
Graph-based formalism for Machine-to-Machine self-managed communications

Cédric EICHLER
1,2,3

, Ghada GHARBI
1,3

, Nawal GUERMOUCHE
1,3

, Thierry MONTEIL
1,3

, Patricia STOLF
2,3

1
CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France

2
IRIT; 118 Route de Narbonne, F-31062 Toulouse, France

3
Univ de Toulouse, UPS, INSA, F-31400, UTM, Toulouse, France

{cedric.eichler, ggharbi, nawal.guermouche, thierry.monteil} @laas.fr, stolf@irit.fr

Abstract— Machine-to-Machine communications comprise a

large number of intelligent devices sharing information and

making cooperative decisions without any human

intervention. To support M2M requirements and

applications which are in perpetual evolution, many

standards are designed, updated and rendered obsolete.

Among these, arises from The European

Telecommunications Standards Institute (ETSI) a promising

standard for M2M communications. The ETSI M2M

provides in particular a standardized framework for

interoperable M2M Services. As most of its peer, this

standard does not, however, address the issue of dynamic

reconfiguration or provide a suitable model for the

reasoning required to build self-managed M2M

architectures. In our paper, we propose a graph-based

approach built on top of the ETSI standard, including rules

for reconfiguration management, to enforce self-

management properties of M2M communications.

Keywords-autonomic computing; dynamic

reconfiguration; graph model; ETSI M2M Architecture

I. INTRODUCTION

During the last years, the exponential expansion of
wireless communications devices and the ubiquity of
wireless communications networks have convey to the
emanation of wireless Machine-to-Machine (M2M)
communications as the most promising solutions to
revolutionize the future “intelligent” pervasive
communications [1].

Intrinsically, M2M systems are evolution prone as
applications are stopped and started; machines discovered
and shut down, etc. As most of its peer, the ETSI standard
focuses on protocols and communications. It does not
address the issue of dynamic reconfiguration or provide a
suitable model for the reasoning required to build self-
managed M2M architectures. These considerations belong
to the field of dynamic software architectures enabling
adaptation in autonomic distributed systems, coping with
new requirements, new environments, and failures. We
propose in this paper a formal, component-based, bi-
layered framework for modelling M2M systems. Our
approach relies on a graph-based layer defined on the top
of the ETSI standard. This is suitable for reasoning and
handling dynamism of the corresponding system
behavioural properties. We propose as well generic
policies of reconfiguration, relying on graph rewriting, to
enforce self-management properties.

The remainder of the paper is organized as follow:
Section 2 introduces a state of the art of approaches for the
description of dynamic software architectures. Section 3
introduces the approach we propose which relies on a
functional and formal layer. Finally, Section 4 concludes.

II. RELATED WORKS

The description of evolving architectures cannot be

limited to the specification of a unique static topology but

must cover the scope of all the correct configurations.

This scope characterizes an architectural style, qualifying

what is correct and what is not. Naturally, once this

distinction made, the question of specification of the

modifications themselves arise.

Model-based approaches, proposing general-purpose

modelling languages, allow handling dynamism and

particularly the definition of reconfiguration rules

managing the evolution on an application in run-time.

They provide very intuitive and visual formal or semi-

formal description of structural properties [4]. For

example, designing and describing software models using

UML [5] is a common practice in the software industry,

providing a standardized definition of system structure

and terminology, as well as facilitating a more consistent

and broader understanding of the architecture [6].

Nevertheless the generic fitness of model-based

approaches implies a poor means of describing specific

issues like behavioural properties. Therefore, they are

often coupled with description using architecture

description languages [7], mapping the concepts of

architecture description languages into the visual notation

of UML, or other formalism [8].

Among these formalisms, graph-based methods for

software modelling are appropriate for conceiving correct

by design frameworks, as theoretical work in this field

provides formal means to specify and check structural

constraints and properties [9, 10]. Within this kind of

approaches, some methods are restricted to the usage of

type graphs alone [11] and suffer from a lack of

expressiveness. Other works [12] are based on graph

grammar, or graph rewriting system, and techniques.

