
HAL Id: hal-00789189
https://hal.science/hal-00789189v2

Submitted on 19 Jun 2013 (v2), last revised 29 Jul 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The T-Calculus : towards a structured programing of
(musical) time and space

David Janin, Florent Berthaud, Myriam Desainte-Catherine, Yann Orlarey,
Sylvain Salvati

To cite this version:
David Janin, Florent Berthaud, Myriam Desainte-Catherine, Yann Orlarey, Sylvain Salvati. The
T-Calculus : towards a structured programing of (musical) time and space. 2013. �hal-00789189v2�

https://hal.science/hal-00789189v2
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1466-13

The T-Calculus : towards a structured
programing of (musical) time and space

June 19, 2013

David Janin1, Florent Berthaut1, Myriam DeSainte-Catherine1,
Yann Orlarey2, Sylvain Salvati1,3

1 Université de Bordeaux 2 GRAME
LaBRI UMR 5800 Centre Nat. de Création Musicale

351, cours de la libération 11, Cours de Verdun
F-33405 Talence, FRANCE F-69002 Lyon, FRANCE

3 Inria Bordeaux - Sud-Ouest
200, avenue de la Vieille Tour
F-33405 Talence, FRANCE

Contents

1 Introduction 3
1.1 The complex structure space of music 4
1.2 Modeling space and programming time 4
1.3 Towards spatiotemporal modelo-programming 5

2 Strings and streams in music programming 6
2.1 Strings in music programming . 6
2.2 Streams in music programming 8

3 From strings and streams to tiled streams 10
3.1 Tiled streams for music programming 10
3.2 From musical strings to musical tiled streams 11
3.3 From musical streams to musical tiled streams 12
3.4 Strings and streams embeddings 13

4 Static (out of time) T -calculus 15
4.1 Syntax . 15
4.2 Types . 16
4.3 Semantics . 17
4.4 Least fixpoint semantics . 20
4.5 Out of time musical examples . 20

5 Dynamic (in-time) T -calculus 21
5.1 Computing (in-time) outputs . 22
5.2 Monitoring (in-time) inputs . 26
5.3 More examples . 28

6 Related work 29

7 Conclusion 30

2

The T-Calculus : towards a structured

programing of (musical) time and space

David Janin1∗, Florent Berthaut1, Myriam DeSainte-Catherine1,
Yann Orlarey2, Sylvain Salvati1,3

1 Université de Bordeaux 2 GRAME
LaBRI UMR 5800 Centre Nat. de Création Musicale

351, cours de la libération 11, Cours de Verdun
F-33405 Talence, FRANCE F-69002 Lyon, FRANCE

3 Inria Bordeaux - Sud-Ouest
200, avenue de la Vieille Tour
F-33405 Talence, FRANCE

Corresp. author: janin@labri.fr

June 19, 2013

Abstract

In the field of music system programming, the T-calculus is a proposal

for combining space modeling and time programming into a single pro-

gramming feature: spatiotemporal tiled programming. Based on a solid

algebraic model, it aims at decomposing every operation on musical ob-

jects into the sequence of a synchronization operation that describes how

objects are positioned one with respect the other, and a fusion operation

that describes how their values are then combined. A first version of that

calculus is presented and studied in this paper.

1 Introduction

With the development of intermedia devices, there is a need for programming
complex interactive musical systems. Numbers of tools, norms, languages and
design principles, more or less specific to such a task, can be used. Lots of
outstanding musical applications have already been and still are successfully
developed.

∗partially funded by the project INEDIT, ANR-12-CORD-009

3

The need for developing even more complex system is however still growing.
The available tools, norms, languages and design principles can thus still be
developed for that purpose.

Beyond the apparent entertaining nature of musical applications, the pro-
gramming of a musical piece, be it out of time for musical composition, or in
time for musical performance, is also at least as complex as programming any
time-sensitive system in another application field. It follows that advances in
music programming may also impact programming in other application fields.

Every problem encountered in music system programming deserves thus full
attention and is worth being solved in the most versatile way.

1.1 The complex structure space of music

The structure of music is complex. Being polyphonic, it is structured in some
musical space (P). Being rhythmic, it is structured in some musical time (T).
It also combines various levels of abstraction (A), from low level audio signal
processing to high level concert movements combination, upon which may de-
pend the space and time scales. It can even be interactive (I), that is, subject
to changes depending on the input of several independent (or loosely coupled)
musical sources.

•

(A)
(T)

(I)

(P)

Figure 1: The 4D structure space of music

This observation leads to the development of application specific languages,
dedicated to music programming, that are based on generic and well-defined
programming language paradigms. For instance, the versatile DSP program-
ming language Faust [6] is based on the synchronous programming paradigm of
languages such as Lustre or Esterel.

Another example, the domain-specific language Euterpea [7] is embedded in
the typed functional language Haskell [8].

These languages provide strong abstraction design principles that can be
used efficiently when programming musical applications. Using such mathe-
matically well-defined programming languages increases both the efficiency of
the development process and the reliability of the developed application or sys-
tem.

1.2 Modeling space and programming time

In this paper we aim at contributing to the development of these languages.
We are more specifically concerned with the following problem: coping with the
combined programming of musical time and space.

4

It is common observation that music writing involve both sequential compo-
sition (in time) and parallel composition (in space) of musical objects.

A classical programming of these two features will often amount to:

⊲ space modeling (data structure) : creating a (finite) vector of musical ob-
jects to be played in parallel, with one local player per musical objects,

⊲ time programming (control flow) : creating a (potentially infinite and
evolving) list of musical objects to be played in sequence, with a single
global player for that list.

From a strict logical point of view, this is however not a necessity.

A priori, from an abstract point of view, there is no need to distinguish
between spatial dimensions that describe parallelism and time dimensions that
describe execution flow. These are just dimensions that create together the
spatiotemporal space into which music evolves.

A posteriori, some modeling experiments [10, 1] show that, at least in the
simpler problem of synchronizing and mixing audio or musical sequences, there
are some mathematically well-founded models [15, 16] that allow for the de-
scription of both spatial and temporal combinations of these sequences with a
single operator, the tiled product, that encompasses both sequential and parallel
composition operators.

This gives hints that, when aiming at programming music systems, that han-
dle objects defined in some complex spatiotemporal space, the classical program-
ming distinction between data structure (space) and control structure (time),
though quite healthy in many programming context, is not mandatory.

1.3 Towards spatiotemporal modelo-programming

Our purpose is to examine to which extent and for what benefit the tiled prod-
uct, defined in [15] for crystal structure analysis and tuned for application to
music synchronization in [1], can be integrated in a programing language as a
buit-in programming feature.

More precisely, every musical object is seen as a partial function m : S → V
from some spatiotemporal space S into some set V of musical values. The
domain dom(m) ⊆ S of such a musical object m describes the spatiotemporal
structure of that object and, for every x ∈ dom(m), the valuem(x) ∈ V describes
the local musical state of that object at position x.

