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ABSTRACT

This paper introduces a practical method for distributed lossy com-
pression (Wyner-Ziv quantization) with side information available
only at the decoder, where the side information is equal to the signal
affected by background noise and additional impulse noise. At the
core of the method is an LDPC-based lossless distributed (Slepian-
Wolf) source code for q-ary alphabets, which is matched to the im-
pulse probability and allows to remove the scalar-quantized impulse
noise. Applications of this method to distributed compressed sens-
ing of signals that differ in a sparse set of locations is also dis-
cussed, as well as some differences and similarities of variable- and
fixed-length coding of sparse signals.

1. INTRODUCTION

Distributed source coding is receiving a lot of attention for a variety
of applications, such as distributed compression in sensor networks
and video compression where complexity is shifted from the en-
coder to the decoder. Recently, in [1] we studied Wyner-Ziv (WZ)
coding [2, Sec. 14.9] for correlation models where side information
may be degraded or absent, and pointed out a relationship with com-
pressed sensing. Such models may be interesting for video coders
exploiting WZ concepts [3, 4], where motion-interpolated side in-
formation may be degraded or absent due to, e.g., occlusions or new
objects appearing. In [1], we presented a theoretical analysis based
on (nested) quantization followed by ideal lossless Slepian-Wolf
(SW) coding [2, Sec. 14.8], as well as a practical scheme for the
erasure case, based on real-valued linear precoding. Although the
correlation models in this paper and in [1] are memoryless, which
may not correspond to the situation in practical (video) applications,
they can be used to study the worst-case performance of more com-
plex models, in which some memoryful process switches between
strong and weak correlation.

This paper presents a practical scheme for the degraded side
information case with bounded correlation noise, which uses low
density parity check (LDPC) codes for the q-ary symmetric channel
in the SW stage. The simplest version of the problem considers a
continuous memoryless source X (we use X also to denote a source
emitting i.i.d. samples of the random variable X), correlated with
side information Y available at the decoder only, such that Y = X
with probability 1− pi, and Y = X +Ni with probability pi, where
Ni is memoryless impulse noise independent of X . In the latter case,
we say that the side information is degraded. The decoder does not
know whether the side information has been corrupted. This set-
ting can be generalized to include a background noise Nb added to
all samples. Correlation models and some theoretic rate-distortion
bounds are described in Section 2.

The practical scheme relies on scalar nested quantization fol-
lowed by SW coding. The q-ary quantization indices U and V
of X and Y , respectively, will be modeled as memoryless with
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P(V =v|U =u) = 1− pc for v = u, and P(V =v|U =u) = pc/(q−1)
for v 6= u. The corresponding correlation channel is thus a q-ary
symmetric channel with error probability pc, for which a practical
coding approach has been presented in [5]. Section 3 first details the
q-ary LDPC approach for syndrome-based SW coding, and then ex-
plains its application in a practical two-layer scheme.

Finally, Sections 4 and 5 present first simulation results and an
application to compressed sensing, respectively.

2. CORRELATION MODELS

Consider a Gaussian memoryless source X ∼ N (0,σ 2
X ), to which

the correlation channel adds independent memoryless noise Z to ob-
tain the side information Y = X + Z. The Bernoulli-uniform (BU)
correlation model adds Z = B · Ni, a Bernoulli-uniform impulse
noise with P(B = 1) = pi, P(B = 0) = 1 − pi and Ni ∼ U [0,β ),
yielding

Y = X +B ·Ni (1)

as side information available at the decoder. The uniform Bernoulli-
uniform (UBU) correlation model generalizes this to Z = Nb + B ·
Ni, where Nb ∼ U [0,α), α < β , is additional uniform background
noise, yielding

Y = X +Nb +B ·Ni. (2)

In both models, the Bernoulli source B models the occurrence of
impulses degrading the side information. Its realization is known
neither at the encoder, nor at the decoder.

Like for the similar correlation models considered in [1], a
lower bound on the Wyner-Ziv rate-distortion function (rdf) can be
derived assuming that encoder and decoder know the impulse posi-
tions and recalling the high-rate property [6]

RWZ(D) ≥ R
X|Y(D) ≥ h(X |Y )− 1

2
log2(2πeD).

