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Abstract

Economies with oligopolistic markets are prone to inefficient sunspot

fluctuations triggered by autonomous changes in firms equilibrium conjec-

tures. We show that a well designed taxation-subsidization scheme can

eliminate these fluctuations by coordinating firms in each sector on a single

efficient equilibrium. At the macroeconomic level, implementing this stabi-

lization policy leads to significant welfare gains, attributable to a quantita-

tively dominant "efficient stabilization effect". This effect, while important,

is typically ignored in the traditional computations of the welfare costs of

aggregate fluctuations (e.g., Lucas, 2003).
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"The market economy is a social system. In attempting to optimize

her own actions, each agent must attempt to predict the actions of

the other agents. A, in forecasting the market strategy of B, must

forecast B’s forecasts of the forecasts of others including those of A

herself. An entrepreneur is uncertain about the moves of his rivals,

and they of his moves. It is not surprising that this process may

generate uncertainty in outcomes even in the extreme case in which

the fundamentals are non-stochastic." (Shell, "Sunspot Equilibrium",

The New Palgrave Dictionary of Economics, 2008).

1 Introduction

In this paper, we analyze efficiency and welfare issues in dynamic economies with

imperfectly competitive product markets. We emphasize the importance of de-

signing appropriate stabilization policies for improving consumer welfare. As is

well known, one typical feature of such economies is that they are likely to exhibit

sunspot-driven fluctuations. This is true in economies where the degree of market

power is sufficiently large that the model dynamics becomes locally indetermi-

nate, as in the canonical RBC model with imperfect competition and increasing

returns analyzed in Benhabib and Farmer (1994) and Farmer and Guo (1994).

This is also true when increasing returns to scale are small, if the strategic inter-

actions between firms lead to a multiplicity of equilibrium configurations in each

oligopolistic sector (a situation which we may call strategic indeterminacy). In

this case, as emphasized in Karl Shell’s quotation above, endogenous fluctuations

may emerge as a result of exogenous self-fulfilling changes in firms’ conjectures

on competitors’ actions. Dos Santos Ferreira and Dufourt (2006) introduced such

conjecture changes in an otherwise standard RBC model with oligopolistic mar-

kets and showed that they could generate significant and qualitatively relevant

business cycles.1

Because sunspot-driven fluctuations are usually considered detrimental to risk

averse consumers, several papers, starting with Grandmont (1986) and Reichlin

(1986), have explored the possibility of immunizing the economy from these fluctu-

ations using standard policy tools. In particular, Guo and Lansing (1998) showed

1For an early application of this idea within a simple overlapping generations model, see
Chatterjee et al. (1993).
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that the introduction of a sufficiently progressive income taxation rate can elimi-

nate sunspot equilibria in the Benhabib and Farmer (1994) model.2 The general

idea of the taxation scheme is to distort equilibrium conditions in order to make

the steady state locally determinate. However, taxation schemes which eliminate

dynamic indeterminacy do not necessarily rule out sunspot equilibria implied by

strategic indeterminacy. Indeed, as we will show below, endogenous fluctuations

can occur in this case even if the steady-state is locally determinate.

In this paper, we thus explore the possibility of eliminating sunspot fluctua-

tions linked to the strategic interactions between firms, and we analyze the welfare

effects of implementing such stabilization policies. Building on the general frame-

work developed in Dos Santos Ferreira and Dufourt (2007) to analyze equilibrium

configurations in oligopolistic markets with free entry and exit, we show that there

exist well-designed taxation-subsidization schemes which can achieve this objective

by coordinating firms’ conjectures in each sector on an efficient equilibrium. The

particular taxation scheme we propose has the feature of distorting payoff func-

tions, making unsustainable all equilibrium configurations other than the desired

(efficient) equilibrium, which is left unaffected. Hence, while distortive ex-ante, it

acts ex-post as a pure selection mechanism.

A good policy would then select a desired equilibrium according to some wel-

fare or efficiency criterion. To gain some insights on the potential welfare gains

that such regulation policies would provide, we develop a simple macroeconomic

model with overlapping generations of consumers and a large number of differen-

tiated sectors composed of several Cournot competitors. We prove that, in the

laissez-faire economy, the multiplicity of free entry equilibria in any sector is con-

sistent with a large set of aggregate dynamics — influenced by firms’ expectations —,

infinitely many of them involving fluctuating macroeconomic variables. This set of

equilibria is very large and includes, among others, equilibria with smooth fluctua-

tions around a long-run production level, equilibria with endogenous deterministic

cycles, and equilibria with stochastic regime switches. All these trajectories are

associated with variations in the aggregate markup factor — which roughly de-

pends on the aggregate (average) number of firms per sector — and, as such, imply

the existence of a time-varying gap between the efficient and the realized activity

levels. Our theory is thus consistent with the findings of Chari et al. (2007),

who report that a significant proportion of actual fluctuations are associated with

2See also Christiano and Harrison (1999), and Guo and Lansing (2002).
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time-varying wedges between the marginal rate of substitution of consumption for

leisure and the marginal productivity of labor.

Turning to normative issues, we then compare these potential trajectories in

the laissez-faire economy to those that would be chosen by a benevolent social

planner in first-best and second-best environments. We show that, in each case,

the efficient trajectory is a stationary deterministic path associated with a well-

determined (fixed) number of active firms per sector. Thus, our framework gives

clear rationale for attempting to stabilize the economy on more stable and ef-

ficient activity levels. The application to all sectors of the particular taxation-

subsidization scheme analyzed at the microeconomic level provides the appropriate

incentives to achieve this objective. We show that implementing this policy would

generate two kinds of welfare gains: first, by reducing the variance of aggregate

fluctuations, it would increase the welfare of risk averse consumers. Second, by

stabilizing the economy on an efficient (second-best) production level, it would pro-

vide direct efficiency gains to these consumers. A calibrated version of the model,

in which all aggregate uncertainty results from exogenous stochastic changes in

firms equilibrium conjectures, enables us to quantify these potential gains. In our

benchmark economy, consistent with a variance of aggregate production similar

to those of the US economy, we obtain welfare gains equivalent to a permanent

increase in aggregate consumption ranging between 0.91 and 2.31 percent — an or-

der of magnitude which is approximately 15 times larger than the corresponding

estimates in Lucas (2003). We decompose these gains into a "pure stabilization

effect" and an "efficient stabilization effect" and show that, from a quantitative

point of view, most of the welfare gains result from the efficient stabilization ef-

fect. This effect, while potentially important, is typically ignored in the traditional

computations of the welfare costs of aggregate fluctuations.

The remaining of the paper is organized as follows. In section 2, we present

the general concept of free entry equilibrium at the industry level, and examine

how a well-defined taxation scheme can help selecting the desired equilibrium in

the set of potential free entry equilibria. In section 3, we insert this conceptual

framework into a standard overlapping generations general equilibrium model, and

prove that strategic indeterminacy is consistent with a large class of deterministic

and stochastic (endogenous and/or sunspot-driven fluctuations) equilibria. We

characterize the first and second-best activity levels and analyze the trade-offs

involved in regulation. In section 4, we use our framework to reconsider the
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traditional issues of stabilization policy and quantification of the welfare costs of

fluctuations. Section 5 concludes.

2 Microeconomics: taxation policy in contestable

markets

In this section, we start by briefly recalling some of the results obtained in Dos

Santos Ferreira and Dufourt (2007), where a general framework was developed in

order to analyze equilibrium configurations within perfectly contestable markets.

Specifically, we show that under Cournot competition and internal economies of

scale (here originating in a non-sunk fixed cost), free entry and exit conditions

are typically consistent with multiplicity of oligopolistic equilibria characterized

by different numbers of active firms and different individual production levels.

In other words, free entry and exit are not enough to ensure uniqueness of the

equilibrium with zero profits — an equilibrium which in any case is not necessarily

optimal.

We then proceed to show that there exists a taxation-subsidization scheme

which can eliminate all undesired equilibria. The specific scheme that we propose

is required to have two desirable properties: first, to be balanced at the industry

level; second, to select the desired equilibrium without introducing any additional

distortions (which would partially or totally offset the efficiency gains obtained

from selecting the right equilibrium). This taxation scheme would thus act ex-

post as a pure selection mechanism.