Then, given two musical object m1 : S → V1 and m2 : S → V2, every
operation on these musical objects that aims at defining a new musical object
F (m1,m2) : S → V3 is decomposed as a sequence of two primitive operations:

⊲ synchronization: defining the domain dom(F (m1,m2)) of the resulting
musical object as some generic combination dom(m1)⊕dom(m2) that tells
how the domains dom(m1) and dom(m2) are translated to be positioned
one relative to the other with possible overlaps,

5

⊲ fusion: defining how the new musical states are defined on each position
of the resulting domain from the local musical states of the translated
musical objects m1 and m2.

Doing so, we somehow aim at generalizing to spatiotemporal structures the
notion of spatial programming that is already emerging in bioinformatics system
modeling or musical structure analysis [20, 2, 3].

2 Strings and streams in music programming

In this section, we review some of the basic features of the strings and streams
data types. Then, by taking some examples from music modeling, we show how
strings and streams fail to satisfy some compositional properties one may expect
when modeling music.

From now on, let D, D1, D2, etc., be some alphabet types. That is, elements
of a type D will compose the strings and streams we will handle.

2.1 Strings in music programming

Strings (or equivalent data types) are probably one of the basic data-structure
one may use in music programming as shown for instance in the libAudioStream [19].
Since we propose below to extend this data type, let us first review our notation
for strings.

By D-strings we mean here any finite (possibly empty) list of elements of
type D. A D-string is thus a mapping

m : [0, |m| − 1] → D

where |m| ∈ N is the length of the string. The main operation on strings is the
concatenation product (denoted by ·). For every two D-strings m1 and m2, the
concatenation product

(m1 ·m2) : [0, |m1| + |m2| − 1] → D

of the two strings m1 and m2 is defined, for every
k ∈ [0, |m1| + |m2| − 1] by

(m1 ·m2)(k) =

{

m1(k) if 0 ≤ k < |m1|
m2(k − |m1|) if |m1| ≤ k < |m1| + |m2|

Example 2.1 Let us now turn to music programming with strings. For that
purpose, assume that we want to encode the following bebop tune, depicted in
Figure 2, that have already been considered in [10]. A simple analysis of the
musical structure of that song shows that it is composed with three repetition
of a first melodic line, depicted in Figure 3, that is followed by a second melodic
line, depicted in Figure 4. Then, given a data type D that simply corresponds

6

!! " !# $! ! ! !% &&& ' " ! !! "! ! !! ! ! ! ! ! ! !! " !# $

! ! ! "! !
5

% &&& !# (! ! " !
#! ! ! ! !) !& !" ! *

Figure 2: My little suede shoes (C. Parker, 1951)

(#
!"!!!! ! !!!!

Figure 3: A first melodic line

notes and silences of duration one eight, we can encode these melodic lines as
two D-strings m1 and m2 with respective length |m1| = 11 and |m2| = 15.

Of course, for the second melodic line, we assume that there is some special
symbol in D that merely means “keep on playing the same note” in order to
encode the quarter notes and the dotted quarter note.

The entire melodic line that is depicted in Figure 2 is then encoded by the
string

m = m1 · cs5 ·m1 · cs5 ·m1 · cs1 ·m2

where the constant strings csks describe strings of silences of length k. The
structure of such a concatenation can be depicted as in Figure 5.

An immediate remark is that, in this concatenation example of the first and
second melodic lines, we have to insert silences of various length. Doing so, the
general structure of the entire melodic line, stated as “three times melody m1

followed by melody m2” is a little lost.
Of course, one can directly include the silences in the encoding of the melodic

line themselves, as actually written in Figures 3 and 4. But then, one need two
encodings of the first melodic line in m. We need one encoding for its first two
occurrences (m1 · cs5) and another one for its last occurrence (m1 · cs1).

Continuing our example, if we want to play twice that melody, then we have
to construct the melodic line

mm = m · cs5 ·m

This encoding is definitely lacking musical sense. Indeed, no musician will ever
pay attention that 5 eighth silences are needed here. As we shall see from
Section 3.1, we can actually extend the string type to encode what musicians
actually do: they synchronize on music bars.

In other words, all proposed encodings of the melodic lines miss part of the
musical meaning of these melodic lines. They are not faithfully encoding the
musical reality we aim at capturing. In some sense, an expected compositionality
property cannot be satisfied by the concatenation product on strings. Depending
on the melodic line to be concatenated, the amount of silences to be inserted is
changing as illustrated by the examples.

7

(#
!"!!&!) !*!" !!!!

Figure 4: A second melodic line

m1 cs5 m1 cs5 m1 m2

Figure 5: The structure of the complete melodic line

Remark 2.2 In musical terms, as already observed in [10], both the first and the
second melodies are built upon a notion of anacrusis that creates a distinction
between the effective start of the melodic line: the beginning of its first note,
from the logical start of the melodic line: the first bar of the examples.

m2

Anacrusis Logical play

Effective play Conclusive silence

Figure 6: The musical structure of the second melodic line

The same examples can be used to show that similar phenomena occur at the
end of melodic lines. Indeed, the logical ends of both melodic lines are actually
given by the last bars depicted in Figure 3 and Figure 4 while the concrete ends
occur before.

This is especially clear in the second melodic line where, as often in bebop
style, the last note is played right before the bar in order to emphasis even more
on the next strong beat, though silent, that concludes the underlying rhythm.
The situation for the second melodic line is depicted in Figure 6.

2.2 Streams in music programming

Let us now consider streams in music. Streams are (potentially) infinite se-
quences of values often used to model audio signals as in Faust [6] or even
arbitrarily abstract sequences as in Haskell [8]. Again, as we propose below to
extend this data type, let us first review our notation for streams.

By D-streams we mean here an infinite list of elements of some type D. A
D-stream is thus a mapping s : N → D. The main operation on streams is the
parallel product. For every D1-stream s1 and D2-string s2, the parallel product

s1|s2 : N → D1 × D2

8

of the two streams s1 and s2 is defined, for every k ∈ N, by

(s1|s2)(k) = (s1(k), s2(k))

Observe that with such a definition we have, up to isomorphisms, (s1|s2) =
(s2|s1), i.e. the parallel product is commutative.

With both strings and streams, we may also assume that we have an addi-
tional operation (denoted by ::) that take one D-string m and one D-stream s
as inputs and that produces the D-stream m :: s obtained by placing the string
m in front of the stream s, i.e. the stream m :: s is defined, for every k ∈ N, by

(m :: s)(k) =

{

m(k) if 0 ≤ k < |m|
s(k − |m|) if |m| ≤ k

Example 2.3 (2.1 continued) Going back to our musical example, we as-
sume that we have a constant D-stream nullD that is defined as the silent
stream that is, for every k ∈ N, we have nullD(k) = 0D for some elementary
silence 0D. Then, the operation defined above allows for converting the entire
melody m in Figure 2 into a D-stream s : N → D by letting s = m :: nullD.

Assuming now we want to play in parallel (or rather to describe the structure
of such a play) the musical stream s with another stream of music s′ : N → D
encoding, say, some accompanying bass line. For simplicity, we assume that
these two musical lines are encoded on the same time scale, say one (symbolic)
time click per eighth note.