Graph grammars are appropriate for formal modelling

dynamic structures and software architectures, and are

used to specify architectural style where a graph

represents a configuration. Graph rewriting rules of a

graph rewriting system have two distinct values. They are

suitable for both the characterization of an architectural

style as part of a rewriting system and the specification of

consistency preserving reconfiguration rules.

III. THE BI-LAYERED APPROACH

This section describes the approach we propose, and

particularly its layers: the functional and the formal ones.

We point out that we are interested in a subset of

functional properties required to enforce the management

mechanisms we aim. Communication between these two

layers is bi-directional. Indeed, when events, such as the

discovery of a new device, arise on the functional layer,

the formal layer is involved to perform reasoning and

decision-making. On the other hand, whenever an action

is applied consequently to a decision in the formal layer,

the implication must be impacted on the functional part,

such as the effective deployment of entities in the “real”

world and the necessary calls for registration or

announcement on the functional layer. These bi-

directional updates ensure the coherence between the two

layers.

A. Functional layer based on the ETSI standard

The cost of development, maintenance and research in
M2M systems is increasing. To meet these challenges, the
standardization is a key enabler to remove the technical
barriers and ensures interoperable M2M services and
networks. Many standards bodies are moving rapidly to
support M2M communications requirements. They are
working in defining architecture and service standards for
M2M applications.

The European Telecommunications Standards Institute

(ETSI) [2] has developed an end-to-end architecture for

machine-to-machine communications. The ETSI

standards [3] facilitate the deployment of vertical

applications and the innovation across industries by

exposing data and providing services. For these reasons,

we have chosen the ETSI specification as a reference to

model M2M systems.

ETSI has divided M2M systems into three domains:

 Application domain: it runs the service logic and

uses M2M services capabilities accessible via an

open interface. The application data is referred as

resources. Resources are defined in a tree structure

and handled with the RESTful style of data

exchange.

 Network domain: it is a network technology

providing connectivity between M2M devices

(appliance, router, gateway, etc.).

 M2M device domain: it includes data end points

such as sensors, smart meters, microprocessors, etc.

In M2M systems, data come from a large number of

devices and are exchanged between various entities

(applications) through Data Containers. These containers

are used as a mediator that takes care of buffering the

data. They make the exchange abstracted from the need to

set direct connections and allow for scenarios where both

parties in the exchange are not online at the same time. To

accomplish the interaction between the distributed

applications and devices (sensors, gateways, etc), the

registration and the announcement of resources must be

fulfilled.

B. Formal layer

Before discussing the approach we propose, we first

introduce general concepts related to graph rewriting

systems.

1) Graph rewriting rule and graph rewriting systems

A configuration of a system captures its state at a

given time. A configuration can be modelled using

attributed graphs, whose vertices specify entities (e.g.,

devices, applications, containers), and edges represent

theirs relationships (e.g. deployment, writing, etc.).

Definition 1: (Attributed Graph)

An attributed graph G is defined by the tuple (V, E,

ATT) where:

 V is a set of vertices

 E ⊆ V2 is a set of edges

 ATT is a family of sets indexed by V ∪ E. A

set of this family is a sequence of couple (A,

DA) where A is either a constant in DA, noted

“A”, or a variable, noted A, that may take any

value in DA.

An architectural style can be formalized using a graph

rewriting system or graph grammar. The production rules

of such systems require identifying sub-structures by the

mean of morphisms. An unattributed induced sub-graph

isomorphism between two graphs is defined as a

homomorphism from the set of vertices of the first one to

the set of vertices of the second so that if there is an edge

between two vertices of the first one; there is an edge

between their images in the second one and reciprocally

[9].

