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Observation of Star-Shaped Surface Gravity Waves
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We report a new type of standing gravity waves of large amplitude, having alternatively the
shape of a star and of a polygon. This wave is observed by means of a laboratory experiment by
vertically vibrating a tank. The symmetry of the star (i.e. the number of branches) is independent
of the container form and size, and can be changed according to the amplitude and frequency of
the vibration. We show that a nonlinear resonant coupling between three gravity waves can be
envisaged to trigger the observed symmetry breaking, although more complex interactions certainly

take place in the final periodic state.

PACS numbers: 47.54.-r, 47.35.Fg, 47.54.-r

Nonlinear and dispersive effects in water waves give
rise to remarkable phenomena, such as solitary and
freak waves. These wave phenomena, originally observed
at a liquid surface, turned out to have analogues in a
number of other domains involving nonlinear waves. For
example, solitary waves have also been recognized in
optical fibers [1], and ”freak” waves, which are giant
waves of very short lifetime [2—4] have been identified in
fibre optics [5] and in plasmas [6]. Another remarkable
effect of nonlinearities is to give rise to patterning [7].
For example, ”horseshoe” waves [8] have been shown
to result from the nonlinear interactions between five
waves [9, 10]. Nevertheless, although the existence
of a large variety of different waves is expected as a
result of nonlinearities, experimental evidences of new
types of waves are noticeably scarce. In this Letter, we
report the observation of a new type of standing waves,
displaying alternatively a starlike and a polygonal shape.
These waves are observed at the free surface of a liquid
submitted to vertical sinusoidal vibrations.

Experimental setup and observations. The sys-
tem studied is a fluid layer of about 1 cm deep; the liquid
chosen for the investigations is a silicon oil, which, like
water, displays a Newtonian rheological behavior. The
kinematic viscosity is 107°m?/s (i.e. ten times that of
water), and the surface tension is 0.02N/m. Experiments
are conducted with containers of various shapes (rect-
angular, circular) and of various sizes (from 7 to 20 cm
in size or in diameter). The fluid vessel is mounted on
a shaker and experiences a vertical sinusoidal motion,
with a frequency /27 ranging typically from 7 to 11 Hz.
The amplitude of the cell oscillations can be driven up
to 20mm and the surface deformations are recorded by
means of a fast camera (250 frames per second). For
the sake of clarity, we describe first the results obtained
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in a cylindrical container (9 cm diameter) vibrated with
a frequency /27 equal to 8 Hz, and with a filling level of
7mm. For small oscillation amplitudes, we observe at the
free surface of the liquid layer “meniscus ripples” origi-
nating from the contact line between the free surface and
the inner wall of the container and propagating toward
the center of the cell. These ripples oscillate with the
same frequency as the driving, and the damping lengths
are small compared to the radius of the container. In-
creasing the vibration amplitude up to 1.55 mm, we ob-
serve (see Fig. 1 and movie 1 in [11]) two contrapropaga-
tive, axisymmetric gravity waves, with a period T" which
is twice that of the forcing (i.e. T = 47/Q) as it is ex-

FIG. 1: Axisymmetric surface waves in a cylindrical container
(diameter 9 cm, filling level 7 mm). These waves are paramet-
rically excited by a vertical sinusoidal motion of the container
(vibration amplitude = 1,70 mm) and oscillate subharmoni-
cally with the driving frequency (here /27 = 8 Hz). The
inner and outer crests move contrapropagatively, and experi-
ence a phase shift when crossing (see movie 1 in the Supple-
mental Material [11]).
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FIG. 2: Same experimental conditions as in Fig. 1. The present spatiotemporal diagram corresponds to the time evolution
of the line of pixels passing through the center of the vessel. The line of pixels is plotted horizontally, and the time here is
oriented downward. This plot allows us to visualize the motion of the counterpropagative crests, and to measure the a phase
delay when crossing. For these experimental conditions, the phase delay is equal to 0.05 s.

pected for parametrically forced waves [12, 14]. When the
circular crest of the centripetal wave focuses to the center
of the container, an upward jet is formed which breaks
into a droplet. It is interesting to point that, when the
crests of the two centrifugal and centripetal axisymmet-
ric waves are crossing, they do not simply superimpose,
but they also experience a phase shift (see Fig. 2). More
precisely, the crests remain in spatial coincidence during
a typical time of 0.05s for the above experimental pa-
rameters. The phase delay phenomenon during crossing
has been recognized in the case of two crossing plane soli-
tary waves, and testifies to a strong nonlinear coupling
between the waves [15]. Still increasing the vibration
amplitude to 1.85 mm, we notice the appearance of five
corners in the crest line when the centrifugal and cen-
tripetal waves are crossing (see Fig. 3 and movie 3 in
[11]). These tips signal the breaking of the rotational
symmetry. At last, for a typical vibration amplitude of
1.95mm, we observe a drastic change in the wave geom-
etry. The surface pattern displays alternatively a star
and a pentagonal shape, separated by a time interval of
27 /) [see Figs. 4(a), 4(b) and movie 4 in [11]]. A remark-
able feature is that these alternate star-polygon-shaped
waves are independent of the container size and shape.
Identical patterns are observed in larger circular or rect-
angular containers (Figs. 5(a), 5(b). Note that we have
also observed stars and polygons with other symmetries
(3, 4 and 6), merely by varying the frequency and the
amplitude of vibration [see Fig. 6 and movies 6a and 6b
in [11]]. Note also that the system exhibits hysteresis,
meaning that for the same forcing parameters different
patterns can be observed according to the forcing history.
It is therefore not possible to establish a phase diagram
related to the symmetry as a function of the forcing pa-
rameters.

