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Lagrangian fibrations in duality on moduli space of rank two

logarithmic connections over the projective line

Frank Loray and Masa-Hiko Saito

Abstract. We study the moduli space of logarithmic connections of rank 2 on
P1

C
minus n points with fixed spectral data. There are two natural Lagrangian

maps: one towards apparent singularities of the associated fuchsian scalar
equation, and another one towards moduli of parabolic bundles. We show
that these are transversal and dual to each other. In case n = 5, we recover
the beautiful geometry of Del Pezzo surfaces of degree 4.

1. Introduction

In this paper, we investigate the geometry of moduli space of rank 2 logarithmic
connections over the Riemann sphere and extend some results obtained together
with Carlos Simpson in the 4-point case [13]. Precisely, we fix a reduced effective
divisor D = t1 + · · · + tn on X := P1

C
and consider those pairs (E,∇) where E

is a rank 2 vector bundle over X and ∇ : E → E ⊗ Ω1
X(D) a connection having

simple poles supported by D. At each pole, we have two residual eigenvalues
{ν+i , ν−i }, i = 1, . . . , n; they satisfy Fuchs relation

∑

i(ν
+
i + ν−i ) + d = 0 where d =

deg(E). Moreover, we can naturally introduce parabolic strucures l = {li}1≤i≤n

such that li is a one dimensional subspace of E|ti which corresponds to an eigen

space of the residue of ∇ at ti with the eigenvalue ν+i . Note that when ν+i 6= ν−i ,
the parabolic structure l is determined by the connection (E,∇). Fixing spectral
data ν = (ν±i ) with integral sum −d, by introducing the weight w for stablity,
we can construct the moduli space Mw(t,ν) of w-stable ν-parabolic connections
(E,∇, l) by Geometric Invariant Theory [10] and the moduli space Mw(t,ν) turns
to be a smooth irreducible quasi-projective variety of dimension 2(n − 3). It is
moreover equipped with a natural holomorphic symplectic structure. We note that,
when

∑

i=1,...,n ν
ǫi
i 6∈ Z, for any choice (ǫi) ∈ {+,−}n, every parabolic connection

(E,∇, l) is irreducible, and thus stable; the moduli spaceMw(t,ν) does not depend
on the choice of weightsw in this case. These moduli spaces occur as space of initial
conditions for Garnier systems, the case n = 4 corresponding to the Painlevé VI
equation (cf. [12, 11]).
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There are many isomorphisms between these moduli spaces. For instance,
twisting by a rank 1 connection (with the same poles), one can translate the spectral
data as (ν±i ) 7→ (ν±i + µi) with the only restriction

∑

i µi ∈ Z. Also, by using

elementary (or Schlesinger) transformations, we may shift each ν±i by arbitrary
integer, thus freely shifting the degree d of vector bundles. In particular, it is
enough for our purpose to consider the case where

∑

i(ν
+
i + ν−i ) = 1, which means

by Fuchs relations that d = det(E) = −1.

1.1. Apparent map. There are two natural Lagrangian fibrations on these
moduli spaces. One of them is given by the “apparent map”

App : Mw(t,ν) 99K |OX(n− 3)| ≃ Pn−3
C

,

which is a rational dominant map towards the projective space of the linear system
(see [8, 11, 19]). Here, we need to fix degree d = −1. The image App(E,∇) is
defined by the zero divisor of the composite map

OX → E
∇
−→ E ⊗ Ω1

X(D) → (E/OX)⊗ Ω1
X(D).

For a generic connection (E,∇), it is well-known that the underlying bundle is
E = OX ⊕OX(−1) and the map OX → E is therefore unique up to scalar multipli-
cation; the right-hand-side arrow is just the quotient by the image of OX → E. The
apparent map is therefore well-defined on a large open set of Mw(t,ν). Choosing
the image of OX as a cyclic vector allow to derive a 2nd order Fuchsian differential
equation; App(E,∇) gives the position of extra apparent singular points arising
from this construction, whence the name. The apparent map App has indetermi-
nacy points where E 6≃ OX ⊕OX(−1) or E ≃ OX ⊕OX(−1) and OX is invariant
under ∇.

1.2. Parabolic fibration. Let Pd(t) be the moduli stack of undecomposable
parabolic bundles of degree d, and denote by Pd(t) its corresponding coarse moduli
space. It is known that the natural map Pd(t) −→ Pd(t) is a Gm-gerbe. We
assume that ν is generic such as undecomposable parabolic bundles of degree d
coincide with the ν-flat parabolic bundles, i.e, those admitting a connection with
prescribed parabolic and spectral data (l,ν) (see Proposition 3.1). Under this
assumption, we can define the second fibration, which is more natural, but actually
more subtle to define. It is the forgetfull map (E,∇, l) 7→ (E, l) towards the coarse
moduli space Pd(t) (here we do not need anymore d = −1). Always assuming
generic spectral data ν, the parabolic structure l = {li} is the data of the residual
eigendirection li ⊂ E|ti of ∇ with respect to the eigenvalue ν+i for each pole ti.
However, as observed in [4, 3], the coarse moduli space Pd(t) is a non Hausdorff
topological space, or a nonseparated scheme. To get a nice moduli space, we have
to impose a stability condition with respect to weights w = (wi) ∈ [0, 1]n (see
[15]); the moduli space Pw

d (t) of w-semistable degree d parabolic bundles (E, l)
is therefore a normal irreducible projective variety; the open subset of w-stable
bundles is smooth. These moduli spaces actually depend on the choice of weights.
For generic weights, w-semistable=w-stable and we get a smooth projective variety.
Precisely, there are finitely many hyperplanes (walls) cutting out [0, 1]n into finitely
many chambers and strictly w-semistable bundles only occur along walls. The
moduli space Pw

d (t) is locally constant in each chamber and is either empty, or has
expected dimension n − 3. It becomes singular along walls (or maybe reduced to
a single point). A generic w-stable connection is also w

′-stable for any weight w′
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(for which the corresponding moduli space has the right dimension). We thus get

natural birational maps Pw

d (t)
∼
99K Pw

′

d (t) identifying generic bundles that occur
in both moduli spaces. An important fact (see Proposition 3.4) is that a parabolic
bundle (E, l) is undecomposable if, and only if, it is w-stable for a convenient choice
of weights. As a consequence, the coarse moduli space Pd(t) of undecomposable
parabolic bundles of degree d is covered by those smooth projective varieties Pw

d (t)
when w runs over all chambers (cf. Proposition 3.6):

(1.1) Pd(t) = ∪i,finiteP
wi

d (t).

In fact, the coarse moduli space is obtained by patching together these (non empty)
projective charts along (strict) open subsets; each of these projective charts are open
and dense in the coarse moduli space. Once we choose one of these charts, we get
a rational map Mw(t,ν) 99K Pw

d (t) which turns to be Lagrangian, like for App
in case d = −1. Moreover we can extend this rational map to a rational map
Bun : Mw(t,ν) 99K Pd(t), which turns to be a morphism when ν is generic.

1.3. Results. Assuming from now on d = −1, from the two rational maps
App and Bun, we obtain the rational map

(1.2) App× Bun : Mw(t,ν) 99K |OX(n− 3)| × Pw

−1(t).

In this paper, we will basically prove that this map is birational provided that
∑

i ν
−
i 6= 0. However we will be able to give more precise information about the

rational map (1.2) by introducing a choice of democratic weights w (see (4.1)) and
a good open subset Mw(t,ν)0 ⊂ Mw(t,ν).

For such a choice of weights w in (4.1), w-stable parabolic bundles (E, l) are
precisely those flat bundles for which E = OX⊕OX(−1) and none of the parabolics
coincide with the special subbundle: li 6∈ OX for all i = 1, . . . , n. We are moreover
able to construct a natural isomorphism Pw

−1(t)
∼
→ |OX(n − 3)|∗ with the dual of

the linear system involved in the apparent map (cf. Proposition 3.7). We therefore
introduce the open subset

Mw(t,ν)0 := Bun−1Pw

−1(t) ⊂ Mw(t,ν)

by imposing the conditions on (E,∇, l) that (E, l) ∈ Pw

−1(t). Then the two rational
maps App and Bun now induce a natural morphism

(1.3) App× Bun : Mw(t,ν)0 −→ |OX(n− 3)| × |OX(n− 3)|∗

and both App and Bun are Lagrangian. We can state our result as follows.

Theorem 1.1. Under the assumption that
∑

i ν
−
i 6= 0, the morphism App×Bun

in (1.3) is an open embedding and its image coincides with the complement of the
incidence variety Σ ⊂ |OX(n− 3)| × |OX(n− 3)|∗ for the duality.

In order to make the statement of Theorem 1.1 more precise, let us introduce
the homogeneous coordinates a = (a0 : · · · : an−3) on |OX(n− 3)| ≃ Pn−3

a , and the
dual coordinates b = (b0 : · · · : bn−3) on |OX(n−3)|∗ ≃ Pn−3

b
. Let Σ ⊂ Pn−3

a ×Pn−3
b

be the incidence variety, whose defining equation is given by
∑

k akbk = 0. Then
the morphism App×Bun induces the isomorphism (see Theorem 1.1)

App×Bun : Mw(t,ν)0
∼
−→ (Pn−3

a × Pn−3
b

) \ Σ.
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Setting ρ := −
∑

i ν
−
i , the symplectic structure of M(t,ν)0 is given by

ω = dη where η = ρ
a0db0 + · · ·+ an−3dbn−3

a0b0 + · · ·+ an−3bn−3
.

When ρ = 0, we prove that App× Bun degenerates: it is dominant onto Σ.
In order to prove Theorem 1.1, we intoduce a good compactificationMw(t,ν)0 ⊃

Mw(t,ν)0 (cf. Section 4.2) which turns to be another moduli space:

(1.4) Mw(t,ν)0 :=

{

(E,∇, λ ∈ C, l)
λ-ν-parabolic connection

| (E, l) ∈ Pw

−1(t)

}

/ ≃

where equivalence ≃ is given by bundle isomorphisms and the natural C∗-action by
scalar multiplication. The open subset Mw(t,ν)0 →֒ Mw(t,ν)0 is given by those
λ-ν-parabolic connections for which λ 6= 0, and the complement

Mw(t,ν)0H := Mw(t,ν)0 \Mw(t,ν)0

is the moduli space of w-stable parabolic Higgs bundles. Now Theorem 1.1 easily
follows from the following (cf. Theorem 4.3)

Theorem 1.2. If
∑

i ν
−
i 6= 0, the moduli space Mw(t,ν)0 is a smooth projective

variety and we can extend the morphism (1.3) as an isomorphism

App× Bun : Mw(t,ν)0
∼
−→ |OX(n− 3)| × |OX(n− 3)|∗

Moreover, by restriction, we also obtain the isomorphism

App× Bun|Mw(t,ν)0
H
: Mw(t,ν)0H

∼
−→ Σ

where Σ ⊂ |OX(n− 3)| × |OX(n− 3)|∗ is the incidence variety for the duality.

Here we note that the coarse moduli space of w-stable λ-ν parabolic connec-
tions without the condition in (1.4) have singularities. So our choice of the weight
w and the compactification in (1.4) is essential to prove Theorem 1.2.

It is well-known [4, 3] that the moduli space Mw(t,ν) should be an affine
extension of the cotangent bundle of P−1(t); once we have choosen a projective
chart Pw

−1(t) ≃ Pn−3
b

, the restricted affine bundle Mw(t,ν)0 must be either the

cotangent bundle T ∗Pn−3
b

, or the unique non trivial affine extension of T ∗Pn−3
b

.
Here, we prove that we are in the latter case if, and only if, ρ 6= 0. But the nice
fact is that apparent map provides a natural trivialization for the compactification
of this affine bundle.

The projective space |OX(n − 3)| ≃ Pn−3
a

may be considered as the space
of polynomial equations

∑

k akz
k = 0. We can consider the (n − 3)!-fold cover

(P1
C
)n−3 → (P1

C
)(n−3) := (P1

C
)n−3/Sn−3 = Pn−3

a parametrized by ordered roots
(q1 : · · · : qn−3). Since we have a morphism App : M(t,ν) 99K Pn−3

a
, by the fibered

product, we get a (n − 3)!-fold cover ˜Mw(t,ν)0 −→ Mw(t,ν)0. This latter one

(or some natural partial compactification ˜Mw(t,ν)) has been described in many

papers [18, 8, 22, 19]. The space M̃(t,ν) can be covered by affine charts C2n−6

with Darboux coordinates (pk, qk) for the symplectic structure: ω =
∑

k dpk ∧ dqk.
Our parameters can be expressed in terms of symmetric functions of pk’s and qk’s,
what we do explicitely in the five pole case n = 5 at the end of the paper. From this
point of view, S. Oblezin constructs in [17] a natural birational map M(t,ν) 99K
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(Kn)
(n−3) where Kn is an open subset of the total space of Ω1

X(D) blown up at 2n
points. Precisely, at each fiber z = ti, we have the residual map

Ω1
X(D)|ti

Resti−→ C

and we blow-up the two points corresponding to ν+i , ν−i ∈ C in the fiber; then we
delete the strict transforms of fibers z = ti to obtain the open set Kn. So far, no
natural system of coordinates was provided on Mw(t,ν) for n ≥ 5.

In [1], Arinkin investigated the geometric Langlands problem related to the case
of n = 4 by using the natural morphism of coarse modui spaces Bun : M(t,ν) −→
P−1(t) (see also [2]). Though we cannot directly extend his methods to the case of
n > 4, we may expect that our main Theorem 1.1 and 1.2 may give some approach
to obtain a similar result.

