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NON-RESONANT NON-PLANAR FREE MOTIONS OF
INEXTENSIONAL NON-COMPACT BEAMS

A. LuonNGo, G. REGA AND F. VESTRONI

Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno, Universita de L’ Aquila,
67040 Monteluco di Roio (AQ), Italy

(Received 22 August 1986, and in revised form 14 February 1989)

Non-linear coupling phenomena of non-compact beams with comparable frequencies
are studied in the absence of flexural internal resonance. Use is made of approximate,
though consistent, partial differential equations which contain the terms of elastic interac-
tion responsible for the stronger non-linear effects involving the torsional component.
Upon assuming a one-mode approximation for each spatial variable and applying the
Galerkin procedure, three ordinary equations are deduced, and an approximate solution
in the absence of all resonances is accomplished via a perturbation technique. An extended
investigation of the non-linear coupling is made for beams of open cross-sections with
various boundary conditions, by varying some meaningful ratios of the natural frequencies
of the beam.

1. INTRODUCTION

In the past decades a certain number of papers have been devoted to the study of
non-planar finite motions of beams [1-8]. Due to the complexity of the description of
the problem, various simplifying assumptions regarding the kinematics of the beam and
the accounting for the various non-linear elastic and inertia terms have been introduced.
Within this ambit it is worth noting that the torsional component has been initially
disregarded in the study of the spatial flexural oscillations, restricting the analysis to
compact beams for which the torsional frequency is considerably larger than the flexural
frequencies.

Only in the work by Crespo da Silva and Glynn [4, 5] has the problem been treated
rigorously; by referring to the exact kinematics of the beam, general order-three, non-linear
equations of motion of inextensional beam were derived in terms of the configuration
variables, without neglecting any coupling term among the flexural and torsional com-
ponents. However, in references [6, 7] attention was still focused on compact beams, for
which the non-planar motion can be accurately described by two equations in the two
flexural displacements only after eliminating the torsional component. Besides, due to
weak coupling between flexural motions, only the oscillations in conditions of internal
resonance have been studied deeply.

Herein the interest is mainly devoted to the non-planar vibrations of non-compact
inextensional beams which exhibit comparable flexural and torsional frequencies; in this
case the problem is accurately described by three equations in the two transversal
displacements and torsion, all of the same order [9], and strong coupling is induced by
the non-linear terms. It is then interesting to study the dynamic phenomena also in the
absence of internal resonance. For the free motion of a fixed-free beam an approximate
but laborious solution of the complete equations was used in reference [8] to analyze
some cases of coupling. In this paper a wider investigation of these phenomena is



performed; for this purpose, use is made of three simpler equations of motion obtained
through a consistent ordering of the mechanical and geometrical parameters of actual
beams. They still contain the quadratic and cubic terms of elastic interaction among the
flexural and torsional components which are responsible for the stronger non-linear
effects. These equations do not contain warping, since its coherent introduction in the
non-linear beam model used is far from being straightforward.

Upon assuming a one-mode approximation for each variable of the spatial configuration
and applying the Galerkin procedure, a system of ordinary differential equations is
obtained, an approximate solution of which is pursued via the perturbation multiple time
scale technique [10]. The conditions involving the linear frequencies under which internal
resonance occurs at the different orders of the asymptotic solution are examined. Then
the solution of the equations in the absence of all resonances is accomplished.

Non-linear coupling phenomena among the three modes are studied for beams with
open cross-sections and different boundary conditions, by varying some meaningful ratios
of the natural frequencies of the beam and the initial conditions. However, the absence
of warping limits the applicability of the solution obtained to some open cross-sections.