A priori, the parallel plays are defined as p = s|s′. However, for reasons
similar to the string case examples, such a product is not satisfactory because
it assumes that the two streams actually start at the same time. It may be the
case, for instance, that the stream s′ of the bass line starts right after the first
bar. In that case, what we want to build is defined as the parallel streams

p = s|(cs3 :: s′)

the length of the silence cs3 being defined by some comparison between the
musical nature of s and s′. Such a situation is depicted in Figure 7.

s

s′

logical start

effective start

Figure 7: On time starts of parallel musical plays

Assuming instead that the bass starts one measure before, the play is rather
defined as p = (cs5 :: s)|s′.

9

Again, we fail to capture the musical nature of the melodic lines we aim at encod-
ing. Some expected compositionality law that would guarantee the preservation
of the musical intention we have in our encoding of melodic lines is violated.
Indeed, with such an encoding the intended parallel composition depends on
the properties of the composed streams s and s′: it is not uniformly defined as
one would expect with a more robust data-type melody.

Remark 2.4 A programmer with some knowledge in music will immediately
propose to solve both problems encountered in Section 2.1 and here in Section 2.2
by encoding, within note sequences, be them finite strings or infinite streams, the
musical bars. Such a programmer would indeed be right. This exactly what we
will do.

However, we also aim at keeping only the features we really need in these
musical bars – only a selection of the musical bars that are truly needed for
temporal positioning – and we also aim at defining these remaining features as
a built-in extension of the data types and not as a somehow adhoc encoding that
may later fail to behave nicely.

It occurs that this can be done in an accurate way via the notion of tiled
streams presented in the next section.

3 From strings and streams to tiled streams

The examples studied in the previous section give incentives for merging these
two data types into a more general one: tiled streams with synchronized prod-
ucts, that is presented in this section.

3.1 Tiled streams for music programming

Let D be an element type. We assume that D is equipped with a distinguished
element 0D that acts as a default undefined value.

A tiled D-stream is a pair 〈t, d〉 where t is a bi-infinite mapping t : Z → D
and d ∈ N is a natural number called the synchronization duration of t. In
order to keep notation simple, we just write t for such a D-stream and we write
d(t) ∈ N for its synchronization duration.

Of course, we may assume that such tiled streams have a default value
(silence in music) outside some effective realization interval. Such a tiled streams
with finite (or at least left finite) effective interval is depicted in Figure 8. All
examples pictured below assume such a finite realization interval.

In other words, following the analogy with musical notation, a tiled stream
is a (bi-infinite) stream with to bars: the first one that indicates the logical
beginning of the music, the second one that indicates the logical end of the
music.

Synchronizing two tiled streams one “after” the other is then defined by
means of the tiled product defined as follows.

10

t

logical interval of length d(t)

effective realization interval

Figure 8: A typical tiled stream with anticipated start and late end

For every tiled D1-stream t1 and D2-string t2, the tiled product t1 ; t2 of the
two tiled streams t1 and t2 is defined, for every k ∈ N, by

(t1 ; t2)(k) = (t1(k), t2(k − d(t1)))

with the synchronization duration d(t1 ; t2) of the product defined by

d(t1 ; t2) = d(t1) + d(t2)

It is an easy exercise to check that, up to isomorphism, this product is associa-
tive.

The product of two tiled streams t1 and t2 is depicted in Figure 9.

t1

t2

t1
t2

resulting logical interval of length d(t1) + d(t2)

resulting effective interval

Figure 9: The tiled synchronization product of t1 and t2

3.2 From musical strings to musical tiled streams

Going back to Example 2.1, letm1 andm2 be the D-string defined in Section 2.1.
We encode the first melodic line in Figure 3 by the tiled stream t1 defined,

for every k ∈ Z, by

t1(k) =

{

m1(k + 3) if − 3 ≤ k < |m1| − 3
0D (otherwise)

11

with sync. duration d(t1) = 16, and we encode the second melodic line in
Figure 4 by the tiled stream t2 defined, for every k ∈ Z, by

t2(k) =

{

m2(k + 7) if − 7 ≤ k < |m2| − 7
0D otherwise

with sync. duration d(t2) = 16. Then, defining the entire melodic line in
Figure 2 just amount to perform the tiled products:

t = t1 ; t1 ; t1 ; t2

that simply encode our initial musical analysis, i.e. three times the first melodic
line followed by one time the second melodic line.

Remark 3.1 Of course, the resulting model has four parallel voices. Indeed, we
need to merge all these voices into a single one, possibly, in the general cases, by
allowing chords instead of single notes. This will be done by the merge operation
that has been mentioned in the introduction. Thus the encoding of our complete
(tiled) melody is rather defined to be merge(t1 ; t1 ; t1 ; t2) or even, as detailled
in Section 4.3 below (see Example 4.9), just defined to be t1 + t1 + t1 + t2.

In other words, we have defined a model that solves the lack of composition-
ality raised by modeling music as strings as in Section 2.1.

3.3 From musical streams to musical tiled streams

We now aim at showing that the compositionality problem raised by modeling
music as streams as in Section 2.2 can also be solved similarly. In order to do so,
we need to extend a little further the tiled stream data type with two additional
operators on tiled streams that amount to reset the synchronization length to
zero.

More precisely:

Definition 3.2 (Tiled stream reset and co-reset) For every tiled D-stream
t, we define the synchronization reset R(t) and the synchronization co-reset L(t)
to be the tiled D-streams defined, for every k ∈ Z by

(R(t))(k) = t(k) and (L(t))(k) = t(k − d(t))

with d(R(t)) = d(L(t)) = 0.

The reset and co-reset operators are depicted in Figure 10.
Going back to Example 2.1, given the tiled stream t defined in Section 2.2

that encode the melodic line in Figure 2, given another tiled stream t′ that model
some base line. Assuming that t′(0) models the first eighth note or silence of
the first bar of that bass line, then, the parallel play p of both the melodic line
and the bass line is simply modeled by

p = R(t) ;R(t′)

12

t

R(t)

L(t)

Figure 10: Reset R(t) and co-reset L(t) of a tiled stream t.

In other words, since the logical start of the lead melody and the bass line are
encoded in their respective tiled stream encodings, the parallel product of the
two just amount to synchronize these two starts. This is easily done as above.

Doing so, we have solved the compositionality problem raised by modeling
as streams as in Section 2.2.

Remark 3.3 More generally, with the proposed model of tiled streams, we even-
tually internalize in each model the synchronization information that is needed
to position in time two melodic lines, be them put in sequence, as with strings,
or in parallel as with streams. Doing so, the tiled product is a composition op-
erators that has both features of a sequential product and of a parallel product.
This observation is made formal in the next section.

3.4 Strings and streams embeddings

From a more theoretical point of view, we show that both strings and streams
can be embedded into tiled streams.

