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Abstract

A non-Hermitian N−site-lattice Hamiltonian H with Laguerre-polynomial

right eigenvectors and real energies is made self-adjoint in an ad hoc Hilbert

space H(S). The necessary physical inner products are defined via alternative

k−parametric (2k+1)−diagonal metrics Θ = Θk constructed, in closed form,

at k = 0, k = 1, k = 2 and k = 3. The value of k is interpreted as a degree of

non-locality of the model.



1 Introduction

1.1 The Laguerre-polynomial quantum model

It is well known that the Laguerre polynomials1 L(n, a, z) may formally be

arranged in an infinite-dimensional Dirac-ket-like column vector

|ψ(∞)⟩ =


L(0, a, z) (= 1)

L(1, a, z) (= a+ 1− z)

L(2, a, z)
[
= 1

2
(a+ 1)(a+ 2)− (a+ 2) z + 1

2
z2
]

...

 (1)

which satisfies, line-by-line and at any complex z ∈ C, the infinite linear

algebraic system of equations

H(∞)(a) |ψ(∞)⟩ = z |ψ(∞)⟩ (2)

which resembles the Schrödinger equation of quantum theory and where

H(∞)(a) =



a+ 1 −1 0 0 . . .

−a− 1 a+ 3 −2 0 . . .

0 −a− 2 a+ 5 −3
. . .

0 0 −a− 3 a+ 7
. . .

...
...

. . . . . . . . .


. (3)

One can immediately formulate at least three reasons against H(∞)(a) of

Eq. (3) being interpreted as a quantum Hamiltonian:

• (pragmatic reason) the set of all complex z ∈ C does not look like a

good candidate for a phenomenologically meaningful spectrum;

1our present denotation L(n, a, x) and normalization L(−1, a, x) = 0, L(0, a, x) = 1

are taken from the symbolic-manipulation langauge MAPLE [1]; up to a factor the same

polynomials are denoted as La
n(x) in Ref. [2] or as L

(a)
n (x) in Ref. [3]
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• (mathematical reason) in the current, “friendly” Hilbert space ℓ2 (to be

denoted by symbol H(F ), cf. Appendix) the norm of the wave-function

candidate (1) would be infinite;

• (physical reason) the candidate H(∞)(a) for the Hamiltonian of the

system is manifestly non-Hermitian.

1.2 The finite-dimensional Laguerre-polynomial quan-

tum model

Let us replace the matrix-resembling array H(∞)(a) by its finite-dimensional,

truncated version

H(N)(a) =



a+ 1 −1 0 . . . 0

−a− 1 a+ 3 −2
. . .

...

0 −a− 2 a+ 5 −3 0

...
. . . . . . . . . −N + 1

0 . . . 0 −a−N + 1 a+ 2N − 1


. (4)

A return of the finite-dimensional descendant of Eq. (2)

H(N)(a) |ψ(N)
n ⟩ = E(N)

n (a) |ψ(N)
n ⟩ , n = 1, 2, . . . , N − 1 (5)

to the status of Schrödinger equation finds a new support in a few suddenly

emerging encouragements:

• (pragmatic encouragement) after truncation, the set of the admissible

eigenvalues shrinks from the whole complex plane of z to the discrete

and non-degenerate N−plet of strictly real zeros of the elementary

secular equation

L(N, a, z) = 0 , z = En , n = 0, 1, . . . , N − 1 ; (6)
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• (mathematical encouragement) after truncation (and in both the Hilbert

spaces H(F,S) defined in Appendix), the finite array

|ψ(N)
n (a)⟩ =


L(0, a, En)

L(1, a, En)
...

L(N − 1, a, En)

 (7)

may very easily be normalized, say, to one.

An obstacle which seems to survive is the third, non-Hermiticity point and

counterargument. In what follows we intend to show that this argument is

misleading and that in a way summarized in Appendix the Hermiticity of

Hamiltonian H(N)(a) may be achieved and guaranteed in a large number of

alternative physical Hilbert spaces H(S) where the inner products are defined

in terms of the so called metric operator Θ. We shall also show that for

our particular model these spaces (i.e., the metric-operator matrices) may be

constructed by purely non-numerical means.

Table 1: A sample of the dimension- and parameter-dependence of the energy

spectra {En(a)} of Hamiltonian (4).

parameters energies

N a E0(a) E1(a) . . . EN−2(a) EN−1(a)

6 1.0 0.5276681217 1.796299810 . . . 11.23461043 17.64596355

2.0 0.8899410156 2.433144232 . . . 12.60041387 19.26204255

3.0 1.296419203 3.093998381 . . . 13.94134537 20.83985455

9 1.0 0.3681784529 1.243357962 . . . 20.38218199 28.11834338

2.0 0.6318537723 1.712163195 . . . 21.90120660 29.82533613

3.0 0.9343511232 2.208578822 . . . 23.39499254 31.50012806
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1.3 A phenomenological addendum

Our present solvable toy-model (4) is just a very special case of the broad

class of the N−dimensional tridiagonal-matrix Hamiltonians of the form

Ĥ(N) =



a1 c1 0 0 . . . 0

b2 a2 c2 0 . . . 0

0 b3 a3 c3
. . .

...

0 0
. . . . . . . . . 0

...
. . . . . . bN−1 aN−1 cN−1

0 . . . 0 0 bN aN


(8)

which describe the one-dimensional single-particle N−site quantum-lattice

dynamics reduced to the mere nearest-neighbor interaction. The kinematical

aspect of virtually all of these models Ĥ(N) is, typically, characterized by the

one-to-one correspondence between the matrix index s = 1, 2, . . . , N and a

discrete coordinate qs of the “site”. In a more dimensional case these sites

may be numbered by an ad hoc multiindex, s → s⃗, but just the simplest

one-dimensional case is to be considered in what follows.

At the very start of our present application of the theoretical innovation

of the formalism using Θ ̸= I in combination with Hamiltonian (8) and/or its

special case (4) let us emphasize that such an effort may even be supported by

a purely pragmatic motivation. The numerical sample of zeros z = E
(N)
n (a)

of Eq. (6) as displayed in Table 1 persuades us, for example, that each of

the N−plets of the present toy-model bound-state energies really looks very

much like a realistic phenomenological spectrum.

Besides the similar intuitive argument it is equally important to keep in

mind that the necessary modifications and adaptations or deformations of

the spectrum are controlled not only by the freely variable coupling alias

self-coupling alias asymmetry-strength a > 0 but also by the very choice of

the ad hoc model-space dimension N = 1, 2, . . ..