2. EQUATIONS OF MOTION AND PERTURBATION SOLUTION

In the reference frame Ox,x,x;, one can consider an inextensional shear-indeformable
beam aligned with the x, axis, with length [, mass per unit length m, torsional mass
moment of inertia I, torsional stiffness E,, flexural stifinesses E, and E,. The dynamic
configuration is described by the angle 6(s, t) around the axis x, and the transversal
displacements u,(s, t) and us(s, t), s being a curvilinear abscissa and t the time. The
non-dimensionalized variables

§=s/l, f=wt, 6=0/p, d=u/l (1)

are introduced, where @ is any real frequency of the beam and p is a scaling factor
defined in such a way that the flexural and torsional linearized elastic energies assume
the same value when 8 = ii. In addition, the following relations hold:

B.=E,/E,, B3=E;/E,, v=Lo'P/E, p=mo’l"E,. (2)

Order-three flexural-flexural-torsional equations of the free motion of non-compact
beams, obtained from reference [9], are

Go = p{vpb — p8"— (B2 — By)uzul +(B,— Bs)p(us® — us?) 8} =0,

Gy ={-Bsul + p(B,— B3)(u58) — (B2 Bs)p*(u3 6°+2u360")} = i,
Gy ={—Byu3’ + p(Br— B3)(u30)' + (B2~ Bs)p*(u3 6° +2u360")}Y = i, (3)

where the tilde has been omitted. The corresponding boundary conditions are
G,0u,|§=0, G;6u3]5=0, H,56|5=0, H,8ubls=0, H,éujjo=0, (4)

where G, and G, are obtained from equations (3) and
H,=p®0', Hik=Bs“g_(Bz“ﬂs)P“go'*'(ﬁz_ﬂs)Pz“gaz,

H’;?ﬂzug‘(ﬂz“ﬂs)lmgo“(Bz"ﬂs)ﬂzugaz- (5)

Equations (3) and (4) were obtained from the complete order-three equations of motion
through a consistent analysis of the smallness of the terms based on the assumptions of
(a) comparable flexural and torsional frequencies of the beam, (b) (8,— 8;) of order O(8),



which corresponds to the absence of internal resonance between the fiexural components.
In these conditions the order of the coefficients in the equations is [9]

B=0(\*7%), wu=00A7%, v=0(x%), p’=0(A?), (6)

with A being the slenderness of the beam. Since no ordering scheme was introduced on
the three configuration variables which still remain of the same order, equations (3) are
correct for studying the phenomena of non-linear interaction among transversal and
torsional vibrations of beams.

The degree of non-linearity of this problem and the range of amplitudes over which a
perturbational procedure provides a satisfactory solution can be evaluated by comparing
the orders of the linear, quadratic and cubic terms in equations (3). According to equations
(6), they are, respectively,

T'=0(rA%), T'=0(x\%q), T"=0(z'A'g), )

where q is the amplitude of oscillation. These terms become of comparable magnitude
when g= O(1/A): that is, for very small values of the amplitudes. This means that the
problem is strongly non-linear and the perturbational solution can be correctly utilized
in this region of small amplitudes.

It is worth noticing that the problems of either in-plane oscillations or fiexural internal
resonant motion of inextensional beams already studied in the literature [11, 12] are those
with weak non-linear behaviour that is very different from the case considered herein.
Indeed, in both those cases the non-linear terms are essentially cubic and become
comparable with the linear terms for a high amplitude value, g = O(1/ 7).

A discrete model of the continuum system is obtained by assuming a shape function
for each of the three configuration variables 6, u, and w; and applying the Galerkin
procedure. The solution to system (3) is thus sought in the form

0=1(s)q(t), w=fi(s)q(1),  us=fs(s)gs(1), (8)

where the f(s) are the eigenfunctions of the linearized problem and the g(¢) are unknown
time functions. The integral formulation of the equations of motion (3) and boundary
conditions (4, 5) is

1
J' {God0 + (G — pii;)du, + (G5 — piis) us} ds
0

1
+(_H980_Gzauz_G36u3_H;k8u£"H§8u;) =0. (9)
]
By integrating by parts, making use of relationships (8) and imposing separate vanishing
of terms multiplying 8q,, g, and 8¢q,, a system of three ordinary equations of motion
with quadratic and cubic non-linearities is obtained:

mi G+ kigy = —dgxq;— 129143~ ¢134143,
myg,+ kyg, = —dgigs — ¢1291qa, myGs+ ksq; = —dq,9,— €13q14s. (10)

The coeficients in equations (10) depend on the elastic, geometric and inertial properties
of the beam through the dimensionless parameters p, 8, » and u given by equations (1)
and (2), and on the integrals of products of the shape functions f;. Their explicit expressions
are given in Appendix 1.