2.1 Cournot free entry equilibria under laissez-faire

Consider, as an example of the general framework developed in Dos Santos Fer-

reira and Dufourt (2007), an industry with a large number N of identical firms

producing a homogeneous good and competing à la Cournot. The demand to the

industry at price p is b/p, with b > 0. Each firm can produce the homogenous

good with a constant marginal cost c and a positive non-sunk fixed cost cφ. The

technology can thus be described by a cost function C such that C (0) = 0 and

C (y) = c (φ+ y) for positive output y. Contestability is expressed by the exis-

tence, at any equilibrium, of potential entrants, able to produce the same good

under the same technological conditions as the incumbents, yet obtaining a max-
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imum profit by remaining inactive. The Cournotian price

p∗ (n) =
n

n− 1c, (1)

equal to the markup factor applied to the marginal cost by any of n active firms,

results from the necessary (and sufficient) first order condition for profit maximiza-

tion by producing firms,3 given their correct conjecture that n−1 competitors are
producing yn = b/np∗ (n). However, for this price to be an equilibrium price, two

additional conditions must be fulfilled. First, it must be profitable to produce yn

rather than stay inactive, the fixed cost being at least covered by the gross profit.

In other words, the Cournotian price must be at least equal to the break-even price

(the price ensuring zero profit), which is easily obtained as:

p (n) =
c

1− ncφ/b
, (2)

an increasing function of the number n of active firms, of the marginal cost c, and

of the share cφ/b of individual fixed cost in aggregate expenditure (which is also

a measure of the degree of increasing returns to scale).

The second condition for the Cournotian price to characterize an equilibrium is

that inactivity be optimal for any potential entrant, given the correct conjecture

that active firms are producing an aggregate quantity nyn, so that a strategy

profile with n firms choosing yn, all others choosing zero, be sustainable. Starting

from the first order condition for profit maximization by a potential entrant (y =p
(b/c)nyn−nyn), it is easy to check that the corresponding profit by/ (y + nyn)−

c (y + φ) will indeed be non-positive provided nyn is large enough or, equivalently,

provided the Cournotian price p∗ (n) is small enough, namely not larger than the

limit price

p (n) =
c

³
1−

p
cφ/b

´2 . (3)

This price appears to be constant in the number n of active firms, but is again an

increasing function of the marginal cost c and of the share cφ/b of individual fixed

cost in aggregate expenditure.

3The first order condition for (interior) maximization of profit by/
¡
y + Y

¢
− c (y + φ), under

the conjecture that the competitors’ aggregate supply is Y , can be stated as bY /
¡
y + Y

¢2
= c.

Clearly, this necessary condition is also sufficient, and leads to a symmetric solution, so that the
Cournotian price indeed verifies: ((n− 1) /n) p∗ (n) = c.
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Observe that profitability (p∗ (n) ≥ p (n)) requires, by (1) and (2),

n ≤
p
b/cφ ≡ n. (4)

The upper bound n must be at least equal to 2, in order for an equilibrium to

exist, so that cφ/b ≤ 1/4 is a necessary condition for existence. Sustainability

(p∗ (n) ≤ p (n)) in turn requires, by (1) and (3),

n ≥ max
½

n

2− 1/n, 2
¾
≡ n. (5)

A specific equilibrium outcome will thus be associated with any number n of ac-

tive firms in the admissible interval [n, n]. This interval contains more than one

integer as soon as n ≥ 4.562, or cφ/b ≤ 0.048. In this case, the zero-profit equi-
librium, corresponding to the highest integer in the admissible interval, is only

one particular equilibrium among many others. Figure 1 gives an illustration (for

cφ/b = 0.04) of this equilibrium indeterminacy, with three equilibrium configura-

tions characterized by 3, 4 and 5 active firms.

65432
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1.75

1.5

1.25

1

( )np

( )np

( )np*

n

pn

n n

Figure 1: Equilibrium conditions: the Cournotian, break-even and limit price
schedules

2.2 Taxation as a selection device

As long as several strategy profiles are sustainable as equilibrium configurations,

there is no reason to suppose that firms always coordinate on the zero profit

equilibrium, which is the least profitable equilibrium for active firms. There is no
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more reason to believe that the zero profit equilibrium is efficient. Indeed, if an

increase in the equilibrium number of active firms reduces the distortion introduced

by the markup factor μn ≡ n/(n− 1), it also generates scale inefficiencies through
the duplication of the non-sunk fixed cost cφ (which is incurred by all active

firms). Clearly, a proper characterization of an efficient equilibrium would require

the specification of a well-defined selection criterion which should be based on

economic fundamentals, preferences and deep parameters of the model (a point

which will be examined in the next section). In any case, government intervention

may be welcome if it can ensure stabilization on the efficient equilibrium in the

sector.

There are many ways which can be thought about in order to achieve this

objective. However, distortive taxation appears as the most natural tool. The aim

of the taxation policy would be to distort one or more of the three schedules of

Cournotian, break-even and limit prices so as to make the admissible interval [n, n]

contain at most one integer. While this policy seems attractive, it has a potential

pitfall: if all equilibria are distorted, the efficiency gains obtained through the

coordination on the best equilibrium might be canceled out by the efficiency losses

generated by the price distortion. Thus, we would ideally want the taxation policy

to be a strict selection instrument, ensuring coordination on the best equilibrium

but avoiding any distortion or redistribution effects among sectors or among types

of agents (firms and consumers). These conditions can in turn be fulfilled by

imposing several restrictions on the taxation scheme. First, the taxation policy

should be balanced at the sectoral level, the proportional taxes collected from

firms in a sector being entirely redistributed to these firms by lump-sum transfers.

Second, the taxation-subsidization scheme should be "state-dependent" (defined

with respect to the ratio n/n∗ of the number n of active firms to its target value

n∗),4 in order to distort all equilibria except the efficient one, which should be

left unaffected. In other words, the taxation scheme should be inoperative at the

optimal equilibrium, meaning that neither taxes nor subsidies are applied at that

equilibrium. We thus define:

Definition 1 The set of desirable fiscal policies is the set of proportional taxes on

sales at rate τ (n/n∗) and of lump sum subsidies T (n/n∗) to active firms satisfy-

ing:

4Notice that taxation can equivalently be defined as dependent on the ratio (b/n∗) / (b/n) =
n/n∗ of the target revenue of the firm to its actual value.
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(i) the sectoral balanced budget (SBB) condition: T (n/n∗)n = τ (n/n∗) b;

(ii) the inoperativeness at the efficient equilibrium (IEE) condition: T (1) = τ (1) =

0.

We can now prove existence of policies satisfying these properties. In order to

take into account taxes and subsidies, we express as follows the profit at state n/n∗

of a firm producing y and conjecturing Y as the competitors’ aggregate output:

Π
¡
y, Y , n/n∗

¢
=

µ
(1− τ (n/n∗)) b

y + Y
− c

¶
y − (cφ− T (n/n∗)) . (6)

The first order condition for maximizing this profit function (together with the

condition Y = (n− 1) y) gives the modified Cournotian price

p∗ (n, n∗) =
n

n− 1
c

1− τ (n/n∗)
, (7)

a price clearly affected by the proportional sales tax, which augments the marginal

cost by a factor 1/ (1− τ (n/n∗)).

A simple way to achieve the coordination objective is to make unsustainable the

strategy profiles with less than the desired number of active firms, by transforming

fixed costs into variable costs. This can be done by subsidizing any producing

firm through a lump sum transfer T (n/n∗) depending on the ratio n/n∗ of the

actual to the target number of active firms, and by financing this subsidy through

a proportional sales tax at the rate τ (n/n∗). Similarly, strategy profiles with

more than the desired number of active firms should be made unprofitable by

accomplishing the reverse transformation.

We can accordingly establish two propositions:

Proposition 1 Any free entry equilibrium with n < n∗ in the laissez-faire econ-

omy can be ruled out by the choice of a high enough taxation rate τ (n/n∗) on sales

(redistributed through a lump-sum transfer equal to T (n/n∗)).

Proof. See appendix.

Proposition 2 Any free entry equilibrium with n > n∗ in the laissez-faire econ-

omy can be ruled out by the choice of a high enough subsidization rate −τ (n/n∗)
applied to sales (financed by a lump-sum tax equal to −T (n/n∗)).
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Figure 2: Equilibrium selection through taxation

Proof. See appendix.

The balanced tax-subsidy schemes defined in Propositions 1 and 2 eliminate

all possible equilibrium outcomes under laissez-faire except the efficient (or the

desired) one, associated with zero taxes and subsidies. Many such schemes can be

designed. Here, we just give the example of the linear affine scheme τ (n/n∗) =

τn∗ (1− n/n∗) in order to show, in Figure 2, how the price schedules are distorted

by the taxation policy (relative to the laissez-faire regime) so as to leave one

single possible equilibrium outcome (n∗ = 5 ∈ {3, 4, 5} on the top panel, and

n∗ = 8 ∈ {6, 7, 8, 9, 10} on the bottom one).

3 Macroeconomics: strategic indeterminacy and

implications

Up to now we have proved that the government could select any particular equi-

librium outcome as its preferred one without referring to an explicit social welfare

criterion. Taking social welfare into account requires to move from partial to gen-
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eral equilibrium analysis, and to provide a complete description of the economy

(preferences, technology, and so on). Accordingly, we now develop a simple macro-

economic model enabling us to derive some important results concerning welfare

analysis and the desirability of adopting policy rules of the type described above.

