutions µ 1 := (ω 1 , f 1 ) et µ 2 := (ω 2 , f 2 ) du système (37)-( 38)-( 39) associées aux données initiales µ 1

0 := (ω 1 0 , f 1 0 ) et µ 2 0 := (ω 2 0 , f 2 0 ) dans M 1 (R 2 ) × P 1 (R 2 × R 2 ). Alors, pour tout t 0, W 1 (µ 1 (t), µ 2 (t)) e 2Ct W 1 (µ 1 0 , µ 2 0 ), où C > 0 dépend seulement de H Lip et de |ω 0 |(R 2 ). (c) Enfin, si (ω 0 , f 0 ) ∈ Lip(R 2 ) × Lip(R 2 × R 2 )
, alors la solution correspondante (ω t , f t ) satisfait :

(ω t , f t ) ∈ L ∞ loc ([0, ∞); Lip(R 2 ) × Lip(R 2 × R 2 )).
Ci-dessus M (R d ) désigne l'espace des mesures bornées, P(R d ) désigne le sous-ensemble des mesures de probabilité, pour tout p ∈ [1, ∞[, M p (R d ) (respectivement P p (R d )) désigne le sous-espace des mesures de Radon signées (resp. des mesures de probabilité) qui ont un moment d'ordre p fini et W 1 désigne la distance de Wasserstein. La preuve du Théorème 7 repose essentiellement sur les propriétés maintenant bien comprises de cette distance (cf. [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Villani | Optimal transport, old and new[END_REF]), notamment la dualité de Kantorovitch.

Nous pouvons alors déduire du Théorème 7 le résultat suivant à propos de la limite de champ moyen du système ( 37)-( 38)- [START_REF] Hillairet | Lack of collision between solid bodies in a 2D incompressible viscous flow[END_REF].

Corollaire 2 ([52]). Soit (ω 0 , f 0 ) ∈ M 1 (R 2 ) × P 1 (R 2 × R 2 ). Soit (h 0 i , h 1 i ) i∈N * ∈ (R 2 × R 2 ) N * tel que f N 0 := 1 N ∑ N i=1 δ (h 0 i ,h 1 i ) ∈ P 1 (R 2 × R 2 ), satisfait W 1 ( f N 0 , f 0 ) → 0 quand N → +∞. Soit µ N := (ω N , f N ) N∈N * , µ := (ω, f ) les solutions respectivement associées à (ω 0 , f N 0 ) N∈N * , (ω 0 , f 0 ). Alors pour tout t > 0, pour tout N 1, f N (t) = 1 N N ∑ i=1 δ (h i,N (t),h ′ i,N (t)) , où, pour i = 1, ..., N, h ′′ i,N (t) = h ′ i,N (t) -u N (t, h i,N (t)) ⊥ , u N = K[ω N ] + 1 N N ∑ j=1 H(• -h j,N (t)), (h i,N (0), h ′ i,N (0)) = (h 0 i , h 1 i ); et pour tout T > 0, µ N → µ quand N → +∞ dans C w ([0, T ]; M 1 (R 2 ) × P 1 (R 2 × R 2 )).
Malheureusement les résultats précédents semblent pour l'instant hors de portée sans régularisation du système. Il est cependant légitime de conjecturer que l'on obtient à la limite un système composé des équations (37)-( 38) où u est cette fois donné par

u := K[ω + ρ] et ρ toujours par ρ := R 2 f dξ . (40) 

Problème de Cauchy pour le système Euler-Vlasov

Dans cette section nous donnons des résultats d'existence et d'unicité de solutions au problème ( 37)-( 38)- [START_REF] Hoffmann | On a motion of a solid body in a viscous fluid. Two-dimensional case[END_REF].

