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Abstract— Machine-to-Machine communications comprise a 

large number of intelligent devices sharing information and 

making cooperative decisions without any human 

intervention. To support M2M requirements and 

applications which are in perpetual evolution, many 

standards are designed, updated and rendered obsolete. 

Among these, arises from The European 

Telecommunications Standards Institute (ETSI) a promising 

standard for M2M communications. The ETSI M2M 

provides in particular a standardized framework for 

interoperable M2M Services. As most of its peer, this 

standard does not, however, address the issue of dynamic 

reconfiguration or provide a suitable model for the 

reasoning required to build self-managed M2M 

architectures. In our paper, we propose a graph-based 

approach built on top of the ETSI standard, including rules 

for reconfiguration management, to enforce self-

management properties of M2M communications.   
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I.  INTRODUCTION 

During the last years, the exponential expansion of 
wireless communications devices and the ubiquity of 
wireless communications networks have convey to the 
emanation of wireless Machine-to-Machine (M2M) 
communications as the most promising solutions to 
revolutionize the future “intelligent” pervasive 
communications [1].   

Intrinsically, M2M systems are evolution prone as 
applications are stopped and started; machines discovered 
and shut down, etc. As most of its peer, the ETSI standard 
focuses on protocols and communications. It does not 
address the issue of dynamic reconfiguration or provide a 
suitable model for the reasoning required to build self-
managed M2M architectures. These considerations belong 
to the field of dynamic software architectures enabling 
adaptation in autonomic distributed systems, coping with 
new requirements, new environments, and failures. We 
propose in this paper a formal, component-based, bi-
layered framework for modelling M2M systems. Our 
approach relies on a graph-based layer defined on the top 
of the ETSI standard. This is suitable for reasoning and 
handling dynamism of the corresponding system 
behavioural properties. We propose as well generic 
policies of reconfiguration, relying on graph rewriting, to 
enforce self-management properties. 

The remainder of the paper is organized as follow: 
Section 2 introduces a state of the art of approaches for the 
description of dynamic software architectures. Section 3 
introduces the approach we propose which relies on a 
functional and formal layer. Finally, Section 4 concludes.  

II. RELATED WORKS  

The description of evolving architectures cannot be 

limited to the specification of a unique static topology but 

must cover the scope of all the correct configurations. 

This scope characterizes an architectural style, qualifying 

what is correct and what is not. Naturally, once this 

distinction made, the question of specification of the 

modifications themselves arise.  

Model-based approaches, proposing general-purpose 

modelling languages, allow handling dynamism and 

particularly the definition of reconfiguration rules 

managing the evolution on an application in run-time. 

They provide very intuitive and visual formal or semi-

formal description of structural properties [4]. For 

example, designing and describing software models using 

UML [5] is a common practice in the software industry, 

providing a standardized definition of system structure 

and terminology, as well as facilitating a more consistent 

and broader understanding of the architecture [6]. 

Nevertheless the generic fitness of model-based 

approaches implies a poor means of describing specific 

issues like behavioural properties. Therefore, they are 

often coupled with description using architecture 

description languages [7], mapping the concepts of 

architecture description languages into the visual notation 

of UML, or other formalism [8]. 

Among these formalisms, graph-based methods for 

software modelling are appropriate for conceiving correct 

by design frameworks, as theoretical work in this field 

provides formal means to specify and check structural 

constraints and properties [9, 10]. Within this kind of 

approaches, some methods are restricted to the usage of 

type graphs alone [11] and suffer from a lack of 

expressiveness. Other works [12] are based on graph 

grammar, or graph rewriting system, and techniques. 

Graph grammars are appropriate for formal modelling 

dynamic structures and software architectures, and are 

used to specify architectural style where a graph 

represents a configuration. Graph rewriting rules of a 



graph rewriting system have two distinct values. They are 

suitable for both the characterization of an architectural 

style as part of a rewriting system and the specification of 

consistency preserving reconfiguration rules.  

III. THE BI-LAYERED APPROACH 

This section describes the approach we propose, and 

particularly its layers: the functional and the formal ones. 