Consider the BU model (1), where the encoder needs to use rate
only for the fraction pi of time when B = 1. Therefore

RBU

WZ
(D) ≥ pi ·

(
h(X)+h(Ni)−h(X +Ni)− 1

2
log2 (2πeD/pi)

)
.
(3)

For the UBU model (2) one obtains

RUBU

WZ
(D) ≥ h(X)+(1− pi) ·

(
h(Ni)−h(X +Ni)

)
+

pi ·
(
h(Nb +Ni)−h(X +Nb +Ni)

)
− 1

2
log2 (2πeD) .

An achievable upper bound for the WZ rdf is obtained through
high-rate characterization of scalar quantization followed by ideal
SW coding. The source symbol is quantized with step φ and sent
at ideal SW rate; it is decoded error-free using the side information.
In the BU case the decoder can detect the presence of impulses by
comparing the recovered quantized source with the quantized side
information. When no impulse is detected, the decoder reconstructs

X̂ =Y . The resulting overall distortion is smaller than D = piφ
2/12

and the asymptotic rate satisfies

RBU

WZ
(D) ≤ h(pi)+ pi

(
h(X)+h(Ni)−h(X +Ni)− 1

2
log2

(
12D

pi

))
,

(4)
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Figure 1: Two-layer encoding scheme.

where h(p) = −p log p− (1− p) log(1− p) is the binary entropy
function (all logarithms in this paper are to the base 2). In the UBU
case impulses cannot be detected and we obtain

RUBU

WZ
(D) ≤ h(pi)+h(X)+(1− pi) ·

(
h(Nb)−h(X +Nb)

)
+

+ pi ·
(
h(Nb +Ni)−h(X +Nb +Ni)

)
− 1

2
log2(12D).

3. PRACTICAL SCHEME

3.1 Slepian-Wolf coding for q-ary symmetric correlation

As outlined in the introduction, we base our construction on an
LDPC SW coding scheme for q-ary discrete memoryless sources
(DMS) with a q-ary symmetric correlation channel. Let U be a q-
ary DMS with alphabet Zq, without loss of generality. Assume that
the q-ary side information V can be modeled as

V = U ⊕W,

where ⊕ denotes mod q addition and W is some memoryless noise
with alphabet Zq. Further assume P(W =0) = 1− p, corresponding
to the perfect side information case. It is easy to show that uni-
form distribution of the error value (when the side information is
degraded), P(W =w) = p/(q−1) for w 6= 0, maximizes the Slepian-
Wolf rate, which becomes

H(U |V ) = H(U ⊕−V |V ) = H(W ) = h(p)+ p log(q−1). (5)

We call this q-ary symmetric correlation in reference to the corre-
sponding channel. Its correlating noise W represents a worst case,
since all error patterns with a given number of errors will be equally
likely, e.g. for t errors in n positions, all

(
n
t

)
(q− 1)t error patterns

will have the same probability (1− p)n−t pt(q−1)−t . Thus it is intu-
itively clear that a Slepian-Wolf code for this worst-case correlation
will work for any noise W , as long as P(W =0) = 1− p. In other
words, it is an universal code for the class of correlating impulse
noise with impulse probability p, i.e. P(W 6=0) = p. The price for
this universality is the redundancy of h(p) + p log(q− 1)−H(W)
bits per symbol. Notice that H(W ) = h(p) + pH(W ′), where W ′

corresponds to W “restricted” to its q−1 nonzero values.
In the following we consider only the case q = 2m with m ∈ N.

Our approach is based on the LDPC coding scheme for the q-ary
symmetric channel (q-SC) presented in [5], which we turn into a
Slepian-Wolf scheme.

The q-ary channel input and output symbols are represented by

binary vectors u = [u1,u2, . . . ,um]T and v = [v1,v2, . . . ,vm]T , re-
spectively. The q-SC coding scheme in [5] is based on a binary

LDPC code with source block size K = mk bits; only the message-
passing decoder needs to be modified in order to take into account
the underlying q-SC. (For the basics of LDPC codes and message-
passing decoding we refer to [7, Ch. 4].)

The modification into a Slepian-Wolf scheme is similar to the
syndrome approach in [8]. Given the binary parity check matrix
H, the encoder computes the syndrome s = Hu(:) (the colon (:)
denotes the necessary binary serialization of u). The message-
passing decoder uses s to change the sign of the log-likelihood ratio
check-node messages whenever the corresponding syndrome bit is
1. When the side information v(:) is placed at its channel input, the
decoder will thus search the closest û having syndrome s.

An important point is that the code is not split into m bit planes,
the K = mk bits composing the k symbols are all encoded and de-
coded together, at the price of an m = logq-fold complexity increase
in the variable node decoder (see [5] for details). The advantage of
this is that no separate optimization of bit planes is needed, and
the decoding error decay (waterfall) is much steeper thanks to the
longer effective block length. This distinguishes our work from the
more general approach used in [9], which requires separate opti-
mization of LDPC codes for each bit plane.