Definition 2: (Induced sub-graph isomorphism)

There is an induced sub-graph isomorphism i between

two attributed graphs G= (V, E, ATT) and G’= (V’, E’,

ATT’), denoted G →G’, if and only if there is an

unattributed induced sub-graph isomorphism from (V, E)

to (V’, E’) such as:

 ∀ v ∊ V (resp ∀ e =(,) ∊ E
2
), |ATTv| = |ATTh(v)|

(resp. |ATTe| = |ATTh(), h()|), (1)

 ∀ v ∊ V (resp ∀ e =(,) ∊ E
2
), ∀ i ∊ [1, |ATTv|] ,

D
i
v = D

i
h(v), (2)

 The system of equations S = {A = A’ | (∃ v ∊ V,

∃ i ∊ [1, |ATTv|], A = A
i
v ∧ A’ = A

i
h(v)) ∨

(∃e =(,) ∊ E, ∃ i ∊ [1, |ATTe|], A = A
i
e ∧ A’ =

A
i
h(, h()))} has at least one solution. (3)

Solving the system of equations S results in

identifying the value of some attributes with some

constants in their domains of definitions and/or with the

value of some other attributes. Integrating the affectation

obtained by solving the systems refers to the update of the

value of the attribute to reflect these identifications, see

[13] for more information about these integrations. For

genericness sake, we define the following super-patterns.

Definition 3: (Super-pattern)

A super pattern is one of the following elements:

 a vertex whose only attribute is “any”, its domain

of definition begin of no interest. Its attributes do

not take part in the conditions (1), (2) or (3). It is

only relevant in the phase where an unattributed

sub-graph isomorphism is looked for.

 an attribute taking value in a subset of its domain

of definition, materialized by enumerating the

possibility, e.g. (“a” or “b”, {“a”, “b”, “c”}).

Such an attribute impacts the condition (3) by

adding a constraint on the system of equation S.

The characterization of graph rewriting rules used in

this paper is based on the Double PushOut [9] approach.

Definition 4: (Graph rewriting rule)

A graph rewriting rule is a triplet (L, K, R) where L

and R are two graphs, and K -called the Inv zone- is a

sub-graph of both L and R. L\K is called the Del zone and

R\K is called the Add zone. A rule is applicable on a

graph G if there is an induced sub-graph isomorphism i: L

→G and its application does not lead to the apparition of

any dangling edge. Its application consists in erasing

(L\K) and adding an isomorph copy of R\K integrating the

affectation obtained by solving the system of equations

related to i.

In this paper, graph rewriting rules are illustrated

using the delta representation, where only one graph is

considered. This graph is visually partitioned into three

zones, from left to right the Del, Inv and Add zones.

Figure 1: an example of graph transformation

Figure 1 offers an example of how transformation is

handled in the previously defined approach as well as an

illustration of the delta representation. To lighten the

figure, the attributes of the edges have not been

represented and will be all considered equals. The Del

zone, for example, is composed by one vertex noted 3’

and two edges (1’, 3’) and (3’, 2’). Concerning its

applicability, considering that there exists an induced sub-

graph isomorphism iso such as L → G1 such as ∀ v ∊ VG1 \

iso(VK), ∀ ’ ∊ VL \ VK, (v, iso(v’)) ∉ EG1 ∧ (iso(v’), v) ∉
EG1, the deletion of the graph identified with Del through

iso would not lead to the apparition of any dangling edge.

The transformation R can be applied to G1 with the

matching iso. The image of the Del zone is removed and

an isomorph copy of the Add zone is then added.

Inspired from Chomsky’s generative grammars [14],

graph grammars are defined as follows.

Definition 5: (Graph grammar)

A graph grammar is a system <AX; NT; T; P>, where

AX is the axiom, NT the set of the non-terminal vertices, T

the set of terminal vertices, and P is the set of graph

rewriting rules, also called grammars productions. An

instance belonging to the graph grammar is a graph G

obtained by applying a sequence of productions in P to

AX so that there is no nt∊NT such as nt→ G.

2) Characterization of the formal layer using Graph

Rewriting systems

The formal layer built to reason and manage actual

M2M applications is composed by a generic graph

grammar. Said applications are instances of the ETSI

standard for M2M architecture. In a similar fashion,

management of actual M2M architectures shall rely on

instances of the meta-graph grammar.