We point out that we are interested in a subset of 

functional properties required to enforce the management 

mechanisms we aim. Communication between these two 

layers is bi-directional. Indeed, when events, such as the 

discovery of a new device, arise on the functional layer, 

the formal layer is involved to perform reasoning and 

decision-making. On the other hand, whenever an action 

is applied consequently to a decision in the formal layer, 

the implication must be impacted on the functional part, 

such as the effective deployment of entities in the “real” 

world and the necessary calls for registration or 

announcement on the functional layer. These bi-

directional updates ensure the coherence between the two 

layers. 

A. Functional layer based on the ETSI standard 

The cost of development, maintenance and research in 
M2M systems is increasing. To meet these challenges, the 
standardization is a key enabler to remove the technical 
barriers and ensures interoperable M2M services and 
networks. Many standards bodies are moving rapidly to 
support M2M communications requirements. They are 
working in defining architecture and service standards for 
M2M applications.  

The European Telecommunications Standards Institute 

(ETSI) [2] has developed an end-to-end architecture for 

machine-to-machine communications. The ETSI 

standards [3] facilitate the deployment of vertical 

applications and the innovation across industries by 

exposing data and providing services. For these reasons, 

we have chosen the ETSI specification as a reference to 

model M2M systems. 

ETSI has divided M2M systems into three domains:  

 Application domain: it runs the service logic and 

uses M2M services capabilities accessible via an 

open interface. The application data is referred as 

resources. Resources are defined in a tree structure 

and handled with the RESTful style of data 

exchange. 

 Network domain: it is a network technology 

providing connectivity between M2M devices 

(appliance, router, gateway, etc.).  

 M2M device domain: it includes data end points 

such as sensors, smart meters, microprocessors, etc. 

In M2M systems, data come from a large number of 

devices and are exchanged between various entities 

(applications) through Data Containers. These containers 

are used as a mediator that takes care of buffering the 

data. They make the exchange abstracted from the need to 

set direct connections and allow for scenarios where both 

parties in the exchange are not online at the same time. To 

accomplish the interaction between the distributed 

applications and devices (sensors, gateways, etc), the 

registration and the announcement of resources must be 

fulfilled.  

B. Formal layer 

Before discussing the approach we propose, we first 

introduce general concepts related to graph rewriting 

systems. 

1) Graph rewriting rule and graph rewriting systems  

A configuration of a system captures its state at a 

given time. A configuration can be modelled using 

attributed graphs, whose vertices specify entities (e.g., 

devices, applications, containers), and edges represent 

theirs relationships (e.g. deployment, writing, etc.). 

Definition 1: (Attributed Graph)  

An attributed graph G is defined by the tuple (V, E, 

ATT) where:  

 V is a set of vertices 

  E ⊆ V2 is a set of edges 

 ATT is a family of sets indexed by V ∪ E. A 

set of this family is a sequence of couple (A, 

DA) where A is either a constant in DA, noted 

“A”, or a variable, noted A, that may take any 

value in DA. 

An architectural style can be formalized using a graph 

rewriting system or graph grammar. The production rules  

of such systems require identifying sub-structures by the 

mean of morphisms. An unattributed induced sub-graph 

isomorphism between two graphs is defined as a 

homomorphism from the set of vertices of the first one to 

the set of vertices of the second so that if there is an edge 

between two vertices of the first one; there is an edge 

between their images in the second one and reciprocally 

[9].  

Definition 2: (Induced sub-graph isomorphism) 

There is an induced sub-graph isomorphism i between 

two attributed graphs G= (V, E, ATT) and G’= (V’, E’, 

ATT’), denoted G →G’, if and only if there is an 

unattributed induced sub-graph isomorphism from (V, E) 

to (V’, E’) such as:  

 ∀ v ∊ V (resp ∀ e =(  ,   ) ∊ E
2
), |ATTv| = |ATTh(v)| 

(resp. |ATTe| = |ATTh(  ), h(  )|), (1) 

 ∀ v ∊ V (resp ∀ e =(  ,   ) ∊ E
2
), ∀ i ∊ [1, |ATTv|] , 

D
i
v = D

i
h(v), (2) 

 The system of equations S = {A = A’ | (∃ v ∊ V,  

∃ i ∊ [1, |ATTv|], A = A
i
v  ∧ A’ = A

i 
h(v)) ∨ 

(∃e =(  ,   ) ∊ E, ∃ i ∊ [1, |ATTe|], A = A
i
e  ∧ A’ = 

A
i
h(  , h(  )) )} has at least one solution. (3)  

Solving the system of equations S results in 

identifying the value of some attributes with some 

constants in their domains of definitions and/or with the 

value of some other attributes. Integrating the affectation 



obtained by solving the systems refers to the update of the 

value of the attribute to reflect these identifications, see 

[13] for more information about these integrations. For 

genericness sake, we define the following super-patterns. 