In summary we obtain a universal SW scheme for a pair of cor-
related q-ary memoryless sources, where the correlation is such that
the sources emit equal symbols with probability 1− p. If p is small,
also the penalty (the redundancy due to not uniformly-distributed
error values) for this universality will be small. Such a scheme
could also have been built using punctured turbo codes [10]; how-
ever, that approach may have much higher decoding complexity due
to the necessary bit/symbol marginalization (a factor O(q) instead
of O(logq)) and code optimization is not as straightforward com-
pared to our LDPC approach, for which EXIT charts can be used.

3.2 Two-layer scheme

The main idea in constructing a two-layer scheme is to have a first
layer that removes the impulse noise using a Slepian-Wolf code for
q-ary symmetric correlation, yielding a first rough estimate of the
source, which will then be refined by a second layer. A block dia-
gram is shown in Figure 1.

The scheme is based on a doubly nested scalar quantizer, de-
fined by three cell sizes φ0 < φ1 < φ2 with integer nesting ratios
(i.e., φ1/φ0 ∈ N and φ2/φ1 ∈ N). Nested quantization has been pro-
posed for both theoretical analysis and practical implementation of
Wyner-Ziv coding (see [9] and references therein). This work ex-
tends that approach to doubly nested lattices in order to cope with



the impulse noise.

The quantization operation Qφ (·) and the modulo operation

modφ are defined such that x = Qφ (x) + (x mod φ) holds for all

x ∈ R. This can be achieved for example by Qφ (x) = ⌊x/φ⌋φ and

x mod φ = x−Qφ (x). The fact that all nesting ratios are integers
is important, since it allows certain quantization and modulo opera-
tions to commute, e.g., Qφ1

(x) mod φ2 = Qφ1
(x mod φ2).

Layer 1 computes XU = Qφ1
(X mod φ2) and the quantization

index U = XU/φ1, which has alphabet size q = |U | = φ2/φ1. U
is then sent with rate R1 = log2 q to a q-SC SW encoder for error
probability pc, to be computed later. The SW encoder operates on
blocks of n indices U and outputs a (shorter) block of syndrome
symbols S, which are sent to the decoder.

Layer 2 computes the refinement Xr = Qφ0
(X mod φ1) and

sends the quantization index Ur = Xr/φ0, whose rate is R0 =
log2(φ1/φ0), directly to the decoder.

The decoder starts by computing Y ′ = Y −Xr, which given the
UBU correlation model (2) is Y ′ = X −Xr + Nb + B ·Ni. If we as-
sume that fX is constant over a small cell of size φ0, we may de-
compose the source as X = Qφ1

(X)+Xr +Nr , where Nr ∼U [0,φ0)
is uniform quantization noise. Then the decoder quantizes the side
information to YV = Qφ1

(Y ′ mod φ2) and passes the quantization

index V = YV /φ1 to the SW decoder, which uses it together with

the syndrome S to produce an estimate Û of the index U . Notice
that the q-SC SW subsystem needs only to know the probability
pc = Pr{V 6= U} to operate correctly. In the following we assume

perfect SW decoding, that is Û = U and thus X̂U = XU .

In order for the reconstruction of the coarse nested quantization
to be error-free, we need Qφ1

(Y ′)−Qφ1
(X) < φ2, which guarantees

that the noise does not leave the coarsest quantization cell (Layer 1
operates with “units” of size φ1 within a cell of size φ2). We have

Qφ1
(Y ′)−Qφ1

(X) = Qφ1
(X −Xr +Nb +BNi)−Qφ1

(X)

= Qφ1
(Qφ1

(X)+Nr +Nb +BNi)−Qφ1
(X)

= Qφ1
(X)+Qφ1

(Nr +Nb +BNi)−Qφ1
(X)

and therefore φ2 = φ0 + α + β will be sufficient. From this we
immediately obtain

φ0 =
α +β

2R0+R1 −1
,

as well as φ1 = 2R0 φ0 = 2−R1 φ2. Now also the error probability pc

for the q-SC SW stage can be computed:

pc =






1− (1− pi)
2φ1−φ0

2α − pi
φ 2

0
/3+φ 2

1
−φ1φ0

2αβ
, φ1 < α,

pi +(1− pi)
(φ1−α−φ0)

2

2αφ0

−pi

(
2φ1−α−φ0

2β
+ (α+φ0−φ1)

3

6αβφ0

)
, α ≤ φ1 < α +φ0,

pi

(
1− 2φ1−α−φ0

2β

)
, α +φ0 ≤ φ1 < β .

