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Abstract

We report a new type of standing gravity waves of large amplitude, having alternatively the

shape of a star and of a polygon. This wave is observed by means of a laboratory experiment by

vibrating vertically a tank. The symmetry of the star (i.e. the number of branches) is independent

of the container form and size, and can be changed according to the amplitude and frequency of

the vibration. We show that a nonlinear resonant coupling between three gravity waves can be

envisaged to trigger the observed symmetry breaking, although more complex interactions take

certainly place in the final periodic state.
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Nonlinear and dispersive effects in water waves give rise to remarkable phenomena, such

as solitary and freak waves. These wave phenomena, originally observed at a liquid surface,

turned out to have analogues in number of other domains involving nonlinear waves. For

example, solitary waves have also been recognized in optical fibers [1], and ’freak’ waves,

which are giant waves of very short life time [2–4] have been identified in fibre optics [5]

and in plasmas [6]. Another remarkable effect of nonlinearities is to give rise to patterning

[7]. For example, ‘horse-shoe’ waves [8] have been shown to result from the nonlinear

interactions between five waves [9, 10]. Nevertheless, although the existence of a large

variety of different waves is expected as a result of nonlinearities, experimental evidences of

new types of waves are noticeably scarce. In this paper, we report the observation of a new

type of standing waves, displaying alternatively a star-like and a polygonal shape. These

waves are observed at the free surface of a liquid submitted to vertical sinusoidal vibrations.

Experimental setup and observations. The system studied is a fluid layer of about

1 cm deep; the liquid chosen for the investigations is a silicon oil, which, like water, displays

a Newtonian rheological behavior. The kinematic viscosity is 10−5 m2/s (i.e. ten times that

of water), and the surface tension is 0.02N/m. Experiments are conducted with containers

of various shapes (rectangular, circular) and of various sizes (from 7 to 20 cm in size or in

diameter). The fluid vessel is mounted on a shaker and experiences a vertical sinusoidal

motion, with a frequency Ω/2π ranging typically from 7 to 11Hz. The amplitude of the cell

oscillations can be driven up to 20mm and the surface deformations are recorded by means

of a fast camera (250 fps).

For the sake of clarity, we describe first the results obtained in a cylindrical container (9 cm

diameter) vibrated with a frequency Ω/2π equal to 8Hz, and with a filling level of 7mm.

For small oscillation amplitudes, we observe at the free surface of the liquid layer “meniscus

ripples” originating from the contact line between the free surface and the inner wall of the

container and propagating toward the center of the cell. These ripples oscillate with the

same frequency as the driving, and the damping lengths are small compared to the radius of

the container. Increasing the vibration amplitude up to 1.55mm, we observe (see Fig. 1 and

movie 1 in [11]) two contra-propagative, axisymmetric gravity waves, with a period T which

is twice that of the forcing (i.e. T = 4π/Ω) as it is expected for parametrically-forced waves

[12, 14]. When the circular crest of the centripetal wave focuses to the center of the container,
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an upward jet is formed which breaks into a droplet. It is interesting to point that, when the

crests of the two centrifugal and centripetal axisymmetric waves are crossing, they do not

simply superimpose, but they also experience a phase shift (see Fig. 2). More precisely, the

crests remain in spatial coincidence during a typical time of 0.05 s for the above experimental

parameters. The phase delay phenomenon during crossing has been recognized in the case

of two crossing plane solitary waves, and testifies to a strong nonlinear coupling between the

waves [15]. Still increasing the vibration amplitude to 1.85mm, we notice the appearance of

five corners in the crest line when the centrifugal and centripetal waves are crossing (see Fig.

3 and movie 3 in [11]). These tips sign the breaking of the rotational symmetry. At last, for

a typical vibration amplitude of 1.95mm, we observe a drastic change in the wave geometry.

The surface pattern displays alternatively a star and a pentagonal shape, separated by a

time interval of 2π/Ω (see Figs. 4.a, 4.b and movie 4 in [11]). A remarkable feature is that

these alternate star-polygon-shaped waves are independent of the container size and shape.

Identical patterns are observed in larger circular or rectangular containers (Figs. 5.a, 5.b).

Note that we have also observed stars and polygons with other symmetries (3, 4 and 6),

merely by varying the frequency and the amplitude of vibration (see Fig. 6 and movies 6a

and 6b in [11]). Note also that the system exhibits hysteresis, meaning that for the same

forcing parameters different patterns can be observed according to the forcing history. It is

therefore not possible to establish a phase diagram related to the symmetry as a function of

the forcing parameters.

It must be emphasized that these waves are extreme: (i) the wave amplitude can be of

the order of two times the liquid mean depth; (ii) in the trough, the depth is reduced to

a film of less than 1mm thick. Thus, these are highly nonlinear waves appearing in the

context of shallow liquid (i.e. the wavelength/depth ratio, about 5 to 7, is large). In other

words, we deal with large standing cnoidal waves.