For strings, let ϕ be the mapping that maps every D-string m to the tiled
D-stream ϕ(m) defined, for every k ∈ Z by

(ϕ(m))(k) =

{

m(k) if 0 ≤ k < |m|
0D otherwise

with d(ϕ(m)) = |m|, we also have:

Lemma 3.4 (Strings embeddings) The transformation ϕ from D-strings to
tiled D-streams is a one-to-one homomorphism that maps string concatenation
to (merged) tiled product, i.e. for every D-strings m1 and m2 we have

ϕ(m1 ·m2) = merge(ϕ(m1) ;ϕ(m2))

From a theoretical point of view, given ψ the mapping that maps every
D-stream s to the tiled D-stream ψ(s) defined, for every k ∈ Z by

(ψ(m))(k) =

{

s(k) if 0 ≤ k
0D otherwise

with d(ϕ(s)) = 0, we also have:

13

Lemma 3.5 (Streams embeddings) The mapping ψ from D-streams to tiled
D-streams is a one-to-one homomorphism that maps stream parallel product to
tiled product, i.e. for every D-stream s1 and s2 we have

ψ(s1|s2) = ψ(s1) ;ψ(s2)

In particular, when restricted to tiled streams with zero synchronization length,
the tiled stream product is, up to isomorphism, commutative.

We observe also that these embeddings of strings and streams into tiled
streams also preserve mixed products stated below:

Lemma 3.6 (Mixed embeddings) For every D-string m and D-stream s, we
have

ψ(m :: s) = R(merge(ϕ(m) ;ψ(s)))

i.e. the mixed product of strings with streams is also preserved by the homomor-
phisms ϕ and ψ.

To make the picture complete, let us conclude this section by showing how
the (stream like) parallel product defined on tiled stream with zero sync. length
generalizes to arbitrary tiled streams. More precisely, combination of tiled prod-
uct and resets lead to the definition of fork and join parallel products defined
bellow.

Definition 3.7 (Fork and join derived operators) For every two tiled streams
t1 and t2 let fork(t1, t2) and join(t1, t2) be the products defined by:

⊲ Parallel fork: fork(t1, t2) = R(t1) ; t2, i.e. the logical intervals start at the
same time,

⊲ Parallel join: join(t1, t2) = t1 ;L(t2), i.e. the logical intervals end at the
same time.

t1 t2

R(t1)
t2

fork(t1, t2) join(t1, t2)

t1
L(t2)

Figure 11: Derived fork and join operators.

These two derived products are illustrated in Figure 11. One can observe that
the tiled stream fork(t1, t2) may be distinct from the tiled stream fork(t2, t1)
even up to isomorphism since in the first case it inherits from the logical interval
of t2 while in the second case it inherits from the logical interval of t1. A similar
remark holds for join(t1, t2) and join(t2, t1).

14

4 Static (out of time) T -calculus

We present here a static version of the T -calculus, that is, the T -calculus with no
I/O mechanisms. Effectivity issues (how to compute T -programs) are discussed
in Section 5.

4.1 Syntax

Basic constants and types. We assume that there is some set of basic
types such as booleans: bool, positive integers: natural, or sets of events:
eventSet(E) for some (finite) predefined set of events E, etc.

These types are uniformly seen as semiring structures with (infix) associative
sum +, e.g. union for event sets, (infix) associative product * that distributes
over sum, e.g. intersection for event sets, with a zero 0 that is neutral for sum
and absorbant for product, e.g. empty set for even sets, and a unit 1 that is
neutral for product, e.g. the set E of all events for event sets.

They are associated with constants. In particular, we use the notation
{a,b,c} for the set of three events a, b and c ∈ E. To keep notations sim-
ple, we drop any subscript (or any other mark) that may refer to the type of
these constants and operators though they are implicitly considered as unam-
biguously typed.

For convenience, we may also assume that these types are equipped with het-
erogeneous mappings such as, for instance, from pairs of event sets to booleans,
event sets equality test == or inclusion <.

Programs. A T -calculus program p is just a term built by means of the
program constructs described in Figure 12 where c is a constant, x is a variable,
f is a function symbol and p1, p2, . . . , pi are syntactically simpler programs.

p ::= – primitive constructs –
c (constant)

| x (variable)
| f(p1, p2, · · · , pn) (mapping)
| x = p1 (assignment)
| R(p1) (sync. reset)
| L(p1) (sync. co-reset)

– derived constructs –
| p1 op p2 (operator)
| p1 ; p2 (sync. product)

Figure 12: Static T -calculus syntax

The last two constructs, operators and synchronization product, derive from
the others and will thus be treated as such.

15

Remark 4.1 Since there is no notion of variable scope, we also assume that
for every program p, for every variable x occurring in p, there is at most one
subprogram of p of the form x = px.

4.2 Types

Every T -calculus program will be interpreted as a tiled D-stream also called α-
stream when α is the type of elements of D. As there shall be no surprise with
the typing of the elements of tiled streams, we concentrate on the typing of tiled
streams resulting from T -calculus programs. The typing relation is defined in
Figure 13. More precisely, for every T -program p, we define the typing relation

⊲ Constants:
Γ ⊢ c : (1, αc)

⊲ Variables:
(x, (d, α)) ∈ Γ
Γ ⊢ x : (d, α)

⊲ Mapping:
Γ ⊢ pi : (di, αi) (i ∈ [1, n])

Γ ⊢ f(p1, · · · , pn) : (d1 + · · · + dn, α)
with f : α1 × α2 × · · · × αn → α

⊲ Assignment:
Γ ⊢ x : (d, α) Γ ⊢ p : (d, α)

Γ ⊢ x = p : (d, α)

⊲ Sync. reset :
Γ ⊢ p : (d, α)

Γ ⊢ R(p) : (0, α)

⊲ Sync. co-reset:
Γ ⊢ p : (d, α)

Γ ⊢ L(p) : (0, α)

Figure 13: Static type rules

Γ ⊢ p : (d, α)

that means the program p in environment Γ is a tiled α-stream with synchro-
nization length d.

The typing environment Γ tells what the types of the variables that occur in
p are. It is represented as a set of pairs of the form (x, (d, α)). We also write αc

for the basic type of the constant c. This implicitly means that every constant
is written in such a way that its type is unambiguous. However, in all examples
and rules given below, we keep the notation simple with constant 0 meaning the
constant 0α for any of the basic type α.

Additionally, we provide in Figure 14 the derived rules associated with the
last two program constructs.

16

⊲ Operator:
Γ ⊢ p1 : (d1, α1) Γ ⊢ p2 : (d2, α2)

Γ ⊢ p1 op p2 : (d1 + d2, α3)
with op : α1 × α2 → α3

⊲ Sync. product:
Γ ⊢ p1 : (d1, α1) Γ ⊢ p2 : (d2, α1)

Γ ⊢ p1 ; p2 : (d1 + d2, α1 × α2)

Figure 14: Derived static type rules

Remark 4.2 As expected, the typing rule for infix operator p1 op p2 derives
from the mapping rule in Figure 13. Quite new in our proposal, the type rule
for the synchronization product p1 ; p2 also derives from that same rule when
applied to the identity mapping idα×α : α × α → α × α, one per type α, hence
leading to the derived rule described in Figure 14.

It shall be clear that for every program p, for every environment Γ, there is
at most one type (d, α) such that Γ ⊢ p : (d, α). Moreover:

Theorem 4.3 It is decidable if there exists Γ and (d, α) such that Γ ⊢ p : (d, α).