In the last part of the paper, we investigate with many details the case n = 5.
We provide a precise description of the non-separated coarse moduli space P−1(t)
of undecomposable parabolic bundles, which turns to be closely related to the
geometry of degree 4 Del Pezzo surfaces. Precisely, there is a natural embedding
X →֒ V := P2

b
as a conic. We then consider the blow-up φ : V̂ → V of the images

of the 5 points t1, . . . , t5 ∈ X : this is the Del Pezzo surface associated to our
problem. If we denote by Πi ⊂ V̂ the exceptional divisor over ti, and by Πi,j ∈ V̂
the strict transform of the line in V passing through ti and tj for any i, j, then
these Π,Πi,Πi,j are the well-known 16 rational curves with self-intersection (−1)

in V̂ . For any i = 1, . . . , 5, by contracting all five (−1)-curves intersecting Πi, we

get a new morphism φi : V̂ → Vi ≃ P2
C
.

Theorem 1.3. The coarse moduli space P−1(t) is given by:

P−1(t) = V̂ ∪ V ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5

where ∪ means that we are patching these projective manifolds by means of the
birational maps φ, φi and φi ◦ φ

−1
j along the maximal open subsets where they are

one-to-one.

For instance, φ : V̂ → V induces an isomorphism

V̂ \ (Π1 ∪ Π2 ∪ Π3 ∪ Π4 ∪Π5)
∼
−→ V \ {t1, t2, t3, t4, t5}

and we patch V to V̂ along these open subsets by means of this isomorphism.
Moreover, all these projective charts V̂ , V, Vi are realized as coarse moduli spaces
of stable parabolic bundles Pw

−1(t) for convenient choices of weights w and, in the
patching, we just identify all isomorphism classes of bundles that are shared by any
two of these projective charts. Finally, we explain how to recover the total moduli
space M(t,ν) by blowing-up |OX(n− 3)|× |OX(n− 3)|∗ along some lifting of these
curves inside the incidence variety Σ.

Acknowledgement: The authors would like to warmly thank Michele Bolog-
nesi for useful discussions about moduli spaces of n-points configurations on the
projective line.

2. Moduli space of connections

In this section, we will recall some results in [16, 15, 21, 14, 10, 9].
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2.1. Definition of the moduli space (as geometric quotient). Let us fix
a set of n-distinct points t = {t1, · · · , tn} on the Riemann sphere X := P1

C
and

define the divisor D = t1 + · · · + tn. In this paper, a logarithmic connection of
rank 2 on X with singularities (or poles) at D is a pair (E,∇) consisting of an
algebraic (or holomorphic) vector bundle E on P1

C
of rank 2 and a linear algebraic

connection ∇ : E −→ E ⊗ Ω1
X(D). We can define the residue homomorphism

resti(∇) ∈ End(E|ti) ≃ M2(C) and then let ν+i , ν−i be the eigenvalues of resti(∇),

that we call local exponents. Fuchs relation says that
∑

i(ν
+
i +ν−i ) = − degE = −d.

So we define the set of local exponents of degree d

(2.1) Nn(d) :=







ν = (ν±i )1≤i≤n ∈ C2n

∣

∣

∣

∣

∣

∣

d+
∑

1≤i≤n

(ν+i + ν−i ) = 0







≃ C2n−1

Definition 2.1. Fix ν ∈ Nn(d). A ν-parabolic connection on (X,D) = (P1
C
, t)

is a collection (E,∇, l = {li}) consisting of the following data:

(1) a logarithmic connection (E,∇) on (X,D) of rank 2 with spectral data ν,
(2) a one dimensional subspace li ⊂ E|ti on which resti(∇) acts by multipli-

cation by ν+i .

For generic ν, the parabolic direction li is nothing but the eigenspace for
resti(∇) with respect to ν+i so that the parabolic data is uniquely defined by the
connection (E,∇) itself. However, when ν+i = ν−i and resti(∇) is scalar (i.e. diago-
nal), then the parabolic li add a non trivial data and this allow to avoid singularities
of the moduli space.

In order to obtain a good moduli space, we have to introduce a stability con-
dition for parabolic connections. For this, fix weights w = (w1, . . . , wn) ∈ [0, 1]n.
Then for any line subbundle F ⊂ E, define the w-stability index of F to be the
real number

(2.2) Stab(F ) := deg(E)− 2 deg(F ) +
∑

li 6=F|ti

wi −
∑

li=F|ti

wi.

Definition 2.2. A ν-parabolic connection (E,∇, l) will be called w-stable
(resp. w-semistable) if for any rank one ∇-invariant subbundle F ⊂ E,

∇(F ) ⊂ F ⊗ Ω1
X(D)

the following inequality holds

(2.3) Stab(F ) > 0 (resp. ≥ 0).

A rank 2 parabolic bundle (E, l) is called w-stable (resp. w-semistable) if
inequality (2.3) holds for any rank one subbundle F ⊂ E. In particular, a ν-
parabolic connection (E,∇, l) may be stable while the underlying parabolic bundle
(E,∇) is not. For instance, if (E,∇, l) is irreducible, there is no strict ∇-invariant
subbundle and condition (2.3) is just empty.

Remark 2.3. To fit into usual notations (see [15, 21, 14, 9, 10]), one should

rather consider the flag {l
(i)
0 ⊃ l

(i)
1 ⊃ l

(i)
2 } := {E|ti ⊃ li ⊃ {0}} and ask that

(resti(∇) − ν
(i)
j Id)(l

(i)
j ) = l

(i)
j+1 for each j = 0, 1, where (ν

(i)
0 , ν

(i)
1 ) := (ν−i , ν+i ). In

the rank 2 case, this is equivalent to Definition 2.1. Then, weights rather look like:

α = (α
(1)
1 , α

(1)
2 , . . . , α

(n)
1 , α

(n)
2 ) ∈ R2n
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satisfying α
(i)
1 ≤ α

(i)
2 ≤ α

(i)
1 + 1. Then, for any nonzero ∇-invariant subbundle

F ⊂ E, we define integers

length(F )
(i)
j = dim(F |ti ∩ l

(i)
j−1)/(F |ti ∩ l

(i)
j ),

and stability is defined by the inequality

degF +

n
∑

i=1

2
∑

j=1

α
(i)
j length(F )

(i)
j <

degE +
∑n

i=1

∑2
j=1 α

(i)
j length(E)

(i)
j

2
.

However, it is straightforward to check that this condition is equivalent to (2.3)

after setting wi = α
(i)
2 − α

(i)
1 . Sometimes, a parabolic degree is defined by

degpar F := degF +
n
∑

i=1

2
∑

j=1

α
(i)
j length(F )

(i)
j = deg(F ) +

n
∑

i=1

α(i)
ǫi

(including the case F = E) and in this case, the stability index for a line bundle
is given by Stab(F ) := degparE − 2 degpar F . We also note that, in [10], it was

assumed that 0 < α
(i)
2 < α

(i)
1 < 1 and genericity conditions to obtain the smooth

moduli space for all ν ∈ Nn(d) simultaneously. In this paper, we will vary the

weights α and may consider the case of the equality α
(i)
1 = α

(i)
2 for some i. Note

also that in [13], we use the minus sign in front of the weight α
(i)
j .

Consider the line bundle L := OX(d) and denote by ∇L : L −→ L ⊗ Ω1
X(D)

the unique logarithmic connection having residual eigenvalue ν+i + ν−i at each pole
ti. For any ν-parabolic connection (E,∇, l) like above, there exists an isomorphism
ϕ : ∧2E −→ L; it is unique up to a scalar and automatically conjugates the trace
connection tr(∇) with ∇L. We must add a choice of such isomorphism in the data
(E,∇, ϕ, l) in order to kill-out automorphisms; this is needed in the construction
of the moduli space. We omit this data ϕ in the sequel for simplicity.

Define the moduli spaceMw(t,ν) of isomorphism classes ofw-stable ν-parabolic
connections (E,∇, l). Set Tn = {t = (t1, · · · , tn) ∈ Xn ; ti 6= tj for i 6= j}. Con-
sidering the relative setting of moduli space over Tn×Nn(d), we obtain a family of
moduli space

πn : Mw −→ Tn ×Nn(d),

such that Mw(t,ν) = π−1
n (t,ν).

Theorem 2.4. ([Theorem 2.1, Proposition 6.1, [10]]). Assume that n > 3. For
a generic weight w, we can construct a relative fine moduli space

πn : Mw −→ Tn ×Nn(d),

which is a smooth, quasi-projective morphism of relative dimension 2n−6 with irre-
ducible closed fibers. Therefore, the moduli space Mw(t,ν) is a smooth, irreducible
quasi-projective algebraic variety of dimension 2n− 6 for all (t,ν) ∈ Tn × Nn(d).
Moreover the moduli space Mw(t,ν) admits a natural holomorphic symplectic struc-
ture.
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2.2. Isomorphisms between moduli spaces: twist and elementary
transformations. Given a connection (F,∇F ) of rank 1,

∇F : F → F ⊗ Ω1
X(D)

with local exponents (µ1, . . . , µn), we can define the twisting map

⊗(F,∇F ) :

{

Mw(t,ν) → Mw(t,ν ′)
(E,∇, l) 7→ (E ⊗ F,∇⊗∇F , l)

where ν
′ = (ν±i + µi). It is an isomorphism. It follows that our moduli space

only depend on differences ν+i − ν−i . On the other hand, this allow to rather freely
modify the trace connection. Precisely, depending on the parity of the degree d, we
can go into one of the following two cases

• in the even case, (L,∇L) = (OX , d) and (ν+i , ν−i ) = (κi

2 ,−
κi

2 );

• in the odd case, (L,∇L) = (OX(−tn), d+
dz

z−tn
) and

(ν+i , ν−i ) = (κi

2 ,−
κi

2 ) except (ν
+
n , ν−n ) = (κn

2 + 1
2 ,−

κn

2 + 1
2 );

where (L,∇L) is the fixed trace connection as above.
For each i = 1, . . . , n, we can define the elementary transformation

Elm−
ti
:

{

Mw(t,ν) → Mw
′

(t,ν ′)
(E,∇, l) 7→ (E′,∇′, l′)

The vector bundle E′ is defined by the exact sequence of sheaves

0 −→ E′ −→ E −→ E/li −→ 0

where li is viewed here as a sky-scrapper sheaf. The parabolic direction l′i is there-
fore defined as the kernel of the natural morphism E′ −→ E. The new connection
∇′ is deduced from the action of ∇ on the subsheaf E′ ⊂ E and, over ti, eigenvalues
are changed by

(ν+i , ν−i )′ = (ν−i + 1, ν+i ) (and other ν±j are left unchanged for j 6= i).

If a line bundle F ⊂ E contains the parabolic li, it is left unchanged and we get F ⊂
E′; on the other hand, when li 6= F|ti then we get F ′ ⊂ E′ with F ′ = F ⊗OX(−ti).
It follows that stability condition is preserved for w′ defined by

w′
i = 1− wi (and other wj are left unchanged for j 6= i).

The composition Elm−
ti
◦Elm−

ti
is just the twisting map by (F,∇F ) = (OX(−ti), d+

dz
z−tn

). We may also define Elm+
ti
as the inverse of Elm−

ti
:

Elm+
ti
= Elm−

ti
⊗

(

OX(ti), d−
dz

z − ti

)

.

Although we are mainly interested in the degree d = −1 case where the two
Lagrangian fibrations naturally occur, we will also consider the degree 0 case of
sl2-connections to compare with [4, 3, 17]. Explicit computations will be made by
means of

Elm−
tn

: M(t,ν) → M(t,ν′)

going from degree 0 to degree −1 case.
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3. The coarse moduli of undecomposable quasi-parabolic bundles

Here we describe the coarse moduli space Pd(t) of undecomposable quasi-
parabolic bundles (E, l) of rank 2 and of degree d over (X,D) = (P1

C
, t). When

ν is generic, Pd(t) can be also identified with the coarse moduli space of ν-flat
quasi-paraboli bundles of rank 2 of degree d. Here a quasi-parabolic bundle (E, l)
is called ν-flat if it admit a connection ∇ with given local exponents ν.

It is a non separated scheme constructed by patching together moduli spaces
Pw

d (t) of (semi)stable parabolic bundles for different choices of weights w ; those
charts are smooth projective manifolds. A similar description has been done in [4].
In the degree d = −1 case, using Higgs fields and apparent map for a convenient
cyclic vector, we define a natural “birational” map P−1(t) 99K |OX(n−3)|∗ ≃ Pn−3

C
,

which turn to be an isomorphism in restriction to one of the projective charts
Pw

−1(t), for a convenient choice of weights. Under the condition that ν is generic,
this will be used in the next section to compute and describe the forgetful map

(3.1) M(t,ν) → P−1(t) ; (E,∇, l) 7→ (E, l).

3.1. The flatness of undecomposable quasi-parabolic bundles. In order
to define the forgetful map (3.1), we would like to characterize ν-flat quasi-parabolic
bundles (E, l) of rank 2, which are, by definition, quasi-parabolic bundles (E, l) of
rank 2 and of degree d on (P1

C
, t) arising in our moduli spaces of parabolic connec-

tions M(t,ν), i.e. admitting a connection ∇ with prescribed poles, parabolics and
eigenvalues. Under the condition that ν is generic, this is given by the parabolic
version of Weil criterium, see for instance in [4, Proposition 3].