Definition 3: (Super-pattern) 

A super pattern is one of the following elements: 

 a vertex whose only attribute is “any”, its domain 

of definition begin of no interest. Its attributes do 

not take part in the conditions (1), (2) or (3). It is 

only relevant in the phase where an unattributed 

sub-graph isomorphism is looked for. 

 an attribute taking value in a subset of its domain 

of definition, materialized by enumerating the 

possibility, e.g. (“a” or “b”, {“a”, “b”, “c”}). 

Such an attribute impacts the condition (3) by 

adding a constraint on the system of equation S. 

The characterization of graph rewriting rules used in 

this paper is based on the Double PushOut  [9] approach.  

Definition 4: (Graph rewriting rule) 

A graph rewriting rule is a triplet (L, K, R) where L 

and R are two graphs, and K -called the Inv zone- is a 

sub-graph of both L and R. L\K is called the Del zone and 

R\K is called the Add zone. A rule is applicable on a 

graph G if there is an induced sub-graph isomorphism i: L 

→G and its application does not lead to the apparition of 

any dangling edge. Its application consists in erasing 

(L\K) and adding an isomorph copy of R\K integrating the 

affectation obtained by solving the system of equations 

related to i.  

In this paper, graph rewriting rules are illustrated 

using the delta representation, where only one graph is 

considered. This graph is visually partitioned into three 

zones, from left to right the Del, Inv and Add zones.    

 
Figure 1: an example of graph transformation 

Figure 1 offers an example of how transformation is 

handled in the previously defined approach as well as an 

illustration of the delta representation. To lighten the 

figure, the attributes of the edges have not been 

represented and will be all considered equals. The Del 

zone, for example, is composed by one vertex noted 3’ 

and two edges (1’, 3’) and (3’, 2’). Concerning its 

applicability, considering that there exists an induced sub-

graph isomorphism iso such as L → G1 such as ∀ v ∊ VG1 \ 

iso(VK), ∀  ’ ∊ VL \ VK, (v, iso(v’)) ∉ EG1  ∧ (iso(v’), v) ∉ 
EG1, the deletion of the graph identified with Del through 

iso would not lead to the apparition of any dangling edge. 

The transformation R can be applied to G1 with the 

matching iso. The image of  the Del zone is removed and 

an isomorph copy of the Add zone is then added.  

Inspired from Chomsky’s generative grammars [14], 

graph grammars are defined as follows. 

Definition 5: (Graph grammar) 

A graph grammar is a system <AX; NT; T; P>, where 

AX is the axiom, NT the set of the non-terminal vertices, T 

the set of terminal vertices, and P is the set of graph 

rewriting rules, also called grammars productions. An 

instance belonging to the graph grammar is a graph G 

obtained by applying a sequence of productions in P to 

AX so that there is no nt∊NT such as nt→ G.  

2) Characterization of the formal layer using Graph 

Rewriting systems  

The formal layer built to reason and manage actual 

M2M applications is composed by a generic graph 

grammar. Said applications are instances of the ETSI 

standard for M2M architecture. In a similar fashion, 

management of actual M2M architectures shall rely on 

instances of the meta-graph grammar.  

For conciseness, the information considered here are 

restricted to:  

 The deployed devices, the kind of applications 

they may run, and whether they are announced or 

not. When two devices “see each other”, i.e. they 

are announced to one another, the propagation 

delay due to the physical network through which 

they communicate. 

 The deployed containers, on which device, and 

whether they are registered or announced. 

 The deployed applications, on which device, their 

type, whether they are registered or announced, 

and the containers they currently use.  

Consequently, the generic graph grammar is <AX, Ø, 

T, P> where:  

T = {N((id,Id),(deviceType, {“Network”, “Gateway”, 

“ETSIdevice”}), (runnableAppli, appliTypes)), N((id,Id)), 

N((id,Id),(appliType, appliTypes))} and 

P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}. For 

readability sake and considering that there is no ambiguity 

on domains of definition, they are implicit in the 



following. Only the most representative productions are 

defined and graphically represented. 