It must be emphasized that these waves are extreme:
(i) the wave amplitude can be of the order of 2 times
the liquid mean depth; (ii) in the trough, the depth is

reduced to a film of less than 1 mm thick. Thus, these
are highly nonlinear waves appearing in the context of
shallow liquid (i.e. the wavelength/depth ratio, about
5-7, is large). In other words, we deal with large standing
cnoidal waves.

Theoretical explanation. Our interpretation is in-
spired by those of Mermin and Troian [16] and Pomeau
and Newell [17] for quasicrystals, and that of Edwards
and Fauve [18] for the formation of quasipatterns in cap-
illary waves. It is noteworthy that in the present exper-
iments we have |k| < 1/¢. (L. is the capillary length),
so that here surface tension effects are negligible com-
pared to gravity effects, and therefore we are dealing
with pure gravity waves. Our explanatory scheme in-

FIG. 3: For a larger vibration amplitude of the cell, we ob-
serve a deformation of the axisymmetric crest, with the ap-
pearance of five corners. This is the signature of a symmetry
breaking (filling level 7 mm, /27 = 8 Hz, vibration ampli-
tude 1.85 mm) (see movie 3 in Supplemental Material [11]).



volves a nonlinear resonant interaction between three sur-
face waves. The three wave resonance conditions read
as w1:|:w2:|:w3 = 0 and klﬂ:kgik;g =0 (wi and
k; are the angular frequencies and the wave vectors)
[19, 20]. These conditions can be simultaneously sat-
isfied in capillary-gravity waves [21-25], but the three-
wave resonance mechanism was considered up to now as
irrelevant for the pure gravity waves that we are facing
[19]. The reason is that the relation of dispersion of un-
damped, unforced gravity waves reads as w o |k|* with
a <1 (a=1/2in deep water, @ = 1 in shallow water), so
that the above resonance conditions cannot hold. How-
ever, we show that this three-wave resonance mechanism
is actually relevant to trigger the reported phenomenon,
because the relation of dispersion is significantly modified
by the dissipation and forcing. We will show explicitly
below the dispersion relation taking into account dissi-
pation and forcing, and then we will briefly explain how
the amended relation of dispersion allows a three gravity
wave resonant interaction and how the latter can select
a m-fold symmetry .

It is well known [12-14, 26-28] that the amplitude ¢(k, t)
of parametrically driven infinitesimal surface waves in fi-
nite depth, or Faraday waves [29], can be modeled by a
damped Mathieu equation

2

% +20% + w1 — Feos()]¢ = 0, (1)
where o is the associated viscous attenuation, 2 is the
forcing angular frequency, F' corresponds to a dimension-
less forcing (amplitude of the vertical acceleration di-
vided by the gravity acceleration g), and wo = wo(|k|) is
the angular frequency of linear waves without damping
and forcing (for linear water waves in finite depth h we
have w2 = gktanh(kh) with k& = |k| [20] ). The viscous
attenuation term o accounts for both the bulk dissipation
(proportional to vk? [30]) and the friction with bottom
[proportional to (#k2)2 [31]]. It must be emphasized that
Eq. (1) is linear, and is derived for infinitesimal waves
in finite depth (i.e., not in shallow water). Here we deal
with large amplitude, cnoidal waves, so that the valid-
ity of Eq. (1) is very limited. Nonetheless, Eq. (1) is
valuable in providing insights on the mechanism trigger-
ing the formation of the patterns that we report here.
Systems obeying a damped Mathieu equation like Eq.
(1) exhibit a series of resonance angular frequencies nf)/2
(the integer n is the order of the resonance) [32, 33]. Ac-
cording to Floquet theory, bounded periodic solutions of
Eq. (1) exist under some special relations between the
parameters [34], these relations providing a dispersion re-
lation (that cannot be expressed in term of elementary
functions). Numerical investigations, using various ex-
pressions for o, show that there are at most two wave
numbers solutions of the dispersion relation for each n.
This can be easily seen from the analytical expressions
that we can derive in the limit of small F and small o,

that read as
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for the subharmonic response, and
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for the fundamental one. Note that the damping intro-
duces a threshold in the forcing amplitude giving rise to
the formation of surface waves. In the limit of small F’
and o, the thresholds are F; & 8¢ /(2 for the subharmonic
response (n = 1), Fy ~ /80 /2 for the fundamental re-
sponse (n = 2) and F5 ~ {/80 /< for the 3(2/2 response
(n=3).