This means that even on the level of practical applicability, our unusual
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model (4) might find its place among the other standard fitting tools for the

description of experimental quantum spectra, especially when they are not

explained by the conventional interactions yielding vibrations (like harmonic

oscillator) or rotations (mainly in more spatial dimensions). Thus, although

the core of our present message should be predominantly methodical and

mathematical, even its purely pragmatic aspects might prove relevant and/or

useful.

2 The concept of position in quantum lattice

In the vast majority of phenomenological quantum-lattice models the Hamil-

tonian is assumed Hermitian in the most common N−dimensional vector

space, i.e., we have Ĥ(N) =
(
Ĥ(N)

)†
. In parallel, the coordinates qs are as-

sumed real and observable so that, in the Schrödinger’s “mode of description”

[4], the corresponding quantum operator of position is most often represented

by a diagonal and time-independent N−dimensional matrix

q̂ =


q1

q2
. . .

qN

 . (9)

Using the standard Dirac’s notation the time-dependent Schrödinger equa-

tion then reads

i∂t |ψ(t)⟩ = Ĥ(N) |ψ(t)⟩ (10)

and controls the evolution of the system prepared in a normalized pure state

at time tprep = 0. At the time of measurement t > 0 one evaluates the wave

function ⟨qs|ψ(t)⟩ = ψ(t, s) and determines the probability

ϱ(t, s) = |⟨qs|ψ(t)⟩|2 = ψ∗(t, s)ψ(t, s) (11)

of finding the particle (or quasi-particle) at the s−th site qs.
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2.1 The loss of the measurability of position in the so

called PT −symmetric Quantum Mechanics

In the recent literature there emerged an interesting modification of the whole

paradigm (cf. its compact summary in Appendix). It has been developed,

mainly, within the framework of the so called PT −symmetric quantum me-

chanics (cf., e.g., comprehensive reviews [5, 6] and also [7] or [8]). In what

follows we intend to describe one of applications of this new paradigm to

our exactly solvable single-particle N−site quantum-lattice model (4) where

the spectrum remains real but where the Hamiltonian matrix itself appears

manifestly non-Hermitian in ℓ2 ≡ H(F ).

The technical essence of the new paradigm may be found summarized in

Appendix. In nuce, the key idea of the new formalism lies in the weakening

of the standard textbook Hermiticity H = H† of the Hamiltonian and in its

replacement by the requirement

H† Θ = ΘH . (12)

The use of this relation containing a nontrivial metric operator Θ ̸= I has

already been shown useful, almost twenty years ago, in nuclear physics [7].

Naturally, the same requirement applies also to the other operators O of ob-

servables where the rule O = O† must again be replaced by its generalization

ΘO = O† Θ .

In opposite direction, the “lattice-position” matrix (9) loses its status of

an observable quantity whenever the metric ceases to be a diagonal matrix.

This argument (nicely explained also in Ref. [9])) further implies that also the

quantity ϱ(t, s) of Eq. (11) will lose its original probabilistic interpretation

in general.
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2.2 A return to the (smeared) positions.

A partial resolution of the puzzle of the smearing of positions was offered

in Ref. [10] where the concept of the position and locality has partially been

restored via the use of the “next to diagonal”, band-matrix, (2k+1)−diagonal

matrices of the metrics Θ = Θk =

=



θ11 θ12 . . . θ1,k+1 0 . . . 0

θ21 θ22 θ23 . . . θ2,k+2
. . .

...
...

. . . . . . . . . . . . 0

θk+1,1
. . . . . . . . . θN−k,N

0
. . . . . . θN−2,N−2 θN−2,N−1

...
...

. . . θN−1,N−k−1 . . . θN−1,N−2 θN−1,N−1 θN−1,N

0 . . . 0 θN,N−k . . . θN,N−1 θNN


.

(13)

The integer k = 0, 1, . . . , N − 1 has been interpreted there as a measure of

the “smearing”. In this role, its value must be kept perceivably smaller than

the dimension N .

The physical meaning of the above non-diagonal metrics may be clarified

using the first nontrivial k = 1 example in which we may rewrite metric (13)

as a superposition of a positive diagonal matrix D2 with and upper-diagonal

matrix αA and its lower-diagonal conjugate αA†,

Θ
(N)
1 (a, α) = D2 + α

(
A+ A†) . (14)

Once we assume that the parameter α itself is sufficiently small, we may recall

formula (41) of our Appendix and deduce, say, the following approximate,

non-Hermitian form of the Dyson’s map,

Ω =

√
Θ

(N)
1 (a, α) = D +

1

2
αD−1

(
A+ A†)+O(α2) . (15)

In this setting, it is still most natural to follow the notation of our Appendix

and to define the operator of position of our (quasi)particle by the strictly

diagonal matrix (9) acting in the “inaccessible” physical Hilbert space H(P )
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where the metric remains trivial, Θ(P ) = I. Naturally, such a position oper-

ator q̂ may be equally well represented by the nondiagonal operator

Q̂ = Ω−1q̂Ω

acting either in the “accessible”, unitarily equivalent physical Hilbert space

H(S) (where, in our notation, Q̂ = Q̂‡ is Hermitian) or in the unphysical

and unitarily non-equivalent auxiliary Hilbert space H(F ) (where the same

operator remains non-Hermitian of course, Q̂ ̸= Q̂†).

At this point our approximate formula (15) for Ω enables us to transform

q̂ into its image

Q̂ =

[
D − 1

2
αD−1

(
A+ A†)+O(α2)

]
q̂

[
D +

1

2
αD−1

(
A+ A†)+O(α2)

]
=

= Dq̂D +
1

2
α
[
Dq̂D−1

(
A+ A†)−D−1

(
A+ A†) q̂D]

+O(α2)

which is, up to second-order corrections, a diagonally dominated tridiagonal

matrix. The construction remains also feasible at k > 1, provided only that

we make use of a partitioning and replace the tridiagonality of Θ
(N)
1 by the

block-tridiagonality of Θ
(N)
k .

We may conclude that in our ad hoc physical Hilbert space H(S) assigned

to the cryptohermitian Hamiltonian H(N)(a) the original basis |qs⟩ [such that

(|qs⟩)s′ ∼ δss′ ] lost its connection with the observable position. The role

of the position-eigenstates is taken over by the kets |χqs⟩ representing our

(quasi)particle(s) localized at a site s (with spatial coordinate qs). They must

be constructed as eigevectors of our cryptohermitian operator of position,

Q̂ |χqs⟩ = qs |χqs⟩ , s = 1, 2, . . . , N . (16)

This is a numerical problem, possibly simplified at small α when the operator

of position predominantly couples the nearest-neighbor basis states.

