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Abstract

The objective of this paper is to evaluate two existing homogenization meth-

ods using a simple damage model for fibrous membrane and compare them. A

macroscopic damage model of a fibrous membrane tissue based on the knowl-

edge of the behavior and fracture process of a single fiber is constructed. Un-

der some simplifying assumptions (linear behavior of the fibers, brittle fibers,

constant angular distribution of the fibers), the evolution of fiber fracture is

described by two macroscopic scalar variables; this enables the tissue’s dam-

age to be modeled without requiring a second discretization at the microscale.

For the homogenization of the fibers contribution, an energetic method and

a kinematic method are adapted and compared. Both lead to similar macro-

scopic behavior in the elastic phase, but the behavior differs in the fracture
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phase of the homogenized material. In the case of biological materials, the

proposed law enables taking into account the often observed phenomena of

crimping and damage of the fibers.

Key words: fibrous membrane tissue, damage, microstructure,

homogenization, biaxial tension

1. Introduction1

The question of the fracture modeling of fibrous tissues arises in many do-2

mains, including composites, papers and biological tissues. In the latter case,3

the large presence of fibrous tissues of different natures in the human body4

lead to an general research effort to explain how the macroscopic behavior5

of those tissues is related to their microstructure, especially in the case of6

non-homogeneous fiber distributions. In terms of modeling, two aspects have7

to be considered : 1) the fibrous nature of the tissue and 2) the evolution8

of damage in the tissue. Several options are proposed in the literature to9

assess the first point. Using invariants to take into account the isotropic or10

anisotropic nature of the fibrous contribution is a first option, introduced in11

(Holzapfel, 2000). This method does not require any further homogenization12

as the invariants already are a macroscopic representation of the fiber orien-13

tations and assumes that the fibers are perfectly aligned along one or several14

directions. If the fibers are distributed around one or several preferred di-15

rections, a statistical distribution of the fibers is generally introduced. From16

there, two options are suggested in the literature: either a structure tensor17

(Gasser et al., 2006) can be used to provide a macroscopic representation of18

the microstructure (the kinematic method) or the individual energetic con-19
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tributions of the fibers are summed up (Lanir, 1983) (the energetic method).20

A more recent option is the microsphere-based approach (Menzel and Waf-21

fenschmidt, 2009; Sáez et al., 2012) which uses spherical units in which the22

homogenization process is conducted. The anisotropy of the tissue is then23

described by associating different weights to the fiber directions. Using a24

limited number of integration directions was proved to be enough to provide25

good accuracy as well as a low computational cost to the two-scale simulation26

of 3D tissues. Another recent feature is the macromolecular network model27

proposed by (Kuhl et al., 2005), based on eight-chain unit cells and which28

can handle fiber reorientation.29

In this paper, the attention is focused on how the fiber distribution is30

taken into account: both the kinematic and energetic methods are adapted31

to the same fibrous tissue model to assess whether and in which domain they32

are equivalent.33

The second point in modeling the fracture of fibrous tissue is the de-34

scription of the damage. In the field of biomechanics, the problem of the35

fracture of fibrous tissues has received only limited attention. Some authors36

model damage continuously using an internal damage variable which is to37

be identified for 1D (Calvo et al., 2007) or 2D tissues (Balzani et al., 2006).38

(Rodŕıguez et al., 2006) introduces a 3D model which also describes dam-39

age continuously, but uses two independent variables for the matrix and the40

fibers. Other papers describe damage in the tissue as the result of fiber41

fracture on the lower scale: (Hurschler et al., 1997) proposes a tendon-and-42

ligament model involving three scales (the fibrils’, the fibers’ and the tis-43

sue’s) and studies the behavior and damage of the tissue in the case of fibers44
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aligned with a single direction. (Liao and Belkoff, 1999) also proposes a45

fracture model of a 1D tissue, but takes into account the initial crimping of46

the fibers. (Gasser and Holzapfel, 2006) models the fracture of arteries by47

dissection, i.e. splitting through the thickness, which constitutes a different48

fracture mode than surface tearing. (Cacho et al., 2007) proposes a damage49

model for a fibrous tissue made of initially crimped fibers. More recently,50

(Sáez et al., 2012) introduced damage in a microsphere model of the blood51

vessel taking into account its initial anisotropy.52

The fibrous tissue modeling in the present paper is similar to that from53

(Cacho et al., 2007). The idea of our model is to describe the evolution of54

the macroscopic damage in a fibrous membrane and therefore of the tissue55

anisotropy during a biaxial strain loading; under simplifying assumptions, it56

will be shown that two scalar variables are sufficient for this purpose. This57

simple model, including some extensions related to biological tissues, is used58

to illustrate the comparison of the two homogenization methods.59

The outline of this paper is the following: the first part presents the60

two homogenization methods adapted to a fibrous membrane model; the61

second part is focused on the description of the simple damage model that we62

propose; the third part illustrates the comparison of the two homogenization63

methods using our damage model; the fourth part presents extensions of the64

damage model to biological phenomena such as damageable fibers and fiber65

crimp, as well as the consequences on the homogenization methods.66
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2. Modeling the tissue fracture67