The model presented in section 3.1 describes a stationary economy with a large

number of sectors producing different goods under Cournot competition.

Following our partial equilibrium analysis, the free-entry equilibrium number

of active firms within each sector is indeterminate under laissez-faire and can take

any integer value in some admissible interval [n, n]. Therefore, the realized equi-

librium in each sector will depend on firms’ mutually consistent conjectures about

their rivals’ actions. But there is no reason to believe that the implicit scheme

ensuring this coordination process on a particular equilibrium should remain the

same across sectors and through time. As Shell (2008) emphasizes in the quotation

at the beginning of this paper, it is perfectly conceivable that outcomes of such

strategic games with multiple equilibria may fluctuate randomly, or according to

some extraneous or subjective events unrelated to the economy, even in the ex-

treme case in which the environment is stable and non-stochastic. Accordingly we

prove in section 3.2 that, in accordance with Shell’s predictions, at the intertem-

poral general equilibrium of the economy, solutions to the coordination problem

encompass a large class of admissible dynamic trajectories, infinitely many of them

involving fluctuating aggregate variables.

Facing this fundamental indeterminacy inherent to free entry equilibria, the

government may find profitable to use the taxation policy described above to en-

sure coordination on a particular equilibrium within each sector. We prove in

section 3.3 that this is indeed the case. Compared to the laissez-faire situation, a

well-designed taxation policy can ensure coordination on a second-best intertempo-

ral equilibrium which is welfare improving. The welfare gains are obtained for two

main reasons. First, by ensuring coordination on a particular equilibrium — which

may now remain invariant — the taxation policy can totally eliminate sunspot

driven fluctuations in aggregate variables, improving the welfare of a risk-averse

social planner: this is the pure stabilization effect of the taxation scheme. Second,

by coordinating the economy on a second-best equilibrium, closer in its properties

to the first-best allocation than the laissez-faire economy, the policy can provide

direct efficiency gains to the social planner: this is the efficient stabilization effect

of taxation.
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3.1 A simple macroeconomic model

In order to maintain analytical tractability, the model we develop is an overly

simplified dynamic macroeconomic model composed of overlapping generations

of ‘young’ and ‘old’ consumers and of a large number of differentiated industries

exhibiting identical characteristics.

At each date t, a generation of identical consumers of unit mass is born and lives

for two periods. Consumers work only when young, receiving in this period wage

earnings and dividends from firms (which are equally held by young consumers)

and consume only when old. Young consumers can only save in the form of

money, which bears no interest, and use their money savings when old to pay

for their consumption purchases. We assume that old consumers’ preferences

are defined over goods i = 1, ...,m produced by m industries, with a constant

elasticity of substitution between goods that we take equal to unity. This implies

that consumption may be represented by the aggregate index Y = m
³Qm

i=1 y
1/m
i

´
,

which can be purchased at the corresponding price index P =
Qm

i=1 p
1/m
i .

Since equally aged consumers are identical and are identically treated at equi-

librium, we can simply refer to the choices of an aggregate representative young

consumer, born at t and choosing present labor supply Lt and future aggregate

consumption Yt+1 in order to maximize expected utility EtU(Yt+1)−V (Lt) subject

to the budget constraints Pt+1Yt+1 ≤Mt andMt ≤ wtLt+Dt, whereMt is money

demand, wt the nominal wage and Dt the total amount of dividends received from

firms. The first-order condition for this program may be written as

Et

µ
U 0(Yt+1)

wt

Pt+1

¶
= V 0 (Lt) , (8)

with the two budget constraints binding at the optimum.

For simplicity, we shall restrict our attention to the case of isoelastic sub-

utility functions U (Y ) = Y 1−σ/ (1− σ) and V (L) = vL1+χ/ (1 + χ), with positive

parameter values and σ 6= 1. With these assumptions, it is easy to see from the

optimality condition (8) that the young consumer will save in the form of money

all its income available at t, supplying an amount of labor

Lt =

µ
Et

¡
Y 1−σ
t+1

¢ wt

vMt

¶1/χ
. (9)

As regards the productive sector, a number N of potential producers compete
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in each one of the m contestable oligopolistic industries, deciding in particular to

be active or not according to their conjectures about other producers’ decisions

(required to be consistent at equilibrium). The individual production function is

yt = lt − φ, where yt is output, lt is labor used in production and φ > 0 is a fixed

(non-sunk) cost. Thus, we consider similar assumptions as in the previous section,

except that in switching from partial to general equilibrium, the parameter c be-

comes an endogenous variable, wt. By contrast, if we assume a constant stock of

money M for all periods and because of the unit elasticity of intersectoral substi-

tution, we may continue to take expenditure per sector as a parameter b =M/m,

corresponding to the money holdings of old consumers divided by the number of

industries.

The condition for output market equilibrium is the equality of aggregate supply

and demand:

Yt =
M

Pt
. (10)

Individual sectoral prices are given by Cournotian prices, according to equation

(7), so that the general price index Pt satisfies:

Pt = wt

mY

i=1

µ
nit

nit − 1
1

1− τ (nit/n∗)

¶1/m
≡ wt

mY

i=1

μ
1/m
it , (11)

where, by symmetry, we have assumed in every industry the same target n∗ and the

same taxation scheme τ (with τ ≡ 0 under laissez-faire and τ (1) = 0 generally).

Of course, the optimal target n∗ will be derived endogenously when considering

the second-best intertemporal allocation.

Equilibrium in the labor market also requires the equality of the correspond-

ing aggregate demand (given by equation (9)) and supply (
Pm

i=1 lit =
Pm

i=1 yit +

φ
Pm

i=1 nit, with yit =M/mwtμit):

³
Et

¡
Y 1−σ
t+1

¢ wt

vM

´1/χ
=

M

mwt

mX

i=1

1

μit
+ φ

mX

i=1

nit. (12)

The money market can be ignored since it clears by Walras law when both the

output and the labor markets are in equilibrium.

Combining the market equilibrium conditions (10)—(12), it is easy to show

that the general equilibrium of the economy may be represented by the following
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non-autonomous one-dimensional dynamic system:

vμGt

µ
μGt
μHt

Yt + φmnAt

¶χ

Yt = Et

¡
Y 1−σ
t+1

¢
, (13)

where μGt = Πm
i=1μ

1/m
it and μHt = m/

Pm
i=1 (1/μit) are the geometric and arith-

metic markup means, respectively, and nAt = (1/m)
Pm

i=1 nit is the arithmetic

mean of the numbers of active firms in each sector. Equation (13) is the fun-

damental equation defining the set of admissible dynamic trajectories consistent

with the intertemporal general equilibrium of our economy. Clearly, as noticed

earlier, equilibrium trajectories are strongly influenced by how coordination on a

particular free entry equilibrium is obtained within each sector, through its effects

on the geometric and harmonic markup means and on the total number of active

firms. In the following subsection, we shall consider stationary deterministic and

stochastic trajectories satisfying equation (13) under laissez-faire. The use of regu-

lation through the taxation policy previously described would then rule out all but

the deterministic trajectories by ensuring coordination on a specific equilibrium

configuration within each sector.

3.2 Expectation-driven fluctuations in the laissez-faire econ-

omy

Assume as a starting step that the coordination process selects a time-invariant

number of active firms ni in each sector. Then it is easy to show that equation

(13) has a unique deterministic stationary equilibrium Y obtained by solving the

equation

vμG
µ
μG

μH
Y + φmnA

¶χ

Y σ = 1. (14)

It can easily be verified that if σ ≤ 2, the eigenvalue of the dynamic equation

(13) has a modulus larger than 1 and the deterministic equilibrium Y exhibits the

saddle path stability. In this case, the unique non-explosive equilibrium trajectory

requires that output jump instantaneously and permanently to its unique (but

not necessarily optimal) long-run stationary value Y . The dynamic system is then

said to be determinate in the dynamic sense, since any coordination device that

keeps constant the number of active firms in each industry excludes endogenous

fluctuations. Since we are not interested in this paper in endogenous fluctuations

resulting from dynamic indeterminacy, we shall from now on impose the parameter
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restriction σ ≤ 2.
However, as noted above, there is no reason to believe that a decentralized

coordination scheme would spontaneously select a time-invariant number of active

firms in each sector. When this is not the case, we shall prove that the set of

admissible dynamics implied by equation (13) includes infinitely many trajectories

with fluctuating aggregate variables.

To be explicit, considerK integers {n1, ..., nK} such that 2 ≤ n1 < ... < nK and

K > 1, and define a state of the economy at time t as a vector Ft = (ft1, ..., ftK)

of proportions of industries that have coordinated in this period on the number nk

of active firms (k = 1, ...,K). Obviously, there are infinitely many such vectors.