Since all encoding operations are carried out modφ2 (or even
mod φ1 for the refinement), the crucial step in the reconstruction of
the source is the estimation of Qφ2

(X), which is possible thanks to
the above choice of φ2. Consider

(YV −XU ) mod φ2 =
[
Qφ1

((X −Xr +Nb +BNi) mod φ2)

−Qφ1
(X mod φ2)

]
mod φ2

= Qφ1

(
(Qφ1

(X)+Nr +Nb +BNi) mod φ2

−Qφ1
(X mod φ2)

)
mod φ2

= Qφ1
(Nr +Nb +BNi),

where the last equality follows again thanks to the choice of φ2, and
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Figure 2: Asymptotic bounds and single layer OPTA for BU model

with pi = 0.1, β = 10, σ2
X = β 2/12.

insert this into

Y ′− (YV −XU ) mod φ2

= Y −Xr −Qφ1
(Nr +Nb +BNi) mod φ2

= Qφ1
(X)+Nr +Nb +BNi −Qφ1

(Nr +Nb +BNi)

= Qφ1
(X)+(Nr +Nb +BNi) mod φ1.

The last expression is smaller than Qφ1
(X)+φ1 and therefore allows

to compute Qφ2
(X), yielding the reconstruction formula

X̂ = Qφ2
(Y ′− (YV − X̂U ) mod φ2)+ X̂U +Xr.

Using the ideal SW rate RSW (5), the total rate becomes

R(R0,R1) = R0 +h(pc)+ pc log2(2
R1 −1), (6)

while the distortion is

D(R0,R1) =
φ2

0

12
=

(α +β )2

12
(2R0+R1 −1)−2. (7)

under the above assumption on fX (if the standard deviation of X is
not much larger than φ0, a subtractive dither might be introduced).

When R0 = 0, this scheme reduces to a single layer, which is all
that is needed in the BU case (1), where α = 0. Then the “channel”
probability pc = pi(1−φ1/β ) and the distortion D(R1) = piφ

2

1
/12,

since only the samples with degraded side information will be noisy.
Figure 2 shows the optimal performance theoretically attainable
(OPTA) curve (R(R1),D(R1)) together with theoretical upper (4)
and lower (3) bounds. Notice that the upper and lower bounds are
asymptotic (low D) bounds on the rate-distortion function, while
the OPTA measures the ideal performance of the two-layer system
in Figure 1. The rate gap between high-rate OPTA and (4) is thus
the result of an inherent suboptimality of the two-layer design; it
equals pi(h(X +Ni)−h(X)).

Some improvements at low rate could be obtained by modi-
fying the scheme such that the SW decoder operates directly with
Y , instead of its quantized version. However, quantizing Y has the
advantage of making this scheme easily generalizable beyond the
asymmetric WZ setup. In some applications, it might be more de-
sirable to compress both X and Y independently, but still be able to
exploit the (sparse) impulsive nature of the correlating noise Z. In
the generalized setting, Y is encoded in the same fashion as X (see
Figure 1), but possibly with different SW rate R1,Y . To achieve ar-
bitrary integer SW rates R1,X and R1,Y , it then suffices to modify the
SW subsystem along the lines of [11] (the refinement rate R0 will
be the same for both X and Y ).
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Figure 3: Performance of scheme based on rate 3/4 LDPC (R0 = 1
b/s, R1 = 2 b/s; total rate R = R0 +(1−3/4)R1 = 1.5 b/s).

To apply this two-layer approach to unbounded correlation
noise, such as the Gaussian-Bernoulli-Gaussian (GBG) model intro-
duced in [1], one needs to consider the additional distortion caused
by the (necessarily) nonzero probability of the noise Z leaving the
cells of size φ2. This can be counteracted by increasing φ2, which
however decreases the Wyner-Ziv coding efficiency and still results
in a distortion floor for large refinement rate R0 [9]. To overcome
that problem, one may increase the dimension (so φ2 becomes a lat-
tice) and/or use an additional layer of Slepian-Wolf coding to fix the
(rare) cases in which Z overshoots, as introduced in [9].