Let us consider a fibrous membrane and suppose that we know the in-68

fluence of a biaxial tension loading on the fibers breakage. We can proceed69

to homogenize the behavior. Several homogenization methods are available70

in the literature; the most commonly used are the ones described in (Lanir,71

1983) and (Gasser et al., 2006). The first one consists in an energetic ho-72

mogenization of the fibers while the second is based on a kinematic homoge-73

nization. In this paper, these two methods are adapted to the fibrous tissue74

damage problem and compared.75

2.1. General framework76

This section takes up the same general framework as in (Gasser et al.,77

2006). We consider a plane tissue consisting of a matrix and fibers. The78

free energy ψ of the tissue is the sum of the free energy of the matrix ψm79

and the free energy of the fibers ψf . A common way to enforce compress-80

ibility/incompressibility conditions is to split the strain energy of the matrix81

into a volumetric part Um and an isochoric part ψ̄m. It is usually assumed82

that the incompressibility of biological tissues is due to the water content83

of the ground matrix and that the fibers’ contribution is negligible in the84

volumetric part of the free energy. Therefore, it is not necessary to split the85

fibers’ contribution into volumetric and isochoric parts.86

Hence the free energy of the tissue can be written as:87

ψ = ψm + ψf = Um + ψ̄m + ψf (1)
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First we will address the matrix free energy expression; then, we will88

examine two homogenization methods for the contribution of the fibers.89

2.2. Contribution of the matrix90

The volumetric/isochoric decomposition is applied to the gradient of

transformation F, i.e. to the right Cauchy-Green strain tensor C :

F = J
1

3 F̄ (2)

C = J
2

3 C̄ (3)

91

with J = det(F). The cumulative energy decomposition enables the

second Piola-Kirchhoff stress tensor (PK2) to be expressed as:

Sm = 2
∂ψm

∂C
= 2

(

∂Um

∂C
+
∂ψ̄m

∂C

)

= Svol
m + S̄m (4)

92

We set p = ∂Um/∂J ; we also assume that the matrix follows an isotropic,

neo-Hookean behavior expressed by ψ̄m = c
(

trC̄ − 3
)

/2, where c is a mate-

rial parameter. Then:

Svol
m = 2

∂Um

∂C
= 2

∂Um

∂J

∂J

∂C
= pJC−1 (5)

S̄m = 2
∂ψ̄m

∂C
= 2

∂ψ̄m

∂C̄
:
∂C̄

∂C
= J− 2

3 P : cI (6)

with the fourth-order operators P = I−1

3
C−1⊗C and Iijkl = (δikδjl + δilδjk) /2,93

where δij is Kronecker’s symbol.94

Thus, the contribution of the matrix to PK2 tensor becomes:95

Sm = pJC−1 + J− 2

3 P : cI (7)
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2.3. Contribution of the fibers96

2.3.1. The concept of fiber density function97

In order to describe the strain energy in the tissue, we introduce the98

concept of angular fiber density, denoted ρ (ξ). This function defines the99

number of the fibers whose orientation belongs to the interval [ξ, ξ + dξ].100

Before damage occurs, this function is normalized, i.e.:101

1

π

π

2
∫

−π

2

ρ(ξ) dξ =
1

π

∫

A0

ρ(ξ) dξ = 1 (8)

In the case of a homogeneous distribution, i.e. ρ(ξ) = constant, ρ(ξ) =102

1 ∀ξ ∈ A0 = [−π/2, π/2].103

Once damage occurs, the density is a function of damage state D. The104

integration domain evolves and is then denoted A(D). Given this description,105

we can write :106

∫

A0

ρ(ξ,D)dξ =

∫

A(D)

ρ(ξ)dξ (9)