Unlike the case of undamped, unforced waves, relations
(2) and (3) show that two modes with different wave
numbers can oscillate at the same frequency. Therefore,
according to the forcing amplitude, different cases must
be distinguished.

(i) For F' < Fy, there are no solutions of the dispersion
relation (2). Physically, it means that there are no for-
mations of parametric waves because the input of energy
is not sufficient to overcome the viscous dissipation.

(ii) For F} < F' < F; the excited modes are only those
corresponding to subharmonic waves, i.e., they oscillate
with angular frequency €2/2. If an infinite number of
subharmonic waves with the same wave number (say ki)
are present, we observe an axisymmetric wave because,
in a circular basin, the vertical wall boundary condition
does not privilege any particular direction.

(iii) For F; < F' < F3 (where Fj is the threshold of the
3rd Mathieu’s tongue), both subharmonic modes (oscil-
lating at Q/2) and fundamental modes (oscillating at )
are excited. There are two wave numbers k; and k;
(ky < ki) corresponding to the subharmonic mode, and
two wave numbers k; and kj (k; < ki) for the har-
monic one. All these modes interact nonlinearly. The
simplest mechanism to be considered to explain the for-
mation of waves with a m-fold rotational symmetry is the
three-wave resonant coupling mechanism. Two subhar-
monic waves, of different wave vectors kj and k" and of
identical angular frequencies wy = /2, interact between
them and also interact with one fundamental mode, of
wave vector k, and of angular frequency ws = 2. Thus,
the condition wy(ky) + wi(k]) = wa(ky) is automat-
ically met. The additional condition to be fulfilled by
wave vectors is k] + ki = ky. This three-wave reso-
nance condition naturally gives rise to the selection of a
peculiar angle (ki , k), which breaks the rotational in-
variance. Physically, the self-tuning of the angle between
the wave vectors allows a continuous energy supply from
two wave numbers to the third one. We have mentioned
a three-wave resonant mechanism with wavenumbers k7,
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FIG. 4: A new type of standing wave appears for a vibration amplitude of 1.95 mm (filling level 7 mm, Q/27 = 8

Hz),having alternatively the shape of a five-branched star (a) and of a pentagon (b).

The occurrence of these

shapes is separated by an interval of time which corresponds to the forcing period, i.e. half the pattern period

(see movie4 in Supplemental Material [11]).

FIG. 5: For identical filling level, vibration parameters and forcing history, the wave pattern is independent of
the container shape and size. (a). In a cylindrical container of radius 17 cm, we observe a tiling of star- shaped

waves.

(b). In a square container (17 cm x 17 cm), we observe analogue patterns. Note that here adjacent pentagons
and five-branched stars oscillate with a phase shift of 7. This is an example of the possible solutions issued from

the subharmonic instability.

kT and k;, but another possible three— wave resonance
involves ki instead of k5 . This multiplicity of possible
three—wave resonances may be one cause of the observed
hysteresis. Another cause is that, in viscous fluid, the
parametric instability is subcritical, due to nonlinear ef-
fects, thus inducing a memory effect [35, 36].

The m-branched stars and m-sided polygonal patterns
correspond to the selection of an angle § = 27/m, with
m integer. Clearly, the above resonance criterion leads in
general to m noninteger. In the latter case, the surface
pattern appears unstationary, until a surface mode (not
perfectly resonant) corresponding to m integer is locked.
Once this mode (with m integer) is locked, it is seen to
survive to moderate changes in the forcing parameters.
This is a another possible origin for the observed hystere-
sis.

At this step, it is noteworthy that the above resonant
coupling of three parametrically forced gravity waves can
also be viewed as a four—waves coupling, if we consider

the forcing as the fourth wave (with angular frequency
and wave number k = 0).

Although the above model is capable to explain
the triggering of a surface instability leading to the
formation of m-fold symmetric gravity waves, it is
insufficient to predict with accuracy the order of the
final symmetries as a function of the forcing parameters.
The reason is that Egs. (2) and (3) are derived within
the hypotheses of infinitesimal amplitude waves, while
we are facing large amplitude cnoidal waves. Actually,
the wave amplitudes intervene certainly in the dispersion
relations. Moreover, considering sinusoidal waves as
eigenmodes is a too crude approximation, unable to
capture numerous physical properties [37]. The design
of a highly nonlinear theory suited to large and steep
cnoidal standing waves in shallow water remains a
theoretical challenge for future studies.
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FIG. 6: Stars and polygonal waves with other symmetries can be observed with other vibration parameters or
filling levels. (a) Symmetry of 4th order (Filling level 8 mm, vibration amplitude 2.40 mm, Q/27 = 12 Hz. (b)
Symmetry of 6th order (Filling level 8 mm, vibration amplitude 2.90 mm, /27 = 12 Hz)).
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