Théorème 8 ([52]). 1) Si (ω 0 , f 0 ) ∈ (L 4 3 ∩ L 1 )(R 2 ) × (L ∞ ∩ L 1 )(R 2 × R 2 ) et R 2 ×R 2 f 0 (x, ξ )|ξ | 2 dxdξ < +∞, alors pour tout T > 0 il existe au moins une solution faible (ω, f ) ∈ p∈[1,∞[ C [0, T ] ; L 4/3 (R 2 ) × L p (R 2 × R 2 )
des équations (37)-( 38)- [START_REF] Hoffmann | On a motion of a solid body in a viscous fluid. Two-dimensional case[END_REF]. De plus pour tout t ∈

[0, T ], R 2 ×R 2 f (t, x, ξ )|ξ | 2 dxdξ < +∞. 2) Si ω 0 est dans W 1,1 (R 2 ) ∩W 1,∞ (R 2 ) et f 0 est dans W 1,1 (R 2 × R 2 ; R + ) et vérifie (1 + |ξ | 2 ) γ/2 (| f 0 | + |∇ x,ξ f 0 |) ∈ L ∞ (R 2 × R 2 ),
pour un réel γ > 2, alors, pour tout T > 0, il existe une solution

(ω, f ) ∈ L ∞ ([0, T ];W 1,1 (R 2 )) × L ∞ ([0, T ];W 1,1 (R 2 × R 2 ))
des équations (37)-( 38)-( 40) qui, de plus, satisfait

(1 + |ξ | 2 ) γ/2 (| f 0 | + |∇ x,ξ f 0 |) ∈ L ∞ ([0, T ]; L ∞ (R 2 × R 2 )).
3) Si ω 0 est dans (L ∞ ∩ L 1 )(R 2 ) et f 0 est dans M + 2 (R 2 × R 2 ) alors, pour tout T > 0 il existe au plus une solution

(ω, f ) ∈ C w [0, T ]; (L ∞ ∩ L 1 )(R 2 ) × M + (R 2 × R 2 )
des équations (37)-( 38)-( 40) telle que ρ est dans L ∞ ((0, T ) × R 2 ).

La première partie du théorème se démontre classiquement par compacité en utilisant d'une part des estimations a priori qui utilisent les propriétés de transport et l'évolution de l'énergie cinétique de la phase dispersée, et d'autre part une suite de solutions approchées qui sont obtenues comme solutions exactes de régularisés du système. La deuxième partie s'inspire du travail de Degond [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions[END_REF] sur les solutions classiques de l'équation de Vlasov-Poisson en deux dimensions.

La troisième partie du théorème étend les résultats [START_REF] Yudovich | Non-stationary flows of an ideal incompressible fluid[END_REF] de Yudovich sur les équations d'Euler incompressible et [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] de Loeper à propos du système de Vlasov-Poisson. Elle se démontre en suivant la même méthode que Loeper dans [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] c'est-à-dire en utilisant des propriétés de transport optimal. Notons que cette partie unicité s'applique en particulier à des solutions monocinétiques.

Spray gyroscopique de particules légères

Une question naturelle est de savoir ce qui se passe quand nous faisons tendre vers 0 la masse individuelle des particules immergées dans le fluide. Cela revient à regarder le comportement, quand ε → 0 + du système

∂ t ω ε + div x (ω ε u ε ) = 0, (41) 
∂ t f ε + div x ( f ε ξ ) + 1 ε div ξ ( f ε (ξ -u ε ) ⊥ ) = 0, (42) 
où u ε := K[ω ε + ρ ε ] et ρ ε := R 2 f ε dξ . (43) 
Dans la dernière partie de l'article [START_REF] Moussa | A 2d spray model with gyroscopic effects[END_REF], nous montrons que le système ci-dessus dégénère vers les équations d'Euler incompressible : Notons que le Théorème 9 implique en particulier que si u 0 est régulier avec une vorticité bornée alors toute la suite (u ε ) ε converge vers l'unique solution régulière des équations d'Euler incompressible avec condition initiale u 0 .

∂ t u + div x (u ⊗ u) + ∇p = 0 et div x u = 0, (44) 
La preuve de ce théorème s'inspire grandement de la méthode d'énergie modulée utilisée par Brenier dans [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF].