A(D) represents the domain where the fibers are not broken.107

2.3.2. The Energetic (E) homogenization method108

In this method, the strain energy of the fibrous part of the tissue is109

assumed to be the sum of the strain energies of the strained, but undamaged,110

fibers. A fiber subjected to a Green-Lagrange strain field E is strained only111

along its longitudinal axis n(ξ) and its strain energy is φf = φf(εf) i.e.112
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φf(ξ,E), whose expression depends on the constitutive relation of the fiber.113

Therefore, on the tissue’s scale, the free energy ψE
f of the fibers is:114

ψE
f (E,D) =

1

π

∫

A0

ρ(ξ,D)φf(ξ,E) dξ (10)

The expression of stress tensor PK2 is:115

SE
f =

∂ψE
f (E,D)

∂E
=

1

π

∫

A0

ρ(ξ,D)
∂φf (ξ,E)

∂E
dξ (11)

Now let us consider the particular case where the fibers behave linearly116

before damage. The total free energy of the fibrous part of the tissue is:117

ψE
f (E,D) =

1

π

∫

A0

ρ(ξ,D)
1

2
E (M : E)2 dξ (12)

where E is the Young’s modulus of the fiber’s material and M = n(ξ) ⊗118

n(ξ) the orientation tensor (see Section 3). Thus, the expression of stress119

tensor PK2 is:120

SE
f =

E

π

∫

A0

ρ (ξ,D) (M : E)M dξ (13)

Eq. (11) is valid if we suppose that the variation of the integral of the121

density function
∫

A0

ρ(ξ,D) with strain is negligible compared to the vari-122

ation of φf(ξ,E), which is the case for the simple model considered in this123

approach. Therefore only the inner member of the integral is differentiated124

with respect to E.125
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2.3.3. The Kinematic (K) method126

The kinematic method is derived from works described in (Gasser et al.,127

2006), among others. We introduce a generalized second-order structure128

tensor H defined by Eq.(14). This tensor is used as a macroscopic projector129

of the strain tensor onto the structure of the undamaged fibers.130

H =
1

π

∫

A0

ρ(ξ,D)n(ξ) ⊗ n(ξ)dξ (14)

H33 equals zero because the fibers are oriented only perpendicularly to131

Direction 3.132

Thus, the constitutive law is applied to the tissue rather than to its133

constituent fibers, taking the scalar Eh = H : E as the strain value to134

express the macroscopic strain energy ψK
f here in the linear case (Eq.15).135

ψK
f =

1

2
E.E2

h =
1

2
E (H : E)2 (15)

From that expression, we deduce the PK2 tensor corresponding to the K

method:

SK
f =

∂ψK
f

∂E
= E (H : E)H (16)

Once again, the damage variable D and the Green-Lagrange strain tensor E136

are independent variables. So H is not differentiated with respect to E.137

2.4. Association of contributions from the matrix and the fibers138

Let us recall that the total energy of the tissue can be divided into three139

parts (Eq.1) including two from the matrix contribution (Eq.7).140
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Thus, depending on the homogenization method, tensor PK2 has either141

of the two forms:142

SE = pJC−1 + J− 2

3 P : cI +
2E

π

∫

A0

ρ (ξ,D) (M : E)Mdξ (17)

SK = pJC−1 + J− 2

3 P : cI + E (H : E)H (18)

Since the objective is to implement the model into a finite element calcu-143

lation code, the tissue is modeled in 3D and plane stresses; in order to apply144

this condition, we define the Cauchy stress tensor T:145

T = J−1F.S.FT (19)

The components derived from the matrix contribution are:

Tvol
m = pI (20)

T̄m = J− 5

3 c

(

B− 1

3
tr

(

C−1
)

I

)

(21)

where B = F.FT is the left Cauchy-Green tensor. Concerning the contri-146

bution of the fibers, we distinguish the two homogenization methods:147

TE
f = J−1F.SE

f .F
T =

2E

Jπ
F.

∫

A0

ρ (ξ,D) (M : E)Mdξ.FT (22)

TK
f = J−1F.SE

f .F
T =

E

J
(H : E)F.H.FT (23)
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We can notice that the fibrous contribution to the overall tissue does148

not create a Cauchy stress components out of the plane; this is due to the149

formulation of the fiber density function and to the fact that we do not150

split the fibrous contribution into a volumetric component and an isochoric151

component.152

The plane stress condition is expressed by:153

T33 = p+ J− 5

3 c

(

λ2
3 −

1

3

(

λ2
1 + λ2

2 + λ2
3

)

)

= 0 (24)