For conciseness, the information considered here are

restricted to:

 The deployed devices, the kind of applications

they may run, and whether they are announced or

not. When two devices “see each other”, i.e. they

are announced to one another, the propagation

delay due to the physical network through which

they communicate.

 The deployed containers, on which device, and

whether they are registered or announced.

 The deployed applications, on which device, their

type, whether they are registered or announced,

and the containers they currently use.

Consequently, the generic graph grammar is <AX, Ø,

T, P> where:

T = {N((id,Id),(deviceType, {“Network”, “Gateway”,

“ETSIdevice”}), (runnableAppli, appliTypes)), N((id,Id)),

N((id,Id),(appliType, appliTypes))} and

P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}. For

readability sake and considering that there is no ambiguity

on domains of definition, they are implicit in the

following. Only the most representative productions are

defined and graphically represented.

The production p1, illustrated in figure 2, describes the

initialization and the deployment of the “Network” node.

The addition of a device, managed by the rule p2, is

similar and can be done at any time.

Figure 2: (p1) Initialization

The rule p3 illustrated in figure 3 formalizes the

addition and the registration of an application. The rule p4

modelling the deployment and registration of a container

is similar and thus no represented.

Figure 3: (p3) Application: addition and registration

The rule p5 presented in the figure 4 depicts the

announcement of a device to the network or a gateway.

Figure 4: (p5) Announcement of a device

The announcement of an application or a container

requires the device it is deployed on to be announced as

shown by the production p6 depicted in figure 5.

Figure 5: (p6) Announcement of an application or a

container

An application may use a container, i.e. reads and/ or

writes on it, if one of the following conditions is met:

 Both are deployed on the same device, as

described by the production p7.

 The container is on an entity on which the

application is announced, p8 illustrated in figure 6.

 The application is running on an entity on which

the container is announced, p9.

Figure 6: (p8) An application uses a distant container

Considering this meta-graph rewriting system, when a

new device on the functional layer is discovered, it

triggers the application of the production p2 with the ad-

hoc attributes followed by p3 and p4 as many time as

necessary, i.e. once by respectively applications and

containers registered on the discovered device. Decisions

making in the formal layer and generic algorithms for

enforcing self-managed policies are presented in the next

section.

IV. Enforcement of self-management policies

We now suppose the existence of a monitoring and/or

an analysing routine able to throw the following events:

 there is less than x% of battery left on a device d,

 a container c has been accessed more than x times

by distant applications in an interval of time t,

 an application of a certain type is needed to be

seen from a device d.

Each event triggers an algorithm as described below.

These algorithms use graph rewriting rules connected to

the production of the meta-grammar. Actually, the

application of most of them is equivalent to the

application of a production or a sequence of productions

of the grammar. They only differ in their applicability

conditions by requiring larger patterns to be found. The

suppression of a container forms a notable exception, and

is based on the reversibility of productions. These facts

ensure that the system stays in a state buildable with a

sequence of productions, and thus the correctness of the

reconfigurations. The graph representing the formal layer

when an event is thrown is noted G = (V, E, ATT).

When “a container c has been accessed more than x

times by distant applications in an interval of time t”,

it should be moved to the network in order not to saturate

the communication channel of the device where c is

deployed. Every application that reads and/or writes on c

is redirected to the corresponding container. These actions

are described in the algorithm migrate(idC, idD), where

idC is the identifier of c and idD the identifier of the

device where the new container shall be deployed, in this

case the Network.

migrate(idC, idD)

createNannounce(idC, idD)
for each induced sub-graph isomorphism i : Lredirect(idc)

→ G

apply graph rewriting rule redirect(idc, idNewC)
w.r.t. i

update the resource tree of the application

identified by i
apply graph rewriting rule destroy(idC)

update the resource tree of the device where c used to be

deployed.