In the language of measurements the probability of finding the parti-

cle (or quasi-particle) in question at the s−th site of the lattice may still

be determined by formula (11), after its appropriate amendment of course.
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The form of this formula itself may even stay unchanged, provided only

that we replace the old, Hermiticity-assuming definition of the wave function

ψ(t, s) := ⟨qs|ψ(t)⟩ (meaning the “probability-density quantity”) by its new,

cryptohermiticity-assuming update

ψ(Θk)(t, s) = ⟨χqs |Θk|ψ(t)⟩ =
s+k∑

s′=s−k

⟨χqs | (Θk)ss′ (|ψ(t)⟩)s′ . (17)

With the time-independent parameter a ̸= a(t) this definition acquires, in

the light of Eqs. (6) and (7), the final compact form

ψ(Θk)(t, s) =
s+k∑

s′=s−k

⟨qs| (Θk)ss′

N∑
n=1

eiEnt L(s′, a, En) . (18)

This conclusion establishes the direct link between our cryptohermitian Hamil-

tonian (4) and the measurement od the position. Formula (18) indicates that

the different choices of the physical metric will lead to the nonequivalent pre-

dictions of the results of the experiment. Vice versa, the experiments may

be used, in principle, as a valid source of information fitting the parameters

in phenomenological metrics [7].

3 A few mathematical prerequisites

On the level of the textbook quantum theory the main obstacle of accepting

the input Hamiltonian matrix H(N) ̸=
(
H(N)

)†
(with real spectrum) lies in

the technical nontriviality of making it compatible with the standard postu-

lates of Quantum Mechanics. In Appendix we explained that this acceptance

is based on the “hidden” Hermiticity

H(N)(a) =
(
H(N)(a)

)‡
(19)

(a.k.a. cryptohermiticity [8]). This property is defined in the less common

but still entirely standard Hilbert spaceH(S). It may almost always be reread

as the Dieudonné’s [11] constraint (12) imposed in the auxiliary, friendlier

Hilbert space H(F ).
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For our model (4) the major technical difficulties related to the necessary

construction of the right-hand-side matrices in Eq. (19) (i.e., of the eligible

metrics) will be tractable due to the important observation that the metrics

may systematically be constructed as special, (2k+1)−diagonal matrices (13)

at any k ∈ {0, 1, . . . , N − 1}.

3.1 The exceptional local model at k = 0

We shall assume that the parameter a and the dimension N are both variable

and, in principle, arbitrary while the number k of the nonvanishing diagonals

in Eq. (13) will remain, for technical as well as interpretation reasons, fixed.

Naturally, the constructive analysis of the model should start from the trivial

k = 0. In this case it is well known that within the formalism described in

Appendix, any tridiagonal complex matrix (8) may be made compatible with

the Dieudonné’s Hermitization equation Ĥ†Θ = Ĥ Θ via the diagonal ansatz

Θ0(a) =



θ11

θ22
. . .

θN−1,N−1

θNN


(20)

for the metric with the positive matrix elements, θjj > 0, j = 1, 2, . . . , N .

This observation leads to the following easy consequence.

Lemma 1. Hamiltonians H(N)(a) of Eq. (4) may be assigned the diagonal

metrics Θ0(a) of Eq. (20) with normalization θ11 = 1 and with the elementary

matrix elements

θnn =
(n− 1)!

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)
(21)

at n = 2, 3, . . . , N .

Proof. In the Dieudonné’s equation Ĥ†Θ = Ĥ Θ it is easy to evaluate the
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left-hand-side product of matrices for any tridiagonal input (8),

(
Ĥ(N)

)†
Θ =



a∗1θ11 b∗2θ22 0 . . . 0 0

c∗1θ11 a∗2θ22 b∗3θ33 0 . . . 0

0 c∗2θ22 a∗3θ33 b∗4θ44
. . .

...
...

. . . . . . . . . . . . 0

0 . . . 0 c∗N−2θN−2,N−2 a∗N−1θN−1,N−1 b∗NθNN

0 . . . 0 0 c∗N−1θN−1,N−1 a∗NθNN


(22)

and to compare it with the right-hand-side tridiagonal matrix

Θ Ĥ(N) =



θ11a1 θ11c1 0 0 . . . 0

θ22b2 θ22a2 θ22c2 0 . . . 0

0 θ33b3 θ33a3 θ33c3
. . .

...

0
. . . . . . . . . . . . 0

0 . . . 0 θN−1,N−1bN−1 θN−1,N−1aN−1 θN−1,N−1cN−1

0 . . . 0 0 θNNbN θNNaN


.

(23)

The net result of this comparison is that the diagonal elements of the Hamil-

tonian must be real and that the sequence of relations

θn+1,n+1bn+1 = θnnc
∗
n , n = 1, 2, . . . , N − 1 (24)

must be satisfied. For our present model (4) this observation immediately

leads to the proof of the Lemma.

Remark 1. The simplicity of the above result made it useful in tests of a

straightforward symbolic-manipulation algorithm which we intended to use

for the computer-assisted solution of the Dieudonné’s equation Ĥ†Θ = Ĥ Θ

using the various less elementary forms of the ansatz for (2k + 1)−diagonal

metric Θ = Θk. Identifying the present model with the k = 0 special case

the algorithm produced the sequence of formulae

θ22 =
θ11
a+ 1

, θ33 =
2 θ11

(a+ 2) (a+ 1)
, . . .
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and confirmed the validity of the above closed-form rigorous result (21) and,

ipso facto, also the reliability of the algorithm itself.

3.2 The left eigenvectors of H(N)(a) at k > 1

As long as we have to work with the phenomenological model of quantum

dynamics where Ĥ(N)(a) ̸=
(
Ĥ(N)(a)

)†
at all N and a, it is insufficient to

know just the a priori specified solutions (7) of the current time-independent

eigenvalue problem (5). For multiple purposes it is also necessary to know the

left eigenvectors ⟨ξn| of our Hamiltonian. Most often, we rather construct

their duals |ξn⟩ defined as the right, usual eigenvectors of the conjugate,

unusual Hamiltonian
(
Ĥ(N)(a)

)†
,

(
H(N)(a)

)† |ξ(N)
n ⟩ = E(N)

n (a) |ξ(N)
n ⟩ , n = 1, 2, . . . , N − 1 . (25)

As long as we already know the energies, this is a simpler task. A rather

subtle problem only emerges when we recollect that a suitable set of the left

eigenbras ⟨⟨ψ(N)
n | of matrix H(N)(a) has already been defined in Appendix

(cf. Eq. (38)). This implies the necessity of the following proportionality

relation

|ψ(N)
n ⟩⟩ := Θ |ψ(N)

n ⟩ = |ξ(N)
n ⟩κ(N)

n (a) (26)

between the two alternative sets of the eigenvectors where the left-hand-side-

state normalization is fixed while the right-hand-side-state normalization still

remains open in Eq. (25).