A coordination scheme would then describe the set of vectors that are allowed in

each period and also specify the transition process between states across time.

An interesting benchmark consists in assuming that the coordination process

is a simple Markov chain. Specifically, we assume that there is an arbitrary num-

ber R ∈ NÂ {0, 1} of possible states, indexed by r = 1, ..., R and character-

ized for each r by the vector of proportions Fr. The transition between states

is governed by a (R×R) row-stochastic matrix T with elements Tij satisfying

Tij ≡ Pr(r0 = j | r = i), where a prime stands for next period. It is straightfor-

ward to verify that equation (13) may in this case be reformulated as a system

of R equations (associated with states r = 1, ..., R) characterizing a stationary

stochastic equilibrium:

vμGr

µ
μGr
μHr

Yr + φmnAr

¶χ

Yr =
RX

r0=1

Trr0Y
1−σ
r0 , (15)

where the markup means in state r are rewritten as μGr = ΠK
k=1μ

frk
k and μHr =

1/
PK

k=1 (frk/μk), with μk = nk/ (nk − 1), and the corresponding average number
of active firms is also rewritten as nAr =

PK
k=1 frknk.

Neglecting the profitability and sustainability conditions, existence of a solu-

tion (Y1, ..., YR) to this system of equations can be established by a straightforward

application of Brouwer’s fixpoint theorem.

Lemma 1 Assume σ ≤ 2. Let {n1, ..., nK} be any set of integers larger than 1.
Also let the family (F1, ..., FR) of possible states in the economy (a set of R points in

the standard (K − 1)-simplex ∆K−1) and the transition matrix T be given. Then

there exists a solution (Y1, ..., YR) to the equation system (15).
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Proof. See appendix.

However, for such a solution to be an equilibrium, the profitability and sus-

tainability conditions must also be satisfied, imposing restrictions on the set

{n1, ..., nK} of admissible numbers of active firms (or else on the subset of ∆K−1

which contains the possible states in the economy). Remind that in the partial

equilibrium context of section 2, these numbers were required to belong to some

properly defined interval [n, n]. However, in the present general equilibrium con-

text, this interval ceases to be determined by the sole parameters of the model.

Indeed, according to conditions (4) and (5) in the previous section, n =
p
b/cφ

and n = max
np

b/cφ/
³
2−

p
cφ/b

´
, 2
o
, with c now equal to w, an endogenous

variable. More precisely, recalling that

b =
M

m
=

PrYr
m

=
KY

k=1

µ
nk

nk − 1

¶frk wrYr
m

, (16)

we must in fact refer to the conditions (imposed on all states r = 1, ..., R):

nk ≤

vuut
KY

k0=1

µ
nk0

nk0 − 1

¶frk0 Yr
φm

≡ nr (17)

for profitability, and

nk ≥
nr

2− 1/nr
≡ nr (18)

for sustainability. As nr and nr depend on the aggregate output Yr, which is also

an equilibrium quantity, these conditions define, for each state r, an admissible

interval [nr, nr], containing the integer numbers nk of active firms for which frk > 0

is allowed in state r, with frk = 0 for all numbers outside the interval. It is

this interdependence which makes far from trivial the task of determining general

conditions for existence of a solution (Y1, ..., YR) to the system (15) that also

satisfies the profitability and sustainability conditions at any state r.

Notice however that when there is full symmetry across industries as regards

the number of active firms in each state (Fr belongs to the canonical basis of R
K

for any state r) and when the present state is expected to last with probability one

(the transition matrix is the identity matrix), it results from equation (15) that

the conditions (17) and (18) can be stated as n (n) ≤ nk ≤ n (n), where n and n
are state-independent. One can then uniquely define, as in the partial equilibrium
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context, an admissible interval [n, n] depending on the sole parameter values, at

least under a condition stated in the following lemma.

Lemma 2 Consider a set of numbers nk ∈ NÂ {0, 1} (k = 1, ...,K), and let

Fr = er (r = 1, ..., R, with R = K) and T = I. If σ ≥ (1− χ) /3, there exists a

state-independent admissible interval [n, n] such that profitability and sustainability

require nk to belong to that interval.

Proof. See appendix.

Existence of a state-independent admissible interval [n, n], in which the set

{n1, ..., nK} should be included in order to ensure profitability and sustainability

of a solution (Y1, ..., YR) to the equation system (15), cannot be established in

general. Thus, it is only after that solution is determined (we know by Lemma

1 that it exists) that we must verify, for each state r, that the interval [nr, nr]

as defined by (17) and (18) contains the set {n1, ..., nK} (or the subset which

corresponds to the non-zero elements of Fr). However, we can find a range of

parameter values for which a state-independent admissible interval can still be

defined, whatever the family of states (F1, ..., FR) and the transition matrix T.

This is stated in the following proposition.

Proposition 3 Assume (1− χ) /3 ≤ σ ≤ 2, and take any family of possible

states in the economy (F1, ..., FR) ∈ (∆K−1)
R and any transition probabilities

(T1, ..., TR) ∈ (∆R−1)
R. Consider the set {n1, ..., nK} of integers introduced in

Lemma 1 and the interval [n, n] referred to in Lemma 2. Then, for

χ ≥ 1 +
p
1− 1/n
n

+
1

n− 1 ≡ X (n) or χ ≤ X (n) ,

a stationary stochastic equilibrium (Y1, ..., YR) exists if the set {n1, ..., nK} is in-

cluded in some admissible state-independent interval [ninf , nsup] ⊂ [n, n]. More-

over, [ninf , nsup] = [n, n] if σ < 1 and χ ≥ X (n).

Proof. See appendix.

With non-degenerate transition matrices, if the admissible interval contains

more than one integer, aggregate real output will fluctuate stochastically among

its R potential (generically different) values. With degenerate transition matrices,

in particular when all the rows ofT belong to the canonical basis of RR, real output
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will tend to a deterministic cycle of order q ≤ R (possibly after a transition period

of finite time). Clearly, even when there is no extrinsic uncertainty affecting

economic fundamentals, the implicit coordination procedures called for by the

multiplicity of free entry equilibria may be the source of substantial economic

instability.

3.3 Regulation through efficient coordination

To avoid inefficient sunspot fluctuations, the government may find desirable to

intervene. An extreme form of regulation would impose optimal production plans

and resource utilization to all agents — a situation which will be referred to as the

first best allocation. Analyzing the first best allocation is important in order to

understand the nature of the distortions involved in a competitive (decentralized)

economy and the trade-offs involved in public regulation. However, the first best

allocation requires an extreme form of government intervention which is in many

ways unrealistic or undesirable. A less extreme form of regulation would preserve

market structure and the freedom of firms to set their price, while using taxa-

tion/subsidization schemes in order to affect individual incentives. By selecting

a well-defined taxation scheme (as described in section 2), the government may

then ensure coordination on a (more plausible) second best allocation.

First best allocation. Consider a social planner with utilitarian preferences

over current and future generations:

W (Y1, ..., L0, ...) =
∞X

t=0

[U(Yt+1)− V (Lt)]
1−ρ

1− ρ
, (19)

where ρ > 0 may be seen as the inverse of the elasticity of substitution between

generations in the social planner’s preferences or, alternatively, as the degree of

relative risk aversion of the social planner. As ρ increases, the social planner cares

proportionately more about the welfare of the poorer generations over time, so

that ρ can also be interpreted as a measure of inequality aversion. In the limit,

when ρ tends to infinity, the welfare function ends up in the Rawls criterion, with

a social planner only concerned about the utility of the poorest generation.

We define the first best allocation as the solution in (Yt+1, Lt, (nit)i)
∞
t=0 to the

maximization5 of welfare W (Y1, ..., L0, ...) under the technological constraint (for

5Strictly speaking, the maximization problem over an infinite horizon is not well defined since
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t = 0, ...,∞):

Yt ≤ Lt − φ
mX

i=1

nit, with nit ∈ N∗ for i = 1, ...,m. (20)

A particular feature of the first best allocation is that the social planner can

"choose" the number of active firms in each sector and in each period, avoiding

the difficulties raised by the implicit coordination problem in a competitive equi-

librium. Characterizing the first best allocation is then easy. Since there is no

predetermined variable and the economy is symmetric across periods and sectors,

successive generations confront a time invariant environment. The risk-averse so-

cial planner would thus eliminate sunspot fluctuations by confining the economy to

stationary symmetric trajectories with the same constant number of active firms in

any industry i and any date t. Also, economies of scale resulting from fixed costs

φ imply that each industry is a natural monopoly, so that a social planner would

obviously require that output be produced by a single firm in each industry along

an optimal trajectory (nit = n = 1 for i = 1, ...,m and t = 0, ...,∞). Finally, an
optimal stationary trajectory with one active firm per industry must also satisfy

the first-order condition for the representative consumer’s maximization problem,

namely the equality of the marginal utility of consumption Y ∗ and the marginal

disutility of labor L∗ = Y ∗ + φm

U 0 (Y ∗) = V 0 (Y ∗ + φm) (21)

Using the specification for consumers’ preferences, this condition may be writ-

ten as

(Y ∗)−σ = v (Y ∗ + φm)χ , (22)

implicitly defining the optimal (stationary) output Y ∗.