To obtain the solution to system (10) the multiple scale method [10] is adopted. A
perturbation parameter, &, of the order of the amplitude, is introduced and the variables
q are considered functions of a sequence of independent time scales T, T,,..., T,,



which are related to ¢ by the expressions T, =¢"t. The following expansions of g; in
powers of ¢ are assumed as solutions to system (10):

g:i=¢qa(To, T,, T2)+82q,-2(T0, T, T2)+83‘1.‘3(To, T, T2)+0(34t)- (11)

Here three time scales have been considered and the functions g; (i, j =1, 2, 3) are assumed
to be of order O(1). By expressing the time derivatives in terms of the 7, variables,
substituting equations (11) into equations (10) and equating coefficients of like powers
of &, a sequence of linear systems with the unknowns g; is obtained, as follows:

order &: myDyoqy, + k19, =0,
m;Doogy + k2921 =0, m3Doogs; + k3gs; = 0; (12)
order &°: m; Dooqi2+ kg2 = —dga193, —2m Dy g4,
my Dyoqar+ kaGrz = —dq11931 — 2my Dy g4,
m3Doogs2+ kagsz = —dq11921 = 2m3 D1 G315 (13)
order ¢ m, Dooq3+ kyg13 = — 12411921 — 13911951 — 4(421932 + 431922)

—my(2Dy1 412+ D11911+2Dg2q11),
myDooqas + k2ga3 = “012‘]%1%1 —d(q11932+ 31912) — Ma(2Dg1G22+ D112 +2Dg2q2),
m3Dooqss + k33 = _(—'13‘]f1‘I31 ~d(q1192:F 421912) = M3(2Dg, 932+ Dy193, +2Dpaqs31).

(14)
Here D;=4/4T, and D; = 8*/aTo T.. The problem is completed with the initial conditions
‘Ij(o)=€‘1;'), ‘ij(O):Sq?, (15)

sq}’ and eq’}’ being the initial amplitudes and velocities, from which the conditions to be
associated with each system of the sequence (12)-(14) are obtained:

order ¢: g;:(0) = q}’, Dyq;,(0) = q(};
order ¢*: qu(O) =0, Doqu(O) = —qujl(o);
order &”: ‘Ijs(O) =0, Dyq;5(0) = _qujZ(O) - D2qj1(0)' (16)

In the following, the solution of the equations of motion up to the £*-order is pursued
by assuming a generating solution with three non-zero components, in order to study the
non-linear coupling phenomena in the absence of internal resonance.

3. SOLUTION IN THE ABSENCE OF INTERNAL RESONANCE
The periodic solution
g1 =A(T,, ) e +ce, j=1,2,3, (17)

is adopted as the solution (generating solution) to system (12). In equations (17),
w; =V k;/ m; is the frequency of the beam over the dimensionless time scale t, A;(T,, T>)
is an unknown complex function and c.c. stands for complex conjugate, the c.c. of A;
being denoted with an overbar (A;). The dependence of A; on the time scales T, and T,
will be obtained by imposing zeroing of the secular terms at the higher orders of the
perturbation solution.

Substitution of equations (17) into the &’-system (13) gives

Dooqu+ w_,?qu = —'d[AhAk ei(wk+w")T°+ A_hAk ei(wk—w")r"]/ m; “iszDlAj einT°+ c.C. (18)



In equations (18) and in the following, the indexes j, h, k are different from each other
and must be rotated in the clockwise sense starting from the set 1, 2, 3; §; is the Kronecker
symbol. Analysis of the system shows that internal resonance occurs at the order &7 if
the linear frequencies satsify the conditions

wj+wh=wk, (19)

involving all three components g,, g, and g;.