We can observe that this equation involves p, the material characteristics154

of the matrix and the components λi of the deformation gradient tensor.155

Here, as is commonly assumed for soft biological tissues, the matrix is con-156

sidered to be incompressible. In this case, the strain component across the157

thickness is defined by Eq.(25) and p is a Lagrange multiplier determined by158

the plane stress condition (Eq.26).159

J = 1 ⇔ λ3 =
1

λ1λ2
(25)

p = −c
3

(

2

λ2
1λ

2
2

− λ2
1 − λ2

2

)

(26)

The two homogenization methods have been described; the next section160

presents the damage model that was constructed to compare them.161

3. A simple kinematic fracturing fiber model162

In this section, we propose a simple model to describe the evolution of163

the macroscopic damage of a plane fibrous tissue subjected to biaxial tension164
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loading, which is assumed to be the result of fiber breakage on the microscale.165

The two objectives of this section are first, to build a damage evolution law166

for the macroscale damage, taking into account its anisotropic nature due167

to the microscale phenomena; second, to compare the two homogenization168

methods presented in the previous section.169

The underlying assumptions of this section are the following:170

• the fibers are rectilinear, linear elastic, and brittle;171

• prior to damage, the angular distribution function of the fibers is172

known, continuous and nonzero;173

• the phenomenon of fiber reorientation during loading is neglected ;174

• the principal directions of the biaxial strain loading do not change.175

The third assumption relies on the conclusions of Sacks and Gloeckner176

(1999), which observed that the closer the loading to equibiaxiality, the lesser177

the reorientation of the fibers. Therefore, in the framework of the present178

study which focuses on biaxial loading, it appears acceptable to ignore fiber179

reorientation.180

This model is academic. It is designed to produce clear conclusions when181

the two homogenization methods proposed in the previous section are com-182

pared. It can be extended using a two scale approach to more realistic situ-183

ations as uncrimping, damage, non isotropic fiber orientations: the price to184

pay to these extensions is a larger number of internal variables to describe185

the small scale state.186
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3.1. Parameterization of the problem187

Let us consider a plane fibrous tissue. In the material plane (Xm,Ym,Zm),188

the direction of a fiber is characterized by the angle ξ ∈ [−π/2, π/2] and its189

initial direction vector n defined by:190

n = cos ξ Xm + sin ξ Ym (27)

The tissue is subjected to a biaxial strain characterized by the macro-191

scopic Green-Lagrange strain tensor E described in Cartesian coordinates192

by:193

E = εrk (cosϕ Xm ⊗ Xm + sinϕ Ym ⊗ Ym) (28)

= E1Xm ⊗ Xm + E2Ym ⊗Ym (29)

194

where εr is the ultimate longitudinal strain of the fibers. ϕ is the loading195

angle. From here on, we will assume that ϕ ∈ [0, π/2] and k ≥ 0, which196

implies strict biaxial tension.197

The fibers constituting the tissue are uniaxial elements which can with-198

stand only solicitations along their axis. The longitudinal Green strain εf of199

a fiber oriented along an angle ξ is defined by:200

εf = n(ξ).E.n(ξ) = kεr

(

cosϕ. cos2 ξ + sinϕ sin2 ξ
)

(30)

We can observe that for ϕ = π
4

all the fibers are solicited equally; then,201

their longitudinal strain is εf = kεr√
2
. Also, differentiating ϕ with respect to202
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ξ shows that the most highly loaded fibers are oriented along the principal203

directions of the strain tensor, that is ξ = 0 or ξ = π
2
.204

3.2. Initial elasticity range205

The elasticity range D of a fiber is defined in the strain space by:206

D = {εf / F (εf) = εf − εr < 0} (31)

The corresponding elasticity range of the tissue, denoted S, is:207

S = {E / ∀ξ,n(ξ).E.n(ξ) − εr < 0} (32)

The shape of S corresponds to the resolution of the equation εf − εr < 0

and is described by:















k <
1

cosϕ
∀ ϕ ∈

[

0, π
4

]

k <
1

sinϕ
∀ ϕ ∈

[

π
4
, π

2

]

(33)

At the boundary of S, at least one fiber breaks as the non-rupture crite-208

rion is not respected anymore (Eq.31). The first fiber to break is always the209

one oriented along ξ = 0 if ϕ ≤ π
4

or the one oriented along ξ = π
2

if ϕ ≥ π
4
.210

The next section describes the damage process of the fibrous tissue.211

3.3. Damage evolution212

We now consider different loading cases to study the evolution of the213

damage state of this model at the micro scale. Different cases are treated to214

better understand the potentialities of the model.215
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Case of a proportional loading. We assume that the tissue is subjected to216

a proportional strain loading (i.e. with ϕ constant) so as to reach a point217

defined by (k,ϕ) such that:218















k >
1

cosϕ
if ϕ ∈

[

0,
π

4

]

k >
1

sinϕ
if ϕ ∈

[π

4
,
π

2

]