To sum up, in a first best solution the social planner would fully exploit increas-

ing returns to scale by allocating all the production activity to a single productive

firm in each industry. Naturally, the social planner would also want to eliminate

it concerns an undiscounted series. Following von Weizsäcker (1965) and Gale (1967), we should
more properly refer to the choice of a sequence (Yt+1, Lt, (nit)i)

∞
t=0 that overtakes all the other

feasible sequences, meaning a sequence that at some point of time "has provided more utility
than the other[s] and [...] continues to do so from that point on" (Gale, 1967, p.3). Applying
this criterion is however trivial in the present context of an invariant environment.
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any market power distortion resulting from this monopoly position. Hence, the

first best solution can be implemented in a market economy only if the regulatory

agency is capable of imposing marginal cost pricing to monopolistic firms, while

subsidizing them to cover their fixed costs.

Second best allocation. By contrast, we define a second best allocation as an

allocation preserving market structure and the freedom of firms to set their price,

but resulting from the capacity of the government to commit to a predetermined

(optimal) taxation/subsidization scheme that ensures coordination on a particular

equilibrium at each date and in each sector.

Compared to the first best allocation, the intervention possibilities of the gov-

ernment are limited in two dimensions. First, in a competitive economy char-

acterized by free entry in each sector, the government can only select (through

appropriate taxation) a number of active firms in each sector which belongs to

the admissible interval [n, n], defined according to Lemma 2. Second, the so-

cial planner must take into account, in addition to the technology constraints

yit ≤ lit − φnit, the three additional incentive compatibility and market equilib-

rium constraints (10)—(12) leading to the dynamic system (13). Formally, the

second best allocation is obtained as the solution in ((yit, lit, nit)i)
∞
t=0 to the max-

imization of welfare W (Y1, ..., L0, ...), with Yt = mΠm
i=1y

1/m
it and Lt =

Pm
i=1 lit,

under the constraints (for t = 0, ...,∞):

yit ≤ lit − φnit, with nit ∈ (NÂ {0, 1}) ∩ [n, n] for i = 1, ...,m,

vμGt

µ
μGt
μHt

Yt + φmnAt

¶χ

Yt = Y 1−σ
t+1 , (23)

where nAt = (1/m)
Pm

i=1 nit, μ
G
t = Πm

i=1μ
1/m
it and μHt = m/

Pm
i=1 (1/μit) (with

μit = nit/ (nit − 1)).
Notice that in this problem the coordination process in each sector is no longer

ensured by the exogenous transition matrix T. By committing to a predetermined

taxation/subsidization scheme for any sector and any date, the government can

make the dynamic equilibrium path deterministic. Characterizing the second best

allocation is then simple. As in the former case, the strict concavity of the social

planner’s utility function implies that stationary paths are preferred to fluctuating

paths. Along a symmetric stationary trajectory with nit = n for all industries and

all dates, the second best aggregate production level Y (n) is then determined by
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the welfare maximizing value of n ∈ [n, n] along a stationary path, i.e. the one
satisfying the optimality condition

U 0 (Y (n)) =
n

n− 1V
0 (Y (n) +mnφ) (24)

Comparing (24) to (21), we see that the social planner faces two sources of

inefficiencies in the second-best environment: (i) a market power distortion, re-

flected by the term n/(n − 1) in (24), which reduces labor supply compared to
the first-best allocation ; (ii) a scale inefficiency effect, which results from the

duplication of the fixed cost of production as the number of competitors in each

sector increases. Obviously, the first distortion is decreasing in n while the sec-

ond one is increasing in n, so that there is a trade-off involved in regulation. We

cannot tell in general which of the two effects is going to dominate, but it is clear

that the relative shapes of the functions U (·) and V (·) of the representative con-

sumer’s preferences are crucial in the arbitrage. Using the specific functional form

retained, the optimality condition (24) becomes:

Y (n)−σ =
n

n− 1v (Y (n) + φmn)χ (25)

and the problem of the social planner, equivalent to maximizing in the number n

of active firms the utility of the representative agent of a representative generation

along a stationary path:

U (Y (n) , n) =
Y (n)1−σ

1− σ
− v

(Y (n) + φmn)1+χ

1 + χ
(26)

can be written as, using (25),

U (Y (n) , n) =
Y (n)1−σ

1− σ
−
¡
(1− 1/n)Y (n)−σ

¢1+1/χ

v1/χ (1 + χ)
. (27)

From inspection of (26) and (27), it is clear that labor supply elasticity (as

measure by 1/χ) plays a dominant role. Equation (26) shows that, for any

level of production Y (n) , an increase in χ increases the disutility of labor, mak-

ing the utility cost of the scale inefficiency effect higher. Meanwhile, equation

(27) shows that, as χ increases, labor supply becomes less and less sensitive

to the real wage and, thus, to the market power distortion effect. It is then

clear that when labor supply is relatively inelastic (i.e., for large χ0s) welfare
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Figure 3: Utility of the representative agent in a symmetric economy with n
active firms per sector.

is unambiguously maximized at the smallest integer in the admissible interval

[n, n]. By contrast, when χ is small, the market power distortion effect be-

comes significant. So, when the labor supply elasticity is high, there is a real

trade-off involved. For instance, in the limit case of a perfectly elastic labor

supply (χ = 0) we obtain, by (25) and (26), Y (n) = ((1− 1/n) /v)1/σ and
U (Y (n) , n) = Y (n)1−σ / (1− σ) − v (Y (n) + φmn). Aggregate production is

increasing in n, but utility U (Y (·) , ·) is strictly quasi-concave.6 Depending on

whether the value en maximizing U (Y (·) , ·) on the unconstrained interval [2,∞)
is outside or in the interior of the admissible interval [n, n] , the representative

young consumer’s utility U may have a maximum either at the lowest, the largest

or an interior integer of this interval. Figure 3 illustrates the latter two possibili-

ties when labor supply is elastic, using the following calibration: χ = 0, υ = 0.4,

φ = 0.2 and σ = 0.38 (case (a)) or σ = 0.44 (case (b)).

4 Welfare gains of stabilization

The generic existence of sunspot-driven fluctuations in economies with imperfectly

competitive markets also sheds new light on the traditional issues of stabilization

policy and of the welfare costs of fluctuations. Since the well-known paper by Lu-

cas (2003), it is often argued that the benefits from reducing further the variability

6We easily obtain:

dU (Y (n) , n)

dn
= v

Ã
(n− 1)1/σ−2
σv1/σn1+1/σ

− φm

!
,

a decreasing function of n, tending to −vφm as n tends to ∞. Hence, U (Y (·) , ·) is strictly
quasi-concave and eventually decreasing.
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of aggregate consumption are very small, typically of an order of magnitude which

is less than a tenth of a percent of total consumption. In addition, stabilization (or

equivalently, in the present model, the reduction of inequality among generations)

is often seen as conflicting with efficiency since the main instrument of redistrib-

ution – distortive taxation – is believed to generate an inefficient reallocation

of resources. In this section, we show that, in the present context of strategic

indeterminacy, these two objectives, far from being conflicting, are instead com-

plementary. Because stabilization can be obtained together with efficiency gains,

it could lead to substantial welfare gains. We use our framework to quantify these

potential gains. We decompose these gains into two easily interpretable compo-

nents: a "pure stabilization effect", which merely captures the effect of a reduction

in the variance of consumption for stochastic consumption streams of given mean,

and an "efficient stabilization effect" which measures the effects associated with

an efficient reorganization of production activities. In line with Lucas (2003), we

show that the welfare gains resulting from the pure stabilization effect are very

small. However, the efficient stabilization effect leads to sizeable welfare gains that

are quantified below.

Before going further we shall mention at this point that, while the present

framework of overlapping generations had the obvious advantage of enabling us to

derive clearcut and rigorous existence results on stationary equilibria influenced

by sunspots, it is not the best suited to analyze the welfare gains of stabilization

from a shorter-run perspective. This is particularly true because our model has

no accumulable asset which could be used to "self-insure" against earnings risk.