Théorème 3 (

 3 [START_REF] Glass | Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid[END_REF]). Supposons que les bords ∂ Ω et ∂ S 0 sont analytiques et que les hypothèses du Théorème 2 sont satisfaites.Alors (τ, η) ∈ A l+1,λ S 0 (T * ,R ).En fait la preuve de ce théorème montre que le mouvement du solide et les trajectoires des particules du fluide sont au moins aussi régulières que les bords ∂ Ω et ∂ S 0 . Il est donc possible d'énoncer des variantes du Théorème 3 avec une régularité limitée.

  dans le cas d'un fluide occupant le plan tout entier. Nous constatons dans l'énoncé une perte d'indice Gevrey entre l'hypothèse de régularité du bord et la conclusion concernant la régularité du flot. Notons qu'en particulier, dans le cas M = 1, nous avons, si nous supposons que le bord est analytique, que le flot est Gevrey d'ordre 3. C'est d'ailleurs aussi un flot Gevrey d'ordre 3 qu'obtiennent Gamblin et Serfati dans le cas d'un fluide occupant tout le plan. Cependant il n'est pas clair si cette régularité est optimale ou non.

R 2 2 |u 0 2 A

 2202 les particules ayant, dans la limite où leur masse individuelle est nulle, la même vitesse que le fluide. Ce problème est très proche de celui de la limite gyrocinétique considerée entre autres par Brenier dans[START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF] et par Golse et Saint-Raymond dans[START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF] avec ici la difficulté supplémentaire du couplage avec les équations d'Euler incompressible.Là encore le cas d'un fluide d'énergie finie semble restrictif puisque pour une fonction régulière à support compact g de R 2 vers R, nous avons que K[g] est dans L 2 si et seulement si R 2 g(x)dx = 0. Ainsi, pour traiter le cas de vorticités qui ne satisfont pas cette condition, nous considérons, pour α ∈ R,g α ∈ C ∞ c (]0, ∞[; R) telle que 2π +∞ 0 g α (r)rdr = α, H α := K[g α ( • R 2 )] et E α := H α + L 2 σ (R 2 ), où L 2 σ (R 2) désigne l'espace des champs de vecteurs à divergence nulle dans L 2 (R 2 ).Théorème 9([52]). Soit α ∈ R et u 0 ∈ E α,R 2 .Soit (ω ε , f ε ) ε des solutions régulières, avec f ε suffisamment décroissante quand |ξ | tend vers +∞, des équations (41)-(42)-(43) correspondant à des données initiales(ω ε 0 , f ε 0 ) ε régulières à support compact et telles que (ω ε 0 ) ε est bornée dans L 2 (R 2 ) et ρ ε 0 := R 2 f ε 0 dξ ε est bornée dans L 1 (R 2 ) et que quand ε → 0 + , ε ×R 2 |ξ | 2 f ε 0 (x, ξ )dxdξ → 0, R 2 |u ε 0u 0 | 2 dx → 0, où u ε 0 := K[ω ε 0 + ρ ε 0 ].Alors, à une extraction de sous-suite près, la suite (u ε ) ε converge dans C w ([0, T ]; E α,R 2 ) vers une solution dissipative des équations d'Euler incompressible avec condition initiale u 0 , i.e. pour tout champ de vecteursv ∈ C([0, T ]; E α,R 2 ) avec A(v) := ∂ t v + v • ∇v ∈ L 1 ((0, T ); L 2 (R 2 )) et D(v) ∈ L 1 ((0, T ); L 2 (R 2 )), et pour presque tout t ∈ [0, T ], R 2 |u(t, x)v(t, x)| 2 dx R (x)v(0, x)| 2 dx exp (v)(s, x)(vu)(s, x) expt s 2 d(v(θ )) dθ dxds, où d(v(θ )) est le supremum en x du rayon spectral de D(v)(θ , x).