With createNannounce(idC, idD) being the process

creating a new container on the device identified by idD,

and making every announcement so that each application

using the container identified by idC may use the new

container.
createNannounce(idC, idD)

apply graph rewriting rule p4 with id fixed idD

idNewC ← id’, the id of the new container

for each induced sub-graph isomorphism i : LannounceD(idC,

idNewC) → G
apply graph rewriting rule announceD(idc,

idNewC) w.r.t. i

update the resource tree of the device identified
by i and the Network resource tree

 apply graph rewriting rule p6 with the isomorphism

associating the super vertex with the new container.
 Deploy the corresponding container and update the resource

trees.

where redirect(idC,idNewC), destroy(idc), and

announceD(idC,idNewC) are defined respectively in

figure 7, 8 and 9. Note that the uniqueness of the induced

sub-graph isomorphism, with regard to which p4, p6,

duplicate(idC, idNewC) and destroy(idC) are applied, is

ensured by the uniqueness of the identifier of the

container.

Figure 7: Redirection of an input and/ or output of an

application

Figure 8: Suppression of the original container

Figure 9: Announcement of a device on which an

application to be redirected is deployed

The case where “there is less than x% of battery left

on a device d”, may lead to the loss of data in the

containers deployed on the device d whenever it will shut

down due to an empty battery. In order to prevent this

loss, each container deployed on d is moved elsewhere

and every application that reads and/ or writes on a

migrated container is redirected to the corresponding

container, as conducted by the process backup(idD).
backup(idD)

for each induced sub-graph isomorphism i : G’(idD) → G
idC← the identifier of the container associated with id

through i.

idTargD ← findSuitableDevice(idC)
migrate(idC, idTargD)

With G’ being nothing more than a container deployed

on device. findSuitableDevice is introduced at the end of

this subsection.

Finally, we consider also the case where “an

application of a certain type is needed to be seen from

a device d”. In this context, the first thing to do is to look

for such an application and conduct the required

announcements. If there is none, such an application shall

be started on a device that can run this kind of application.

If there is none, such a device shall be deployed. Finally

the required announcements are conducted.
lookup(type)

if there is no induced sub-graph isomorphism i : ({N((id,Id), (type,

applicationTypes))}, Ø;}) → G
if p3 is not applicable to G with appli being fixed to type

apply p2 to G with runnableAppli fixed to type

apply p3 to G with appli fixed to type
idA← the attribute identified with id through I or the identifier of the new

application

if applicable to G apply announceDevice(idA, idD)
apply announceApp(idA, idD) to G

Where announceDevice(idA, idD) and

announceApp(idA, idD) are respectively defined in

figures 10 and 11.

Figure 10: Required announcement of the device

Figure 11: Required announcement of the application

The function findSuitableDevice(idC) returns the

identifier of the device on which a container c will be

deployed in order to replace or reinforce the container c

identified by idC. This implies that each application using

c will use c . We consider that the suitable device is the

one minimizing the sum of the transmission delays from

each application to said device. Besides, the potential

targeted devices are restricted to the ones on which an

application using c is deployed except the one where c is

deployed, plus the network. Said set can be constructed by

looking for induced sub-graph isomorphisms from Rp9,

Rp10, and Rp11 to G. It is supposed to be known and noted

potential(idC), while potential_id(idC) qualifies its set of

identifiers. To compute the transmission delays, we rely

on Floyd-Warshall, a well-known algorithm of graph

theory solving the all-pair shortest paths, with edges

weighted by their attributes “delay”. The function FW(G)

takes a graph G and returns a function shortest,

shortest(id1, id2) being the weight of the shortest path

from the vertex identified by id1 to the one identified by

id2. If there is no such path, the weight is infinite.
findSuitableDevice(idC)

searchGraph ← the sub-graph of G induced by potential(idC)
shortest←FW(searchGraph)

for each i ∊ potential_id(idC)

sumFrom(i)←Σid∊potentialD-id\{i} shortest(i, id)

idD← id such as sumFrom(id) = mini∊potentailD_id sumFrom(id)
if sumFrom(idD) is finite return idD

else return idNetwork

IV. CONCLUSION

In this paper, we introduced a bi-layered approach for

modelling and managing M2M architectures. The ETSI

M2M standardization has been chosen to describe

functional properties and guarantee interoperability

between machines. On top of this description, we defined

a graph-based generic framework ad-hoc for reasoning

and handling the inherent dynamism of M2M

architectures. Additionally, we have shown how this

formalism may be used to enforce correct generic self-

management policies of reconfiguration by defining

scenarii and procedures affecting both layers to cope with

new requirements and/or prevent failures. Finally, we

illustrated the appropriateness of graphs and graph

algorithms for decision-making.