Proposition 3.1. Assume νǫ11 + · · · + νǫnn 6∈ Z for any ǫi ∈ {+,−}. Given a
quasi-parabolic bundle (E, l), the following condition are equivalent:

(1) (E, l) is ν-flat, that is, (E, l) admits a parabolic connection ∇ with eigen-
values ν,

(2) (E, l) is simple: the only automorphisms of E preserving parabolics are
scalar,

(3) (E, l) is undecomposable: there does not exist decomposition E = L1 ⊕L2

such that each parabolic direction li is contained either in L1 or in L2.

Remark 3.2. When νǫ11 + · · · + νǫnn ∈ Z for some ǫi ∈ {+,−}, we still have
[simple ⇔ undecomposable ⇒ flat] but some decomposable parabolic bundles also
admit connections compatible with ν.

We promptly deduce the following obstruction on E.

Corollary 3.3. Write E = OX(d1) ⊕ OX(d2) with d1 ≤ d2, deg(E) = d1 +
d2 = d. Then E admits an undecomposable quasi-parabolic structure if, and only if

d2 − d1 ≤ n− 2 (except n = 2 and d1 = d2 which is decomposable).

Proof. When d1 = d2, any decomposition of E = OX(d1) ⊕OX(d1) is given
by two distinct embeddings OX(d1) →֒ E; one such embedding is determined once
you ask it to contain one parabolic direction. Then for n = 2 (or less) we can
decompose the parabolic data, while for n ≥ 3, we can easily construct a non
decomposable parabolic structure.

When d1 < d2, any decomposition of E is given by the destabilizing bundle
L2 = OX(d2) and any embeddings OX(d1) ≃ L1 →֒ E. Latter ones form a family
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of dimension n′ = d2−d1+1: more precisely, n′ parabolics lying outside of OX(d2)
are always contained in such subbundle and determine it. If n ≤ d2 − d1 + 1 then
any quasi-parabolic structure is thus decomposable; if n > d2 − d1 + 1, it suffices
to choose all li’s outside OX(d2), and ln outside of the OX(d1) defined by the
d2 − d1 + 1 first parabolics. �

One of the difficulty to define the forgetful map (E,∇, l) 7→ (E, l) is that,
although the moduli space of connections is smooth and separated (for generic ν),
the image is never separated. The reason is that, although the former moduli spaces
can be constructed as geometrical quotient of stable objects, the latter one always
contain unstable ones and will be not a good scheme.

However, we have

Proposition 3.4. A quasi-parabolic bundle (E, l) is undecomposable if, and
only if, it is stable for a convenient choice of weights w. Hence, if we assume that
ν is generic, that is, νǫ11 + · · · + νǫnn 6∈ Z for any ǫi ∈ {+,−}, a quasi-parabolic
bundle (E, l) is ν-flat if and only if it is stable for a convenient choice of weights
w.

This will allow us to construct our coarse moduli space of undecomposable
quasi-parabolic bundles Pd(t) by patching together moduli spaces Pw

d (t) where w

runs over a finite family of convenient weights.

Proof. Let (E, l) be a quasi-parabolic bundle and let us write E = L1 ⊕ L2

as above, Li = OX(di), d1 ≤ d2, d1 + d2 = d.
In the decomposable case, all parabolics are contained in the union L1⊔L2. In

this case, it is easy to check that Stab(L1)+Stab(L2) = 0, whatever the weights are,
so that one of the two must be ≤ 0: (E, l) is not stable for any choice of weights.
Note that it is however (strictly) semi-stable for a convenient choice of weights.

In the undecomposable case, we may choose L1 passing through a maximum
number of parabolics, i.e. at least d2 − d1 + 1. Choose d2 − d1 of them and apply
a negative elementary transformation at each of those directions. We get a new
undecomposable quasi-parabolic bundle (E′, l′) with E′ ≃ L1 ⊕ L1. In particular,
there are 3 parabolics, say l′1, l

′
2 and l′3, lying on 3 distincts embeddings L1 ⊂ E′.

It is easy to check that this bundle is stable for weights w′

0 < w′
1 = w′

2 = w′
3 <

2

3
and other w′

i = 0.

Thereore, the original quasi-parabolic bundle (E, l) is stable for weights w defined
by

• w′
j = 1 − wj if lj is one of the directions where we made elementary

transformation,
• w′

j = wj for other parabolics.

�

3.2. GIT moduli spaces of stable parabolic bundles. Given weights,
the moduli space of semistable points Pw

d (t) is a (separated but may be singular)
projective variety; moreover, stable points are smooth (cf. [15], [5], [7], [14], [6]
and [23]).

Let W := [0, 1]n be the set of weights. Given a parabolic bundle (E, l) of
degree d and a line subbundle L →֒ E of degree k, denote by I1 the set of indices
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of those parabolic directions contained in L, and I2 = {1, . . . , n} \ I1, so that
{1, . . . , n} = I1 ⊔ I2 . Then, the (parabolic) stability index of L is zero if, and only
if, the weights lie along the hyperplane

Hd(k, I1) := {w ; d− 2k −
∑

i∈I1

wi +
∑

i∈I2

wi = 0}.

This equality cuts out the set of weights [0, 1]n into two open sets (possibly one is
empty, e.g. for large k). Note that the wall Hd(k, I1) = Hd(d − k, I2) also bound
the stability locus of those L′ = OX(d − k) →֒ E′ passing through parabolics I2
(with deg(E′) = d). On one side those L →֒ E are destabilizing, on the other
side those L′ →֒ E′ are destabilizing. Along the wall, decomposable parabolic
bundles OX(k) ⊕ OX(d − k) with parabolics distributed on the two factors as
{1, . . . , n} = I1 ⊔ I2 may occur as strictly semi-stable points in Pw

d (t).
When we cut out [0, 1]n by all possible walls Hd(k, I1) (only finitely many

intersect) we get in the complement many chambers (connected components) along
which the moduli space only consists of stable parabolic bundles (semi-stable ⇒
stable). Thus Pw

d (t) is smooth and locally constant along each chamber.
Mind that Pw

d (t) may be empty over some chambers like it so happens for
k odd and w = (0, . . . , 0): the bundle is unstable since it is in the usual sense
(parabolics are not taken into account for vanishing weights).

A parabolic bundle (E, l) is said to be generic if

• E = OX(d1)⊕OX(d2) with 0 ≤ d2 − d1 ≤ 1,
• a line bundle L ⊂ E cannot contain more that m + 1 parabolics, where
m = deg(E) − 2 deg(L).

Note that m + 1 is the dimension of deformation for such a subbundle L ⊂ E. It
is easy to see that the set Pd(t)

0 ⊂ Pd(t) of generic bundles (E, l) over (X,D) =
(P1

C
, t) is a variety of dimension n− 3.

Proposition 3.5. A generic parabolic bundle (E, l) ∈ Pd(t)
0 is stable for

weights w if, and only if, the weights w satisfy all inequalities

m−
∑

i∈I1

wi +
∑

i∈I2

wi > 0

with #I1 = m+ 1 and m ≥ 0 integer, m ≡ d mod 2. The moduli space Pw

d (t) has
therefore expected dimension n− 3 and contains Pd(t)

0 as an open subset.

A weight w is said to be admissible if it lies outside the walls and moreover
satisfies all above inequalities; a chamber is admissible if it consists of admissible
weights. It follows that the intersection of all Pw

d (t) over admissible weights have
a common open subset of dimension n − 3, namely the moduli space of generic
bundles Pd(t)

0 (that does not depend on choice of generic weights).
Let us denote by Wadm the set of admissible weights and decompose it into

the finite number of connected components Wadm = ∪i,finiteWadm,i separated by
walls. Then the moduli space Pw

d (t) is constant over the connected components
w ∈ Wadm,i. So we may choose a representative wi ∈ Wadm,i for each i, and for
different i1, i2, we have a big nonempty open set Ui1,i2 ⊃ Pd(t)

0 such that

P
wi1

d (t) ⊃ Ui1,i2 ⊂ P
wi2

d (t).
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We can patch all of Pwi

d (t) over these open subets Ui1,i2 and obtain the coarse
moduli space of undecomposable parabolic bundles of degree d. Thus we have the
following

Proposition 3.6. The coarse moduli space Pd(t) of undecomposable parabolic
bundles of degree d can be obtained as

(3.2) Pd(t) = ∪i,finiteP
wi

d (t).

Recall (cf. Proposition 3.1) that undecomposable ⇔ flat for generic ν. How-
ever, for special ν, only ⇒ holds and there are decomposable flat bundles. The
coarse moduli space of flat bundles might more difficult to describe then.

3.3. Wall-crossing and non separated phenomena. Let us compare the
moduli spaces Pw

d (t) corresponding to admissible chambers, say W 1 and W 2, sep-
arated by a wall Hd(k, I1). Applying elementary transformations if necessary, we
can assume d = k = 0. Those bundles with parabolics I1 (resp. I2) on the same
OX →֒ E are excluded on W 2 (resp. on W 1). Along the wall H0(0, I1) = H0(0, I2),
both are allowed as strictly semi-stable bundles; they identify, in the moduli space,
with the decomposable bundle E = L1⊕L2 having parabolics Ii on Li. The special
two kinds of bundles previously described yield non separated points in the quotient
space. Indeed, they are defined, on the trivial bundle (L1 = L2 = OX), by

• l
1 spanned by

(

1
0

)

for i ∈ I1 and

(

ui

1

)

for i ∈ I2,

• l
2 spanned by

(

1
vi

)

for i ∈ I1 and

(

0
1

)

for i ∈ I2.

If ui (resp. vi) are generic enough in C, then l
i defines a stable parabolic bundle

on W i but is no more semi-stable for the other chamber W j , {i, j} = {1, 2}. Now,
consider the one-parameter family of parabolic structures defined by

• l
ε spanned by

(

1
εvi

)

for i ∈ I1 and

(

εui

1

)

for i ∈ I2.

When ε ∼ 0, this parabolic structure is stable on both W i’s and when ε → 0, it
tends to either l1, or l2, depending on the chamber.

We can easily deduce any other non separating phenomenon applying back ele-
mentary transformations. For instance, the wall H0(1, ∅) (i.e. I1 = ∅) is separating
the locus of stability of

• those parabolic structure on the non trivial bundle E = OX(−1)⊕OX(1);
• those parabolic structure on the trivial bundle E = OX ⊕ OX where all
parabolics lie along the same OX(−1) →֒ E.

This provides a non separated phenomenon: former parabolic bundles are arbitrary
close to latter ones and vice-versa. Indeed, after applying elementary transforma-
tion to, say, l1 and l2, we are back to a special case of the above discussion.

3.4. The coarse moduli space of undecomposable quasi-parabolic struc-
tures on the trivial bundle. Now we describe (following and completing [4, Sec-
tion 2.3]) the coarse moduli space P0 of undecomposable quasi-parabolic bundles
(E, l) on (P1

C
, t) of rank 2 and of degree 0. The cases of all even degrees are similar

after twisting by a convenient line bundle.
As suggested by the proof of Proposition 3.4, the coarse moduli space P0(t) is

covered by open charts of the following type.
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For {i, j, k} ⊂ {1, . . . , n}, consider the moduli space of stable parabolic bundles
of degree 0 with respect to weights w defined by

0 < wi = wj = wk <
2

3
and other wl = 0.

Such parabolic bundles are exactly given by those parabolic structures on the trivial
bundle E = OX ⊕ OX such that li, lj and lk are pairwise distinct (through the
trivialization of E). Indeed, it cannot be E = OX(−1) ⊕ OX(1) for instance,
since in this case OX(1) is destabilizing (taking weights into account). Also, on
E = OX ⊕ OX , li 6= lj otherwise the trivial line bundle OX →֒ E that contains
these directions would be destabilizing. Here we get a fine moduli space that can
be described as follows. Choose a trivialization C2 of E such that li = (1 : 0),
lj = (1 : 1) and lk = (0 : 1). Then our moduli space identifies with

Ui,j,k =







l ;
li = (1 : 0),
lj = (1 : 1),
lk = (0 : 1)

and other ll ∈ P1
C arbitrary







≃
(

P1
C

)n−3
.

Let P0,0(t) denote the moduli subspace of P0(t) of (E, l) with the trivial vector
bundle E ≃ OX ⊕ OX . To get all points of P0,0(t), we have to patch all these
projective smooth charts Ui,j,k together: any two of them intersect on a non empty
open subset. We already obtain a non separated scheme. For n = 4, we obtain P1

C

with 3 double points at 0, 1 and ∞, or equivalently, two copies of P1
C
glued outside

0, 1 and ∞. For n = 5, gluing maps are birational and non separated phenomena
increase: there are rational curves arbitrary close to points. For n = 6, there are
rational curves arbitrary close to each other through a flop.

Usually, the GIT compactification M(0, n) of the moduli of n-punctured sphere
is constructed by setting all wi = 1/n. When n is even, this weight is along the
walls H(0, I1) with #I1 = n

2 and there are strictly semi-stable (and decomposable)
bundles. On the other hand, when n is odd, the weight is inside a chamber. For
instance, for n = 5, we get the 3 blow-up of P1

C
× P1

C
at the points (0, 0), (1, 1) and

(∞,∞). Although this latter moduli space does not embed in any chart Ui,j,k ≃
P1
C
× P1

C
considered above, it embeds in the total coarse moduli space P0(t) as an

open subset.