In the absence of internal resonance, the zeroing of secular terms in equations (18)
gives A; = A;(T,), showing that no frequency correction occurs at this order. Then, by
solving the system and substituting, the equations at the *-order are obtained:

3 . N .
D()Oqj3 + wqu]?: = —{IZ [dJ,A}A3 el(2wi+m])To+ d;':A]A? el(2w,.—wj)To](l _ 6,])
+ d[(A;,Bk + Ath) ei(wk+w,,)To+ (A_th + AkEh) ei(“’k“"h)Tu]
2 J A .
+ [Z d;AAA (1 - 8,~,~)+i2k,—D2Aj/wj] emjro} / m+ e (20)
1i

In equations (20) the homogeneous solution to system (18) appears, the amplitudes B;
of which depend on T, and T. The coefficients d;; = d;;, d% =d}, d; = d; (i #j) are given
in Appendix 1. Internal resonance at this order occurs when

W; = Wy, (21)

involving two components of motion only.

It is worthwhile to notice that even if A;(T;, T,) = 0, and in the absence of any resonance,
the jth component is forced dynamically from the other two at the order £ provided
that these components are both different from zero, this being a phenomenon of non-linear
modal coupling. Therefore, a motion with two prevailing components having frequencies
dependent on the two non-zero amplitudes A, and A; occurs, in which the third component
is of higher order.

Still in the absence of internal resonance, the general solution for q,, g, and ¢, of the
same order is obtained. The zeroing of the secular terms in equations (20), when the
polar forms

Al(Ty) =[a(T,)/2] el (™ (22)

are introduced and the real and imaginary parts are separated, provides the following
differential system with the unknowns ay, @,:

3 -~
a;,=0, Pk =Wy [Z dkia%(l - aki)]/skk- (23)
1i

Here the prime denotes the derivative with respect to T,. By integrating equations (23)
it follows that

a, = constant, O =Gl + o7, (24)

where the definition for T, has been accounted for and @, depends on the squares of the
amplitudes.

Then, by solving equations (20), the functions g;, are obtained which depend on the
amplitudes C; of the homogeneous solution. The latter, as well as B;, are assumed to
have the same dependence on T, and T, as A;. The values of A;, B; and C; at =0 are
determined by means of the initial conditions (16) at the different orders; they are given
in Appendix 2.



To write the temporal laws of motion in circular form, the amplitudes B; and C; are
rewritten as

B(T,)=(b;/2) "™, Ci(T,) = (¢/2) eX'™?, (25)
where
g =gt+ (ﬂ?, Xi= ¢jt+X?' (26)

Substituting g; in equation (11) and using equations (22) and (25) gives the time laws
of motion in circular form as

g; = £a; cos B; + e*{—a,a [ cos (P, + D)+ 2}d cos (P, — §,)]/2+ bk, cos ¥}/ k;
3
+ 83{ -3 aja,?[.()ﬁdj,- cos (2P;+ P;) + N} d} cos 2P, - P,)1(1-8,)/4
1i

—aybi[Qid cos (¥, + P,) + 02Fd cos (¥, — D,)]/2

— agb, [ 2d cos (¥, + &,) + 2} d cos (W, — P,)]/2+ cik; cos X,-}/k,-. 27
In equations (27) the dynamic ampilification factors £ are defined as
nj=wf/[w;?_(wh+wk)2], n}":wf/[w}‘(wh—wk)z],
Q= 0}/[wi~(0;+20)’], 0f=oi/[0]—(0;—20,)"] (28)
and the phases are
S=at+oh, Ti=at+vh, Xe=at+xy, (29)

@, being the non-linear frequencies of the three configuration variables:
3 -~
a')k=wk|:1+z dk,-afez(l—ak,-)/Skk]. (30)
1

Equations (27) reveal deep modifications of the temporal laws with respect to the linear
ones. Indeed, the motion of the ith component is described by the superposition of several
harmonics with frequencies which are combinations of the three non-linear fundamental
frequencies (30); namely, &;, @, * @k, 2@, = @ (j, h, k=1, 2, 3; h # k). Harmonics having
the same frequency (@;, @, = @) but different phases occur; however, such differences
reduce to zero if the particular case of zero initial velocity for all components is considered.