One of the consequences of the arbitrariness of the n−dependent complex

constants κ
(N)
n (a) is particularly serious since the solutions |ξ(N)

n ⟩ of Eq. (25)

are often used in the spectral-expansion definition of the metric [12, 13],

Θ =
N−1∑
n=0

|ψ(N)
n ⟩⟩ ⟨⟨ψ(N)

n | =
N−1∑
n=0

|ξ(N)
n ⟩

∣∣κ(N)
n (a)

∣∣2 ⟨ξ(N)
n | . (27)

This implies that up to an inessential overall multiplication factor (say,∣∣∣κ(N)
0 (a)

∣∣∣2 > 0), the metric (27) contains, in general, an (N − 1)−plet of

13



free parameters
∣∣∣κ(N)

n (a)
∣∣∣2 > 0, n = 1, 2, . . . , N − 1. As a consequence,

every given Hamiltonian H(N)(a) may be assigned an (N − 1)−parametric

multiplet of alternative metrics leading, generically, to independent physical

predictions of the model.

For this reason it is important to have, always, a sensible physics-based

recipe for an efficient suppression of the latter ambiguity. In field theory one

often requires the observability of the so called “charge” C for this purpose

[5]. For quantum lattices using the nearest-neighbor interaction dynamics we

proposed, very recently [10], another principle of suppression of the ambiguity

of the metrics which is also being used here. This recipe is based on the

requirement of the minimal (or at least “tunable”, controllable) non-locality

of the model in question. In the latter setting, unfortunately, the direct use of

spectral formula (27) does not work at all. At the same time, the use of the

metric-multiplication definition (26) of the left eigenvectors |ψ(N)
n ⟩⟩ may be

recommended as facilitated by the (2k+1)−diagonal band-matrix structure

of the metric, especially at the not too large k.

4 The method of construction of the multi-

diagonal metrics

4.1 The sparse-matrix-expansion ansatz.

Our preliminary computer-assisted experiments with solving Dieudonné’s

Eq. (12) with Hamiltonian (4) revealed that its (2k + 1)−diagonal matrix

solutions (13) might be sought in a specific linear-superposition form

Θ = Θ
(N)
k (a) = Θ

(N)
(k,α1,α2,...,αk)

(a) = Θ
(N)
0 (a) +

k∑
j=1

αj P(N)
j (a) (28)

with k ∈ {1, 2, . . . , N − 1} and with the diagonal metric of paragraph 3.1

accompanied by a k−plet of (2j + 1)−diagonal real and symmetric matrices

P(N)
j (a). In fact, just the diagonal matrix Θ

(N)
0 (a) is a true, positive-definite
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metric. Every other matrix P(N)
j (a) is only expected individually compatible

with the Dieudonné’s constraint,

(
H(N)(a)

)† P(N)
j (a) = P(N)

j (a)H(N)(a) , j = 1, 2, . . . , k . (29)

In this overall framework the core of the exhaustive construction of the ex-

pansion (28) at a given non-locality k lies, obviously, in the constructions of

all of the pseudometrics (29) with j ≤ k and in having the real expansion

parameters αj sufficiently small to keep the necessary positive definiteness of

the diagonally-dominated sum (28) unbroken.

4.2 The extrapolation method of solving Eq. (29).

In what follows the systematic and explicit construction of pseudometrics

P(N)
j (a) will be performed for all j ≤ 3. This construction will proceed in

three steps.

In a preparatory step we select an integer value of subscript j ≥ 1, insert

a general (2j+1)−diagonal-matrix ansatz for P(N)
j (a) in Eq. (29) and, using

a computer-assisted trial-and-error strategy, fine-tune an ansatz for P(N)
j (a)

in such a way that a maximum of its matrix elements not lying on its outer

diagonals is being set equal to zero.

In the second step of the algorithm we select a few N ≤ N0 and, via the

computer-assisted closed-form solution of Eq. (29) we construct all of the

corresponding matrix elements θmm′ = θ
(N,j)
mm′ (a) of P(N)

j (a). In our concrete

model this computer-assisted “experiment” revealed, after certain symbolic-

manipulation factorizations and simplifications of the originally quite te-

dious results, the prevailing N−independence and sufficiently transparent

and nicely factorizable a−dependence of the individual matrix elements of

our separate pseudometric matrices P(N)
j (a), at the first few smallest j at

least.

In the third step the resulting sample of elements must be perceived and

reanalyzed as a set which is generated by the comparatively elementary linear
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algebraic set of equations (29). These equations always possess, at any fixed

N and j, an implicitly recurrent structure. Such a reinterpretation of the

algebra opens the possibility of skipping the intermediate step of the explicit

determination of the individual recurrences as sampled, at j = 0, by Eq. (24)

above. Especially at the higher values of j such an intermediate step did

prove prohibitively complicated and, at the same time, redundant, especially

due to the elementary nature of our Hamiltonian in question.

Thus, in the third step we replace the tedious multidimensional recurrent

generation of the closed algebraic formulae for the unknown multiplets of

elements θmm′ by the extrapolation technique. In our model the latter recipe

proved more efficient than the direct use of recurrences even at the lowest

values of j. Naturally, having the closed form of extrapolation at our disposal

at last, the final rigorous proof of its general compatibility with Eq. (29) by

direct insertion remains straightforward.

5 The model with minimal smearing (k = 1).

In the general family of α−dependent tridiagonal metrics

Θ
(N)
1 (a, α) = Θ

(N)
0 (a) + αP(N)

1 (a) (30)

“numbered” by a real and not too large variable α we may assume, without

any loss of generality, that the matrix P(N)
1 (a) is real and symmetric and

that without loss of generality its element θ11 may be chosen as vanishing,

P(N)
1 (a) =



0 θ12

θ12 θ22 θ23

θ23 θ33 θ34
. . . . . . . . .

θN−3,N−2 θN−2,N−2 θN−2,N−1

θN−2,N−1 θN−1,N−1 θN−1,N

θN−1,N θNN


.