The damaged state at the micro scale is defined by two subsets: the219

subset of healthy fibers and the set of broken ones. These sets are simply220

defined by two angles ξ1 and ξ2. From here on, the vector of the two damage221

variables ξ1 and ξ2 will be denoted D which characterizes the damaged tissue222

state. These angles are obtained by the solution of equation εf(ξ) − εr > 0223

(which is detailed in Appendix A). A proportional loading with an intensity224

k greater than the bounds defined in Eq.(33) leads to the fracture of the225

fibers as follows:226

ϕ ∈
[

0,
π

4

]

:















all fibers are broken∀ ξ ∈ [−ξ1, ξ1]

ξ1 = arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

(34)

ϕ =
π

4
: all fibers break simultaneously at k =

√
2 (Eq.30) (35)

ϕ ∈
[π

4
,
π

2

]

:















all fibers are broken∀ ξ ∈
[

−π
2
,−ξ2

]

∪
[

ξ2,
π
2

]

ξ2 = arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

(36)

Micro scale damage state and the angles ξ1 and ξ2 are illustrated in Fig.1227

for two typical cases: {ϕ = π/6, k = 1.7} and {ϕ = π/2.7, k = 1.2}. Fig.2228

displays the evolution of ξ1 with increasing k values for different angles ϕ.229

15



 
healthy fibers

broken fibers

30

90

270

330

0

 

1 30

90

270

330

0

1

limit before failure

3f

~

Xm

Ym

Xm

Ym

k = 1.7

= p / 64

k = 1.2

= p / 2.74
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Figure 1: Examples of fiber damage states: if the normalized strain ε̃f =
εf

εr
is greater

than 1 (the red-hatched zones), the fibers break.

Loading case of a constant-amplitude strain but rotating angle ϕ. It is inter-230

esting to treat the case of a constant-amplitude strain (k = cte) separately231

because it corresponds to an evolution of damage that is not monotonic. If232

k <
√

2 and ϕ evolves between 0 and π/2, fiber fracture occurs near ξ = 0233

and ξ = π/2, but the fibers near π/4 are unaffected (Fig.3 illustrates the234

evolution of the two angles when ϕ increases from 0 to π
2
). If k ≥

√
2, all the235

fibers break at ϕ = π/4.236

Case of an arbitrary loading. We now consider that both the characteris-237

tic angle ϕ and the amplitude of the loading vary. This corresponds to the238
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k

1.5

   1

0.5

   0

Figure 2: Examples of evolution of the damage variable ξ1 for different values of ϕ

general complex case. The solution of evolution of damage state can be pre-239

dicted with an incremental approach. A special attention has to be paid to240

the vicinity of singular point
{√

2, π
4

}

at which all the fibers break simulta-241

neously. Therefore, it is necessary to describe the path of the loading point242

precisely, especially in the vicinity of this point. Detailed explanation on the243

numerical strategy can be found in Brunon (2011).244

3.4. Macroscopic evolution of the elasticity range: distorsion245

The fracture surface at the macroscopic level evolves as damage increases.

We denote A the set of healthy fibers angles. The fiber density function

becomes:

ρ(ξ,D) =











0 if ξ /∈ A

1 if ξ ∈ A

(37)

The fiber density function can be observed for a particular case in Fig.4.246
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Figure 3: Evolution of the damage variables ξ1 and ξ2 as functions of ϕ in the case of a

circular loading (an increasing ϕ with k <
√

2 constant). ξ∗
1

and ξ∗
2

are the virtual damage

variables due to the current loading without taking the loading history into account.

The elasticity range becomes:

S = {E / ∀ξ ∈ A,n(ξ).E(k, ϕ).n(ξ) − εr < 0} (38)

The distortion of the surface is simply the change of the set A. More247

details for the model are described in Brunon (2011).248

4. Influence of the homogenization method on the shape of the249

stress strain curves250

This section compares the properties of the two homogenization methods251

when they are applied to the simple fiber breaking damage model defined in252

the preceding section. All the graphs of this part correspond to the biaxial253

loading described on Fig.7(a).254
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Figure 4: Shape of the density function for a particular damage case (k = 1.5,ϕ = π/10

and π/3).