Equations (30) show that the non-linear frequency of each variable depends on the
squares of the amplitudes of oscillation of the remaining two variables.

4. ANALYTICAL INVESTIGATION

The analytical investigation is made by using the perturbation solution developed,
which gives information on the parameters governing the phenomenon. Due to their large
number, in the following the description of the dynamic behaviour of beams is made
with reference to specific representative cases selected on the basis of these parameters.

The non-linear dynamic coupling depends both on the values of the ratios among the
natural frequencies of the beam and on the amount of coupling occurring already in the
static range. Within the assumption of cross-sections with comparable flexural rigidities,
the latter is stronger, as these are different from each other, and it is described quantitatively
just by the ratio 8,/ B, governing the importance of the non-linear terms in the equilibrium
equations. Therefore, in the analytical investigation, with reference to open sections with



torsional rigidity about one hundred times lower than the flexural ones, basically two
types of section are considered: (i) with different flexural rigidities (B8./8;=2-60); (ii)
with more nearly equal rigidities (B8,/8;=1-19). The beam frequencies are then varied
suitably to analyze the specific effect of the dynamic amplification.

The beams considered have the torsional frequency w, greater than the flexural frequen-
cies (with w; > w,), as generally occurs in technical applications with open sections. Thus,
according to equations (27), the ratios playing the more important role in the dynamic
problem are (w,+ w;)/w, and w,/w, at the quadratic and cubic order, respectively, for
section (i), and w;/ w, for section (ii).

Different beams (B1 to B3) are considered with section (i), which is expected to be
more interesting. The relevant values of the frequency ratios appearing in the significant
dynamic amplification factors (28) are reported in Table 1: they show how the beams
are gradually further from a resonant condition involving all three components, and
nearer to the resonance between the torsional and one flexural component. In addition,
for the sake of comparison, a beam with closed section (BCS) having the same flexural
rigidities as the open sections and torsional rigidity of the same order, is also examined.
Since in this case the frequencies are not all of the same order, the relevant dynamic
results are obtained with the equations of motion in their complete form [8]. In all the
other cases the simplified equations (3), specifically derived for treating beams with
frequencies of the same order, are referred to. Preliminary investigations on the beams
considered, made using the complete and the simplified equations, validated the ordering
introduced to obtain the latter equations.

TABLE 1
Frequency ratios of the beams

BCS B1 B2 B3
(@, +w3)/ oy 0-14 1-19 1-35 1-48
R, —w;3)/ 0, 22-2 1-72 1:38 1-18

In contrast, a unique beam (B4) having section (ii) is considered, with a value of the
frequency ratio (2w, — w;)/ w; appearing in the meaningful dynamic amplification factor
equal to 1-18.

Some results showing the non-linear coupling among the three components of motion
are now presented, with reference to the time laws, equations (27), which allow insight
into the effect of coupling not only in terms of maximum amplitudes. Fixed-free and
hinged-hinged beams with different sets of initial conditions (i.c.) are considered, in any
case with the assumption of zero initial velocities.

The fixed-free beam (FF) is considered first. The temporal laws for the three components
4., 4> and q; obtained for BCS and B1 with zero initial conditions for the twist angle g,
and 0-1 for the two flexural variables are plotted in Figures 1 and 2, respectively. The
BCS shows a very low torsion ¢, forced dynamically from g, and g, the amplitudes of
these latter components remaining unaltered during the motion; ¢, reaches only
0:16¢,,max- Instead, the forced torsional component is much stronger for Bl, with a
maximum value equal to 0:90g,,,... This means that the energy content associated with
the angle of twist, which is zero initially, increases to a value comparable with that
pertaining to a flexural displacement. In addition, B1 also exhibits the effect of coupling
between the two flexural variables, due essentially to the forcing effect exerted, in turn,
from gq,.