(31)
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One of the most unexpected observations made during the brute-force con-

struction of this pseudometric appeared to be the cutoff-independence of the

result and, in particular, of the “last” element θNN ̸= 0. Thus the “initial”

list of the elements

θ22 = − 2

a+ 1
, θ33 = − 8

(a+ 2) (a+ 1)
,

θ44 = − 36

(a+ 3) (a+ 2) (a+ 1)
, θ12 = 1 ,

θ23 =
2

a+ 1
, θ34 =

6

(a+ 2) (a+ 1)

obtained at N ≤ N0 = 4 proved sufficient for the extrapolation and for the

final formulation of the general result.

Lemma 2. Hamiltonians H(N)(a) of Eq. (4) may be assigned the tridiagonal

family of metrics (30). The elementary matrix elements of pseudometric (31)

are given by the cutoff-insensitive formulae

θnn =
(n− 1)!

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N , and

θnn+1 =
n!

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 1, 2, . . . , N − 1.

Proof. In a parallel to the constructive proof of Lemma 1 the tridiagonal-

metric-generated recurrent relations remain sufficiently transparent to admit

the explicit identification and the straightforward proof of validity of their

closed solutions by mathematical induction not only for our model (4) but for

any tridiagonal input Hamiltonian (8). The details are left to the readers.

5.1 The verification of extrapolation hypotheses

The computation technique which we use here may be characterized as an

interactive algorithm based on a systematic computer-assisted verifications
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of the series of amended extrapolation hypotheses. It will remain applicable,

mutatis mutandis, at any k > 1, throughout our forthcoming constructions.

The key technical problem will always lie in the determination of an

appropriate ansatz for pseudometrics. In practice, the only way of finding

the optimal ansatz seems to lie in a patient, brute-force solution of Eq. (12)

at a sequence of the smallest dimensions N . That’s what we will always have

to do. Without the help of MAPLE, such a task would be rather difficult.

In an illustrative verification of the result presented in Lemma 2 we may

compare its predictions, say, with their two computer-generated counterparts

θ45 =
24

(a+ 3) (a+ 2) (a+ 1)
, θ55 = − 192

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
.

This comparison reconfirms the validity of Lemma 2. Moreover, these and

similar “redundant” formulae may offer an insight and background for the

estimates, say, of the numerical magnitude of the eigenvalues of the metric

at larger parameters α and/or a. In the context of a different quantum-

lattice model a confirmation of feasibility of such a nonperturbative search

for the strong-coupling boundaries of the domain of positivity of the metric

was mediated, e.g., by Table I of Ref. [14].

An additional merit of the interactive amendment of the tentatively ex-

trapolated formulae via the a posteriori computer-assisted verification has

been found in its speed. The initial tedious algorithm of the lengthy direct

construction gets easily amended in the light of the extrapolation so that the

calculations at the higher dimensions prove, paradoxically, quicker. Giving,

in our illustrative example, the sequence of further elements

θ56 =
120

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
,

θ66 = − 1200

(a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)

(etc) which further confirm the reliability of the formulae and open the way

to the perceivably simplified proofs using direct insertions.
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6 Pentadiagonal metrics (k = 2)

In the general pentadiagonal metric of our model (4),

Θ
(N)
2 (a, α, β) = Θ

(N)
0 (a) + αP(N)

1 (a) + β P(N)
2 (a) (32)

the only unknown matrix P(N)
2 (a) must again be real and symmetric, normal-

ized, say, by the choice of θ(1, 3) = 1 and finally, without loss of generality,

admitting that the elements θ11 and θ12 vanish,

P(N)
2 (a) =



0 0 θ13

0 θ22 θ23 θ24

θ13 θ23 θ33 θ34 θ35
. . . . . . . . . . . . . . .

θN−4,N−2 θN−3,N−2 θN−2,N−2 θN−2,N−1 θN−2,N

θN−3,N−1 θN−2,N−1 θN−1,N−1 θN−1,N

θN−2,N θN−1,N t̂
(N)
NN


.

(33)

The hat-superscripted matrix element t̂
(N)
NN is exceptional and must be consid-

ered manifestly cutoff-dependent. This has been revealed during the first-step

calculations which gave the initial list of the cutoff-insensitive elements

θ22 =
a+ 2

a+ 1
, θ33 =

4 (a+ 5)

(a+ 2) (a+ 1)
, θ44 =

18 (a+ 8)

(a+ 3) (a+ 2) (a+ 1)
,

θ55 =
96 (a+ 11)

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
̸= t̂

(5)
55 =

36 (a+ 21)

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
,

θ23 = − 4

a+ 1
, θ34 = − 24

(a+ 2) (a+ 1)
, θ45 = − 144

(a+ 3) (a+ 2) (a+ 1)
,

θ13 = 1 , θ24 =
3

a+ 1
, θ35 =

12

(a+ 2) (a+ 1)
,

leading, by extrapolation and by its subsequent tests at a few N > N0 = 5,

to the following general result.

Lemma 3. Hamiltonians H(N)(a) of Eq. (4) may be assigned the penta-

diagonal family of metrics (32). The cutoff-insensitive matrix elements of
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pseudometric (33) are given by formula

θnn =
(n− 1) (n− 1)! (a+ 3n− 4)

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N , and by

θnn+1 = − 2 (n− 1)n!

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N − 1, and by

θnn+2 =
(n+ 1)!

2 (a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N − 2.

Proof. We leave the proof by direct insertion to the readers.

Remark 2. The determination of the missing exceptional-element sequence

t̂
(N)
NN requires the use of a different approach, outlined in section 8 below.

7 The metrics with seven diagonals, k = 3.

In the seven-diagonal metrics

Θ
(N)
3 (a, α, β, γ) = Θ

(N)
0 (a) + αP(N)

1 (a) + β P(N)
2 (a) + γ P(N)

3 (a) (34)

the missing real and symmetric component P(N)
3 (a) may be constructed along

the same lines as above, starting from the assumptions θ11 = θ22 = 0,

θ(1, 2) = θ(1, 3) = 0 and θ(1, 4) = 1 and from the heptadiagonal ansatz

P(N)
3 (a) =



0 0 0 θ14

0 0 θ23 θ24
. . .

0 θ23 θ33 θ34
. . . θN−4,N−1

θ14 θ24 θ34 θ44
. . . θN−3,N−1 θN−3,N

θ25
. . . . . . . . . θN−2,N−1 θN−2,N

. . . θN−3,N−1 θN−2,N−1 θN−1,N−1 t̂N−1,N

θN−3,N θN−2,N t̂N−1,N t̂
(N)
NN


.

(35)
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We now encounter the two specific, hat-superscripted matrix elements t̂
(N)
NN

and t̂
(N)
N−1,N which must be constructed in different manner (cf. section 8

below).