Proof. Deciding of the existence of the basic type α is standard. It thus poses
no difficulty. One may even imagine to allow polymorphic types as in languages
like ML.

Deciding of the existence of sync. length typing easily reduce to the reso-
lution, on positive integers, of a finite system of linear fixpoint equations with
positive coefficients only. Indeed, any equation of the form

xi = ai,ixi + bi({xJ}j 6=i)

can be replaced by a (syntactically) simpler equation according to one of the
following cases: if a = 0 then it xi = bi({xJ}j 6=i), if a = 1 then it implies that
0 = bi({xJ}j 6=i) which leads to further simplifications, and if a > 1 then the
system has no solution. 2

Example 4.4 The program x1 = c + R(x1) can be typed with sync. length
1. The program x2 = L(x2) + c + R(x2) can be typed similarly.

On the contrary, neither the program x3 = c + x3 nor the program x4 =

x4 + c + x4 can be typed for they would have an right- or bi-infinite synchro-
nization interval.

4.3 Semantics

Let p be a program. Let Xp be the set of variables that occur in p. Let Γ be a
type assignment of variables such that Γ ⊢ p : (d, α).

17

A valuation E for p is a map that associates every variable x ∈ Xp of p
with a tiled stream E(x). It is coherent with Γ when, for every variable x ∈
Xp, if (x, (dx, αx)) ∈ Γ then the tiled stream E(x) is a tiled αx-stream with
synchronization length dx.

A semantic for the program p under the valuation E , assumed to be coherent
with Γ, is then a mapping [[]]E that maps every subprogram p′ of the program
p to a tiled stream [[p′]]E according the rules in Figure 15 and that, moreover,

⊲ Constants: d([[c]]E) = 0 and

[[c]]E(k) =

{

c when k = 0,
0 when k 6= 0,

⊲ Variable: [[x]]E(k) = E(x)(k),

⊲ Mapping: d([[f(p1, · · · , pn)]]E =
∑

i∈[1,n] d([[pi]]E)

and [[f(p1, · · · , pn)]]E(k) = f(v1, · · · , vn)

with vi = [[pi]]E

(

k −
∑

0≤j<i d([[pi]]E

)

,

⊲ Assignment: d([[x = p1]]E) = d([[p1]]E) and

[[x = p1]]E(k) = [[p1]]E(k)

⊲ Sync. reset : d([[R(p1)]]E) = 0 and

[[R(p1)]]E(k) = [[p1]]E(k)

⊲ Sync. co-reset: d([[L(p1)]]E) = 0 and

[[L(p2)]]E(k) = [[p2]]E(k)

for every k ∈ Z.

Figure 15: Static semantics rules

satisfies the fixpoint property (Y) described in Figure 16.

Remark 4.5 As already announced in the introduction, operations on tiled
streams are indeed defined as synchronizations followed by fusions. This becomes
especially clear in the (point wise) extension of a mapping f : α1 × α2 → α3 to
a program construct of the form f(p1, p2) on some tiled α1-stream p1 and some
tiled α2-stream p2. Indeed, computing f(p1, p2) amounts to:

18

(Y) For every x ∈ Xp we have E(x) = [[px]]E .

Figure 16: Fixpoint soundness rule

⊲ Synchronization (in time): computing the synchronized product p1 ; p2 on
the tiled α1- and α2-streams passed as arguments,

⊲ Fusion (in space): applying mapping f in a point wise fashion on the
resulting tiled α1 × α2-stream in order to build the expected α3-stream.

This feature already appeared in the typing rules in Figure 13. It has been made
explicit in Figure 15.

The semantics of infix operators and synchronized products just derive from
the primitive semantics rules stated in Figure 15. The corresponding rules are
stated in Figure 17,

⊲ Operator: d([[p1 op p2]]E) = d([[p1]]E) + d([[p2]]E) and

[[p1 op p2]]E(k) = [[p1]]E(k) op[[p2]]E(k − d([[p1]]E))

⊲ Sync. product: d([[p1 ; p2]]E) = d([[p1]]E) + d([[p2]]E) and

[[p1 ; p2]]E(k) = ([[p1]]E(k), [[p2]]E(k − d([[p1]]E)))

for every k ∈ Z.

Figure 17: Derived static semantics rules

Example 4.6 Continuing Example 4.4, the tiled stream associated to x1 is
uniquely defined. It equals c when k ≥ 0 and equals 0 when k < 0. The tiled
stream associated to x2 is also uniquely defined and equals c everywhere.

As another example, with uniquely defined semantics, the program x3 =

L(x3) + 0 + 1 + R(x3) evaluates into a tiled stream of alternating 0 and 1.
On the contrary, a program like x = x have many possible semantics per

valuation of x although it can be typed. A program like x = R(2 + x), that
can also be typed, have no semantics since its value on 0 shall be infinite.

We easily check that:

Lemma 4.7 When E is coherent with Γ then, for every subprogram p1 that
occurs in p, if Γ ⊢ p1 : (p1, α1) then [[p1]]E is a tiled α1-stream with d([[p′]]E) = d1.

19

4.4 Least fixpoint semantics

Since a program may have zero, one or several semantics as illustrated in Ex-
ample 4.6, we privilege below the least fixpoint semantics that, when defined,
provide a unique semantics.

Given a typed program p, let E0 be the valuation that maps every variable
x that occurs in p to the constant 0. For every n ∈ N, let then En+1 be the
valuation defined, for every variable x ∈ Xp, by En+1(x) = [[px]]En

for some/any
assignment of the form x = px that occurs in p where [[p′]]Ek

is computed following
the rules of Figure 15.

A semantic [[]]E for the program p is said to be the least fixpoint semantics
of p when the sequence {En}n≥0 defined above converges to E according to the
following metrics.

The (ultrametric) distance between two tiled streams s1 ans s2 is defined to
be d(s1, s2) = 1/2kn where n is the greatest integer such that, for all k ∈ [−n, n]
we have s1(k) = s2(k). Then the distance between two environment E1 and E2

is define by d(E1, E2) = max{d(x, x) : x ∈ Xp}.

We easily check, by induction on the syntactical complexity of programs that
such a semantics is uniquely defined when it exists. A program that has a least
fixpoint semantics is called robust.

Remark 4.8 In our application perspectives as in the proposed examples, it
makes sense to define 0 as the least value for elements of type bool, eventSet(E)
or even natural.

Indeed, we do not expect any non terminating musical values that would ne-
cessitate an additional undefined value ⊥. On sets of events, the default musical
value is silence and it is modeled by the empty set 0. When seen as control sig-
nal, the default boolean value is Off. It is modeled by the boolean 0. Elements
of type natural can also be seen as intensity levels hence with 0 as the relevant
default value.

Of course, for more general basic types even as simple as int or float, the
least fixpoint semantics shall rather be defined with extra undefined value ⊥, one
for every basic type, that is absorbant w.r.t. every operators and functions that
are assumed to have strict semantics. This is rather well known in Domain
theory. As this goes out of the scope of this paper, it is thus not treated here.