Figure 1. Time laws of the three displacement components for fixed-free beam BCS,; q,, a,, a;=0-0, 0-1, 0-1.

N ln\

. L] 's ' 4,

b q,
+ + J + 2

Figure 2. As Figure 1 but for beam B1; a,, a,, a;=0-0, 0-1, 0-1.

The oscillations of B1 obtained with all three initial conditions different from zero are
plotted in Figures 3(a) and (b), where the same amplitude of the torsional component is
considered but with opposite sign. The results are quite different from each other: indeed,
with a; =0-03 the non-linear effect on ¢, is weaker than that obtained in the other
case and even weaker than with a, =0, while the laws appear less regular and more
similar to this last case. The first item is associated with the pattern of the non-linear
strain energy of the system,

11 =3(k\qgi + kg5 + ksq3) + dq, 9295+ ¢1,4195+ ¢1391 43, (31)
calculated at ¢=0, having its minimum (see Figure 4) at a value different from zero

(b)
Figure 3. As Figure 2, but (a) a,, a,, a;=0-03, 0-1, 0-1, and (b) a,, a,, a;=-0:03, 0-1, 0-1.



4 H(Gq)
\\ 4 2= 03=0"1
P ~—
2 [¢] [ 01 94
L
// 01
94 mox

Figure 4. Initial strain energy and maximum response of g, versus a, for assigned values of a, and a;.

(a,=0-039), which is related to the static non-linear coupling of the system; correspond-
ingly, the maximum response of g, also attains its minimum at 4,. The second item, the
general regularity of the laws in Figure 3(b), is due to the initial conditions in this case
being close to the value @, =—0-027 for which the harmonic with own frequency does
not appear in the g, time law.

The dynamic coupling among the three components is strong for Bl due to proximity
to the quadratic resonance condition involving all of them. Indeed, if the results obtained
with B2—which is further from that condition—are analyzed, minor coupling effects on
the twist angle and therefore between the flexural co-ordinates are observed. Nevertheless,
G1max Still reaches 0-44¢,,,,,,, mainly because of static non-linear coupling. The interaction
reduces further on passing to B3, the major proximity of which to the resonant condition
w; = w; does not give rise to new coupling phenomena with this set of initial conditions.

The picture is different when finite initial conditions are imposed on torsion and flexure,
while the other flexure is either zero or simply perturbed. In Figures 5 and 6 the laws

Figure 5. As Figure 2 but for a,, a,, a;=0-05, 0-01, 0-1.

92

a3

Figure 6. As Figure S but for beam B3; a,, a,, a;=0-05, 0-01, 0-1.



obtained for B1 and B3 with a, =0-05, a,=0-01 and a;=0-1 are plotted. For B1, closer
to the condition w,+ w; = w,, the perturbed component g, is notably forced, up to 6:28
times its initial value, and vibrates with a law resulting mainly from the combination of
the harmonic of non-linear frequency @, and that of an amplitude dependent on a,a;
and a frequency @; — @, almost four times lower. The flexural component g, vibrates with
nearly constant amplitude, since only cubic harmonics remain in its law due to smallness
of the product a,a,. Torsion g, has a complex law resulting from the combination of
several harmonics of different amplitudes and frequencies.

B3 exhibits a different response, being closer to the cubic resonance condition w; = w;,
involving just the two components which are assigned finite initial amplitudes. A minor
forced component g, arises with respect to Bl (gs,4x/ @2 =3-5), mainly due to the static
coupling. Instead, dynamic interaction and energy exchange occur between g, and g; but
to a minor extent relative to those occurring among the three components for B1, simply
because the resonance condition @, = w, is of cubic order. However, in the case considered,
the non-linear frequencies of ¢, and ¢; approach each other (&,/ @, =0-97), so that the
presence of a forced term of frequency (2&;—@,)=a, in the first of equations (27)
induces beating on g;.