For the purposes of extrapolation we evaluated, this time, the following

N0 = 6 set of the cutoff-insensitive matrix elements,

θ33 = −8
a+ 3

(a+ 2) (a+ 1)
, θ44 = −24

3 a+ 14

(a+ 3) (a+ 2) (a+ 1)
,

θ55 = −192
3 a+ 19

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
,

θ66 = −4800
a+ 8

(a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)
,

θ23 =
a+ 3

a+ 1
, θ34 = 6

a+ 8

(a+ 2) (a+ 1)
,

θ45 = 36
a+ 13

(a+ 3) (a+ 2) (a+ 1)
,

θ56 = 240
a+ 18

(a+ 4) (a+ 3) (a+ 2) (a+ 1)
,

θ24 = − 6

a+ 1
, θ35 = − 48

(a+ 2) (a+ 1)
, θ46 = − 360

(a+ 3) (a+ 2) (a+ 1)
,

θ14 = 1 , θ25 =
4

a+ 1
, θ36 =

20

(a+ 2) (a+ 1)

leading, by extrapolation and its subsequent verification, to the following

general result.

Lemma 4. Hamiltonians H(N)(a) of Eq. (4) may be assigned the hepta-

diagonal family of metrics (34). The cutoff-insensitive matrix elements of

pseudometric (35) are given by formula

θnn = − 2 (n− 1) (n− 2) (n− 1)! (a+ 5n− 6)

3 (a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N , and by

θnn+1 =
(n− 1)n! (a+ 5n− 7)

2 (a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N − 1, and by

θnn+2 = − (n− 1) (n+ 1)!

(a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)
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at n = 2, 3, . . . , N − 2, and by

θnn+3 =
(n+ 2)!

6 (a+ n− 1) (a+ n− 2) . . . (a+ 2) (a+ 1)

at n = 2, 3, . . . , N − 3.

Proof. Again, we leave the proof by direct insertion to the readers.

8 The exceptional, cut-off-dependent matrix

elements t̂(N)

8.1 The construction of t̂
(N)
NN at k = 2.

The mathematical nature of the determination of the exceptional elements in

ansatz (33) is special. Firstly, it is fairly clumsy to think about their values

as resulting from recurrences since they vary with N themselves. Secondly,

the brute-force collection of data needed for extrapolation with respect to N

is much more time-consuming. At the same time, one can extrapolate these

data with respect to the integer variable N almost as easily as in the case of

the other matrix elements.

In such a situation we decided not to search for the rigorous proofs. Our

readers will only be offered here the empirically multiply reconfirmed (i.e.,

for us, credible enough) results of the computer-assisted (though still rather

time-consuming) extrapolations.

Conjecture 1. At j = 2 and at all N = 3, 4, . . . formula

t̃
(N)
NN =

(N − 2) (N − 1)! (a+ 5N − 4)

2 (a+N − 1) (a+N − 2) . . . (a+ 2) (a+ 1)

defines the “last missing matrix element” t̂
(N)
NN of pseudometric (33).

Remark 3. The validity of the latter formula (obtained by the extrapolation

from the data at N ≤ N0 = 5) has been made plausible, for us, by the direct

MAPLE-mediated evaluation of the subsequent values up to

t̃
(9)
99 =

141120 (a+ 41)

(a+ 8) (a+ 7) (a+ 6) (a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)
.
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8.2 The construction of t̂
(N)
NN at k = 3.

The computer-assisted solution of Eq. (29) enabled us to evaluate the follow-

ing set of results of symbolic manipulations,

t̂
(4)
44 = −16

a+ 7

(a+ 3) (a+ 2) (a+ 1)

t̂
(5)
55 = −16

11 a+ 103

(a+ 4) (a+ 3) (a+ 2) (a+ 1)

t̂
(6)
66 = −240

7 a+ 82

(a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)

t̂
(7)
77 = −960

17 a+ 239

(a+ 6) (a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)

which proved extrapolated as follows.

Conjecture 2. At j = 3 and at all N = 3, 4, . . . formula

t̂
(N)
NN = −(N − 3) (N − 1)! [(3N − 4) a+ 7N2 − 16N + 8]

3 (a+N − 1) (a+N − 2) . . . (a+ 2) (a+ 1)

defines the diagonal missing matrix element of pseudometric (35).

Remark 4. Again, for us, the plausibility of this conjecture has been en-

hanced by the MAPLE-mediated evaluation of the subsequent values up to

t̂
(9)
99 = −80640

23 a+ 431

(a+ 8) (a+ 7) (a+ 6) (a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)
.

A deeper meaning of the display of similar formulae may be seen not only

in the misprint-control in the general formulae but also in the facilitated

future identifications of the underlying recurrences if any. In addition, the

transparency of the formulae (and, in particular, of their a−dependence) also

underlines the formal simplicity of the metric itself, especially when we com-

pare its matrix elements, say, with their complicated polynomial analogues

as obtained in Ref. [10].

23



8.3 The construction of t̂
(N)
N−1N at k = 3.

In a way paralleling the preceding section we started from the data

t̂
(4)
34 = 2

a+ 16

(a+ 2) (a+ 1)

t̂
(5)
45 = 16

a+ 23

(a+ 3) (a+ 2) (a+ 1)

t̂
(6)
56 = 120

a+ 30

(a+ 4) (a+ 3) (a+ 2) (a+ 1)

t̂
(7)
67 = 960

a+ 37

(a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)

and formulated our last extrapolation hypothesis.

Conjecture 3. At j = 3 and at all N = 3, 4, . . . formula

t̂
(N)
N−1N =

(N − 3) (N − 1)! (a+ 7N − 12)

3 (a+N − 2) (a+N − 3) . . . (a+ 2) (a+ 1)

defines the last missing off-diagonal matrix element of pseudometric (35).

Remark 5. We may again display the two subsequent MAPLE-generated

quantities, viz.,

t̂
(8)
78 = 8400

a+ 44

(a+ 6) (a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)

and

t̂
(9)
89 = 80640

a+ 51

(a+ 7) (a+ 6) (a+ 5) (a+ 4) (a+ 3) (a+ 2) (a+ 1)
.