The production p1, illustrated in figure 2, describes the 

initialization and the deployment of the “Network” node. 

The addition of a device, managed by the rule p2, is 

similar and can be done at any time. 

 
Figure 2: (p1) Initialization  

 

The rule p3 illustrated in figure 3 formalizes the 

addition and the registration of an application. The rule p4 

modelling the deployment and registration of a container 

is similar and thus no represented. 

 

 
Figure 3: (p3) Application: addition and registration 

The rule p5 presented in the figure 4 depicts the 

announcement of a device to the network or a gateway. 

 
Figure 4: (p5) Announcement of a device 

 

The announcement of an application or a container 

requires the device it is deployed on to be announced as 

shown by the production p6 depicted in figure 5. 

 
Figure 5: (p6) Announcement of an application or a 

container 

An application may use a container, i.e. reads and/ or 

writes on it, if one of the following conditions is met: 

 Both are deployed on the same device, as 

described by the production p7. 

 The container is on an entity on which the 

application is announced, p8 illustrated in figure 6. 

 The application is running on an entity on which 

the container is announced, p9. 

 

  
Figure 6: (p8) An application uses a distant container 

Considering this meta-graph rewriting system, when a 

new device on the functional layer is discovered, it 

triggers the application of the production p2 with the ad-

hoc attributes followed by p3 and p4 as many time as 

necessary, i.e. once by respectively applications and 

containers registered on the discovered device. Decisions 

making in the formal layer and generic algorithms for 

enforcing self-managed policies are presented in the next 

section. 

IV. Enforcement of self-management policies 

We now suppose the existence of a monitoring and/or 

an analysing routine able to throw the following events: 

 there is less than x% of battery left on a device d,  

 a container c has been accessed more than x times 

by distant applications in an interval of time t,  

 an application of a certain type is needed to be 

seen from a device d. 

Each event triggers an algorithm as described below. 

These algorithms use graph rewriting rules connected to 

the production of the meta-grammar. Actually, the 

application of most of them is equivalent to the 

application of a production or a sequence of productions 

of the grammar. They only differ in their applicability 

conditions by requiring larger patterns to be found. The 

suppression of a container forms a notable exception, and 

is based on the reversibility of productions. These facts 

ensure that the system stays in a state buildable with a 

sequence of productions, and thus the correctness of the 

reconfigurations. The graph representing the formal layer 

when an event is thrown is noted G = (V, E, ATT). 

When “a container c has been accessed more than x 

times by distant applications in an interval of time t”, 

it should be moved to the network in order not to saturate 

the communication channel of the device where c is 

deployed. Every application that reads and/or writes on c 

is redirected to the corresponding container. These actions 

are described in the algorithm migrate(idC, idD), where 

idC is the identifier of c and idD the identifier of the 

device where the new container shall be deployed, in this 

case the Network.  



migrate(idC, idD) 

createNannounce(idC, idD) 
for each induced sub-graph isomorphism i : Lredirect(idc) 

→ G 

apply graph rewriting rule redirect(idc, idNewC) 
w.r.t. i 

update the resource tree of the application 

identified by i 
apply graph rewriting rule destroy(idC) 

update the resource tree of the device where c used to be 

deployed. 

With createNannounce(idC, idD) being the process 

creating a new container on the device identified by idD, 

and making every announcement so that each application 

using the container identified by idC may use the new 

container.  
createNannounce(idC, idD) 

apply graph rewriting rule p4 with id fixed idD 

idNewC ← id’, the id of the new container 

for each induced sub-graph isomorphism i : LannounceD(idC, 

idNewC) → G 
apply graph rewriting rule announceD(idc, 

idNewC) w.r.t. i 

update the resource tree of the device identified 
by i and the Network resource tree 

                apply graph rewriting rule p6 with the isomorphism 

associating the super vertex with the new container. 
                Deploy the corresponding container and update the resource 

trees. 

where redirect(idC,idNewC), destroy(idc), and 

announceD(idC,idNewC) are defined respectively in 

figure 7, 8 and 9. Note that the uniqueness of the induced 

sub-graph isomorphism, with regard to which p4, p6, 

duplicate(idC, idNewC) and destroy(idC) are applied, is 

ensured by the uniqueness of the identifier of the 

container. 