However, we believe that this framework remains useful, at least as a first approx-

imation, to illustrate the potentially significant welfare gains that can be obtained

from applying the proposed economic policy.7 While, strictly speaking, the para-

meter ρ in the social welfare function is a natural measure of the social planner’s

aversion toward inequality between generations, it could also be considered as

a standard measure of relative risk aversion of an infinitely-lived representative

agent maximizing intertemporal utility, as in standard business cycle models. Un-

7Actually, we have also pursued the alternative strategy of considering a standard infinitely-
lived representative agent framework with capital accumulation similar in spirit to the model
developed in Dos Santos Ferreira and Dufourt (2006). Experimenting with this framework, we
obtained quantitatively similar results, but were not able to derive formal proofs for generic
existence of stationary equilibria (as in Lemma 1-2 and proposition 3), although existence of
such equilibria was verified numerically for standard calibrations of parameters and transition
matrices.
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der both interpretations, as ρ increases, the social planner dislikes more and more

fluctuations in aggregate consumption paths with identical means.

4.1 Calibration

In order to get some magnitude about the welfare gains obtained by applying

the proposed stabilization policy, we need to find a calibration for the structural

parameters and for the states and transition matrices that generate a realistic

stochastic process for aggregate output. The number m of sectors is only a scale

parameter, and we arbitrarily set it tom = 1. Following Hansen (1985), we assume

an infinitely elastic aggregate labor supply by setting χ = 0. We know from the

last section that with this assumption, sectoral output is increasing in the number

of producing firms in each sector but welfare may be maximized for any integer

in the admissible interval [n, n], depending on the values of the other structural

parameters. We chose a calibration for σ, v and φ that ensures that the admissible

interval for the number of active firms in each sector always includes [3, 5] (in each

state), while the optimal number of active firms per sector is interior and equal

to n∗ = 4. There are some degrees of freedom in this choice, but the quantitative

results are only marginally affected. A reasonable calibration accomplishing this

task is v = 0.4, φ = 0.2 and σ = 0.44. This is the configuration illustrated

in Figure 3(b). With this calibration, output increases from 3.19 to 4.83 as n

increases from 3 to 5 firms per sector, but the optimal level of aggregate output,

obtained when the number of active firms per sector is equal to n∗ = 4 in each

sector, is Y ∗ = 4.17 .

Amore difficult task in the calibration step consists in specifying the states and

transition probabilities adequately. In order to achieve this step, we adapted the

numerical procedure described in Tauchen (1986) so as to obtain a set of states

(F1, ..., FR) ∈ (∆K−1)
R and transition probabilities (T1, ..., TR) ∈ (∆R−1)

R that

generate a simulated path for the log of aggregate output that mimics as closely

as possible a standard AR(1) process, while the number of active firms in each

sector and each state r = 1, ..., R remains in the corresponding admissible interval

[nr, nr] ⊃ [3, 5] . The number of states R can be chosen arbitrarily, but precision

is of course increased for larger R’s. In our simulations, we found that imposing

R = 7 different states was sufficient to obtain a reasonable approximation.

Using annual US data for the period 1947-2010, the log of real aggregate out-

put about a linear trend is reasonably well approximated by an AR(1) process
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with autoregressive parameter ϕ = 0.90 and standard deviation σε = 0.023. In

our benchmark scenario, we thus computed the states and transition matrix so

that simulated aggregate production mimics an identical AR(1) process around

a mean value which we set at Y = 4.17, the same aggregate production level as

in the second-best economy. The following matrix F (containing the vectors of

proportions of sectors producing with n = 3, 4 and 5 firms, respectively, in each

state) and transition matrix T accomplish this task, for r = 1, ..., 7:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.47 .30 .23

.38 .32 .30

.30 .34 .36

.23 .35 .42

.16 .34 .50

.10 .32 .58

.04 .24 .72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.59 .32 .08 .01 0 0 0

.22 .41 .29 .07 .01 0 0

.04 .21 .42 .27 .06 0 0

0 0.05 .24 .42 .24 .05 0

0 0 .06 .27 .42 .21 .04

0 0 .01 .07 .29 .41 .22

0 0 0 .01 .08 .32 .59

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, for example, when the current state is r = 4, there are 23% of sectors

which produce with 3 active firms, 35% of them producing with 4 active firms, and

42% of them with 5 active firms. The probability of remaining in the same state for

the next period is 42%, while the probability of moving to, e.g., state r0 = 5 is 24%.

With this specification, as noticed, the long run production level is Y = Y4 = 4.17.

The long run average number of firms per sector is nA4 = (.23, .35, .42) · (3, 4, 5) =

4.19, the long run markup factor is μG = 1.33 and the long run degree of increasing

returns to scale, as measured by Φ = (Y +nAφm)/Y −1, is 0.20.8 Table 1 provides
these summary statistics for each state r = 1, ..., 7:

4.2 Welfare gains

We simulated T = 10000 times the Markov process described above, and computed

the social planner’s welfare fWT ≡
PT

t=1

¡
[U(Yt+1)− V (Lt)]

1−ρ /(1− ρ)
¢
over this

horizon. Then, following Lucas’ approach, we calculated the proportion λc of

8Note that, in this model, increasing returns to scale appear under the weak form of fixed
costs in production. Aggregate increasing returns to scale of about 20% are consistent with
the findings of Burnside et al. (1997) when they take the form of fixed costs. Markup rates
of 33% are typically in the upper range of available empirical estimates. Note however that,
in this literature, markup rates are typically obtained as a by-product of the estimated degree
of aggregate increasing returns to scale, imposing the zero profit assumption. Relaxing this
assumption would have led these studies to conclude to significantly larger estimated markups.
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Table 1 - Aggregate data for the simulated economy

States: r = 1 2 3 4 5 6 7

Yr 3.86 3.96 4.07 4.17 4.28 4.39 4.51

nAr 3.75 3.91 4.05 4.19 4.33 4.48 4.67

μGr 1.39 1.37 1.35 1.33 1.32 1.30 1.28

Φr .20 .20 .20 .20 .20 .20 .21

permanent consumption that the social planner would be willing to sacrifice in

each period in order to get rid off aggregate uncertainty and have the economy

stabilized around an aggregate production level Y , i.e. the value of λc for which

fWT =
PT

t=0

³£
U((1− λc)Y )− V (L)

¤1−ρ
/(1− ρ)

´
. We provide this coefficient for

two hypothetical configurations. In the first situation, we assume that output is

stabilized on the median state r = 4, corresponding to a situation in which output

is stabilized by "freezing" permanently the equilibrium configuration prevailing

in each sector. In the second situation, we assume that output is stabilized effi-

ciently by imposing that each sector produces with n∗ = 4 active firms (e.g., by

imposing the proposed taxation scheme). The first experiment enables us to com-

pute the welfare gains resulting from the "pure stabilization" effect, i.e. the effect

of removing consumption uncertainty without improving average efficiency in the

economy. The second experiment enables us to estimate the total stabilization

effect, including the effect of stabilizing the economy efficiently together with the

pure stabilization effect. Results from these experiments are given in Table 2, for

different values of the risk aversion parameter ρ.

As Table 2 shows, the benefits implied by the "pure stabilization" effect are

very small and in line with those obtained in Lucas (2003). For example, when

ρ = 1, aggregate fluctuations generate a cost for the social planner which is equiv-

alent to a permanent reduction of its consumption level of about one seventeenth

of a percent (λc = 0.06). However, the welfare gains resulting from the total sta-

bilization effect (including that of the efficient reorganization of production) are

much more significant, with λc now equal to 0.93. This means that the same social

planner would now be willing to sacrifice almost 1 percent of its consumption level

in each period in order to have the economy stabilized on the efficient production

level – 15.5 times as much as in the first configuration. As the relative risk aver-

sion of the social planner increases, the ratio of the total to the pure stabilization

effects increases, but it remains equal to more than 3.5 at ρ = 10.
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Table 2 – Welfare gains (λc, in percent of consumption)

ρ = 1 ρ = 2 ρ = 4 ρ = 10
Stabilization on median state

(pure stabilization effect)
0.06 0.09 0.15 0.34

Stabilization on n∗= 4
(total stabilization effect)

0.93 0.96 1.02 1.21

Benchmark economy Y(4) = Y
∗

4.3 Understanding the welfare gains

How can we explain this sharp discrepancy between our results and those ob-

tained by Lucas (2003), while preferences are similar and the variance of aggre-

gate consumption is approximately the same? Clearly, the difference comes from

the efficient stabilization effect. To get a better sense of this effect, notice that

when the economy is stabilized on the median state r = 4 (pure stabilization,) the

aggregate production level Y4 = Y ∗ = 4.17 is reached while several sectors pro-

duce at a suboptimal individual scale of production (23% of sectors produce with

3 active firms, and 42% of them produce with 5 active firms). At the aggregate

level, this inefficiency can be seen by observing that this production level Y ∗ is ob-

tained with an average number of active firms, nA4 = (.23, .35, .42) · (3, 4, 5) = 4.19,

which is larger than the optimal number of firms per sector, n∗ = 4. Thus,

the aggregate quantity of labor required to produce Y ∗ in the median state is

also larger than the corresponding quantity of labor in the second-best economy:

L4 = (μ
G
4 /μ

H
4 )Y

∗ + nA4mφ > L∗ = Y ∗ + n∗mφ. Following Lucas (2003), we can

then quantify this inefficiency cost in utility equivalents for the social planner.