4.5 Out of time musical examples

Let E be a set of MIDI-like musical event defined as follows. For every note N,
there is an event N for the noteOn event for that note and an event Nc for its
continuation event noteCont. Of course, as in MIDI, by note we mean a pitch
class but possibly extended with a track number, an instrument number, an
energy level, etc. The main interest of such a variant is that the empty event
set 0 denotes silence. Then, as shown in the following examples, melodic lines
can easily be encoded by tiled streams of type eventSet(E).

20

Example 4.9 (Simple melodies) We assume that the elementary durations
of events are eighth notes. Writing <N:d> for every note N for the program
{N}+{Nc}+· · · +{Nc} when Nc is repeated d− 1 times, then the tiled stream

a = <C4:2>

defines the note C4 with a duration of two eighths, that is a quarter. Slightly
more complex, the tiled stream

b = L(B3) + <C4:2> + [0,6]

with [p:d] meaning d times the sum of p, simply encodes a 4 beats measure
composed of one quarter note C4 followed by silences, that is preceded by an
anacrusis made of an eighth note B3.

Such a fairly simple example clearly show how all finite examples that are
given in Section 2 can be encoded in our proposal. The binary function merge
that is used in Section 3 is just defined by merge(p1; p2) = p1 + p2 for every
tiled stream p1 and p2.

Example 4.10 (An infinite canon) Another example is the infinite canon
one can built as follows. Given four melodic lines m1, m2, m3 and m4 built with
the techniques shown above, let p be the program defined by

x1 = m1+R(m2+m3+m4+x1)

x2 = x1*R(0)+m1+R(m2+m3+m4+x2)

x3 = x2*R(0)+m1+R(m2+m3+m4+x3)

x4 = x3*R(0)+m1+R(m2+m3+m4+x4)

with the newline separated sequence of xi = pis is a shorthand notation for the
(commutative) synchronized product

R(x1 = p1) ; R(x2 = p2) ; R(x3 = p3) ; R(x4 = p4)

In that construction, xi *R(0) allows for using the synchronization interval
of xi without its values as it results in the constant 0 tiled streams with a
synchronization that equals the synchronization length of xi.

Observe that we need one melody at least to be of non zero synchronization
length for these examples to have unique semantics. Observe also that such an
encoding even allows for canons built on melodic lines with anacrusis and/or
late conclusive notes.

5 Dynamic (in-time) T -calculus

We aim now at extended our programming language proposal so that it can
handle outputs and inputs. This also poses the question of computability of the
programs.

21

Handling outputs means producing tiled stream values in the order defined
as the natural order on the domain Z of every tiled streams. Handling inputs
means extracting from input streams some input synchronization intervals that
can be used to dynamically position other (musical) tiled streams along the time
line.

In both case, some type systems are used to guarantee that typed programs
are not incoherent w.r.t. the flow of time: they can indeed be executed in a
reactive way.

Indeed, numbers of statically well typed programs are obviously incoherent
w.r.t. time flow as, for instance, e.g. x = L(x) + m with some finite melody
m to be read in time.

Form now on, let p be a T -program and let E be some environment E coherent
with a typing environment Γ such that [[p]]E is the least fixpoint semantics of p.

5.1 Computing (in-time) outputs

We aim here at finding simple (computable) conditions in such a way that
the values of both E and [[p]]E can be computed. More precisely, we look for
computable typing that ensures that there is some computable start date k0 ∈ Z

such that, for every k ∈ Z:

(P1) if k < k0 then [[p]]E(k) = 0; we say that the program p is
backward silent,

(P2) if k ≥ k0 then both E(k) and [[p]]E(k) are indeed computable;
we say that the program p is forward computable.

We first study the forward computability property. This can be done by
analyzing the recurrence schema that is induced by p. More precisely:

Definition 5.1 (Memory structure) A mapping µ that maps program p and
variable x ∈ Xp that occurs in p to a set µ(p, x) ⊆ Z such that, for every k ∈ Z:

if, for every x ∈ Xp, for every k′ ∈ µ(p, x), the value of [[x]]E(k + k′)
is known, then the value [[p]]E(k) is uniquely determined,

is called an (translation invariant) memory structure for the program p.

Remark 5.2 The uniform (time invariant) structure of the computations in-
duced (when defined) by T -calculus programs allows for such definition of time
invariant memory structure. A more general definition of the form µ(p, x, k)
that also specifies the date k at which we examine functional dependencies is
not necessary.

For instance, we can take µ(1 + x, x) = {−1}. Another example, with x and
y two distinct variables, we can take µ(1 + x, y) = ∅. Indeed, µ describes some
functional dependencies in the sense of data base theory.

We aim now at computing some syntax driven memory structure. Let µ be
inductively defined by the rule described in Figure 18 where for any subpro-

22

⊲ Constants: µ(c, x) = ∅,

⊲ Variable: µ(y, x) = ∅ when x and y are distinct
variables and µ(x, x) = {0} otherwise,

⊲ Mapping: µ(f(p1, · · · , pn), x) =

⋃

1≤i≤n

µ(pi, x) −
∑

0≤j<i

d(pi),

⊲ Assignment: µ(y = py, x) = µ(py, x),

⊲ Sync. reset : µ(R(p1), x) = µ(p1, x),

⊲ Sync. co-reset: µ(L(p1), x) = µ(p1, x) + d(p1).

Figure 18: Sufficient functional dependency rules

gram p′ of the program p, we denote d(p′) ∈ N the synchronization length of
the subprogram p′ induced by the type environment Γ and, for any set X ⊆ Z

and any n ∈ Z, we denote by X − n the set {m− n ∈ Z : m ∈ X}.

Lemma 5.3 The mapping µ inductively defined by the rules of Figure 18 is a
memory structure for the program p.

Proof. This follows from the fact that, due to the linear nature of T -calculus
programs, the functional dependencies described in the definition of memory
structure is invariant under translation. Then, the rules depicted in Figure 18
just compute such syntactical dependencies on 0. 2

Example 5.4 An example computation of µ on the program x= 1 + R(1 +

L(x)) is depicted in Figure 19. For the sake of simplicity we have omitted to
picture the reset operator. In that example, we have

µ(1, x) = ∅ and µ(x, x) = {0}

hence, by applying the co-reset rule, we have

µ(L(x), x) = {1}

Then, by applying the mapping rule, we have

µ(1 + L(x), x) = {0}

and thus, by applying the reset rule,

µ(R(1 + L(x)), x) = {0}

23

hence
µ(x= 1 + R(1 + L(x)), x) = {−1}

Then we check that, with least fixpoint semantics, we indeed have, for every
k ∈ Z,

[[x]]E(k) =

{

0 if k < 0
[[x]]E(k − 1) + 1 if k ≥ 0.

This computation rule is indeed coherent with our computation of the inductive
memory structure µ.

x

1
1

L(x)

etc. . .

etc. . .

Figure 19: Computing a memory structure

Let N̄ be the set of positive integer extended with a greatest element ∞.

Definition 5.5 (Synchronization profile) A synchronization profile for the
program p is a triple

(l, d, r) ∈ N̄ × N × N̄

such that d is the synchronization length of program p, i.e. Γ ⊢ (d, α) for some
type α, and such that, for every k ∈ Z, if [[p]]E(k) 6= 0then d − l ≤ k ≤ d + r,
with d− l ≤ k (resp. k ≤ d+ r) that is true whenever l = ∞ (resp. r = ∞).