4.1. Macroscopic structure tensor properties255

Let us observe some properties of the resulting macroscopic structure256

tensor H. We can immediately observe that H12 = H21 = 0 because the257

function cos ∗ sin is odd. Indeed, since the integration intervals are always258

symmetrical with respect to 0, these two components are always zero, even259

when damage occurs. Besides, damage affects the components of H directly.260

The even nature of functions cos2 and sin2 leads to:261

H =
2

π

π

2
∫

0

ρ(ξ,D)n(ξ) ⊗ n(ξ)dξ (39)

An example of the evolution of the nonzero components of H for a loading262

up to rupture and for a uniform angular distribution prior to damage, is given263
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in Fig.5.
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Figure 5: An example of the evolution of the components of the structure tensor (εr = 0.5,

ϕ = π/10).

264

4.2. Homogenization methods comparison265

A plot of the fibers’ contribution to the strain energy for each method266

(Fig.6) shows that under the current assumptions of uniform angular distri-267

bution prior to damage and brittle linear fibers, the two macroscopic models268

behave differently when damage occurs. This difference can be observed by269

expanding the expressions of these energies (Eq.40,41): it comes down to270

the difference between the integral of a square and the square of an integral.271

Indeed, for ξ1 and ξ2 constant (especially prior to damage), the ratio of ψK
f272

to ψE
f is constant throughout the loading and independent of the value of273

the elastic parameter E.274

20



ψE
f =

E

π

ξ2
∫

ξ1

(M(ξ) : E)2 dξ =
E

π

ξ2
∫

ξ1

(

E1 cos2 ξ + E2 sin2 ξ
)2

dξ (40)

ψK
f =

E

2
(H : E)2 =

2E

π2





ξ2
∫

ξ1

(

E1 cos2 ξ + E2 sin2 ξ
)

dξ





2

(41)
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Figure 6: Comparison of the macroscopic strain energies of the fibrous tissue for the two

proposed homogenization methods.

Besides, the shape of the components of tensor PK2 (Fig.7, b) show that275

the K method leads to the same value of the two nonzero components of SK
f276

prior to damage, whereas the tension applied to the tissue is not equibiaxial.277

Conversely, with the E method, this unrealistic result is not obtained. This278

is probably an illustration of the possible non-physical results obtained when279

the structure tensor theory is applied to a planar isotropic fiber distribu-280

tion (Holzapfel et al, 2010). However for both homogenization methods, the281
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Cauchy stress components (Fig.7, c) are consistent with the components of282

the strain tensor. Finally, there is a clear difference between the two methods283

concerning the concavity of the stress component corresponding to the least284

solicited direction. The softening part of the constitutive relation is much285

more anisotropic using the E method than using the K method.286

5. Extensions of the model287

In this part, two extensions related to biological tissues are proposed for288

the damage model and the two homogenization methods are compared for289

all of them. In the two cases, we consider that the angular distribution of290

the fibers is uniform before damage.291

5.1. Case of damageable fibers292

The general case described in the previous section is based on the assump-293

tion that the fibers are brittle. We now assume that they are damageable.294

This is a realistic assumption as collagen fibers have a substructure consisting295

of fibrils which can break progressively (Kastelic et al., 1978).296

We choose here a continuous description of the 1D damage in the collagen297

fibers. The behavior of a fiber is described in Fig.8: we introduce the damage298

variable D, whose evolution is linear, and the damage strain εD. In the case299

of a tissue which is initially isotropic and whose fiber density is a binary300

variable, there is a duality relation between ρ and the damage variable D,301

which enables a simple description of stress homogenization (Eq.43).302
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Figure 7: Biaxial strain loading applied to the tissue (a); evolution of the tensor com-

ponents of PK2 (b) and Cauchy (c) as functions of the loading amplitude. The stress

components do not revert back to 0 after complete rupture of the fibers because of the

presence of the matrix.
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E method:















φf =
1

2
E(1 −D(Γ, ξ))ε2

f

ψE
f =

∫

A0

1

2
E(1 −D) (n.E.n)2 dξ

(42)

K method:















H =
1

π

∫

A0

ρ(Γ, ξ)n⊗ n dξ

ψK
f =

1

2
E (H : E)2

(43)

In these expressions, tensor Γ represents the value of the strain tensor E303

which led to the current macroscopic damage state of the tissue. Since this304

state is characterized by two independent variables ξ1 and ξ2, we distinguish305

1Γ and 2Γ which led to the current values of ξ1 and ξ2 respectively. The306

piecewise linear evolution of the variable D or ρ is given within the range307

[0, π/4] (Eq.44). Within the range [π/4, π/2], the expression is similar, but308

involves 2Γ.309

D =



























1 if ξ ≤ ξ1
ε∗f(ξ) − εD

εr − εD

=
1Γ1 cos2 ξ +1 Γ2 sin2 ξ − εD

εr − εD

if ξ1 ≤ ξ ≤ ξ′1

0 if ξ′1 ≤ ξ

(44)