For example, the utility cost of having the economy stabilized on the median state

r = 4 (rather than on the second-best equilibrium) can be measured by calcu-

lating the additional quantity of labor, expressed in percentage points of labor,

required to produce the same aggregate production level Y4 = Y ∗. This amounts

to compute the parameter λL such that eU(Y ∗, L4) = eU(Y ∗, (1 + λL)L
∗), where L∗

is the efficient quantity of labor. By additivity (eU(Y, L) = Y 1−σ/(1 − σ) − νL),

we simply obtain:

1 + λL =
L4
L∗
=
(μG4 /μ

H
4 )Y

∗ + nA4mφ

Y ∗ + n∗mφ
.

27



Using m = 1, φ = 0.2, Y ∗ = 4.17 and F4 = (.23, .35, .42) in state 4, we easily

compute λL = 0.0091, a utility cost equivalent to a 0.91 percent permanent in-

crease in aggregate labor supply. To make this measure more directly comparable

to the one obtained in Lucas (2003), we can easily translate this cost in terms of

consumption equivalents using the formula eU(Y ∗, (1+λL)L∗) = eU((1−λC)Y ∗, L∗).

With our specification for preferences and χ = 0, we then obtain

λC = 1−
(Y ∗1−σ − v(1− σ)λL (Y

∗ + n∗φ))
1

1−σ

Y ∗ ,

a number which is equal to λC = 0.0087 for the calibration considered. Thus,

looking at Table 2 and considering for example the case ρ = 1, our results indicate

that the welfare gains resulting from the "pure stabilization effect" are equiva-

lent to a 0.06 percent permanent increase in consumption while the welfare gains

resulting from the "efficient stabilization effect" amount to a 0.87 percent such

increase. We obtain in total λc = 0.06 + 0.87 = 0.93, which is consistent with the

numerical findings reported in Table 2.

As a final remark, observe that these results were obtained while assuming

that the economy was fluctuating around a mean value for output which was

identical to the second-best optimal value Y ∗ = 4.17. This assumption was made

for simplicity, but it should be clear that it only provides a lower bound on the size

of welfare gains that are obtained from the efficient stabilization effect. To see this,

consider for example an alternative economy in which output fluctuates according

to the same AR(1) process (with identical autoregressive coefficient and variance)

but around a mean value which is now 12% lower than the efficient output level

(Y4 = 3.67 < Y ∗ = 4.17). This situation can be obtained, keeping the same

transition matrix T , by using the following matrix F 0 of vectors of proportions of

sectors producing with 3, 4 or 5 active firms in each state r = 1, ..., 7:

F 0=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.85 .10 .05

.74 .17 .09

.65 .23 .12

.57 .26 .17

.49 .29 .22

.41 .32 .27

.32 .32 .35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The welfare gains obtained in this situation are reported in Table 3. As the
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Table 3 – Welfare gains (λc, in percent of consumption)

ρ = 1 ρ = 2 ρ = 4 ρ = 10
Stabilization on median state

(pure stabilization effect)
0.02 0.04 0.10 0.27

Stabilization on n∗= 4
(total stabilization effect)

2.08 2.10 2.15 2.31

Alternative economy: Y(4) < Y
∗

table shows, the welfare gains corresponding to the pure stabilization effect are still

very small and are actually smaller than in the reference economy (for example,

λc = 0.02 when ρ = 1, as opposed to 0.06 in the reference economy). However, the

gains resulting from the efficient stabilization effect are nowmuch larger, exceeding

2 percent of permanent increase in average consumption.

5 Concluding remarks

We have explored strategic indeterminacy, arising in the context of oligopolistic

competition, as a convenient alternative to dynamic indeterminacy in generating

macroeconomic sunspot fluctuations. The case for this alternative is here pre-

sented in a very basic framework, that of standard Cournot competition with free

entry in the presence of fixed costs (as concerns microeconomics), and of a simple

overlapping generations macro model. Since strategic indeterminacy is shown to

be the source of costly sunspot fluctuations, a straightforward way of stabilizing

the economy is to ensure determinacy by destroying undesirable, inefficient, equi-

libria. This is achieved, in the present context, by converting fixed into variable

costs (or vice versa) through a taxation-subsidization policy which happens to be

inactive, hence non distortive, in the only remaining equilibrium. Corresponding

policies, acting as pure selection mechanisms designed to stabilize the economy at

the efficient equilibrium, might also apply in other contexts of strategic indeter-

minacy. Finally, we have quantified the welfare gains of this stabilization policy

in a calibrated version of our model, fitting US data. These gains appear to be

much larger than those estimated by Lucas (2003) on the basis of a pure stabi-

lization effect benefiting risk averse consumers. The difference between Lucas’s

estimation and our own results can be entirely ascribed to efficient stabilization,

that is, to elimination of inefficient states — an effect that would be praised even

29



by risk neutral consumers.
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Appendix
Proof of Proposition 1

Taking the expression for profit (6), making it equal to zero and referring

to symmetric profiles with y = yn = Y / (n− 1), we see that the corresponding
break-even price is

p (n, n∗) =
c

1− τ (n/n∗)− (cφ− T (n/n∗))n/b
, (28)

which, taking condition (SBB) into account, simplifies to

p (n, n∗) =
c

1− ncφ/b
. (29)

When the government balances its budget at the sectoral level, this price is thus left

unaffected by the taxation policy, in contrast to the Cournotian price given by (7).

By using the first order condition for maximization in y of Π (y, nyn, (n+ 1) /n
∗)

by a potential entrant, and making the corresponding (interior) maximum equal

to zero, we may easily compute the limit price

p (n, n∗) =
c

³p
1− τ ((n+ 1) /n∗)−

p
(cφ− T ((n+ 1) /n∗)) /b

´2 (30)

or, taking (SBB) into account,

p (n, n∗) =
c

³p
1− τ ((n+ 1) /n∗)−

p
cφ/b− τ ((n+ 1) /n∗) / (n+ 1)

´2 , (31)

a price which is also affected by the taxation policy.

It is now easy to verify that an equilibrium with n < n∗ active firms can always

be made unsustainable by the choice of a high enough taxation rate. Indeed, take

for any n/n∗ < 1 the boundary value τ (n/n∗) = ncφ/b = n/n2 which, by condition

(SBB), leads to a complete subsidization of the fixed cost (T (n/n∗) = cφ). The

unsustainability condition p (n, n∗) < p∗ (n, n∗) for n < n∗− 1 then translates into
2n < n2, an inequality which is always satisfied, since 2 ≤ n < n∗ ≤ n. For

n = n∗ − 1, as τ ((n+ 1) /n∗) = 0, the unsustainability condition is equivalent to
(1− n/n)2 > 0, which again is always satisfied.
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Proof of Proposition 2

The expressions for the Cournotian, break-even and limit prices are the same

as before, even if the taxation rate τ is now negative. From (29) and (7), together

with condition (SBB), it is easy to see that the condition p∗ (n, bn) < p (n, bn) is
fulfilled for any high enough rate of subsidy on sales:

−τ (bn) > 1− n2cφ/b

n− 1 =
1− (n/n)2

n− 1 . (32)

However, we must also check that the equilibrium associated with n∗ subsists.

The profitability condition under laissez-faire is not modified, since τ (0) = 0.

By contrast, sustainability requires the Cournotian price p∗ (n∗, 0) to be at most

equal to the modified limit price p (n∗, 0) given by (31). If we replace the subsidy

−τ (−1) by its upper lower bound in (32) with n = n∗ + 1, the sustainability

condition can be easily shown to be always (strictly) satisfied.

Proof of Lemma 1

Take the r-th equation of the system (15). Given the set of possible num-

bers of active firms {n1, ..., nK} (with 2 ≤ n1 < ... < nK) and the r-th state

Fr = (fr1, ..., frK) of the economy together with the corresponding transition prob-

ability vector (Tr1, ..., TrR), the output value Yr at this state can be determined

as a function ηr of the output values (Y1, ..., YR) at all the states of the econ-

omy (through the weighted arithmetic mean on the RHS of the equation). For

consistency, we must of course look for a fixed point of the continuous mapping

η = (η1, ..., ηR). Existence of such a fixed point results from Brouwer’s theorem,

provided we can establish that η maps some non-empty set
£
Y , Y

¤R
into itself.