Before giving a set of rules to compute sync. profile types, the notion if sync.
profile itself, and the way it evolves in a sum is depicted in Figure 20.

Remark 5.6 The set of triples (l, d, r) ∈ N × N × N equipped with the product
defined by

(l1, d1, r1) · (l2, d2, r2) = (max(l1, l2 − d1), d1 + d2,max(r1 − d2, r2)

is a submonoid of the free inverse monoid (see e.g. [17]) generated by one gen-
erator. In particular, the product is associative and it has (0, 0, 0) as neutral
element. The sync. profiles, that also allows ∞ as left or right value, form a
submonoid of the filter completion of that monoid.

We consider now the rules described in Figure 21 where ∆ is an environment
that associates variables to their sync. profiles.

We say that a profile (l, d, r) is smaller than a profile (l′, d′, r′) when l ≤ l,
d ≤ d′ and r ≤ r′. One can easily check that this is an order relation1. It is
extended point wise to environment.

1it is even the reverse order of the natural order of the underlying inverse monoid

24

l1 d1 r1

p1

p1

l2 d2
r2

p1 + p2

max(l1, l2 − d1) d1 + d2 max(r1 − d2, r2)

Figure 20: Computing sync. profiles

Lemma 5.7 The least synchronization profiles (and the corresponding environ-
ment ∆) satisfying the rules describe in Figure 21 is computable.

Proof. The computability of synchronization lengths follows from the fact that
we assume p is typed in a given environment Γ.

Computability of left and right parts of sync. profile follows from the fact
that the rules depicted in Figure 21 induce conjunctions of inequalities of the
form

li ≥ ci +
∑

j∈J

lj

which, whenever ci 6= 0 and i ∈ J , implies that li = ∞. That fact allows
for accelerating the least solution computation that otherwise may be infinite
as shown for instance by the program x = 1 + R(x) + 1 with sync. profile
(0, 1,∞). 2

When, ∆ ⊢ p : (l, d, r) with finite l, we know that for every k ≤ l we have
[[p]]E = 0, that is, the program p satisfies the property (P1): it is backward silent.

Our main effectivity result is then stated in the following theorem.

Theorem 5.8 If the program p is backward silent and for every variable x bound
in p, the program px is backward silent, and if, for every k ∈ µ(x, x) we have
k < 0 then p also satisfies property (P2): it is forward playable.

Moreover, the least fixpoint semantics [[p]]E or program p and the associated
functions E(x) for x ∈ Xp are functions computable by means of finite state
sequential transducers.

Proof. Backward silence hypotheses ensure the existence of some k0 ∈ Z, such
that for every k′ ≤ k, for every subprogram p′ of p, we have [[p′]]E(k′) = 0.

The fact that for every variable x, every element of µ(x, x) is strictly negative
ensures that, at every instant, [[x]]E only depends on the past its values hence
[[p]]E is indeed forward playable.

25

⊲ Constants:
∆ ⊢ c : (0, 1, 0)

⊲ Variables:
(x, (l, d, r)) ∈ ∆
∆ ⊢ x : (l, d, r)

⊲ Mapping:
∆ ⊢ pi : (li, di, ri) (i ∈ [1, n])
∆ ⊢ f(p1, · · · , pn) : (l, d, r)

with l = max
(

li −
∑

1≤j<i dj

)

, d =
∑

i di,

and r = max
(

ri −
∑

i<j≤n dj

)

,

⊲ Assignment:
∆ ⊢ x : (l, d, r) ∆ ⊢ p : (l, d, r)

∆ ⊢ x = p : (l, d, r)

⊲ Sync. reset :
∆ ⊢ p : (l, d, r)

∆ ⊢ R(p) : (l, 0, d+ r)

⊲ Sync. co-reset:
∆ ⊢ p : (l, d, r)

∆ ⊢ L(p) : (l + d, 0, r)

Figure 21: Sync. profile type rules

Then, the finiteness of the memory comes from the fact that sets of the form
µ(p′, x) for subprograms p′ of p and variables x ∈ Xp of p are all finite. 2

5.2 Monitoring (in-time) inputs

Assume now that the program p is as depicted in the hypothesis of Theorem 5.8.
We aim now at monitoring input streams that is, converting ‘on the fly’ real
time streams of input values into relevant tiled stream.

By default and as illustrated in Section 3, an input stream can be seen as
a tiled stream s with synchronization length d(s) = 0 and, for every k < 0,
s(k) = 0.

Our point is now to convert such an input tiled streams with zero length
synchronization into a tiled stream with value dependent synchronization.

This is done via a new program construct wait() that is defined on an
arbitrary tiled stream where, implicitly, the date 0 is understood as the date
from which the tiled stream is listened to.

The syntax of T -calculus program is extended by the following construct:
for some program p, some constant c and some positive integer constant dmax.

The typing rule for wait(i,c,dmax) is defined as depicted in Figure 23

26

wait(pi,c,dmax) (monitor)

Figure 22: The wait() program construct

⊲ Monitor:
Γ ⊢ p : α

Γ ⊢ wait(i,c,dmax)p : ([0, dmax], α)

Figure 23: Input monitor type rule

The semantics of such a construct is defined as depicted in Figure 24

Since the synchronization length of a wait() construct is statically bounded,
it has finitely many possible values and thus all decidability results, be they for
type inference or for semantics that are stated above, remains valid.

A typical example of the wait() semantics is depicted in Figure 25. Of
course, one may imagine to allow, in wait() construct, arbitrary boolean pro-
grams instead of constants c. Such a possibility, as many other possible syntactic
sugar proposals, will have to be tested on more complex examples.

Remark 5.9 One may also imagine to allow ∞ as maximal waiting bound in a
wait() construct. This of course implies that some program may not terminate
with infinite synchronization/waiting length.

However, even assuming termination, this introduced infinite sets of possible
synchronization length in typing rules hence possibly raising some new decid-
ability question that may have negative answers.

5.3 More examples

The following example shows that typical stream (or signal) bounded processing
functions can also be described as T -calculus programs.

Example 5.10 (Local stream processing) Let F : (Z → α1) → (Z → α2)
be a stream processing function, e.g. an echo for instance. We assume that F
is coherent with time flow, i.e. for every k ∈ Z, F (s)(k) only depends on values
s(k′) of s with k′ ≤ k. We also assume that F is local. Together with time
coherence, this means that there exists c0 and c ∈ N with c0 ≥ c and a mapping
g : αc

1 → α2, such that, for every input stream s : Z → α1, for every k ∈ Z,

F (s)(k + c0) = g(s(k), s(k + 1), · · · s(k + c− 1))

i.e. F (s) is computed from a sliding window on s of length c.

27

⊲ Monitor:

[[wait(p,c,dmax)]]E(k) =

0 if k < 0,
[[p]]E(k) if 0 < d,
0 if d ≤ k,

with d([[wait(i,c,dmax)]]E(k)) the greatest integer
d ∈ N such that 0 ≤ d ≤ dmax and [[i]](k) 6= c

for every 0 ≤ k < d.