ρ(ξ,1 Γ) = 1 −D(ξ,1 Γ) ∀ξ (45)

The shape of the strain energy for each method is given in Fig.9. We310

obtain a smoothed peak for the evolution of the Cauchy stress in the tis-311

sue, corresponding to a more progressive macroscopic damage of the tissue312

(Fig.10).313
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case of brittle fibers or damageable fibers.

5.2. Introduction of fiber uncrimping314

In many applications (biological tissues, elastomers, etc.) the loaded315

fibers uncrimp before being stretched. To take this phenomenon into account,316

we adapt the method described in (Cacho et al., 2007) and introduce the317

strain value εt beyond which the fiber starts becoming stretched (Fig.11).318

The function t(ξ) is introduced to describe the stretched or unstretched319

state of the fibers: t(ξ) = 0 if εf < εt, t(ξ) = 1 otherwise. Then, the320

description of the two macroscopic models is that of Eq.(46,47).321

E method:















φf(E, ξ) =
1

2
Et(ξ) (εf(ξ) − εt)

2 =
1

2
Et(ξ) (n(ξ).E.n(ξ) − εt)

2

ψE
f =

1

π

∫

A0

ρ(ξ)φf(E, ξ) dξ

(46)
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Figure 10: Components of the Cauchy stress tensor of the tissue for the K and E meth-

ods in the case of brittle fibers or damageable fibers, as functions of the corresponding

components of E.

K method:















H =
1

π

∫

A0

ρ(ξ)t(ξ)n⊗ n dξ

ψK
f =

1

2
E (H : E)2

(47)

Fig.12 shows the evolution of the components of the stress tensor: at the322

beginning of the loading, they are null since no fiber is stretched. The strain323

in the fibers gradually increases to εt and the components of H increase to324

their maximum values. Then, rupture including the uncrimping phenomenon325

in our model leads to an unrealistic shape of the strain energy. Indeed, when326

the fibers uncrimp, the strain energy increases because both the number of327

stretched fibers and the amplitude of the loading increase. Then, once all the328

fibers have uncrimped, the energy continues to increase only because of the329

loading. Thus, the slope of the energy curve is more gentle once all the fibers330
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Figure 11: Behavior of a fiber taking uncrimping into account.

are stretched than when some are still crimped. When the fibers uncrimp, the331

global behavior of the tissue actually ”catches up” with the behavior without332

taking uncrimping into account, leading to steeper slopes of the energy and333

stress curves. This is a limitation of the model: if all the fibers uncrimp334

before damage begins, it leads to an energy trend which is never observed335

experimentally. In order to obtain the ”toe region” which is often observed336

experimentally and which is attributed to the uncrimping of the fibers, only337

a fraction of the fibers must be stretched when damage begins; this could be338

obtained using a random distribution of the fibers’ crimping, which is not in339

the scope of this paper as it requires a two-scale computation.340

6. Conclusions341

The objective of this work was to compare the response of two homoge-342

nization methods, available in the literature, in the case of damaging fibers343

within a fibrous membrane. For that purpose we propose a very simple344

anisotropic damage model able to account for several phenomena observed345

28



 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Green−Lagrange strain

C
o

m
p

o
n

en
ts

 o
f 

th
e 

st
ru

ct
u

re
 t

en
so

r

 

H
11

H
22

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

1410 x
4

Green−Lagrange strain amplitude

S
tr

ai
n
 e

n
er

g
y

 

 

j f
K

j f
E

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

Green−Lagrange strain amplitude

C
au

ch
y
 s

tr
es

s

 

 

T f
K (11)

T f
K (22)

T f
E (11)

T f
E (22)

10 x
5

Figure 12: Evolution of the structure tensor, the strain energy and the components of the

Cauchy tensor under biaxial tension for initially crimped fibers (εt = 0.15, εr = 0.5). The

box emphasizes the area where the obtained behavior is not realistic.
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experimentally.346