As future work, we plan to fully define and enforce

the interactions between layers. Defining a set of

bidirectional actions to be performed depending on graph

evolution, or events arising in the functional layer, would

open the path to a formal proof of inter-consistency and,

therefore, implementation.

REFERENCES

[1] S. Pandey, M-S. Mup, M-H. C, and J W. Hong, “Towards
Management of Machine to Machine Networks,” Network
operations and Management Symposium (APNOMS), 2011 13th
Asia-Pacific, vol., no., pp.1-7, 21-23 Sept. 2011

[2] “ETSI M2M”,
http://www.etsi.org/Website/Technologies/M2M.aspx.

[3] “ETSI M2M functional architecture technical v1.1.1”, report
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/01.01.0
1_60/ts_102690v010101p.pdf

[4] J.S. Bradbury, J.R. Cordy, J. Dingel, M, Werlinger, “A survey of
self-management in dynamic software architecture specifications”,
Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems, WOSS’ 04, ACM, New York, USA, 2004, pp 28-33

[5] OMG, Unified Modeling Language Specification 2.0:
Superstructure, oMG doc. formal/05-07-04 (2005).

[6] P. Selonen, J. Xu, “Validating uml models against architectural
profiles”, SIGSOFT Softw. Eng. Notes 28 (2003) 58–67.
doi:http://doi.acm.org/10.1145/949952.940081. URL
http://doi.acm.org/10.1145/949952.940081

[7] L. Broto, D. Hagimont, P. Stolf, N. de Palma, S. Temate,
Autonomic management policy specification in tune, in: ACM
Symposium on Applied Computing, Fortaleza, Ceara, Brazil, 2008,
pp. 1658–1663.

[8] I. Loulou, A. H. Kacem, M. Jmaiel, K. Drira, Towards a unified
graphbased framework for dynamic component-based architectures
description in z, Pervasive Services, IEEE/ACS International
Conference on 0
(2004)227234.doi:http://doi.ieeecomputersociety.org/10.1109/PER
SER.2004.33.

[9] G. Rozenberg (Ed.), Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations,
World Scientific, 1997.

[10] R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, A. Lluch Lafuente,
Graphbased design and analysis of dynamic software architectures,
in: P. Degano, R. Nicola, J. Meseguer (Eds.), Concurrency, Graphs
and Models, Vol. 5065 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2008 pp. 37–56. doi:10.1007/978-3-
540-68679-8 4. URL http://dx.doi.org/10.1007/978-3-540-68679-8
4

[11] M. Wermelinger, J. L. Fiadeiro, A graph transformation approach
to software architecture reconfiguration, in: Joint
APPLIGRAPH/GETGRATSWorkshop on Graph Transformation
Systems (GraTra2000, 2000, pp. 200–0).

[12] D. Hirsch, P. Inverardi, U. Montanari, Modeling Software
Architectures and Styles with Graph Grammars and Constraint
Solving, in: P.Donohoe (Ed.), Software Architecture (TC2 1st
Working IFIP Conf. on Software Architecture, WICSA1), Kluwer,
San Antonio, Texas, USA, 1999, pp. 127–143.

[13] C. Chassot, K. Guennoun, K. Drira, F. Armando, E. Exposito, A.
Lozes, Towards autonomous management of qos through model-
driven adaptability in communication-centric systems, ITSSA 2 (3)
(2006) 255–264.

[14] N. Chomsky, Three models for the description of language,
Information Theory, IEEE Transactions on 2 (3) (1956) 113–124.
URL http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1056813

http://www.etsi.org/Website/Technologies/M2M.aspx
http://doi.acm.org/10.1145/949952.940081