First consider the case σ < 1. Since Y 1−σ is then increasing in Y , Y 1−σ ≤
PR

r0=1 Trr0Y
1−σ
r0 ≤ Y

1−σ
for any (Y1, ..., YR) ∈

£
Y , Y

¤R
, any T and any r. Given

{n1, ..., nK}, the means μGr and μHr are functions of Fr, and their ratio is a

continuous function defined on the compact set ∆K−1, which has a maximum

maxF∈∆K−1

¡
μG (F ) /μH (F )

¢
= bμ > 1 and a minimum

minF∈∆K−1

¡
μG (F ) /μH (F )

¢
= 1. As n1 ≤ nk ≤ nK and nK/ (nK − 1) ≤

nk/ (nk − 1) ≤ n1/ (n1 − 1) for any k, and as the LHS of any equation in (15)

is increasing in Y , we may choose the values Y and Y that solve, respectively, the

equations

v
n1

n1 − 1
(bμY + φmnK)

χ Y = Y 1−σ and v
nK

nK − 1
¡
Y + φmn1

¢χ
Y = Y

1−σ
. (33)
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Indeed, for any (Y1, ..., YR) ∈
£
Y , Y

¤R
and any r, Y < ηr (Y1, ..., YR) < Y , as

required. Notice that Y is always smaller than Y , so that
£
Y , Y

¤R
is non-empty

(and non-degenerate).

We use the same kind of argument for σ > 1 but, as Y 1−σ is now decreasing

in Y , we take the values Y and Y that solve simultaneously the equations:

v
n1

n1 − 1
(bμY + φmnK)

χ Y = Y
1−σ

and v
nK

nK − 1
¡
Y + φmn1

¢χ
Y = Y 1−σ. (34)

However, by dividing both sides of the first equation by the corresponding sides

of the second, we see that they together imply:

1 <
1− 1/nK
1− 1/n1

=

µ
Y + φmn1
bμY + φmnK

¶χµ
Y

Y

¶2−σ
<

µ
Y

Y

¶2−σ+χ
.

Since we want Y to be smaller than Y , the two inequalities imply 2− σ + χ > 0,

which is only possible, for χ arbitrarily close to 0, if σ ≤ 2 (the condition which
entails dynamic determinacy).

Proof of Lemma 2

In state r = k, there are nk firms actually producing in any industry, and

the aggregate output Y (nk) (which, as Tk = ek, is expected to be realized in

next period with probability 1) is determined by equation (14), with μG = μH =

nk/ (nk − 1) and nA = nk. For simplicity of notation, we will omit the subscript

k in the following. By condition (17), profitability requires:

n ≤
s

nY (n)

(n− 1)φm ≡ n (n) . (35)

If the elasticity of n is smaller than 1 for n ≥ 2, the equation n = n (n) uniquely

determines the least upper bound n for an admissible n. Similarly, sustainability

requires by equation (18):

n ≥ n (n)

2− 1/n (n) ≡ n (n) . (36)

Again, if the elasticity of n is smaller than 1 for n ≥ 2, the equation n = n (n)

uniquely determines the greatest lower bound n for an admissible n. The elastic-
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ities of n and n are:

�n (n) =
1

2

µ
�Y (n)− 1

n− 1

¶
(37)

�n (n) = 2�n (n)
n (n)− 1
2n (n)− 1 . (38)

The inequality �n (n) < 1 is implied by the inequality �n (n) < 1: hence, both

inelasticities are smaller than 1 if �Y (n) < 1/ (n− 1)+ 2. The elasticity of Y (n),
by equation (14), is:

�Y (n) =
1

n− 1
Y (n) /φm− ((n− 1)χ− 1)n
(σ + χ)Y (n) /φm+ σn

. (39)

It can be easily checked that 3σ+χ ≥ 1 is a sufficient condition for this elasticity
to be smaller than 1/ (n− 1) + 2 when n ≥ 2.

Proof of Proposition 3

By Lemma 1, we know that there exists a solution (Y1, ..., YR) to the system

(15). For this solution to be an equilibrium, we must show that profitability

(nk ≤ nr, by (17)) and sustainability (nk ≥ nr, by (18)) are ensured for any

k = 1, ...,K and any r = 1, ..., R. In order to do that, let us find Yinf and Ysup

such that

Yinf ≤ min {Y1, ..., YR} ≤ max {Y1, ..., YR} ≤ Ysup, (40)

and such that, for any k,

q
ninf

ninf−1
Ysup
φm

2− 1/
q

ninf
ninf−1

Ysup
φm

= ninf ≤ nk ≤ nsup =

s
nsup

nsup − 1
Yinf
φm

. (41)

Clearly, if such pair (Yinf , Ysup) exists, nsup ≤ nr and ninf ≥ nr for any r, so that

(Y1, ..., YR) is indeed an equilibrium. Moreover, we want the choice of (Yinf , Ysup),

and hence that of the interval [ninf , nsup], to be made independently of the specific

family of states (F1, ..., FR) and of the specific transition probabilities (T1, ..., TR).

So, take the r-th equation of the system (15), with the means μGr , μ
H
r and

nAr expressed as functions of (n1r, ..., nmr). The elasticity of its LHS, denoted
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H (Yr, n1r, ..., nmr), with respect to nir is

�iH (Yr, n1r, ..., nmr) = χ

¡
μGr /μ

H
r

¢
Yr
¡
�iμ

G
r − �iμ

H
r

¢
+ φnir

(μGr /μ
H
r )Yr + φmnAr

+ �iμ
G
r (42)

=
1

mnir

Ã
χ

¡
μGr /μ

H
r

¢
Yr
¡
μHr − μir

¢
+ φmnAr

¡
nir/n

A
r

¢
nir

(μGr /μ
H
r )Yr + φmnAr

− μir

!
.

As μir = nir/ (nir − 1) is decreasing in nir and as the effects of a change of nir on

the markup means are dominated (at least for large m) by its direct effects on μir,

the expression inside the parentheses is increasing in nir, so that H is a strictly

quasi-convex function of nir.

If H is an increasing function of nir, the maximum (resp. the minimum) of H

over [ninf , nsup], given Yr, is obtained when nir = nsup (resp. nir = ninf) for any i.

Then, if σ < 1, we can determine Yinf and Ysup from (15):

v
nsup

nsup − 1
(Yinf + φmnsup)

χ Yinf = Y 1−σ
inf ≤

RX

r0=1

Trr0Y
1−σ
r0 ≤ Y 1−σ

sup (43)

and

v
ninf

ninf − 1
(Ysup + φmninf)

χ Ysup = Y 1−σ
sup ≥

RX

r0=1

Trr0Y
1−σ
r0 ≥ Y 1−σ

inf . (44)

These two equations, which would apply to a deterministic symmetric equilibrium

so that Yinf = Y (nsup) and Ysup = Y (ninf). By (41) and according to the proof of

Lemma 2, ninf = n and nsup = n, so that [ninf , nsup] = [n, n]. Also, again by (41),

Ysup/φm = Y (n) /φm = (n− 1)
³
1 +

p
1− 1/n

´
. By (42), �iH (Y (n) , n, ..., n) ≥

0 if χ ≥ X (n), so that H is indeed increasing in nir as assumed and also, by (39),

Y is a decreasing function, as it should for having Y (n) ≤ Y (n).

If σ > 1, the two equations (43) and (44) must be replaced by the equations:

v
nsup

nsup − 1
(Yinf + φmnsup)

χ Yinf = Y 1−σ
sup ≤

RX

r0=1

Trr0Y
1−σ
r0 ≤ Y 1−σ

inf (45)

and

v
ninf

ninf − 1
(Ysup + φmninf)

χ Ysup = Y 1−σ
inf ≥

RX

r0=1

Trr0Y
1−σ
r0 ≥ Y 1−σ

sup . (46)

Hence, Yinf ≤ Y (nsup) and Ysup ≥ Y (ninf), and also ninf ≥ n and nsup ≤ n, so that

we obtain [ninf , nsup] ⊂ [n, n]. The condition for H to be an increasing function
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of nir is now χ ≥ X (ninf) but, since X is a decreasing function, it is satisfied if

χ ≥ X (n).

Let us now consider the case where H is a decreasing function of nir. The

argument is similar. If σ < 1, Yinf = Y (ninf) and Ysup = Y (nsup) by (43) and

(44) with nsup and ninf interchanged. Also, ninf ≥ n and nsup ≤ n by (41), hence

[ninf , nsup] ⊂ [n, n]. By (41) and (42), �iH (Y (nsup) , nsup, ..., nsup) ≤ 0, so that

H is indeed a decreasing function of nir as assumed, if χ ≤ X (nsup), a weaker

condition than χ ≤ X (n). The same condition on χ entails by (39) that Y is

increasing, so that Y (ninf) < Y (nsup). Finally, if σ > 1, we obtain by the same

kind of argument: Yinf ≤ Y (ninf) ≤ Y (nsup) ≤ Ysup, ninf ≥ n and nsup ≤ n, hence

[ninf , nsup] ⊂ [n, n], with the same condition on χ.

37