The evolution of macroscopic damage based on fiber fracture at the mi-347

croscopic scale is described using two scalar variables. The explicit expression348

of these variables as functions of the material parameters and of the macro-349

scopic strain loading enables a rapid implementation of the fracture behavior350

law of the tissue. Besides, this paper does not deal with any phenomenon351

which would require reverting to the microscopic scale.352

The main limitation of this model is that it considers the tissue’s damage353

to be borne by the fibers alone independently of the components of the tissue354

(namely the matrix) with the assumption that the fibers are isolated from355

one another. This leads to a drastic nature of the constitutive law, that could356

be tone down by introducing fiber interactions, a distribution of the fibers357

properties or a possible decohesion between the fibers and the matrix.358

The implementation of the two homogenization methods enabled us to359

compare them: in the case of an isotropic tissue, the difference between the360

two methods appears during damage and is due to the different formulation of361

the tissue’s macroscopic strain energy. The mathematical expression of this362

difference makes us believe that a heterogeneous angular distribution of the363

fibers (for an initially anisotropic tissue) would reveal a disparity between the364

two methods right from the elastic zone. Another fundamental difference is365

that the K method cannot take into account the behavior on the fibers’ scale366

because the constitutive law is applied directly to the macroscopic tissue.367

Depending on the homogenization method, the principle of the identifi-368

cation of the damage model is different: indeed, the E method based on the369

strain energy of a fiber requires knowing the behavior and fracture strain370
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of a fiber; these parameters can be determined independently of the fibrous371

tissue (see, for example, (Sasaki and Odajima, 1996; Svensson et al., 2010)372

for collagen fibers). Nevertheless, while the response of the fibrous tissue can373

be determined a priori, the response of the matrix is still to be identified.374

In the case of the K method, the constitutive law is applied to the tissue375

rather than to the fibers; consequently, the identification of the macroscopic376

parameters of the tissue is required both for the fibrous tissue and for the ma-377

trix; only the fracture strain of the fibers can be determined experimentally378

a priori. In practice, the identification of material parameters associated379

with damage requires being able to control the evolution of damage so that380

rupture does not to occur too rapidly. This constitutes the main difficulty of381

the experimental characterization of damage.382

The model proposed in this study can be applied to initially isotropic383

membrane tissues. Therefore, the prospective applications of this study con-384

cern the identification of the model’s parameters in practical cases. In the385

case of biological tissues, the fracture modeling of the liver capsule could en-386

hance a model of the human body and improve the prediction of liver injuries387

during an impact.388

Appendix A: Details about the description of damage389

The objective of this development is to define, for a radial loading with390

an amplitude greater than the bounds defined in Eq.(33), the angular sectors391

in which the fibers break. This corresponds to the resolution of εf − εr > 0.392

In the general case, since sin2ξ = 1 − cos2ξ:393
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cosϕ cos2ξ + sinϕ
(

1 − cos2ξ
)

>
1

k
(48)

cos2ξ (cosϕ− sinϕ) >
1 − k sinϕ

k
(49)

Two cases need to be distinguished:

ϕ ∈
[

0,
π

4

]

⇒ cosϕ− sinϕ ≥ 0 ⇒ cos2ξ >
1 − k sinϕ

k (cosϕ− sinϕ)
(50)

ϕ ∈
[π

4
,
π

2

]

⇒ cosϕ− sinϕ ≤ 0 ⇒ cos2ξ <
1 − k sinϕ

k (cosϕ− sinϕ)
(51)

In the following, only the case ϕ ∈
[

0, π
4

]

is explained.394

These equations hold provided that the right-hand side is positive, i.e.:

1 − k sinϕ ≥ 0 ⇔ k ≤ 1

sinϕ
(52)

Therefore, one can write:

cosξ >

√

1 − k sinϕ

k (cosϕ− sinϕ)
∀ k ∈

[

1

cosϕ
,

1

sinϕ

]

(53)

This expression is valid if the second term (which is positive) is between395

0 and 1, which is verified for k ≥ 1
cos ϕ

.396

Finally, the damage in the tissue can be described as follows:397

∀ k ∈
[

1

cosϕ
,

1

sinϕ

]

: cosξ ≥
√

1 − k sinϕ

k (cosϕ− sinϕ)
(54)

For ξ ∈ A, the solutions of inequality εf(ξ) − εr > 0 are:398
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ϕ ∈
[

0,
π

4

]

:































ξ ≤ arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

ou

ξ ≥ − arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

(55)

ϕ ∈
[π

4
,
π

2

]

:































ξ ≥ arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

ou

ξ ≤ − arccos

√

1 − k sinϕ

k (cosϕ− sinϕ)

(56)

This leads to the definition of the two angles ξ1 and ξ2 described in the399

paper.400
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