The inspection of these formulae demonstrates that our model with the

Laguerre-polynomial wave functions remains extrapolation-friendly even at

k = 3. This is in contrast with the observations made in Ref. [14] where the

complexity of the elements of metrics grew only too quickly between k = 2

and k = 3. In loc. cit., we even failed to find a reasonable k = 3 formulae,

due to a loss of any obvious guidance for the extrapolations. In the present

model such an overall pattern seems to stay unchanged. Hence, one could

also expect the reasonable feasibility of further, k ≥ 4 constructions.
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9 Summary and discussion

A family of exactly solvable N−site quantum lattices with a non-Hermitian

nearest-neighbor interaction was proposed and studied. The energies ap-

peared real so that each Hamiltonian has been made self-adjoint, i.e., stan-

dard and physical in an ad hoc Hilbert space H(S) where the inner product

was defined via a metric Θ. The complete set of the eligible metrics has

been shown numbered by a multiindex (k, α1, . . . , αk) in which the “degree

of non-locality” k ∈ {0, 1, . . . , N − 1} indicates that every Θ = Θ(k,α⃗) is a

(2k + 1)−diagonal matrix. The other free parameters forming the k−plets

α⃗ must only be real and sufficiently small (otherwise, the metric could cease

to be positive definite). In closed form the metrics were constructed and

displayed for k = 0, k = 1, k = 2 and k = 3.

One of the main merits of the present quantum lattice model lies in a

maximal suppression of its numerical aspects. First of all, the model does not

need numerical methods for the solution of the time-independent Schrödinger

equation. The reason is that the ket-eigenvectors of our special, solvable

Hamiltonian H(N)(a) were simply selected in advance (cf. Eqs. (1) or (7)).

We believe that from the point of view of flexibility of the model such an

apparently very strong a priori constraint has been more than compensated

by the multiplicity of the eligible metrics Θ
(N)
k,α⃗ (a) ̸= I.

In a phenomenological context we explained that our model offers a new

pattern of a “smearing” of the position of the lattice sites in the manner

explained in paragraph 2.2 above. Such a form of nonlocality has been shown

mediated by the metric. In accord with the “weakly nonlocal” interpretation

of quantum systems as advocated in our recent paper [10] we showed how

the “site” of the lattice gets smeared over 2k + 1 neighbors, provided only

that the range of smearing k is not too large.

In practice people rarely select both the suitable HamiltonianH = H(input)

and the metric Θ = Θ(input) as the two independent sources of informa-
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tion about quantum dynamics. An important amendment of this limitation

emerged in the literature cca twelve years ago when a real boom of interest in

quantum models with nontrivial metrics Θ ̸= I has been initiated by Bender

and his colleagues [5, 15, 16, 17]. These authors emphasized that the use of

Θ ̸= I seems strongly motivated in quantum field theory.

Incidentally, in a way explained by Mostafazadeh [9] and emphasized by

Jones [18] the latter studies were solely using, in our present language, the

long-range metrics Θ
(N)
k with the maximal possible subscript k = N−1. This

made the k = N − 1 recipe inapplicable in the unitary theory of scattering

[19, 20]. The core of the problem has been identified with the locality of

the interaction [21]. The restoration of the manifest unitarity of quantum

scattering has only been achieved via the use of nonlocal interactions [22].

Fortunately, the difficulties of this type were successfully dealt with in

various chain-interaction phenomenological models (cf. [23]). A number

of constructive Θ ̸= I results appeared in the context of Bose-Hubbard

[24] or Friedrichs-Fano-Anderso [25]) models. The appeal of these models

in condensed-matter physics resulted in detailed descriptions of the tightly

bound lattices of electrons [26]), of the XXZ spin chains [27]) and, last but

not least, of certain sophisticated experiments in optics [28, 29].

In this context the distinctive feature of our present model lies in its

exact solvability. Another relevant property of our present model is that its

spectrum is safely real at all a > 0 (cf. Eq. (6)). We believe that such a

spectrum might find useful applications, say, in a purely phenomenologically

motivated fitting of measured energies.

Although the similar idea has been also proposed and illustrated, via

another model, in Ref. [14], the present spectrum (sampled, for reference

purposes, in Table 1 above) looks much better suited for the fitting purposes.

For various values of parameter a the present energy levels are regularly

spread over a subinterval of the real axis which grows with the growth of

the matrix dimension N . In contrast, the distribution of the bound-state
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Table 2: A sample of the dimension- and parameter-dependence of the energy

spectra {En(a)} for the quantum-lattice Hamiltonian of Ref. [14].

parameters energies

N a E0(a) E1(a) . . . EN−2(a) EN−1(a)

6 1.0 -.6441855418 -.3709690601 . . . .3709690601 .6441855418

2.0 -.5622585222 -.3463446402 . . . .3463446402 .5622585222

3.0 -.5083600312 -.3244642920 . . . .3244642920 .5083600312

9 1.0 -.6443127436 -.3985980302 . . . .3985980302 .6443127436

2.0 -.5626496595 -.3794465124 . . . .3794465124 .5626496595

3.0 -.5091239690 -.3616352067 . . . .3616352067 .5091239690

energies of the model of Ref. [14] (sampled here by Table 2 for comparison)

seems handicapped not only by its restriction to a fixed interval (−1, 1) but,

more seriously, by its not-well-motivated symmetry with respect to its center

(shifted, conveniently, to the origin in Ref. [14]) and, even more seriously, by

the weaker sensitivity of its extreme values to the changes of the dimension

parameter N .

Besides the above-emphasized potential physical relevance of the exact

solvability of our present family of Laguerrian bound-state models we would

like to mention, in the conclusion, also the purely mathematical appeal and

consequences of our closed-form constructions.

Firstly, the unusual though still fully non-numerical solvability of our

model could serve, in principle at least, in the role of the initial zeroth ap-

proximation in perturbation theory. After all, just a very few exactly solvable

models with metrics Θ ̸= I exist on the market. More attention has only been

paid to a few exceptionally simple quantum lattices with certain extremely

elementary point-like interactions [30, 31].

Secondly, one should emphasize that it was certainly unexpected that

the innocent-looking freedom in the choice of the proportionality constants

27



κ
(N)
n (a) in relation (26) proved able to render the general definition of met-

ric (27) compatible with the fairly strong simplification requirement of the

sparse-matrix structure of its (2k + 1)−diagonal representations Θ
(N)
k,α⃗ (a) as

specified by Eqs. (13) and (28).

From the point of view of the theory of classical orthogonal polynomials

the latter result implies that every set of column vectors (7) of Laguerre

polynomials may be assigned many different biorthogonalized sets of row

vectors. They may be formed of the “ketket” eigenvectors |ψ⟩⟩ of
[
H(N)(a)

]†
and classified by the same multiindex {k, α⃗} as the metrics, therefore. Indeed,

we have

|ψ(N)
n (a)⟩⟩ = Θ

(N)
k,α⃗ (a) |ψ

(N)
n (a)⟩

or, in the componentwise notation of section 2.2,

(
|ψ(N)

n (a)⟩⟩
)
s
=

min(N,s+k)∑
s′=max(1,s−k)

(
Θ

(N)
k,α⃗ (a)

)
ss′

(
|ψ(N)

n (a)⟩
)
s′

(36)

where s = 1, 2, . . . , N and where matrices Θ
(N)
k,α⃗ (a) are now at our disposal in

closed form (28), for 0 ≤ k ≤ 3 at least.