Theoretical explanation. Our interpretation is inspired of those of Mermin et Troian

[16] and Pomeau and Newell [17] for quasi-crystals, and that of Edwards and Fauve [18]

for the formation of quasi-patterns in capillary waves. It is noteworthy that in the present

experiments we have |k| ≪ 1/ℓc (ℓc is the capillary length), so that here surface tension

effects are negligible compared to gravity effects, and therefore we are dealing with pure

gravity waves. Our explanatory scheme involves a nonlinear resonant interaction between
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three surface waves. The three wave resonance conditions read as ω1 ± ω2 ± ω3 = 0 and

k1 ± k2 ± k3 = 0 (ωi and ki are the angular frequencies and the wave vectors) [19, 20].

These conditions can be simultaneously satisfied in capillary-gravity waves [21–25], but

the three-wave resonance mechanism was considered up to now as irrelevant for the pure

gravity waves that we are facing [19]. The reason is that the relation of dispersion of

undamped, unforced gravity waves reads as ω ∝ |k|α with α 6 1 (α = 1/2 in deep water,

α = 1 in shallow water), so that the above resonance conditions cannot hold. However, we

show that this three-wave resonance mechanism is actually relevant to trigger the reported

phenomenon, because the relation of dispersion is significantly modified by the dissipation

and forcing. We will explicit below the dispersion relation taking into account dissipation

and forcing, and then we will briefly explain how the amended relation of dispersion allows

a three gravity wave resonant interaction and how the latter can select a m-fold symmetry .

It is well-known [12–14, 26–28] that the amplitude ζ(k, t) of parametrically-driven in-

finitesimal surface waves in finite depth, or Faraday waves [29], can be modeled by a damped

Mathieu equation

∂2 ζ

∂t2
+ 2σ

∂ ζ

∂t
+ ω 2

0 [ 1 − F cos(Ωt) ] ζ = 0, (1)

where σ is the associated viscous attenuation, Ω is the forcing angular frequency, F cor-

responds to a dimensionless forcing (amplitude of the vertical acceleration divided by the

gravity acceleration g), and ω0 = ω0(|k|) is the angular frequency of linear waves without

damping and forcing (for linear water waves in finite depth h we have ω2
0 = gk tanh(kh)

with k = |k| [20] ). The viscous attenuation term σ accounts both for the bulk dissipation

(proportional to νk2 [30]) and friction with bottom (proportional to (νk2)
1

2 [31]). It must

be emphasized that Eq. (1) is linear, and is derived for infinitesimal waves in finite depth

(i.e. not in shallow water). Here we deal with large amplitude, cnoidal waves, so that the

validity of Eq. (1) is very limited. Nonetheless, Eq. (1) is worth providing insights on the

mechanism triggering the formation of the patterns that we report here.

Systems obeying a damped Mathieu equation like Eq. (1) exhibit a series of resonances

angular frequencies nΩ/2 (the integer n is the order of the resonance) [32, 33]. According

to Floquet theory, bounded periodic solutions of Eq. (1) exist under some special relations

between the parameters [34], these relations providing a dispersion relation (that cannot
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be expressed in term of elementary functions). Numerical investigations, using various

expressions for σ, show that there are at most two wave numbers solutions of the dispersion

relation for each n. This can be easily seen from the analytical expressions that we can

derive in the limit of small F and small σ, that read as

ω0 ≈
Ω

2

[

1 ±

√

F 2

16
−

4 σ2

Ω2

]

, (2)

for the subharmonic response, and

ω0 ≈ Ω

[

1 +
F 2

12
±

√

F 4

64
−

σ2

Ω2

]

, (3)

for the fundamental one. Note that the damping introduces a threshold in the forcing

amplitude giving rise to the formation of surface waves. In the limit of small F and σ,

the thresholds are F1 ≈ 8σ/Ω for the subharmonic response (n = 1), F2 ≈
√

8σ/Ω for the

fundamental response (n = 2) and F3 ≈
3

√

8σ/Ω for the 3Ω/2 response (n = 3) .

Unlike the case of undamped, unforced waves, relations (2) and (3) show that two modes

with different wave numbers can oscillate at the same frequency. Therefore, according to

the forcing amplitude, different cases must be distinguished:

(i) For F < F1, there are no solutions of the dispersion relation (2). Physically, it means

that there are no formations of parametric waves because the input of energy is not sufficient

to overcome the viscous dissipation.

(ii) For F1 < F < F2 the excited modes are only those corresponding to subharmonic

waves, i.e., they oscillate with angular frequency Ω/2. If an infinite number of subhar-

monic waves with the same wave number (say k−

1 ) are present, we observe an axisymmetric

wave because, in a circular basin, the vertical wall boundary condition do not privilege any

particular direction.

(iii) For F2 < F < F3 (where F3 is the threshold of the 3rd Mathieu’s tongue), both sub-

harmonic modes (oscillating at Ω/2) and fundamental modes (oscillating at Ω) are excited.