It is also interesting to analyze the response of B3 to the set of initial conditions 0-05,
0-1 and 0-01 (see Figure 7). In this case, in which the almost resonant flexural component
¢, is simply perturbed, the proximity to the resonance condition w, = w, does not produce
notable coupling effects. Indeed, in the absence of resonance, the interaction between
two components can develop only with finite initial values for both of them, while in the
condition of resonance it occurs with even small perturbations of one of them.

Figure 7. As Figure 6 but a,, a,, a;=0-05, 0-1, 0-01.

Consider now the hinged-hinged beam with either one (HH1) or both (HH2) ends
torsionally constrained. Analysis of the coefficients of the motion equations (10) reveals
the different importance of the non-linear terms with the three boundary conditions
considered: namely, they are stronger on passing from the FF beam to HH2 and HH1.
This is shown by making reference to the case in which non-zero initial amplitudes (a,, a;)
are assigned to the flexural components only. Owing to the non-linear static coupling,
the torsional component a, =(—d/k,)a,a; arises, which in turn gives rise to the main
non-linear term in the two flexural equations (da, a;, i =3, 2). In Figure 8 the ratio between
the non-linear and the linear terms in the jth equation (j=2,3) is plotted for beam
sections of type (i) in terms of equal flexural amplitudes d; normalized in such a way as
to have comparable values of the relevant initial energy for the three boundary conditions
examined: i.e., & = a; for the FF beam and &, = 4a; for the HH beams. Strong differences
occur among the three boundary conditions. That occurring between FF and HH2 is
associated mainly with the value of the coefficient d, which depends on the product of
the flexural and torsional eigenfunctions (see Appendix 1): for the FF beam the former
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Figure 8. Ratlo between non-linear and linear terms in the equations of motlon for B1 with different boundary
conditions. FF, &, = a;; HH, 4, =4a,.

is maximum where the latter vanishes and vice versa, so that a lower degree of non-linearity
occurs. Instead, the further strong difference existing between HH2 and HH1 is due
mainly to the strong decrease of the torsional rigidity k,, which is verified on passing to
the HH1 beam.

The different non-linear behaviours of the three beams are shown also in the results
of the dynamic analysis performed (see Figure 9 and Table 2). They refer to initial
amplitudes d,, d; for which the ratio between the non-linear and the linear term is less
than unity for the beam with stronger non-linear behaviour (HH1), in order that the
perturbation solution will furnish accurate results. The non-dimensional time scale con-
sidered in Figure 9 is the same for the three beams, which also have equal values of the
frequency ratios, so as to evidence directly the effects of non-linearities. The expected
stronger non-linear coupling of the HH1 beam comes out clearly from the figure, while
Table 2 shows the occurrence of a maximum value of the forced torsional component,
becoming more and more large upon passing from FF to HH2 to HH1, as well as higher
frequency corrections with respect to the linear values.

The beam of cross-section (ii) with comparable flexural rigidities (B4), which is
somewhat closer to the resonance condition w,= w;, should exhibit weaker non-linear
behaviour with respect to the beams closer to a resonance condition involving the torsion,
as previously noticed in section 2.

The response of the fixed-free beam is plotted in Figure 10. To account correctly for
the major proximity to the flexural resonance condition, it was calculated by using the
equations of motion in their complete form [8] rather than equations (10). Use of these
latter would lead to an underestimation of the coupling phenomenon already noticeable
with the value w,/w,=1-09 considered but of little interest, due to the low degree of
non-linearity of this beam confirmed by the analysis of the response. Indeed, notwithstand-
ing higher values of the initial amplitudes, lower interaction between ¢, and gq; occurs
than that between q, and g, in the response of B3 (Figure 6), the two beams being equally
far from the relevant cubic resonance condition, namely w, = w; and w, = w;; that is, the
former region of resonance is narrower. A not very strong forced torsional component
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arises in the motion of B4, oscillating with its frequency but modulated on the low time
scale by the amplitudes a, and a;. Of course, when finite initial conditions are given to
torsion and one flexure while the other flexure is simply perturbed, only small forcing
effects on this latter co-ordinate are observed.