Thirdly, the variability of the k−parametric (2k + 1)−diagonal metrics

Θ
(N)
k,α⃗ (a) could prove useful during the model-building in which the energies

are prescribed by our “Laguerrean” input Hamiltonian H(N)(a) but in which

several other matrices of observables might be required selfadjoint in at least

one of the eligible Hilbert spaces of states H(S)
k,α⃗, typically, via the fitting of

the k free parameters α⃗.

Fourthly, on the level of methods the present approach to solvability

could open new ways of circumventing the difficulties which emerged during

the study of scattering with H ̸= H† [18, 19]. The use of the non-numerical,

exactly solvable models with tridiagonal Hamiltonians and large N → ∞

seems to have been quite effective in this context [23, 32].

Fifthly, the quick progress achieved during the study of PT −symmetric

solvable differential equations [33] has not been followed by the sufficiently
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rapid progress in understanding of the related metrics. One of the reasons

lies in the virtually prohibitive technical obstacles [9]. In contrast, the recent

transition to PT −symmetric difference Schrödinger equations has been ac-

companied by the comparatively quick success in finding the comparatively

extensive sets of metrics Θ compatible with a given H [10, 32, 34].

Sixthly, a deeper understanding of the problem of ambiguity of the as-

signment of a metric to an input Hamiltonian has been reached here via the

matrix Schrödinger equations. We pointed out that the old paradoxes [7]

are finding new resolutions, say, due to the feasibility of a “smearing” of the

coordinates at N < ∞. Due to the variability of k in our model we showed

how the smeared localization could be studied by the experimental measure-

ments, in principle at least (cf. also the possible application of this idea to

cryptohermitian guantum graphs as mentioned in Refs. [34, 35]).

Last but not least, our continuing attention paid to the exactly solvable

models could clarify the possibilities of the practical use of the concept of the

hidden Hermiticity (cryptohermiticity) also in connection with the unitary

time evolution where the time-dependent metrics emerge. As long as this idea

leads to many new technical challenges [36], our present non-numerical model

could re-demonstrate, in the nearest future, its relevance and importance also

in this new context.
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Appendix: Three Hilbert spaces H(F ), H(S) and

H(P ) and the concept of hidden Hermiticity

Whenever a non-Hermitian Hamiltonian matrix H ̸= H† with real spectrum

is declared physical, the Hilbert space of states cannot be represented by the

most common N−dimensional version of ℓ2. The latter space may only play

an auxiliary role (this space without any immediate physical interpretation

will be denoted here by the symbol H(F ) where the superscript (F ) may stand

for “friendly” as well as for “false” [8]).

For the work with Hamiltonians H ̸= H† there exists a trick introduced in

physics, presumably, by Scholtz et al [7]. Its essence lies in the replacement

of inappropriate H(F ) by a unitarily non-equivalent, “standardized” Hilbert

space H(S). By construction, the two Hilbert spaces share the same set of

kets (in our notation, |ψ⟩ ∈ V(S) = V(F ) = V). The only distinguishing

feature is that the usual Hermitian conjugation, i.e., the most conventional

transition to the duals, T (F ) : V → V ′ (mapping

T (F ) : |ψ⟩ → ⟨ψ| in H(F ) (37)

in the current Dirac’s notation) must be replaced, in H(S), by the generalized

conjugation T (S) : V (= V(S) ) → [V ′](S). The latter mapping generates the

different duals defined in terms of a suitable matrix Θ of metric [8],

T (S) : |ψ⟩ → ⟨ψ(S)| := ⟨⟨ψ| := ⟨ψ|Θ in H(S) . (38)

An instructive illustration of this scenario may be found in paper [7] where

the kets |ψ⟩ ∈ V = V(F ) = V(S) were just bosonic, imperfect representatives

of the true nuclear (i.e., fermionic) state vectors

|ψ≻ = Ω |ψ⟩ ∈ W (39)

which lied in the textbook Hilbert space H(P ) with metric Θ(P ) = I. The

so called Dyson’s map Ω : V → W of bosons upon fermions (39) was chosen

non-unitary so that ≺ψa|ψb≻ ≠ ⟨ψa|ψb⟩ since Ω† ̸= Ω−1.
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In opposite direction the non-unitarity of the map Ω enables us to require

that

≺ψa|ψb≻ = ⟨ψa|Ω†Ω|ψb⟩ = ⟨⟨ψa|ψb⟩ . (40)

This formula connects the Dyson’s map and the metric by the most important

relation

Θ = Ω†Ω . (41)

The same picture of reality is obtained in both of the alternative physical

Hilbert spaces of states H(P ) and H(S) which are, by construction, unitarily

equivalent.

In the light of definition (39) the result of action of H upon |a⟩, i.e., a new

vector |b⟩ = H|a⟩ appears in equivalent relation Ω−1|b≻ = HΩ−1|a≻ , i.e.,

we have |b≻ = h|a≻ where we abbreviated h = ΩHΩ−1. The latter image

of Hamiltonian must be self-adjoint in H(P ), i.e., the operator h = ΩHΩ−1

must be equal to its conjugate in H(P ), viz., to h† = (Ω−1)
†
H†Ω†. Such a

constraint imposed in H(P ) is strictly equivalent to formula (12) valid in the

other two spaces H(S) and H(F ).

For the Hamiltonian operator we have to distinguish between its apparent

non-Hermiticity H ̸= H† in unphysical space H(F ) and the true, “hidden”

Hermiticity in the physical Hilbert space H(S) a.k.a. cryptohermiticity. In

the latter space the Hermitian conjugate of H (let us denote it by the symbol

H‡) is defined, consistently, by the prescription

H‡ := Θ−1H†Θ in H(S) . (42)

In this language, Eq. (12) is precisely the disguised condition H = H‡ of

the Hermiticity of the Hamiltonian at a fixed Θ. This scenario has been

used, e.g., in Ref. [7]. On the contrary, whenever we select the concrete form

of matrix H in advance, relations (12) must be reread as the Dieudonné’s

(incomplete) set of linear equations for the matrix elements of Θ = Θ(H).

This is precisely the approach used in our present paper.
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