3.5. The coarse moduli space of undecomposable quasi-parabolic struc-
tures on degree d bundles. All charts Ui,j,k are not enough to cover all quasi-
parabolic bundles (E, l) of degree 0: we only get those for which E is the trivial
bundle. We have to add other charts that can be deduced from previous ones
by making any even number of elementary transformations (and twisting by the
convenient line bundle). All in all, it is enough to consider the following set of
weights

(3.3) W :=

{

w ;
3 of wi’s are

1
2

other wi’s are 0 or 1

}

and the corresponding moduli spaces, all isomorphic to
(

P1
C

)n−3
. In fact, those

w ∈ W for which 1 does not occur are exactly those charts Ui,j,k above; other ones
are deduced by even numbers of elementary transformations. Recall that stability
and flatness are invariant under elementary transformations.

Let us set

Pd,k(t) = {(E, l) ∈ Pd(t) | E ≃ OX(k)⊕OX(d− k)}
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Then we have a stratification P0(t) = P0,0(t) ⊔ P0,1(t) ⊔ · · · ⊔ P0,m(t), where m is
positive integer maximal such that m ≤ n−2

2 . All Pd,k(t) with k > 0 are on the

non separated locus of P0(t). The open separated locus P0(t)
0 (generic bundles) is,

inside P0,0(t), the complement of those parabolic structures for which a subbundle
L →֒ OX ⊕OX passes through an exceeding number of parabolics.

From the consideration as above, we can see that in the patching (3.2) P0(t) =
∪iP

wi

0 (t), the charts Pwi

0 (t) with wi ∈ W given by (3.3) are enough to cover the
whole coarse moduli space.

We can promtly deduce the coarse moduli space P−1(t) of quasi-parabolic bun-
dles (E, l) of degree−1 from the previous discussion by applying a single elementary
transformation, say at tn

Elm−
tn

: P0(t)
∼
−→ P−1(t).

We get a stratification P−1(t) = P−1,0(t) ⊔ P−1,1(t) ⊔ · · · ⊔ P−1,m(t), where m is
maximal such that m ≤ n−3

2 .

3.6. A natural projective chart for coarse moduli space of degree −1
bundles. A natural projective chart V is given by those undecomposable parabolic
structures on E = OX ⊕OX(−1) where no parabolic lie on OX .

Proposition 3.7. Assume n ≥ 3. For “democratic” weights wi = w, i =
1, . . . , n, with 1

n
< w < 1

n−2 , a degree −1 parabolic bundle (E, l) is (semi-)stable if,
and only if

• E = OX ⊕OX(−1),
• no parabolic li lie on OX ,
• not all li lie on the same OX(−1) (flatness).

symmetry Moreover, for these weights, the moduli space V := Pw

−1(t) is naturally

isomorphic to PH0(X,L⊗ Ω1
X(D))∗ ≃ Pn−3

C
, where L = OX(−1).

Proof. ThatOX free of parabolics does not destabilize the parabolic bundle is
equivalent to 1

n
< w. On the other hand, for w < 1

n−2 , a OX(−1) passing through
n − 1 parabolics does not destabilize, but the parabolic bundle becomes unstable
whenever one parabolic lie on OX . Finally, to eliminate parabolic structures on
degree −1 vector bundles E 6= OX ⊕OX(−1), we just need w < 3

n
which is already

implied by the above inequalities provided that n ≥ 3.
Parabolic bundles of the chart V are precisely non trivial extensions

0 → (OX , ∅) → (E, l) → (L,D) → 0

which means that the pair is defined by gluing local models Ui × C2 (for an open
analytic covering (Uk) of X) by transition matrices

Mkl =

(

1 bkl
0 akl

)

with bkl vanishing on D. Here, on each chart Uk, the vector e1 generates the trivial
subbundle OX →֒ E and e2 gives the parabolic direction over each point of D.

The multiplicative cocycle (akl)kl ∈ H1(X,O∗
X) defines the line bundle L. Let

akl =
ak

al
be a meromorphic resolution: ai is meromorphic on Uk with div(ak) =

div(L). The obstruction to split the extension is measured by an element of

H1(X,Hom(L(D),OX)) = H1(X,L−1(−D)) = H0(X,L⊗ Ω1
X(D))∗
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(by Serre duality) which is explicitely given by (bklal)kl ∈ H1(X,L−1(−D)). Any
two non trivial extensions define isomorphic parabolic bundles if and only if the cor-
responding cocycles are proportional: the moduli space of extensions is parametrized
by PH0(X,L⊗ Ω1

X(D))∗. �

3.7. Case n = 4 detailled. For degree 0 and undecomposable parabolic bun-
dles, we have the following possibilities:

• E is the trivial bundle and at most two of the li’s coincide;
• E = OX(−1)⊕OX(1) and in this case, there is a unique undecomposable
quasi-parabolic structure up to automorphism, say l1, l2, l3 ∈ OX(−1) and
l4 outside of the two factors.

On the space [0, 1]4 of weights, the walls are defined by equations of the type

ǫ1w1 + · · ·+ ǫ4w4 ∈ 2Z

where ǫi = ± and we get the following possibilities (other ones do not cut out [0, 1]4

into two non empty pieces)

w1 + w2 + w3 + w4 = 2
wi + wj + wk − wl = 0 or 2
wi + wj − wk − wl = 0

where {i, j, k, l} = {1, 2, 3, 4}, which gives 1+2 ·4+3 = 12 walls. It is easy to check
that the moduli space of (semi-)stable parabolic bundles is non empty if, and only
if, we have the following inequalities

0 ≤ wi + wj + wk − wl ≤ 2.

For instance, when w1 + w2 + w3 < w4, then the line bundle OX →֒ E passing
through l4 destabilizes the bundle.

Now, under above inequalities, the remaining 4 walls cut out the remaining
space of weights into 16 chambers. For w1 + w2 + w3 + w4 < 2, the moduli
space Pw

0 (t) consists only of parabolic structures on the trivial bundle: OX(1) →֒
OX(−1)⊕OX(1) is destabilizing in this case. This half-space splits into 8 admis-
sible chambers, but only 4 are enough to cover all quasi-parabolic structures on
OX ⊕OX , namely those containing w4 = (12 ,

1
2 ,

1
2 , 0), and its permutations wi (the

ith weight is zero). For w4, we get the following chart

U1,2,3 := {l = (0, 1,∞, u) ; u ∈ P1
C}.

The classical moduli space M(0, 4) is given by the open set u 6= 0, 1,∞ and this is
the locus P0(t)

0 of generic parabolic bundles. The chart given by w1 can be for
instance described as

U4,2,3 := {l = (v, 1,∞, 0) ; v ∈ P1
C}.

The intersection is given, in U1,2,3, by the complement of l4 = l2 and l4 = l3, i.e.
by u 6= 1,∞. The two projective charts glue along the latter open subset through
the fractional linear transformation U1,2,3 → U4,2,3;u 7→ v = u

u−1 . We have already
added two non separated points, namely at u = 1 and u = ∞.

After patching all 4 charts together, we get a non separated scheme over P1
C
∋

u with double points over u = 0, 1 and ∞; they correspond to pairs of special
parabolic structures respectively defined by

{l1 = l4 or l2 = l3}, {l2 = l4 or l1 = l3} and {l3 = l4 or l1 = l2}.
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Finally, one has to add the unique undecomposable quasi-parabolic structure on the
non trivial bundle OX(1)⊕OX(−1). This adds a 4th non separated point over u = t
where cross-ratio(0, 1,∞, t) = cross-ratio(t1, t2, t3, t4). Indeed, it is infinitesimally
closed to the (unique) quasi-parabolic structure lying on an embedding OX(−1) →֒
OX ⊕OX .

To end with the degree 0 case, we note that, although the coarse moduli space
is constructed a posteriori by gluing two copies of P1

C
along the complement of

t1, t2, t3, t4. However, this identification strongly depend on our choice of the initial
chart U1,2,3 ∈ u. Starting from another chart will give another identification; this
is up to the 4-group that preserves the cross-ratio.

In case of degree −1 bundles, we necessarily have E = OX ⊕ OX(−1) by
undecomposability. Let us choose weights w1 = w2 = w3 = w4 =: w. The moduli
space Pw

−1(t) is non empty for 1
4 ≤ w ≤ 3

4 . At w = 1
2 only, strictly semistable

bundles occur. There are two chambers, namely

• 1
4 < w < 1

2 where no parabolic li is contained in OX ;

• 1
2 < w < 3

4 where not 3 of the li’s is contained in the same OX(−1).

By this way, the coarse moduli space is constructed by only two open projective
charts, and the four double points are given by those pairs

{li is contained in OX} and {lj, lk, ll are contained in the same OX(−1)}

which naturally identify with ti. Here, we get a natural identification with two
copies of P1 glued along the complement of t1, t2, t3, t4.

4. The two Lagrangian fibrations

4.1. Moduli of generic connections. All along this section, we fix “demo-
cratic” weights

(4.1) w = (w, . . . , w) with
1

n
< w <

1

n− 2

like in Proposition 3.7 and we consider the moduli space Mw(t,ν) of w-stable ν-
parabolic connections (E,∇, l) where ν = (ν±i ) with

∑

i(ν
+
i + ν−i ) = 1 (see Section

2). Denote by L = OX(−1) the determinant line bundle. By Proposition 3.7, for
the weights w = (w, . . . , w) in (4.1), the coarse moduli space V = Pw

−1(t) of w-

stable parabolc bundles of degree −1 is isomorphic to PH0(X,L⊗Ω1
X(D))∗ ≃ Pn−3

C

and consists of (E, l) satisfying the conditions:

• E = OX ⊕OX(−1),
• li 6⊂ OX for i = 1, . . . , n,
• not all li lie in the same OX(−1) →֒ E.

Now we introduce the following open subset of the moduli space Mw(t,ν)

Definition 4.1. For the weight w in (4.1), let us define the open subset

(4.2) Mw(t,ν)0 = {(E,∇, l) ∈ Mw(t,ν) | (E, l) ∈ Pw

−1(t)}

of Mw(t,ν), which we call the moduli space of generic ν-parabolic connections.

We can define two natural Lagrangian maps on Mw(t,ν)0. The first one

(4.3) App : Mw(t,ν)0 → PH0(X,L⊗ Ω1
X(D)) ≃ |OX(n− 3)| ≃ Pn−3

a
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is obtained by taking the apparent singular points with respect to the cyclic vector
of the global section of OX . Precisely, each connection ∇ on E = OX ⊕ OX(−1)
defines a OX -linear map

OX →֒ E
∇
−→ E ⊗ Ω1

X(D) → (E/OX)⊗ Ω1
X(D) ≃ L⊗ Ω1

X(D)

(where the last arrow is the quotient by the subbundle defined by OX →֒ E) i.e. a
map

ϕ∇ : OX → L⊗ Ω1
X(D).

Its zero divisor is an element of the linear system PH0(X,L⊗Ω1
X(D)) ≃ |OX(n−3)|.

This map extends as a rational map

App : Mw(t,ν) 99K |OX(n− 3)|

on the whole moduli space with some indeterminacy points (See [19]).
The second Lagrangian map

(4.4) Bun : Mw(t,ν)0 → Pw

−1(t) ≃ PH0(X,L⊗ Ω1
X(D))∗ ≃ (Pn−3

a )∗ ≃ Pn−3
b

.

comes from the forgetfull map towards the coarse moduli space of undecomposable
parabolic bundles

Bun : Mw(t,ν) → P−1(t) ; (E,∇, l) 7→ (E, l)

that we restrict to the open projective chart V := Pw

−1(t) of Section 3.6.
One of main results of this section is the following

Theorem 4.2. Under the assumption that
∑

i ν
−
i 6= 0 (⇔

∑

i ν
+
i 6= 1), the

morphism

(4.5) App× Bun : Mw(t,ν)0 → |OX(n− 3)| × |OX(n− 3)|∗ ≃ Pn−3
a × Pn−3

b

is an embedding. Precisely, the image is the complement of the incidence variety Σ
for the above duality.

4.2. Compactification of the moduli space. In order to prove Theorem
4.2, we introduce a nice compactification Mw(t,ν)0 of the moduli space Mw(t,ν)0

of generic connections and will show that the extended map App×Bun toMw(t,ν)0

is in fact an isomorphism.
In [Definition 2, [1]], the moduli stack M(t,ν) of λ-ν-parabolic connections

(E,∇, ϕ, λ ∈ C, l) over X = P1 are introduced. (Note that in [1], λ-ν-parabolic
connections are called as ǫ-bundles.) Then under the conditions that (E,∇) is

irreducible, Arinkin ([Theorem 1 in [1]]) showed that the moduli stack M(t,ν) is a
complete smooth Deligne-Mumford stack. Moreover he also showed that the λ = 0
locus M(t,ν)H ⊂ M(t,ν), which is the moduli stack of parabolic Higgs bundles,
is also a smooth algebraic stack. On the other hand, as remarked in the proof of
[Proposition 7, [1]], the coarse moduli spaceM(t,ν) corresponding toM(t,ν)is not
smooth: it has quotient singularities. (As for the possible smooth compactification
by φ-parabolic connections, one may refer [10] and [11] (cf. Remark 4.4).)

