
HAL Id: hal-00789189
https://hal.science/hal-00789189v1

Submitted on 16 Feb 2013 (v1), last revised 29 Jul 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The T-Calculus : towards a structured programing of
(musical) time and space

David Janin, Florent Berthaud, Myriam Desainte-Catherine, Yann Orlarey,
Sylvain Salvati

To cite this version:
David Janin, Florent Berthaud, Myriam Desainte-Catherine, Yann Orlarey, Sylvain Salvati. The
T-Calculus : towards a structured programing of (musical) time and space. 2013. �hal-00789189v1�

https://hal.science/hal-00789189v1
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1466-13

The T-Calculus : towards a structured
programing of (musical) time and space

February 16, 2013

David Janin1, Florent Berthaut1, Myriam DeSainte-Catherine1,
Yann Orlarey2, Sylvain Salvati1

1 Université de Bordeaux 2 GRAME
LaBRI UMR 5800 Centre Nat. de Création Musicale

351, cours de la libération 11, Cours de Verdun
F-33405 Talence, FRANCE F-69002 Lyon, FRANCE

Contents

1 Introduction 3

2 The T-calculus : an overview 4

2.1 Overlapping tiles . 4
2.2 Mixing signals vs concatenating tiled signals 5
2.3 Properties of tiled signals . 6
2.4 Tiling signals : an old idea . 8
2.5 A presentation based on program semantics 9

3 T-calculus semantics : typed tiles and related operators 9

3.1 Concrete and abstract tiled signals 9
3.2 Typical examples of typed tiled signals 10
3.3 Operators on tiled signals : general principle 11
3.4 Operator examples . 12

4 T-calculus semantics : dynamical tiling 13

4.1 Tiling input signals . 13
4.2 Recursion mechanism: (least) fixpoint equations 14
4.3 Memory management features . 15
4.4 Expressive power . 15

5 Conclusion 15

2

The T-Calculus : towards a structured

programing of (musical) time and space

David Janin1∗, Florent Berthaut1, Myriam DeSainte-Catherine1,
Yann Orlarey2, Sylvain Salvati1

1 Université de Bordeaux 2 GRAME
LaBRI UMR 5800 Centre Nat. de Création Musicale

351, cours de la libération 11, Cours de Verdun
F-33405 Talence, FRANCE F-69002 Lyon, FRANCE

February 16, 2013

Abstract

The T-calculus is a typed functional extension of the tiled signal alge-
bra previously defined for handling, with advanced synchronization fea-
ture, audio or musical finite signals. Primarily designed for programing in-
teractive music systems, the T-calculus can also be seen as a multi-purpose
programing language proposal that addresses the difficult problem of glob-
ally asynchronous and locally synchronous (GALS) programing. Indeed,
our proposal integrates both synchronous programing features for real-
time audio or music signals processing and asynchronous (or event based)
programing features for interactive positioning of these synthesized signals
in time. Handling both spatial features (multi-channel programing) and
timed features (signals positioning in time) the T-calculus can also be
seen as a general purpose programing language proposal for a structured
programing of time and space via a single new programing paradigm :
tiled programing.

1 Introduction

Designing an interactive real-time music system in computational music is prob-
ably as difficult as designing a general control-command system for a plane, a
car or a robot.

Indeed, one is immediately confronted to the inherent difficulties related
with the modeling of the underlying musical theory one aims at preserving in
the designed systems. Many known proposals have been made during the past

∗partially funded by the Project CONTINT 2012 - ANR 12 CORD 009 02 - INEDIT

3

years to cope with it, either via automatic learning of real musicians idioms
(see [18, 8] to name but a few), or by developing various notions of augmented
scores that allow composers to described some computarized musical events at
some dates in the score that will be triggered when these dates are reached (see
e.g. [4, 1]).

In every case, beyond the modeling of the musical theory itself, another ma-
jor source of difficulties is the necessity to describe both the synchronous progra-
matic features induced by, say, low level signal processing, and the asynchronous
programatic features induced by the positioning in time of these signals. This
necessary multi-scale design, known in computer system design as the Globally
Asynchronous Locally Synchronous (GALS) design style, is the source of many
difficulties [19] in most application fields.

Such a gap between known classical programing paradigms and the intrinsic
complexity of designing interactive music systems is especially well illustrated by
the specialized programing languages available for computational music. In that
field, most classical programing paradigms have been successfully lifted to music
application oriented languages. This is true for functional style programing [17,
9] or for synchronous style programing [7] to mention but a few among many
others. The resulting languages can be used to synthesize music scores or audio
signals in a rather quite efficient and elegant way. However, extending these
languages for them to cope with interactive event handling remains a difficult
chalenge.