4. SIMULATION RESULTS

Simulations were performed using an unoptimized regular (3,12)
binary LDPC code of length N = 12000 bits, which has channel
coding rate 3/4 and thus syndrome rate 1/4. A second set of sim-
ulations was made using AWGN-optimized irregular LDPC codes
of the same length and rate, with maximum left degree 15, taken
from [12]. A standard binary message-passing decoder was modi-
fied into a q-SC Slepian-Wolf decoder as outlined in Sec. 3.1 and
then embedded into a two-layer scheme (Sec. 3.2). The source

was chosen as X ∼ N (0,502), and the side information was UBU-
correlated with α = 1, β = 10 and variable impulse probability pi.
The latter is necessary to show the convergence behavior of the
LDPC decoder; however, it makes comparisons more difficult, as
will be explained. Figure 3 shows relative distortion vs. impulse
probability for a system with R0 = 1, R1 = 2 and thus total rate
R = R0 + (1 − 3/4)R1 = 1.5 bits per sample (b/s). Distortion is
shown relative to the linear MMSE achievable at rate R = 0, which
in this Wyner-Ziv setting is also known as conditional variance,

D0 = σ2

X |Y =
σ2

X σ2
Z

σ2
X +σ2

Z

,

where σ2
Z = α2

12
+ pi β 2

(
1

3
− pi

4

)
. This dependency of D0 on pi

makes comparisons somewhat problematic, since choosing R0 and
R1 fixes the quantizer cell sizes φ0,φ1,φ2 and thus the distortion

D = φ2

0
/12 as well. This means that decreasing pi will increase

the relative distortion, as can be seen from the dashed curve in Fig-
ure 3, which represents the OPTA curve for a system with fixed
scalar quantizers (determined by R0,R1) and an ideal Slepian-Wolf
subsystem. Total rate R varies along the OPTA curve, the point with
R = 1.5 b/s has been marked with a circle. At the point where the
regular LDPC decoder converges (pi = 0.056), the OPTA system
has rate 1.34 b/s. For the irregular code, these are pi = 0.066 and
1.39 b/s, respectively.

Figure 4 shows the same quantities for a system with R0 = 2,
R1 = 3, and total rate R = R0 +(1−3/4)R1 = 2.75 b/s. At the point
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Figure 4: Performance of scheme based on rate 3/4 LDPC (R0 = 2
b/s, R1 = 3 b/s; total rate R = R0 +(1−3/4)R1 = 2.75 b/s).

where the regular LDPC decoder converges (pi = 0.066), the OPTA
system has rate 2.50 b/s. In this configuration, the irregular code
has only a marginal advantage, since for symbols of m = R1 = 3
bits, the variable-node decoder (EXIT) characteristic is already very
different from that of a binary channel input alphabet.

5. APPLICATION TO COMPRESSED SENSING

In [1], we suggested that a theoretical WZ scheme for impulse-noise
degraded side information could be used for compressed sensing
(CS) [13, 14]. Here we outline how the above practical scheme can
be applied and discuss the differences with common CS techniques,
as well as standard compression of sparse sources.

A bare bones example of a CS problem is to compress a signal

vector x ∈ R
N of the form x = Ψs, where Ψ is an orthonormal N-

by-N matrix and s ∈ R
N has at most K non-zero components (we

say that x is K-sparse with respect to Ψ). The problem is to deter-
mine a compression mechanism for x without using the sparsifying
basis Ψ at the encoder (for complexity reasons) and to characterize
its rate-distortion behavior for an appropriate random model of s.
A distributed CS (DCS) problem might consider a signal which is
known to have a sparse difference with respect to a reference signal
y (side information) available only at the decoder.

In the simple case Ψ = IN , when x = s is sparse in the stan-
dard basis, and the components of x are bounded, there is an im-
mediate connection with the UBU model: consider x as a vector of
i.i.d. samples of UBU noise with pi = K/N and BNi the nonneg-
ative (without loss of generality) sparse signal components, while
Nb is some background noise (this actually generalizes the concept
of K-sparsity). Then a CS scheme can be built using the two-layer
scheme (of course one could use a standard entropy-coded scalar
quantizer in this non-distributed setting—the qualitative differences
of these two approaches will be explained below). The decoder uses
the trivial side information y = 0 to decode the quantized values x̂

(here the roles of source and correlation noise are reversed), while
in the more interesting case of DCS, it will simply use the provided
y. Notice that the system is basically a fixed-rate (nested) quan-
tizer followed by a syndrome (Slepian-Wolf) source code, where
the qualifiers in parentheses apply in the DCS setting. In the fol-
lowing we refer to this as quantized syndrome coding (QSC). A
key observation is that the rate (6) is essentially linear in the cod-
ing sparsity pc, which can be made equal to source sparsity pi by
choice of R1 (also, pc ≤ pi in the BU case).