Our main strategy is to consider the coarse moduli space of w-stable λ-ν-
parabolic connections for the democratic weight w. Define the coarse moduli space

(4.6) Mw(t,ν)0 :=

{

(E,∇, λ ∈ C, l)
λ-ν-parabolic connection

| (E, l) ∈ Pw

−1(t)

}

/ ≃ .
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Note that if (E, l) ∈ Pw

−1(t), λ-parabolic connections (E,∇, λ ∈ C, l) are always

w-stable, and there exists a natural embedding Mw(t,ν)0 ⊂ Mw(t,ν)0 such that

(4.7) Mw(t,ν)0H := Mw(t,ν)0 \Mw(t,ν)0

is the coarse moduli space of parabolic Higgs bundles (E,∇, 0 ∈ C, l) such that
(E, l) ∈ Pw

−1(t).

We can describe the moduli space Mw(t,ν)0 naively as follows. Thinking of
Bun : Mw(t,ν)0 → Pw

−1(t) as an affine An−3-bundle over the projective chart
Pw

−1(t). On each parabolic bundle (E, l) ∈ Pw

−1(t), any two connections ∇0,∇1

compatible with l differ to each other by a parabolic Higgs field

∇1 −∇0 = Θ ∈ H0(End(E, l)⊗ Ω1
X(D))

(residues of Θ are nilpotent on each fiber E|ti fixing the parabolic direction li).
The moduli space of connections identifies with the (n−3)-dimensional affine space
∇0+H0(End(E, l)⊗Ω1

X(D)) (recall that (E, l) is simple). Let us consider the fiber

Bun−1(E, l) of the map Bun : Mw(t,ν)0 → Pw

−1(t) in (4.4) over (E, l). A natural

compactification of the fiber Bun−1(E, l) is given by

Bun−1(E, l) := P
(

C · ∇0 ⊕H0(End(E, l)⊗ Ω1
X(D))

)

.

An element ∇ := λ·∇0+Θ is a λ-connection; if λ 6= 0, it is homothetic equivalent to
a unique connection, namely 1

λ
∇; if λ = 0, it is a parabolic Higgs field. By this way,

we compactify the fiber Bun−1(E, l) by adding PH0(End(E, l)⊗Ω1
X(D)). Varying

(E, l) ∈ Pw

−1(t) and choose a local section ∇0 over local open sets of Pw

−1(t), we
can construct a Pn−3-bundle

(4.8) Bun : Mw(t,ν)0 −→ V = Pw

−1(t)

and its restriction to the boundary

(4.9) BunH : Mw(t,ν)0H := (Mw(t,ν)0 \Mw(t,ν)0) −→ V

naturally identifies with the total space of the projectivized cotangent bundle
PT ∗V → V .

4.3. Main Theorem. The apparent map naturally extends on the compact-
ification since ϕ∇ can be defined in the same way for λ-connections (an Higgs
fields).

Our main result, which will give a proof of Theorem 4.2, now reads

Theorem 4.3. We fix the democratic weight w = (w, . . . , w) with 1
n
< w < 1

n−2

and consider the moduli space Mw(t,ν)0 as in (4.6). If
∑

i ν
−
i 6= 0, the moduli

space Mw(t,ν)0 is a smooth projective variety and the map App×Bun induces an
isomorphism

(4.10) App×Bun : Mw(t,ν)0
∼
−→ PH0(X,L⊗Ω1

X(D))× PH0(X,L⊗Ω1
X(D))∗.

Moreover, by restriction, we also obtain the isomorphism

(4.11) App× Bun|Mw(t,ν)0
H
: Mw(t,ν)0H

∼
−→ Σ

where Σ is the incidence variety for the duality.



LAGRANGIAN FIBRATIONS ON MODULI SPACES 19

Proof. It is enough to show that the natural morphism App × Bun (4.10)
induces a regular isomorphism between algebraic varieties. Like in the proof of
Proposition 3.7, we consider a parabolic bundle (E, l) ∈ Pw

−1(t) defined as an ex-
tension class, i.e. by a matrix cocycle

Mkl =

(

1 bkl
0 akl

)

where the multiplicative cocycle (akl) defines the line bundle L and the extension
is equivalently defined by the cocycle (bklal)kl ∈ H1(X,L−1(−D)) ≃ H0(X,L ⊗
Ω1

X(D))∗ where akl =
ak

al
is a meromorphic resolution (div(ak) = div(L)). Let us

fix also a non zero element γ ∈ H0(X,L ⊗ Ω1
X(D)) \ {0}. We want to show that

there is a unique λ ∈ C and a unique λ-connection ∇ : E → E⊗Ω1
X(D) (compatible

with ν and l) realizing γ as the apparent map.
Such a λ-connection ∇ is given in charts Uk by ∇ = λd+Ak

(4.12) Ak =

(

αk βk

γk δk

)

∈ GL2(Ω
1
Uk

(D))

with compatibility condition

(4.13) λ · dMkl +AkMkl = MklAl

on each intersection Uk ∩Ul. For each pole z = ti, the residue of Ak takes the form

(4.14) Resti(Ak) =

(

λν−i 0
∗ λν+i

)

.

The trace connection ζ is defined on Uk by d+ωk with compatibility conditions
dakl

akl
+ ωk − ωk = 0 on Uk ∩ Ul. We must have

(4.15) αk + δk = λωk

on Uk. We note that dakl

akl
= dak

ak
− dal

al
so that (ωk +

dak

ak
)k defines a global 1-form,

say ω ∈ H0(X,L⊗ Ω1
X(D)), and thus ωk = ω − dak

ak
.

Now, compatibility conditions 4.13 expand as

(4.16)















γk

ak
− γl

al
= 0 (→ γ := γk

ak
= γl

al
)

αk − αl = (bklal)γ

δk − δl = −(bklal)γ − λdakl

akl

akβk − alβl = −(λaldbkl + (bklal)(αk − δl))

The first condition says that all ( γk

ak
)k glue together to form a global section γ ∈

H0(X,L⊗ Ω1
X(D)). It defines the image of the apparent map.

Our problem is now: given (bklal)kl ∈ H1(X,L−1(−D)) defining the parabolic
bundle and γ ∈ H0(X,L⊗Ω1

X(D))\{0} defining the apparent data, prove that the
matrix connections λd+Ak can be completed in a unique way, with a unique λ.

Step1: finding γk. Given γ, we obviously define γk := akγ ∈ H0(Uk,Ω
1
X(D)).

Step2: finding αk. Fix α0
k sections of Ω1

X(D) on each Uk realizing the residual
data Resti(α

0
k) = ν−i . The cocycle (α0

k−α0
l ) defines an element ofH1(X,Ω1

X) which
is non zero: indeed, if we were able to solve the cocycle by α0

k − α0
l = α̃k − α̃l for

some holomorphic 1-forms α̃k, then (α0
k − α̃k)k would define a global meromorphic

1-form whose sum of residue
∑

i=1,...,n ν
−
i 6= 0 contradicts Residue Theorem. Now,
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we want to find αk of the form λα0
k + α̃k with α̃k holomorphic. This means that

we have to solve
α̃k − α̃l = (bklal)γ − λ(α0

k − α0
l )

in H1(X,Ω1
X); since this cohomology group is one dimensional, (α0

k − α0
l ) is a

generator (being non zero) and there is a unique λ such that the right-hand-side
is zero in cohomology, providing solutions (α̃k). We have now fixed λ, and the
solution αk = λα0

k + α̃k is unique (there is no global 1-form on X = P1
C
).

Step 3: finding δk. Since the trace connection must be ζ, we have to set
δk := ωk −αk. It is straighforward that it satisfies the 3rd equation of 4.16 and the
correct residual term of 4.14. Actually, the sum of 2nd and 3rd equations of 4.16
exactly give the compatibility condition of (ωk = αk + δk)k forming ζ.

Step 4: finding βk : The right-hand-side of 4th equation of 4.16 defines an
element ofH1(X,L−1⊗Ω1

X) = {0}. We can solve λaldbkl+(bklal)(αk−δl) = β̃k−β̃l

with β̃k belonging to L−1⊗Ω1
X , so that βk := β̃k

ak
are sections of Ω1

X , thus satisfying
the residual condition 4.14.

We have constructed a unique λ-connection from data γ and (bklal)kl.
Locus of Higgs fields. By Serre Duality, we have a perfect pairing

H0(X,L⊗ Ω1
X(D)) ×H1(X,L−1(−D)) −→ H1(X,Ω1

X)
∼
−→ C.

More precisely, in our construction, to the data ( γ , (bklal)kl ), we associate the
cocycle (bklal)γ ∈ H1(X,Ω1

X) which admits the meromorphic resolution (αk−αl)kl.
The principal (polar) part of (αk)k is well-defined; for instance, Resti(αk)k = ν−i
does not depend on the chart Uk. The last arrow is given by the sum of residues:
it measures the obstruction to realize the principal part by a global meromorphic
1-form. Concretely, the image is

∑

i=1,...,n

Resti(αk)k = λ ·
∑

i=1,...,n

ν−i .

We get a Higgs field precisely when λ = 0, i.e. when the image is zero. Finally, the
locus of Higgs fields in our theorem is given by the incidence variety for the above
Serre Duality. �

Remark 4.4. Note that without the condition of (E, l) ∈ Pw

−1 for our choice of

the weights w or the conditions in Proposition 3.7, the coarse moduli space M(t,ν)
of λ-ν-connections have singularities. We will explain about this in the case of

n = 4. (See Figure 1). In this case, the coarse moduli space ̂Mw(t,ν) of stable
parabolic ν-φ-connections gives a smooth compactification of the moduli space
Mw(t,ν) of w-stable ν-parabolic connections and it gives an Okamoto-Painlevé
pair for Painlevé VI equations ([20, 10, 11]). In fact, Mw(t,ν) is the complement

of Σ+
∑

i Fi in
̂Mw(t,ν). This moduli space ̂Mw(t,ν) is isomorphic to the blown-

up of 8-points of F2 as in Figure 1. Note that in this case, φ is the endomorphism of
E = OX ⊕OX(−1). For simplicity, we assume that ν is generic and all connections
are w-stable. Here the exceptional curves E+

i \ Fi ∩ E+
i (resp. E−

i \ Fi ∩ E−
i ) is

the locus of the parabolic connections such that the apparent coordinate q = ti
and li ⊂ OX (resp. li 6⊂ OX) and Fi \ (Fi ∩ Σ) is the locus of φ-connections with
rankφ = 1. Moreover Σ is the locus of φ = 0, that is, the locus of Higgs bundles. In

order to obtain the moduli space M(t,w) of λ-connections ([1]), we just contract

Fi’s which are (−2)-rational curves. Hence M(t,w) has four A1-singular points.
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with the incidence variety Σ

E
−
0

E
+
0

Σ2 = −2

(E±
i )

2 = −1

(Fi)
2 = −2

F0 F1 Ft F∞

Σ

E
−
0

E
−
0

Moduli space M(t, ν) of
λ-ν parabolic connections ([1])
with four A1-singular points.

Σ

E
+
0

Moduli space ̂Mw(t,ν) of φ-connections ([10, 11])

(8 blow-ups of F2). M
w(t,ν) = ̂Mw(t,ν) \ (Σ +

∑

i Fi)

Σ

contract E+
i ’s

and then Fi’s contract Fi’s

Our moduli space Mw(t,ν)0 ≃ P1 × P1

Figure 1. Different moduli spaces and their relations in case n = 4.

On the other hand, our moduli space Mw(t,ν)0 can be obtained by contracting

E+
i ’s and Fi’s and Mw(t,ν)0 is smooth and isomorphic to P1×P1 with the diagonal

incidence variety Σ ⊂ P1 × P1 as in Figure 1.

Another interpretation of our main theorem is that the image of the apparent
map for Higgs fields characterizes the bundle. Precisely, given (E, l) ∈ Pw

−1(t), let

us consider the fiber BunH
−1((E, l)) ⊂ of BunH in (4.9) and one can look at the

restriction

(4.17) App : BunH
−1((E, l)) ≃ PH0(End(E, l)⊗ ΩX(D)) −→ |OX(n− 3)|

to the boundary at infinity of connections Mw(t,ν)0. Our main results says first
that the image of ( 4.17 ) is non degenerate, i.e. defines an hyperplane in |OX(n−
3)|, thus defining an element of the dual |OX(n − 3)|∗; moreover, this hyperplane
determines the parabolic structure l.

Corollary 4.5. The map

Pw

−1(t) −→ |OX(n− 3)|∗ ; (E, l) 7→ image(App(PH0(End(E, l)⊗ ΩX(D))))

is well-defined and is an isomorphism.

In fact, it is not difficult to deduce our main result from this corollary; for
instance, that the above map is well-defined shows the injectivity of App × Bun
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in restriction to each fiber Bun−1(E, l). We will provide an alternate proof of this
Corollary by direct computation in the next section.

4.4. The degenerate case. When
∑

i ν
−
i = 0 (⇔

∑

i ν
+
i = 1), we get

Proposition 4.6. If
∑

i ν
−
i = 0, then Mw(t,ν)0 identifies with the total space

of the cotangent bundle T ∗V , and the map Bun : Mw(t,ν)0 → V , with the natural
projection T ∗V → V . Here, the section ∇0 : V → Mw(t,ν)0 corresponding to
the zero section of T ∗V → V is given by those reducible connections preserving
the destabilizing subbundle OX . Moreover, the map App×Bun is the natural map
between total spaces

Mw(t,ν)0 ≃ T ∗V
App×Bun

//_______

Bun
''N

NN
NN

NN
NN

NN
N

PT ∗V ≃ Σ

Bun
zzuu
uu
uu
uu
uu
u

V

with indeterminacy locus ∇0.

Here, the restriction (∇0)|OX
has eigenvalues ν−i and Fuchs relation is just

∑

i ν
−
i = 0. Fibers of App× Bun are one-dimensional in this case.