Figure 24: Semantics of input monitors

x etc. . .

d ≤ dmax

wait(x,c,dmax)
m

Figure 25: Waiting on a monitored input

Then F can be encoded by the program Fs defined as follows.

s1= s

s2= R(s1) + 0 + s

· · ·

sc= R(sc−1) + s

Fs = [0:c0]+g(sc)

In that encoding, we choose to make the synchronization length of the tiled
stream s to be equal.

Remark 5.11 By analyzing such an example in mode depth, we observe that
adding a stream of (finite memory) states in the example above allows for the
encoding of an arbitrary finite state sequential transducer with F now seen as
the transition function of that transducer.

In other words, by Theorem 5.8 and that example, when restricting to fi-
nite basic types, say event sets, there is a correspondance between the backward
silent forward playable T -calculus programs and the finite state sequential trans-
ducers [21].

28

The use of the wait() construct allows for the definition of input dependent
positioning of tiled streams.

Example 5.12 Let x be a tiled stream variable denoting a boolean input signal.
Let p be some tiled program to fired either when x becomes true or within 40
time steps at most. Then this can be done by the program

wait(x,1,40)*R(0) + p

The construction wait(x,1,40)*R(0), as in a previous example, allows for keep-
ing, in the sum, the synchronization length of wait(x,1,40) while droping its
values. Of course, a more adhoc syntax may be more appropriate in that case.

Remark 5.13 In that last example, there might be a violation of causality.
Indeed, given the least synchronization profile (l, d, r) of the program p, if l > 0
we need to start the program p at an unpredictable date since the synchronization
length of wait(p,1,40) is unpredictable.

To prevent this, we can forbid, by some extra static analysis, such phe-
nomenon to occur. The synchronization profile type system described in Fig-
ure 21 can easily be extended in order to statically (and somehow drastically)
cope with such phenomenon.

The problem raised by causal anticipation in music systems is much broader
than what is illustrated in this example and the somehow drastic solution we
propose here.

Indeed, as illustrated by score follower based music software such as An-
tescofo [4] where sorts of input monitors predict at every steps what it the
distance to the end of the monitoring, there are other and more clever ways to
cope with such causal incoherence. However, their studies and potential adap-
tation to our T -calculus proposal goes beyond the scope of the present paper.

6 Related work

The idea of distinguishing effective starts and stops from logical ones implicitly
appears in the programming language Loco [5] via the pre and post program
constructs. As far as we know, there have been no follow up of this work.

More than two decades later, our proposal, that makes such an idea explicit
and rather quite formal, is based on the first author’s study of rhythm represen-
tations [10]. These ideas have been developed in [1] and experimented in [14] in
the context of music.

It is also inspired by both the music description language Elody [18] and the
signal processing language Faust [6]. It can be seen as a tiled extension proposal
of these two functional languages.

It is worth mentioning that the underlying concepts have also been studied
in the abstract in number in the field of formal language theory [12, 9, 13, 11].

29

7 Conclusion

We have thus describe an encoding of symbolic music strings and streams into
tiled streams. As illustrated in length in Sections 2 and 3, it is based on a tiled
signal algebra that, by embedding both strings and streams data-type, allows
for a more accurate description of typical musical constructions such as play
together or play one after the other. The associated language, the T -calculus,
is thus proposed as an implementation of these ideas. It relies on the notion
of tiled product that combines both sequential product and parallel product
features.

Throughout Sections 4 and Section 5, we describe computable type systems
that allow for restricting to a large class of T -calculus programs that can effec-
tively be computed in real (forward) time with bounded memory. This shows
that the typed T -calculus can be seen as a programming language counterpart
of finite state sequential transducers that have been well studied in formal lan-
guage theory (see e.g. [21]). The added value of our approach lies in the allowed
overlaps that can be defined via tiled stream resets and co-resets that, for mu-
sic programing but also for system modeling that it provides more abstract
modeling metaphors.

Last, the T -calculus is yet not a full programming language but indeed a
calculus. No lambda abstraction allows for the definition of (conditional or
recursive) program that would handle tiled streams. However, the study of the
potential use and effectivity issues of such an extension is postponed to further
work.

Acknowledgment

The authors wish to express gratitude for the deep comments and harsh critics
the participants of the INEDIT workshop held in Bordeaux in spring 2013 made
on an earlier version of this work.

References

[1] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, 2012.

[2] L. Bigo. Symbolic representations and topological analysis of musical struc-
tures with spatial programming. In JCAAAS, Paris, 2010.

[3] L. Bigo, J.-L. Giavitto, and A. Spicher. Building topological spaces for
musical objects. In Mathematics and Computation in Music, volume 6726
of LNAI, Paris, France, Juin 2011.

[4] A. Cont. Antescofo: Anticipatory synchronization and control of inter-
active parameters in computer music. In International Computer Music
Conference (ICMC), 2008.

30

[5] P. Desain and H. Honing. Loco: a composition microworld in logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[6] D. Fober, Y. Orlarey, and S. Letz. FAUST architectures design and OSC
support. In 14th Int. Conference on Digital Audio Effects (DAFx-11), pages
231–216. IRCAM, 2011.

[7] P. Hudak. The Haskell School of Music : From signals to Synphonies. Yale
University, Department of Computer Science, 2013.

[8] P. Hudak, J. Hugues, S. Peyton Jones, and P. Wadler. A history of Haskell:
Being lazy with class. In Third ACM SIGPLAN History of Programming
Languages (HOPL), San-Diego, 2007. ACM Press.

[9] D. Janin. Quasi-recognizable vs MSO definable languages of one-
dimensional overlapping tiles. In Mathematical Found. of Comp. Science
(MFCS), volume 7464 of LNCS, pages 516–528, 2012.

[10] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[11] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. In Int. Col. on Aut., Lang. and Programming (ICALP), volume 7966
of LNCS, pages 318–329. Springer, 2013.

[12] D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf.
on Current Thrends in Theo. and Prac. of Comp. Science (SOFSEM),
volume 7741 of LNCS, pages 244–256, 2013.

[13] D. Janin. Overlaping tile automata. In 8th International Computer Sci-
ence Symposium in Russia (CSR), volume 7913 of LNCS, pages 431–443.
Springer, 2013.

[14] D. Janin, F. Berthaut, and M. DeSainteCatherine. Multi-scale design of
interactive music systems : the libTuiles experiment. In Sound and Music
Computing (SMC), 2013.

[15] J. Kellendonk. The local structure of tilings and their integer group of
coinvariants. Comm. Math. Phys., 187:115–157, 1997.

[16] J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra,
224(1):140 – 150, 2000.

[17] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[18] S. Letz, Y. Orlarey, and D. Fober. Real-time composition in Elody. In
Proceedings of the International Computer Music Conference, pages 336–
339. ICMA, 2000.

31

[19] S. Letz et al. The LibAudioStream library, 2012. http://libaudiostream.

sourceforge.net/.

[20] O. Michel, A. Spicher, and J.-L. Giavitto. Rule-based programming for
integrative biological modeling. Natural Computing, 8(4):865–889, 2009.

[21] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

32