It is possible to adapt the non-distributed CS scheme to more
general source distributions using a companding quantizer [15]. For
example, a strictly sparse Bernoulli-Gaussian (BG) source with pa-



rameters pi and σ2
i can be encoded with distortion [16, p. 2329]

D(R1) ∼=
pi

12
6π

√
3σ2

i 2−2R1

and, from (5), rate R(R1) ∼= h(pi) + piR1, if the quantizer rate R1

is not too small. This rate expression matches the “position plus
value” code used in quantized nonlinear approximation (NLA) [17],
where for a length N block, Nh(K/N) bits encode the positions of
K = N pi nonzero samples, of which each is quantized with R1 bits.

Since the performance of this QSC system is equivalent to that
of standard scalar entropy-coded quantized NLA of sparse sources,
a comparison is in order. The standard system has generally higher
encoder complexity and needs buffering to smooth the variable
transmission rate (both due to entropy coding (EC)), it has low delay
(depending on EC and buffering) and bounded distortion per sam-
ple. The QSC system has lower encoder complexity (per sample)
and fixed transmission rate (needing no buffers), but larger delay
(due to block size) and nonzero block error probability, which af-
fects the distortion on a block basis.

Comparing with common CS methods based on random projec-
tions and linear programming reconstruction [13, 14] is also insight-
ful. CS is generally formulated as a sampling problem, where the
key parameter is the sampling ratio needed to reconstruct a signal
with a given sparsity. Here we consider the same as an information-
theoretic compression problem, where the key figure is the number
of bits per sample needed to achieve a certain reconstruction distor-
tion. Notice that in the sampling setting, distortion vanishes if the
reconstruction is perfect. Since a real value may need an infinite
number of bits to be encoded, it is only by allowing some distor-
tion that a compression result can be obtained. In the limit of low
distortion (high rate), the “sampling ratio” R/R1 (corresponding to
the ratio of real-valued samples) tends to pi = K/N, which is also
the best possible in the CS setting. When the trivial sparsifying
basis Ψ = IN is assumed, which is often the case also in the CS
literature, these two approaches to sparse signal compression share
striking similarities. In the CS setting, x is projected onto a ran-
dom subspace using a fat matrix Φ. Then, if digital transmission is
used between source encoder (sensor) and decoder, Φx needs to be
quantized and reconstructed, before x can be recovered using, e.g.,
linear programming techniques. In the LDPC-based QSC setting,
x is quantized first, then its digital representation is projected us-
ing a fat sparse parity check matrix H. The LDPC decoder recovers
this representation by solving a system of binary linear equations
and finally the quantized x is recovered. Assuming scalar quantiza-
tion, the CS approach needs to deal with real-valued (analog) matrix
multiplication, while the LDPC-QSC approach uses binary (digital)
matrix multiplication.

In the more general case, when x is sparse in a non-trivial basis
Ψ 6= IN , the QSC approach could only used if the overall codebook

(of size 2R) were invariant under the rotation Ψ, which allows to
encode without knowing Ψ. It needs to be investigated whether this
condition is approximately satisfied if the rate is high enough, such
that the rotation Ψ can be “undone” in syndrome space.

A view on compressed sensing similar to ours was recently pre-
sented in [18], which however considers codes over the reals (sim-
ilar in spirit to the precoding in [1], which draws from [19]), while
here we propose digital codes with low-complexity decoding algo-
rithms. Finally, we remark that the overview article [20] presents a
different and more general view of quantization plus Slepian-Wolf
methods for compressed sensing.

6. CONCLUSION

This paper introduced a practical scheme for Wyner-Ziv coding with
side information degraded by bounded impulse noise. The key in-
gredient of this scheme is an LDPC-based Slepian-Wolf code for
the q-ary symmetric correlation channel, which corrects discrete
impulse errors (with any distribution) up to a chosen frequency pc.
The main advantage of this method is that in the high-rate limit,
it needs only half as much syndrome information as a comparable

real-valued error correction approach (as, e.g., in [1], which uses
techniques from [19]); the reason behind this being that the q-ary
symmetric channel capacity tends to 1− pc for large alphabet sizes
q. Therefore this new scheme is also interesting for compressed
sensing applications, for which the equivalent critical sampling rate
pc = K/N can be approached arbitrarily closely.
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