Proof. Going back to the proof of Theorem 4.3, we see that, under assumption
γ = 0 (reducibility condition) and setting λ = 1 we get a unique connection ∇0 for
each given parabolic bundle (E, l) ∈ Pw

−1(t). This section ∇0 allows to reduce the
group structure of the affine bundle Bun : Mw(t,ν)0 → V : in this case, M(t,ν)0

is the trivial affine extension of the cotangent bundle T ∗V , i.e. the total space of
the cotangent bundle itself, and Bun is the natural projection T ∗V → V .

The unique λ-connection with vanishing apparent map ϕ∇ (or γ if we follow
again the proof of Theorem 4.3) is λ · ∇0. The apparent map of the general λ-
connection ∇ = λ · ∇0 + Θ is thus given by ϕ∇ ≡ ϕΘ by linearity. On each fiber
Bun−1(E, l), the apparent map is thus the projection on the image of Higgs bundles,
namely Σ. �

5. Some computations

Here we provide some explicit formulae for the two fibrations.

5.1. Higgs fields and connections. By fractional linear transformation, set
(tn−2, tn−1, tn) = (0, 1,∞) for simplicity. In order to describe the generic Higgs
bundle or connection in matrix form, we use the following isomorphism

Elm−
tn

: P0(t) → P−1(t); (E, l) 7→ (E′, l′).

It induces a birational map U 99K V between the projective charts U := Un−2,n−1,n

introduced in Section 3.4 and V := Pw

−1(t), in Section 3.6. Precisely, denote by e1
and e2 a basis of E = OX⊕OX with ln = C·e1, ln−2 = C·e2 and ln−1 = C·(e1+e2);
then, choose the basis (e′1, e

′
2) for (E′, l′) := Elm−

tn
(E, l) given by e′i := ei outside

of tn: e′2 has a pole at tn and generates OX(−1). Note that e1 = e′1 is the cyclic
vector for the apparent map. The rational map U 99K V is therefore given by

(u1, . . . , un−3, 0, 1,∞) 7→ (v1, . . . , vn) = (u1, . . . , un−3, 0, 1, 0)
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where parabolic structures l and l
′ are respectively generated by uie1 + e2 and

vie
′
1 + e′2. We interpret this as a map

U ≃ (P1
C
)n−3

99K V ≃ Pn−3
C

u = (u1, . . . , un−3) 7→ v = (u1 : . . . : un−3 : 1)

Assume, for computations, that (u1, . . . , un−3) ∈ Cn−3. We also rename spectral
data as follows:

E = OX ⊕OX E′ = OX ⊕OX(−1)




t1 · · · tn−3 0 1 ∞
ν+t1 · · · ν+tn−3

ν+0 ν+1 ν−∞
ν−t1 · · · ν−tn−3

ν−0 ν−1 ν+∞ − 1









t1 · · · tn−3 0 1 ∞
ν+t1 · · · ν+tn−3

ν+0 ν+1 ν+∞
ν−t1 · · · ν−tn−3

ν−0 ν−1 ν−∞





Then, the general connection on (E, l) or (E′, l′) writes

∇ = ∇0 + c1Θ1 + · · ·+ cn−3Θn−3, (ci) ∈ Cn−3

where

(5.1) ∇0 := d+

(

ν−0 0
ρ ν+0

)

dz

z
+

(

ν−1 − ρ ν+1 − ν−1 + ρ
−ρ ν+1 + ρ

)

dz

z − 1

+

n−3
∑

i=1

(

ν−ti (ν+ti − ν−ti )ui

0 ν+ti

)

dz

z − ti
, with ρ = ν−0 + ν−1 + ν−∞ +

n−3
∑

i=1

ν−ti ,

and

(5.2) Θi :=

(

0 0
1− ui 0

)

dz

z
+

(

ui −ui

ui −ui

)

dz

z − 1
+

(

−ui u2
i

−1 ui

)

dz

z − ti
.

The connection ∇0 is the unique connection (compatible with the given para-
bolic structure) such that the divisor of the apparent map App(∇0) takes the
form div(ϕ∇0

) = t1 + · · · + tn−3: in this case, e1 is the ν−ti -eigendirection for
i = 1, . . . , n− 3. We note that

ρ = 0 ⇔ ν−0 + ν−1 + ν−∞ +
n−3
∑

i=1

ν−ti = 0 ⇔ ν+0 + ν+1 + ν+∞ +
n−3
∑

i=1

ν+ti = 1

in which case ∇0 is the reducible connection (see Proposition 4.6): the subbundle
OX ⊂ E (resp. E′) generated by the cyclic vector e1 (resp. e′1) is ∇0-invariant.

The parabolic Higgs fields Θi, i = 1, . . . , n − 3, are independent over C (they
do not share the same poles) and any other one is a linear combination of these
Θi’s. These generators have been choosen so that the apparent map has divisor

div(ϕΘi
) = µi +

∑

j 6=i tj where µi = ti(ui−1)
ui−ti

. Moreover, the moduli space of
parabolic Higgs bundles is naturally isomorphic to the total space of the cotangent
bundle T ∗U (for those parabolic Higgs bundles (E, l,Θ) with (E, l) ∈ U). Under
this identification, Θi corresponds to the differential form dui.

Denoting ∇ = d + Adz, the apparent map is given by the coefficient ϕ∇ :=
A(2, 1) and we get

(5.3) ϕ∇ = −
ρ

z(z − 1)
+

n−3
∑

i=1

ci
(ui − ti)z + (1 − ui)ti

z(z − 1)(z − ti)
=

ϕ̃∇(z)

z(z − 1)
∏

j(z − tj)
,
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where ϕ̃∇(z) is a polynomial of z degree n − 3. The roots z = q1, . . . , qn−3 of ϕ∇

(or of ϕ̃∇(z) ) are the apparent singular points with respect to the cyclic vector e1
(resp. e′1). For such a variable q, we define the dual variable as

p := A(1, 1)|z=q −
ν−0
q

−
ν−1
q − 1

−
n−3
∑

i=1

ν−ti
q − ti

i.e.

(5.4) p = −
ρ

q − 1
+

n−3
∑

i=1

ciui

(

1

q − 1
−

1

q − ti

)

.

The natural symplectic structure on the moduli space M(t,ν) is defined by

(5.5) ω =

n−3
∑

i=1

dpi ∧ dqi

and the two maps App and Bun are Lagrangian with respect to ω. Here recall that
(qi, pi) are not the coordinates for the moduli space M(t,ν), but the coordinates
for some (n − 3)!-covering of M(t,ν). However the symplectic form ω in (5.5) is
invariant under the changing the order of roots qi, so it descends to a symplectic
form on M(t,ν).

Under these explicit notation, we can give the following

Alternate proof of Corollary 4.5. We want first to show that the map
ϕΘ is not identically zero for any Higgs bundle (E, l,Θ) with (E, l) ∈ V . A Higgs
field writes in a matrix form as

Θ =

(

α β
γ δ

)

and the map ϕΘ is given by the coefficient γ which is a holomorphic section of
OX(n − 3). We want to check that γ ≡ 0 implies that either Θ ≡ 0, or one of
the parabolics li ∈ OX . If γ ≡ 0, then α and δ have to vanish over each z = ti,
i = 1, . . . , n, since Θ has to be nilpotent over these points. But α and δ are sections
of OX(n − 2) and have thus to be identically zero. Finally, if β 6≡ 0, then, as a
section of OX(n − 1), it cannot vanish at all z = ti: for some ti the matrix is not
zero and take the form

Θ|z=ti =

(

0 1
0 0

)

and the corresponding parabolic li lies on OX . The map Θ 7→ ϕΘ defines an
homomorphism

H0(End(E, l)⊗ ΩX(D)) → H0(X,L⊗ Ω1
X(D))

and we have just proved that it has zero kernel: it is injective. Therefore, its image
image(App(PH0(End(E, l)⊗ΩX(D)))) defines an hyperplane ofH0(X,L⊗Ω1

X(D)),
i.e. an element of the dual OX(n− 3)|∗, which depends only on (E, l) ∈ V .

We have thus proved that the map V → |OX(n−3)|∗ is a well-defined morphism
and may be viewed as an endomorphism of Pn−3

C
(after fixing isomorphisms with

Pn−3
C

). In order to prove that it is an isomorphism, we just have to check that it is
birational. For this, it is enough to prove that the composition

U
Elm−

tn

99K V
Bun
−→ |OX(n− 3)|∗
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is birational (since the left-hand-side is). We compute this latter one in the affine
chart (u1, . . . , un−3) ∈ Cn−3 ⊂ U . For Θ = Θi, the map ϕΘi

is the multiplication
by

γ =
Pi(z) · dz

z(z − 1)
∏

j(z − tj)
where Pi(z) = [(ui − ti)z + (1− ui)ti]

∏

j 6=i

(z − tj).

The zero of ϕΘi
is thus given by Pi(z) = 0. Now, consider the line ∆i defined in

|OX(n− 3)| by those polynomials vanishing on all tj , j 6= i; these lines all intersect

at the single point defined by the very special polynomial
∏

i(z− ti) and span Pn−3
C

(ti 6= tj for any i 6= j). For generic ui’s, the hyperplane image H ⊂ Pn−3
C

of App
cuts out all ∆i’s outside of their common intersection point. Conversely, a generic
hyperplane H cuts out each ∆i at a single point defined by say (z−µi)

∏

j 6=i(z−tj);

solving µi =
ti(ui−1)
ui−ti

gives the parabolic structure (u1, . . . , un−3). �

Let us start with |OX(n − 3)| ≃ Pn−3
C

equipped with the following projec-
tive coordinates : a = (a0 : a1 : · · · : an−3) stands for the polynomial equation
an−3z

n−3 + · · · + a1z + a0 = 0. It can be interesting to view also this space as
Symn−3X with X = P1

C
our initial base curve, and we have a natural map

Sym : Xn−3 → Symn−3X ; (q1, . . . , qn−3) 7→ (z − q1) · · · (z − qn−3).

The dual |OX(n−3)|∗ is the set of hyperplanes a0b0+a1b1+ · · ·+an−3bn−3 = 0 and
has thus natural projective coordinates b = (b0 : b1 : · · · : bn−3). Let us explicitely
compute the relation ship between usual Darboux coordinates (pi, qi), our basic
coordinates (ui, ci) and the new coordinates (a,b) from our main Theorem 4.3. We
do this for the Painlevé case n = 4 and the first Garnier case n = 5.

5.2. Case n = 4. Our starting variables are u ∈ C ⊂ U and c ∈ C. From
(5.3) and (5.4), we get Darboux variables:

p = −
(t− u)(ρ+ c(t− u))

t(t− 1)
and q = t

ρ+ c(1− u)

ρ+ c(t− u)
;

reversing, we get:

u = t
ρ+ p(q − 1)

ρ+ p(q − t)
and c = −

(q − t)(ρ+ c(q − t))

t(t− 1)
.

The apparent map for Higgs bundle (set c = ∞ in above formula) vanishes at

µ = t
1− u

t− u
= q +

ρ

p

and we get

(a1 : a0) = (1 : −q) and (b1 : b0) = (µ : 1).

The symplectic structure is given by

dp ∧ dq = dc ∧ du = ρ · d

(

a0db0 + a1db1
a0b0 + a1b1

)

.

Our µ-variable is exactly the Q-variable involved in Section 8 of [13] and it was
observed, there, that Okamoto symmetry is just given by the involution (q, µ) 7→
(µ, q) (i.e. (a1 : a0) ↔ (b0 : −b1)) permuting the two fibrations. We will see in
the next section that there is no such symmetric (global on M(t,ν)) permuting the
two fibrations for n = 5.
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6. Computations for the case n = 5

A straightforward computation shows that the map

Bun ◦ Elm−
tn

:

{

U → V = |OX(n− 3)|∗

(u1, u2) 7→ (b0 : b1 : b2)

is given by






b2 = t1t2(t1(t2 − 1)u1 − (t1 − 1)t2u2 + (t1 − t2))
b1 = t1t2((t2 − 1)u1 − (t1 − 1)u2 + (t1 − t2))
b0 = t2(t2 − 1)u1 − t1(t1 − 1)u2 + t1t2(t1 − t2)

The (u1, u2) affine chart may thus be seen as an affine chart of V , or equivalently,
V as an alternate compactification of the (u1, u2)-chart. The inverse map is given
by

{

u1 = t1
b2−(t2+1)b1+t2b0

b2−(t1+t2)b1+t1t2b0

u2 = t2
b2−(t1+1)b1+t1b0

b2−(t1+t2)b1+t1t2b0

Apparent singular points are the roots of the polynomial

P (z) = −ρ(z − t1)(z − t2)

+c1 [(u1 − t1)z + (1 − u1)t1] (z − t2) + c2(z − t1) [(u2 − t2)z + (1 − u2)t2]

= [c1(u1 − t1) + c2(u2 − t2)− ρ] z2

+ [ρ(t1 + t2) + c1(t1(t2 + 1)− u1(t1 + t2) + c2((t1 + 1)t2 − u2(t1 + t2)] z

+t1t2 [c1(u1 − 1) + c2(u2 − 1)− ρ]

We can re-write

P (z) = ρ[b2 − (t1 + t2)b1 + t1t2b0](z − t1)(z − t2)

+c1t1(t1 − 1)(b2 − (z + t2)b1 + zt2b0)(z − t1)

+c2t2(t2 − 1)(b2 − (z + t1)b1 + zt1b0)(z − t2).