There are two wavenumbers k−

1 and k+

1 (k−

1 6 k+

1 ) corresponding to the subharmonic mode,

and two wave numbers k−

2 and k+

2 (k−

2 6 k+

2 ) for the harmonic one. All these modes interact

nonlinearly. The simplest mechanism to be considered to explain the formation of waves

with a m-fold rotational symmetry is the three-wave resonant coupling mechanism. Two

subharmonic waves, of different wave vectors k−

1 and k
+

1 and of identical angular frequencies
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ω1 = Ω/2, interact between them and also interact with one fundamental mode, of wave vec-

tor k−

2 and of angular frequency ω2 = Ω. Thus, the condition ω1(k
−

1 ) + ω1(k
+

1 ) = ω2(k
−

2 ) is

automatically met. The additional condition to be fulfilled by wave vectors is k−

1 +k
+

1 = k
−

2 .

This three-wave resonance condition gives naturally rise to the selection of a peculiar angle

(k−

1 ,k
+

1 ), which breaks the rotational invariance. Physically, the self-tuning of the angle

between the wave vectors allows a continuous energy supply from two wave numbers to the

third one. We have mentioned a three-wave resonant mechanism with wavenumbers k
−

1 ,

k
+

1 and k
−

2 , but another possible three- wave resonance involves k
+

2 instead of k−

2 . This

multiplicity of possible 3-wave resonances may be one cause of the observed hysteresis. An-

other cause is that, in viscous fluid, the parametric instability is subcritical, due to nonlinear

effects, inducing thus a memory effect [35, 36].

The m-branched stars and m-sided polygonal patterns correspond to the selection of an

angle θ = 2π/m, with m integer. Clearly, the above resonance criterion leads in general to

m non-integer. In the latter case, the surface pattern appears unstationnary, until a surface

mode (not perfectly resonant) corresponding to m integer is locked. Once this mode (with

m integer) is locked, it is seen to survive to moderate changes in the forcing parameters.

This is a another possible origin for the observed hysteresis.

At this step, it is noteworthy that the above resonant coupling of three parametrically–

forced gravity waves can also be viewed as a four–waves coupling, if we consider the forcing

as the fourth wave (with angular frequency Ω and wavenumber k = 0).

Although the above model is capable to explain the triggering of a surface instability

leading to the formation of m-fold symmetric gravity waves, it is insufficient to predict with

accuracy the order of the final symmetries as a function of the forcing parameters. The

reason is that Eqs. 2 and 3 are derived within the hypotheses of infinitesimal amplitude

waves, while we are facing large amplitudes cnoidal waves. Actually, the wave amplitudes

intervene certainly in the dispersion relations. Moreover, considering sinusoidal waves as

eigenmodes is a too crude approximation, unable to capture numerous physical properties

[37]. The design of a highly nonlinear theory suited too large and steep cnoidal standing

waves in shallow water remains a theoretical challenge for future studies.
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Figure Captions

Fig. 1 : Axisymmetric surface waves in a cylindrical container (diameter 9 cm, filling

level 7 mm). These waves are parametrically excited by a vertical sinusoidal motion of the

container (vibration amplitude = 1,70 mm) and oscillate subharmonically with the driving

frequency (here Ω/2π = 8 Hz). The inner and outer crests move contrapropagatively, and

experience a phase shift when crossing (see movie1.mpg[11])..

Fig. 2 : Same experimental conditions as in Fig. 1. The present spatio-temporal diagram

corresponds to the time evolution of the line of pixels passing through the center of the vessel.

The line of pixels is plotted horizontally, and the time is here oriented downward. This plot

allows to visualize the motion of the counter-propagative crests, and to measure the a phase

delay when crossing. For these experimental conditions, the phase delay is equal to 0.05 s.

Fig. 3 : For a larger vibration amplitude of the cell, we observe a deformation of the

axisymmetric crest, with the appearance of five corners. This is the signature of a symmetry

breaking (filling level 7 mm, Ω/2π = 8 Hz, vibration amplitude 1.85 mm) (see movie3.mpg

[11]).

Fig. 4: For a vibration amplitude of 1.95 mm (filling level 7 mm, Ω/2π = 8 Hz), appears

a new type of standing wave, having alternatively the shape of a five- branched star (4.a)

and of a pentagon (4.b). The occurrence of these shapes is separated by an interval of time

which corresponds to the forcing period, i.e. half the pattern period (see movie4.mpg [11]).

Fig. 5: For identical filling level, vibration parameters and forcing history, the wave

pattern is independent of the container shape and size.

(5.a). In a cylindrical container of radius 17 cm, we observe a tiling of star- shaped waves.
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(5.b). In a square container (17 cm x 17 cm), one observe analogue patterns. Note that

here adjacent pentagons and five-branched stars oscillate with a phase shift of π. This is an

example of the possible solutions issued from the subharmonic instability.

Fig. 6: Stars and polygonal waves with other symmetries can be observed with other

vibration parameters or filling levels. (Fig. 6.a. Symmetry of 4th order (Filling level 8 mm,

vibration amplitude 2.40 mm, Ω/2π = 12 Hz. Fig 6.b. Symmetry of 6th order (Filling level

8 mm, vibration amplitude 2.90 mm, Ω/2π = 12 Hz)).
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