5. CONCLUSIONS

The non-linear dynamic coupling phenomena among flexural and torsional vibrations
have been studied for inextensional non-compact beams with all frequencies of the same
order and in the absence of internal resonance. Use has been made of accurate equations
consistently deduced from more general ones through an ordering of the coefficients,
with no assumptions on the configuration variables. The law of motion of the beam has
been obtained by means of a third order perturbation analysis.

Some conclusions can be drawn from the investigation performed for beams of open
cross-sections with different dynamic characteristics and boundary conditions, selected
on the basis of some parameters which govern the phenomenon according to the perturba-
tion solution. It must be underlined that the results presented are obtained within a beam
theory in which warping is neglected.

Once the important role played by the non-linear static interaction has been ascertained,
the dynamic response is seen to be notably influenced by the values of some meaningful
combinations of the linear frequencies, being characterized by different amounts of energy
exchange among the co-ordinates. With attention restricted to the combinations involving
the torsional frequency—which are the most interesting for analysis within the present
context—strong forced torsional motion and associated flexural coupling arise for beams
having all comparable frequencies, while very low interaction occurs if the torsional
frequency is notably higher than the other ones. In addition, the time response changes
notably depending on the resonance condition which is approached and the initial
amplitudes considered.

In summary, when a resonance condition involving three components—which is of
quadratic order—is approached, even though one component is assigned a zero initial
value, it is forced strongly in the motion and in turn modifies the laws of the remaining
two. Instead, when a condition—of cubic order—involving two components is
approached, and provided that they are given finite initial amplitudes, notable although
lower energy exchange occurs between them, while the third component is forced slightly
if it is zero or simply perturbed initially; in particular, little interaction occurs where the
condition does not involve the torsional frequency.
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APPENDIX 1: EXPRESSIONS FOR THE COEFFICIENTS m, k, ¢, d

1 1 1
m1=VP2J’ flzds’ m2=l‘LJ' f22ds’ m3=“J f32ds’
0 0 0
1

1 1
kl=p2 I 1'2 dS, k2=BS J. 5,2 d's’ k3=32 J 1;,2 dS,
0

0 0

! 1
d=—p(B,—Bs) J:) Nfif5 ds, €12~ Pz(ﬂz —B3) J fff:;.lz ds,

1
Cl3=_P2(ﬂz"Bs)J’ f12 5/2 ds,
0

dyy = (¢, 25d*/ k), h=(c,—0%d* k), dyp=d,+d%,
dl3=(cl3—02d2/k2)a ’1*3=(C13_n;d2/k2), ‘11.13=d13+d;k3,
dyy=-0,d%k,, di=-0F%d*k, dp=dy+d}.

a f

APPENDIX 2: EXPRESSIONS FOR THE INITIAL VALUES OF THE AMPLITUDES 4,,

B, C; OF THE HOMOGENEOUS SOLUTION
A;(0)=%(q7 i 45/ w;),

B;(0) = (1/2k{[2,d (AsAL + ALAL) + 0Fd(ALA, + ALAL)]

+(1/ @0))[(wp + 01) Rd (AL AL — ALAL) + (0p — w3, ) 2F d (AL AL — ArA) o,
Gi(0) = (1/2k{Qud;n (A/AL + AA7) + 0. dJ(AAG + AAR) + Qudy (AAL + A A7)

QLdi(AAL+ AAL) + 0d(ALBy+ A B, + A,B, + A.B,)

+0}d(A,Bi+ AB, + AyBi + AuBy) +i(D,A; + Dy A K/ )

+[(0;+20,)2,di (A AL - AAL) + (20, — 0;)25d 5 (AAL - AAT)

+ () +20,) Qudin (AAL — AAL) + Qo — w)) AR (AAL — AAT)

+ (0 + @) d (ApBi + A B, — A.B, - AB,)

+(wy — wh)ﬂj*d(/i;.Bk + AB, — A,B, — A.B,)]/ w}o.