Denoting z = q1 and z = q2 the two apparent singular points, we get

c1 = ρ
(q1 − t1)(q2 − t1)

t1(t1 − 1)(t1 − t2)

b2 − (t1 + t2)b1 + t1t2b0
b2 − (q1 + q2)b1 + q1q2b0

and

c2 = ρ
(q1 − t2)(q2 − t2)

t2(t2 − 1)(t2 − t1)

b2 − (t1 + t2)b1 + t1t2b0
b2 − (q1 + q2)b1 + q1q2b0

and we already see strong transversality between parabolic and apparent fibrations.
In a more symmetric way, we can introduce the equation a2q

2+a1q+a0 = 0 of the
two apparent singular points and we get the following formula

c1 = ρ
a2t

2
1 + a1t1 + a0

t1(t1 − 1)(t1 − t2)

b2 − (t1 + t2)b1 + t1t2b0
a2b2 + a1b1 + a0b0

and

c2 = ρ
a2t

2
2 + a1t2 + a0

t2(t2 − 1)(t2 − t1)

b2 − (t1 + t2)b1 + t1t2b0
a2b2 + a1b1 + a0b0

.
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As expected by our choice of coordinates, the locus of Higgs bundles, where c1
and/or c2 goes to the infinity, is given by the incidence variety a2b2+a1b1+a0b0 = 0.
For each root z = qi, the dual variable is expressed by

pi = −
ρ

qi − 1
+ c1u1

(

1

qi − 1
−

1

qi − t1

)

+ c2u2

(

1

qi − 1
−

1

qi − t2

)

and we get

p1 = ρ
b1 − q2b0

b2 − (q1 + q2)b1 + q1q2b0
and p2 = ρ

b1 − q1b0
b2 − (q1 + q2)b1 + q1q2b0

.

We find that

η := p1dq1 + p2dq2 = ρ
a2db2 + a1db1 + a0db0
a2b2 + a1b1 + a0b0

− ρ
d(a2b2 + a1b1 + a0b0)

a2b2 + a1b1 + a0b0
+ ρ

da2
a2

where (a2 : a1 : a0) ∼ (1 : −q1 − q2 : q1q2). The differential

ω := dη = dp1 ∧ dq1 + dp2 ∧ dq2 = ρ · d

(

a2db2 + a1db1 + a0db0
a2b2 + a1b1 + a0b0

)

is anti-invariant under the involution (a2 : a1 : a0) ↔ (b2 : b1 : b0) that exchanges
the two sets of projective coordinates.

A straightforward computation shows that, pulling-back the symplectic form ω
to our initial parameters ci and ui, we obtain

dp1 ∧ dq1 + dp2 ∧ dq2 = dc1 ∧ du1 + dc2 ∧ du2

which is the Liouville form on moduli space of Higgs bundles.
We have also the following formula comparing classical coordinates to our par-

abolic ones:

(b2 : b1 : b0) = (p1q
2
1 − p2q

2
2 + ρ(q1 − q2) : p1q1 − p2q2 : p1 − p2).

6.1. The coarse moduli space of parabolic bundles and Del Pezzo
geometry. Here, we want to explicitely describe the full coarse moduli space
P−1(t) of all undecomposable parabolic bundles as a finite union of projective charts
patched together by birational maps between open subsets (see end of Section 3.2).
We already get our main projective chart V ⊂ P−1(t) (defined in Section 3.6) that
contains almost all undecomposable parabolic bundles: V := Pw

−1(t) ≃ P2
b
where

w = (w,w,w,w,w) with 1
5 < w < 1

3 . To get the full coarse moduli space P−1(t),
we have to add those undecomposable parabolic structures on OX ⊕OX(−1) with
1 or 2 parabolics lying on OX , and the unique undecomposable parabolic structure
on OX(1) ⊕ OX(−2). They will occur in P−1(t) as points infinitesimally close to
special points of V = P2

b
, namely those non generic bundles (see Section 3.2). Let

us list them.
Defining Πi and Di. The locus Πi of those undecomposable parabolic struc-

tures on E = OX ⊕OX(−1) having exactly li ⊂ OX (other parabolics outside OX)
is naturally isomorphic to X : it is the moduli space of undecomposable parabolic
structures on E over the 4 other points, none of them lying on OX (see Section
3.7). Each of these parabolic bundles is infinitesimally close to the unique unde-
composable parabolic structures on OX ⊕ OX(−1) with all lj , j 6= i, lying on the
same OX(−1) →֒ E (see Section 3.3). There is only one undecomposable bundle
with this latter property and it defines a single point Di ∈ V . As we shall see, Πi

will occur, when we pass to another projective chart for P−1(t), as the exceptional
divisor after blowing-up the point Di (wall-crossing phenomenon).
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V P−1(t) \ V

5 Di :

{

E = OX ⊕OX(−1)
lj , lk, lm, ln ⊂ OX(−1)

Πi :

{

E = OX ⊕OX(−1)
li ⊂ OX

10 Πi,j :

{

E = OX ⊕OX(−1)
lk, lm, ln ⊂ OX(−1)

Di,j :

{

E = OX ⊕OX(−1)
li, lj ⊂ OX

1 Π :

{

E = OX ⊕OX(−1)
li, lj , lk, lm, ln ⊂ OX(−2)

D :

{

E = OX(1)⊕OX(−2)
−

Table 1. Non generic bundles (here, {i, j, k,m, n} = {1, 2, 3, 4, 5}).

Defining Πi,j and Di,j. There is a unique undecomposable parabolic structure
l on E = OX ⊕ OX(−1) having exactly li, lj ∈ OX (other parabolics outside
OX). It is infinitesimally close to the one-parameter family of undecomposable
parabolic structures on OX ⊕ OX(−1) with all lk, k 6= i, j, lying on the same
OX(−1) →֒ E; this latter family form a rational curve Πi,j ⊂ V which is also
naturally parametrized by X . Indeed, there is also a OX(−1) →֒ E passing through
li and lj , and these two embeddings intersect over a point z ∈ X . The locus of
l is given by a single point Di,j 6∈ V in the coarse moduli space P−1(t) which is
infinitesimally close to any point of Πi,j . When switching to some other projective
charts of P−1(t), by moving weights, the rational curveDi,j is eventually contracted,
replaced by the single point Di,j .

Defining Π and D. Finally, the unique undecomposable parabolic structure
on OX(1)⊕OX(−2) is infinitesimally close to the one-parameter family of parabolic
structures on E = OX ⊕OX(−1) with all parabolics lying on the same OX(−2) →֒
E. The latter family is again a rational curve Π ⊂ V naturally parametrized
by X : the subbundles OX(−2) and OX coincide over a unique point of X . The
undecomposable parabolic bundle OX(1)⊕OX(−2) is thus represented by a single
point D ∈ P−1(t) \ V infinitesimally closed to Π.

Computations in V = P2
b
. We have summarized the list of non generic unde-

composable parabolic bundles in the table above. All Π,Πi,Πi,j are one-parameter
families naturally parametrized by X ; they form rational curves in P−1(t). All
D,Di, Di,j are just points. On each line, bundles from the two columns are in-
finitesimally closed; bundles from the left side are contained in the main chart V
while those on the right side are outside. There are 16 one parameter families
of special bundles infinitesimally closed to 16 special bundles. A straightforward
computation shows that:

• Π is the conic with equation b21 − b0b2 parametrized by

X → Π ⊂ P2
b ; z 7→ (1 : z : z2).

• Di is the image of z = ti through the previous mapping.
• Πi,j is the line passing through Di and Dj .

Moving democratic weights Let us consider the moduli space Pw

−1(t) for
“democratic” weights wi = w, i = 1, . . . , n, and see how Pw

−1(t) is varrying while w

goes from 0 to 1. At the beginning, when w < 1
5 , the weight is not admissible (see

Section 3.2) and Pw

−1(t) = ∅.
For 1

5 < w < 1
3 , P

w

−1(t) = V is the main projective chart discussed above, the

projective plane P2
C
with coordinates (b0 : b1 : b2).
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Dj

Di

Πi,j

Π

Πi

D

Πi

φi

Πj

Di,j

V :

V̂ :

Vi:

φ

Figure 2. Projective charts V , V̂ and Vi’s and Del Pezzo geometry

When we pass to the next admissible chamber 1
3 < w < 3

5 , all five bundles
Di’s become unstable while all five families Πi’s now consist in stable bundles. The
new moduli space of stable bundles Pw

−1(t) is obtained from the previous one by
blowing-up the five points Di’s, that are replaced by the corresponding Πi’s in the
moduli space. We thus get a 5-points blow-up of P2

b
, a Del Pezzo surface of degree

4. Let us denote by V̂ the Del Pezzo surface and φ : V̂ → V ≃ P2
b
the blowing-up

of five points Di’s. There are exactly 16 rational curves having −1 self-intersection
on it, namely the 5 exceptional divisors Πi’s (arising from blowing-up the Di’s)
and the strict transforms of the conic Π and of the 10 lines Πi,j : they precisely
correspond to our 16 families of special bundles (see Figure 2).

Finally, when we pass to the last chamber 3
5 < w < 1, bundles of the family Π

become unstable and the parabolic structure D on the special bundle E = OX(1)⊕
OX(−2) becomes stable. The corresponding moduli space Pw

−1(t) is thus obtained

by contracting the (−1)-curve Π ∈ V̂ onto the single point D. This may be viewed
as a 4-points blow-up of P2

C
(the degree 5 Del Pezzo surface).

Patching two charts Let us now focus on the two projective charts V and V̂ .
Restricting the blowing-up φ : V̂ → V to the complement of Πi, we have a natural
isomorphism

φ0 : V̂ \ (Π1 ∪ Π2 ∪ Π3 ∪ Π4 ∪ Π5)
∼
−→ V \ {D1, D2, D3, D4, D5}

that identify equivalence classes of bundles that both occur in V̂ and V . Indeed,
when w crosses the special value 1

3 , sign of stability index changes only for those
bundles Di’s and Pi’s. The map φ obviously contracts each Πi to Di, it is the
blow-up morphism. Now, the non reduced scheme obtained by patching together

V and V̂ by φ0 is still an open subset of the moduli space P−1(t) that contains
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both V and the non separated locus Πi:

V →֒ V ∪φ0 V̂ →֒ P−1(t).

In other words, by patching V̂ to V like above, we have added to V the non
separated points of Πi’s. Mind that not only generic bundles are identified by φ0,
also generic points of Π, for example, occur in both charts and are identified by φ0.

Geometry of Del Pezzo We want now to cover the full coarse moduli space
P−1(t) by a finite number of smooth projective charts and patch them together
like we have just done. There are many projective charts V ′ ⊂ P−1(t) that can be
defined as moduli space of stable bundles Pw

−1(t) (many chambers in the space of
weights) but we do not need all of them to cover the coarse moduli space P−1(t).

We will use the classical geometry of the Del Pezzo surface V̂ in order to select a

few number of them. First of all, note that V̂ is dominating all other projective
charts in the following sense: if V ′ is another chart, the natural birational map
φ′ : V̂ → V is actually a morphism. Indeed, V ′ only differ from V̂ by the fact that
some of the one-parameter families Π′ are contracted to points D′.

The Del Pezzo surface V̂ contains 16 rational (−1)-curves that correspond, in
our modular setting, to the 16 families of special bundles. Each of these “lines”
intersects 5 other ones with cross-ratio determined by the ti’s. Recall that each of
these curves are naturally parametrized by X ⊃ {t1, t2, t3, t4, t5} in our modular
interpretation, and each poles ti corresponds to intersecting lines.

Appart from special symmetric values of the ti’s, the automorphism group of
this Del Pezzo surface has order 16 and it acts 1-transitively on −1 rational curves:
given 2 of these lines Π,Π′ ⊂ V̂ , there is exactly one automorphism φ : V̂ → V̂
sending Π to Π′. This group has also modular interpretation. If we apply two
elementary transformations (see Section 2.2), we get an automorphism

Elm−
ti
◦ Elm+

tj
: P−1(t)

∼
−→ P−1(t).

This automorphism must permute special points D,Di, Di,j’s and permute special
families Π,Πi,Πi,j and induces, in particular, an automorphism

(Elm−
ti
◦ Elm+

tj
)|
V̂
: V̂

∼
−→ V̂

of the projective chart V̂ . It is straightforward to check that the group generated by
these automorphisms has order 16 and acts 1-transitively on the 16 lines. Precisely,
we have

(Elm−
ti
◦ Elm+

tj
) : Π

∼
−→ Πi,j

for all i, j and

(Elm−
tj
◦ Elm+

tk
) ◦ (Elm−

tm
◦ Elm+

tn
) : Π

∼
−→ Πi

where {i, j, k,m, n} = {1, 2, 3, 4, 5}.