 
Figure 7: Redirection of an input and/ or output of an 

application 

 
Figure 8: Suppression of the original container 

 

                                                                                                                                                                                                                                       
Figure 9: Announcement of a device on which an 

application to be redirected is deployed 

The case where “there is less than x% of battery left 

on a device d”, may lead to the loss of data in the 

containers deployed on the device d whenever it will shut 

down due to an empty battery. In order to prevent this 

loss, each container deployed on d is moved elsewhere 

and every application that reads and/ or writes on a 

migrated container is redirected to the corresponding 

container, as conducted by the process backup(idD).  
backup(idD) 

for each induced sub-graph isomorphism i : G’(idD) → G 
idC← the identifier of the container associated with id 

through i. 

idTargD ← findSuitableDevice(idC) 
migrate(idC, idTargD)  

With G’ being nothing more than a container deployed 

on device. findSuitableDevice is introduced at the end of 

this subsection.  

Finally, we consider also the case where “an 

application of a certain type is needed to be seen from 

a device d”. In this context, the first thing to do is to look 

for such an application and conduct the required 

announcements. If there is none, such an application shall 

be started on a device that can run this kind of application. 

If there is none, such a device shall be deployed. Finally 

the required announcements are conducted. 
lookup(type) 

if there is no induced sub-graph isomorphism i : ({N((id,Id), (type, 

applicationTypes))}, Ø;}) → G 
if p3 is not applicable to G with appli being fixed to type 

apply p2 to G with  runnableAppli fixed to type 

apply p3 to G with appli fixed to type  
idA← the attribute identified with id through I or the identifier of the new 

application 

if applicable to G apply announceDevice(idA, idD)  
apply announceApp(idA, idD) to G 

Where announceDevice(idA, idD) and 

announceApp(idA, idD) are respectively defined in 

figures 10 and 11. 

 
Figure 10: Required announcement of the device 



 
Figure 11: Required announcement of the application 

The function findSuitableDevice(idC) returns the 

identifier of the device on which a container c  will be 

deployed in order to replace or reinforce the container c 

identified by idC. This implies that each application using 

c will use c . We consider that the suitable device is the 

one minimizing the sum of the transmission delays from 

each application to said device. Besides, the potential 

targeted devices are restricted to the ones on which an 

application using c is deployed except the one where c is 

deployed, plus the network. Said set can be constructed by 

looking for induced sub-graph isomorphisms from Rp9, 

Rp10, and Rp11 to G. It is supposed to be known and noted 

potential(idC), while potential_id(idC) qualifies its set of 

identifiers. To compute the transmission delays, we rely 

on Floyd-Warshall, a well-known algorithm of graph 

theory solving the all-pair shortest paths, with edges 

weighted by their attributes “delay”.  The function FW(G) 

takes a graph G and returns a function shortest,  

shortest(id1, id2) being the weight of the shortest path 

from the vertex identified by id1 to the one identified by 

id2. If there is no such path, the weight is infinite. 
findSuitableDevice(idC) 

searchGraph ← the sub-graph of G induced by potential(idC) 
shortest←FW(searchGraph) 

for each i ∊ potential_id(idC) 

sumFrom(i)←Σid∊potentialD-id\{i} shortest(i, id) 

idD← id such as sumFrom(id) = mini∊potentailD_id sumFrom(id) 
if sumFrom(idD) is finite return idD 

else return idNetwork 

IV. CONCLUSION 

In this paper, we introduced a bi-layered approach for 

modelling and managing M2M architectures. The ETSI 

M2M standardization has been chosen to describe 

functional properties and guarantee interoperability 

between machines. On top of this description, we defined 

a graph-based generic framework ad-hoc for reasoning 

and handling the inherent dynamism of M2M 

architectures. Additionally, we have shown how this 

formalism may be used to enforce correct generic self-

management policies of reconfiguration by defining 

scenarii and procedures affecting both layers to cope with 

new requirements and/or prevent failures. Finally, we 

illustrated the appropriateness of graphs and graph 

algorithms for decision-making. 

As future work, we plan to fully define and enforce 

the interactions between layers. Defining a set of 

bidirectional actions to be performed depending on graph 

evolution, or events arising in the functional layer, would 

open the path to a formal proof of inter-consistency and, 

therefore, implementation.  
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