There are 16 ways to go back to P2
C
by blowing-down 5 curves in V̂ : we have

to choose 5 lines intersecting a given one Π′. All these P2
C
correspond to moduli

spaces for different choices of weights. Indeed, after an even number of elementary
tranformations, we can assume Π′ = Π. So the chart V ′ ≃ P2

C
obtained by con-

tracting those 5 lines intersecting Π′ in V̂ is given as moduli space V ′ = Pw

−1(t)

with weights of the form wi ∈ {w, 1 − w}, 1
5 < w < 1

3 , with an even number of
occurences wi = 1−w; note that there are 16 such possibilities and we denote them
by V, Vi, Vi,j in the obvious way.
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The whole moduli space P−1(t) Consider, like before, the projective charts

Vi ≃ P2
C
obtained by contracting in V̂ the 5 lines intersecting Πi. The automorphism

(Elm−
tj
◦ Elm+

tk
) ◦ (Elm−

tm
◦ Elm+

tn
) : P−1(t)

∼
−→ P−1(t)

where {i, j, k,m, n} = {1, 2, 3, 4, 5}, permutes the lines Π and Πi, and thus the
charts V and Vi; it follows that Vi = Pw

−1(t) for weights of the form wi = w and

wj = wk = wm = wn = 1− w with 1
5 < w < 1

3 . It is then easy to check that these
charts are enough to cover the whole coarse moduli space. Precisely, we have:

• D ∈ Vi for all i,
• Di ∈ V ,
• Di,j ∈ Vi and Vj ,

• Π ⊂ V, V̂ ,
• Πi ⊂ V̂ and all Vj ,

• Πi,j ⊂ V , V̂ and all Vk 6= Vi, Vj .

We finally obtain the following description:

(6.1) P−1(t) = V̂ ∪ V ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5

where ∪means that we identify all isomorphism classes of bundles that are shared by
any two of these projective charts by means of the natural birational isomorphisms.
More precisely, we have the explicit blowing-down morphisms φ : V̂ → V ≃ P2

b
and

φi : V̂ → Vi ≃ P2
C
introduced above and the patching (6.1) are induced by φ and

φi on the maximal open subsets where it is one-to-one.
The union of Proposition 1.3 is not sharp: we can delete one of the Vi’s, re-

maining 6 charts are enough to cover the whole moduli. However, we stress that we
cannot delete V̂ . Indeed, so far, we have not been very rigorous with those special
ti points occuring along our one-parameter families X

∼
−→ Π,Πi,Πi,j , namely those

intersection points between two such families. Let us explain on an example. The
family Π of those parabolic structures l on E = OX ⊕O(−1) such that all parabol-
ics li’s are contained in the same subbundle OX(−2) →֒ E. Such a subbundle is
determined, up to automorphism of E, by its intersection locus with the special
subbundle OX : there is a unique point z ∈ X such that these two subbundles coin-
cide over this point. Since the parabolic structure is determined by OX(−2), it is
also determined by the corresponding point z and we get a natural parametrization
X

∼
−→ Π. There are 5 special points corresponding to the case where the two sub-

bundles OX(−2) and OX coincide over ti: then li ⊂ OX and it is the intersection

point with the family Πi. This special parabolic bundle in Π occurs in V̂ , but not
in our main chart V . Indeed, stability assumption for V excludes the possibility of
li ⊂ OX , and this special bundle is replaced by Di ∈ V .

6.2. The duality picture. We now go back to the moduli space of connec-
tions Mw(t,ν). An open subset Mw(t,ν)0 is given by those connection (E,∇, l)
whose underlying parabolic bundle belongs to our main chart (E, l) ∈ V . Recall
that a natural compactification is obtained by adding projective Higgs bundles

App× Bun : Mw(t,ν)0
∼
−→ P2

a × P2
b

and the boundary of Mw(t,ν)0 corresponds to the incidence variety Σ : {a0b0 +
a1b1 + a2b2 = 0}. We would like to add to this picture those missing connections,
i.e. the connections on missing parabolic bundles.
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In order to do this, let us denote by C the image of the diagonal through the
map

Sym : X ×X → Sym2X = P2
a ; (q1, q2) 7→ (z − q1)(z − q2),

namely the conic C : {a21 − 4a0a2 = 0}, which is the locus of double roots q1 = q2:
it is naturally parametrized by our initial base curve

X → C ; q 7→ (q2 : −2q : 1).

Those lines a0b0+a1b1+a2b2 = 0 tangent to the conic are defined by the dual conic
C∗ : {b21 − b0b2 = 0} (denoted by Π in the previous section) which is also naturally
parametrized by our initial base curve

X → C∗ ; z 7→ (1 : z : z2).

The locus q = ti of poles provide 5 special points on the conic C, namely (a0 : a1 :
a2) = (t2i : −2ti : 1), and we will denote by ∆i : {t2ia2 + tia1 + a0 = 0} the line
tangent to C at this point. Any two of those lines intersect at a point ∆i ∩∆j =
{Pi,j} (outside of C); we get 10 special points with coordinates (titj : −ti − tj : 1).
Passing to the dual picture, we get 5 points Di := ∆∗

i on the dual conic C∗ defined
by (b0 : b1 : b2) = (1 : ti : t

2
i ) and 10 lines, Πi,j := P ∗

i,j passing through both Di

and Dj with equation titjb0 − (ti + tj)b1 + b2 = 0 (see Figure 3).

Γj,k

Γ

C

C∗

P2
b

Bun

App
Σ P2

a

∆i

∆j

∆k

Di

Dj

Dk

Pi,j

Pj,k

Πi,j

Πj,k

Γk

Γj

Γi

Γi,j

Figure 3. Duality picture in the case n = 5
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Denote by Σ ⊂ P2
a
×P2

b
the incidence variety defined by a0b0+a1b1+a2b2 = 0;

recall that Σ = Mw(t,ν)0H (see equation (4.9)). The conic C ⊂ P2
a lifts-up as a

rational curve Γ ⊂ Σ parametrized by

P1 → Γ ; q 7→
(

(1 : −2q : q2) , (q2 : q : 1)
)

(which projects down to both C and C∗). It is defined by equations

a21 = 4a0a2, a0b0 = a2b2 and 2a2b2 + a1b1 = 0.

Inside Σ, we also get 5 lines
Γi := ∆i × {Di}

and 10 more lines
Γi,j := {Pi,j} ×Πi,j .

All these 16 curves intersect like the corresponding 16 special rational curves in the
Del Pezzo surface discussed in Section 6 (the blow-up of P2

b
at the 5 points Di, see

picture 3); they moreover intersect transversally.
As we shall see, the locus of those connections that we have forgotten so far is

given by points infinitesimally closed to some points of Σ, namely

• to Γi for those connections on a bundle having the parabolic li ∈ OX ,
• to Γ for those connections on OX(1)⊕OX(−2).

To recover the full moduli space, we will have (at least) to blow-up these curves.

6.3. Those connections on OX ⊕ OX(−1) having a parabolic li ∈ OX .
To simplify formulae, set

κi := ν+i − ν−i for i = 0, 1, t1, t2,∞.

In order to recover such connections in our moduli space, we would like to construct,
for each such connection (E, l0,∇0), a deformation (E, lt,∇t) on the fixed bundle
E = OX ⊕ OX(−1) such that it belongs to our main chart M(t,ν)0 for t 6= 0
(no parabolic lti is contained in OX). We will do this for a connection ∇0 having
l0t1 ∈ OX and other pi’s being generic (mainly l∞ 6∈ OX). After applying the

elementary transformation Elm+
∞, we get a connection with parabolic structure in

the chart U with u1 = ∞. A deformation like above can be given by setting

ct1 = −tκt1 + t2 · c1, ct2 = c2, ut
1 =

1

t
and ut

2 = u2

(note that ∇0 −
κt1

u1

Θ1 and 1
u2

1

Θi have limit when u1 → ∞). By the way, we will

get all connections for a generic parabolic structure l having lt1 ∈ OX . Going back
with Elm−

∞, we get a curve in P2
a×P2

b
that tends to Σ when t → 0. The limit point

is given by

(a2 : a1 : a0) ∼ (1 : −t1 − q : t1q) and (b2 : b1 : b0) ∼ (t21 : t1 : 0)

(i.e. we tend to a point of the special line Γt1) with apparent points given by

q1 = t1 and q2 =
t2(c2(u2 − 1)− ρ− κt1

c2(u2 − t2)− ρ− κt1

.

In order to distinguish between all connections having the same limit point (so far,
c1 does not appear for instance) we have to blow-up Γ1 and compute the limit
point on the exceptional divisor Ft1 . This latter one is parametrized by q2 and the
restriction of the projective coordinates

(u : v : w) ∼ ( b2(t
2
1a2 + t1a1 + a0) : a2(b2 − t1b1) : a2(b2 − t21b0) ).
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One easily check that, when t → 0, the three entries above tend to 0 but the triple
projectively tends to

(u : v : w) → (
κt1t

2
1t2(t2 − 1)

c2(u2 − t2)− ρ− κt1

: t2(u2 − 1) : (t1 + t2)u2 − (t1 + 1)t2 )

From the discussion of Section 3.3 and more particularly Section 6, it is not surpris-
ing that u2, and thus the parabolic structure, is determined by the ratio v

w
= b2−t1b1

b2−t2
1
b0

which is also the coordinate for the blow-up of the point Dt1 ∈ P2
b
. For u2 fixed,

we see that the parameter c2 is determined by q2, i.e. by the apparent map. We
still not see the parameter c1 and cannot determine yet the limit connection. We
have to blow-up once again.

Precisely, we have now to blow-up the surface defined in Ft1 by

(ρ+ κt1)u+ κt1t1(t1 + q2)v − κt1t1q2w = 0.

One can check that the locus of those connections pti ∈ OX is parametrized by an
open subset of the latter exceptional divisor F ′

t1
.

6.4. Those connections on OX(1) ⊕ OX(−2). After an elementary trans-
formation at the 5 parabolics of the form

Elm+
0 ◦ Elm+

1 ◦ Elm+
∞ ◦ Elm−

t1
◦ Elm−

t1
,

such a connection (E = OX(1)⊕OX(−2), l,∇) can be transformed into a trace-free
connection (E′ = OX ⊕OX , l′,∇′) on the trivial bundle with the property that all
parabolics l′i now lie along the diagonal section OX(−1) →֒ OX ⊕OX . We can now
work in the chart U of Section 5.1 and parametrize a small deformation, say ∇′

t, on
the trivial bundle whose parabolics become generic (not lying anymore on a same
OX(−1)) for t 6= 0 and ∇′

0 = ∇′. After coming back with the same 5 elementary
transformations (but opposite signs), we get a deformation ∇t of connections on
the main bundle Et = OX ⊕OX(−1) for t 6= 0 that tends to the initial connection
∇0 = ∇ on the special bundle E0 = OX(1)⊕OX(−2). We thus get a curve in our
moduli space Σ ⊂ P2

a×P2
b
that tends to Σ when t → 0. After Maple computations,

we get the following.
First of all, the corresponding point in P2

a
×P2

b
tends to the “conic” Γ, the limit

point depending on the first variation of the parabolics l′i at t = 0: if we normalize
so that the parabolic structure l

′ of ∇′ is

(1 : 0), (1 : 1), (1 : u′
1), (1 : u′

2) and (0 : 1)

(like notations of Section 5.1) then the limit point on Γ depends on the slope

λ =
u′
2
−t2

u′
1
−t1

when (u′
1, u

′
2) → (t1, t2). Precisely, the limit point is

(

(1 : −2q : q2) , (q2 : q : 1)
)

∈ Γ where q =
t1t2((t1 − 1)λ− (t2 − 1))

t1(t1 − 1)λ− t2(t2 − 1)
.

We fix this point from now on with genericity condition q 6= 0, 1, t1, t2,∞.
At the neighborhood of q, the curve Γ is given as complete intersection of

a21 = 4a0a2, a0b0 = a2b2 and 2a2b2 + a1b1 = 0.

Denote by F the exceptional divisor obtained after blowing-up the curve Γ. One
can reduce our discussion to the hyperplane 2qa2 + a1 = 0 which is transversal to
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Γ. Affine coordinates on F are given by restricting the two rational functions

U =
a2
b2

b2 − qb1
q2a2 − a0

and V =
a2
b2

b2 − q2b0
q2a2 − a0

.

Here, the strict transform of Σ is given by q2(V − 2U) + 1 = 0. The limit of these
two rational functions along a deformation (Et,∇t) like above is

U →
1

2q

(

−
2ρ+ κ0 + 5

q
+

κ1 − 1

q − 1
+

κt1 − 1

q − t1
+

κt2 − 1

q − t2

)

and

V →
1

q

(

−
ρ+ κ0 + 2

q
+

κ1 − 1

q − 1
+

κt1 − 1

q − t1
+

κt2 − 1

q − t2

)

In particular, we can check that q2(V − 2U)+1 → ρ+4 6= 0 for generic parameters
κi. This defines a curve Γ′ ⊂ F parametrized by (1 : −2q) = (a2 : a1) on F (or
a single point since q is fixed) that we have to blow-up once again; let us call F ′

the new exceptional divisor and still denote by F the strict transform by abuse of
notation. We then check by a direct computation that F ′ \ (F ∩F ′) is the locus of
those parabolic connections the bundle E = OX(1)⊕OX(−2).

If we switch to Darboux coordinates, we can check that, along the above limit
process, we get

q1, q2 → q and p1, p2 → ∞

with the constraints

p1 + p2 →
ρ

ρ+ 4

(

κ0 − 1

q
+

κ1 − 1

q − 1
+

κt1 − 1

q − t1
+

κt2 − 1

q − t2

)

and
p1q1 + p2q2

q
→

ρ

ρ+ 4

(

κ0 − 3

q
+

κ1 − 1

q − 1
+

κt1 − 1

q − t1
+

κt2 − 1

q − t2

)

.
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[19] M.-H. Saito and S. Szabó. Apparent singularities of logarithmic connections and canonical
coordinates for their moduli spaces. In preparation.

[20] M.-H. Saito, T. Takebe, and H. Terajima. Deformation of Okamoto-Painlevé pairs and
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