Paradoxically, the language of music - in a wide sense - that has been devel-
oped for centuries, integrates, at least empirically, both the synchronous han-
dling of low level signals, beats or notes, and the asynchronous handling of
higher level musical events. Thus one may expect that the formalization of
some existing musical features can still be used to cope, at the programatic
level, with such a difficulty, both for musical application but also in the various
other fields.

In this paper, we aim at illustrating such a fact by showing that, as soon as
signals are enriched with what can just be seen as music bars, one manages to
define a high level versatile programing language: the T-calculus, that integrates
both synchronous and asynchronous programatic features.

2 The T-calculus : an overview

The T-calculus is based on the notion of tiled signals [2]. Before giving a formal
description of the T-calculus in the following sections, let us briefly review its
basic features.

2.1 Overlapping tiles

The basic meta-objects that are handled in the T-calculus - the tiled signal
calculus - are overlapping tiles, simply called tiles in the sequel. Though cum-
bersome, overlapping tiles can truly be seen as roof tiles.

4

two “synchronized” placement widths

one covering (or realization) width

Figure 1: Roof tiles in a line

Indeed, in every tile line on a roof, one must distinguished for every tile the
covering width of the tile, its real width, from the smaller placement width of
the tile. Indeed, the resulting covered width by such a line is the sum of the
placement widths of the placed tiles plus the remaining left and right covered
widths of the left and right tiles.

The notion of tiled signals defined in the sequel essentially follows the roof
tile intuition via the enrichment of the definition of signals based on such a tiling
principle. Indeed, a tiled signal is just a signal with a given realization interval,
the analogous of the covering width, that is enriched with a synchronization
interval, the analogous of the placement width, that is included in the realization
interval. This general intuition is illustrated in Figure 1

Saying so, one must pay attention to the fact that in both Mathematics or
Computer Science, with some remarkable exceptions [15], the classical usage of
the word tiles (or tilings) is generally to denote collections of objects that can
be positioned one aside the other respecting bounded compatibility constraints.

Indeed, in most examples, compatibility constraints are typically defined
by means of finitely many symbols (like in dominoes), or finitely many shapes
(like in simple puzzles with repeated pieces). In these cases, the overlap that
may occur is bounded and can thus be replaced by finitely many compatibility
constraints. It follows that, in the underlying formal model of one dimensional
tile, the synchronization interval and the realization interval coincide.

In the T-calculus, as in [15], tiles’ overlaps are unbounded, distinguishing
between realization and synchronization is thus needed. Despite such an increase
in the complexity of the model, the combination of two tiled signals can still
be seen as a single tile. It follows that handled objects can still be described
inductively: this is an essential feature of classical data structure in programing
languages.

2.2 Mixing signals vs concatenating tiled signals

Signal mixing, or more generally multi-signal processing, requires, to position
in time, one relatively to the other, the signals to be processed before applying
a given processing function.

Such an approach, perfectly valid, is a common practice for sound engineers
in music studios. It can be abstractly described as an external synchronization

5

mechanism where the relative positioning of the signals to be processed depends
on the combined analysis of these signals. This feature is depicted in Figure 2.
Tiling signals arise when one wants to internalize such a synchronization spec-

A

B

external sync. spec.

Figure 2: External specification of synchronization

ification by distinguishing for every involved signal, as in a tile, its realization
interval (its cover) from its synchronization interval (its placement).

Doing so, computing the synchronization product A; B of the resulting tiled
signals just amounts to position the end of the synchronization interval of A
at the same time than the beginning of the synchronization of B. Such a syn-
chronization is illustrated in Figure 3. There, everything looks as if the origi-
nal external synchronization specification has been distributed and internalized
among the signals involved in the specification.

In other words, synchronization specifications are anticipated in every tiled
signal by a synchronization profile that tells how the tiled signal will be placed
with respect to the other, almost regardless of the realization interval of the
underlying signal.

A

B

internal sync. spec.

internal sync. spec.

Figure 3: Internal specification of synchronization

2.3 Properties of tiled signals

Such an internalization of the synchronization specification into the synchro-
nization profile of each tiled signals is actually one of the key features of our
proposal.

From a semantical point of view, the synchronization product is a robust
associative operator. Aiming at defining interactive signal handling, with signals

6

that are dynamically received, processed or synthesized, this is a much welcome
property.

From a programing point of view, the synchronized product A; B of two tiled
signals A and B can be understood as an event-based asynchronous composition
of the form “event” A followed by “event” B. The same synchronized product
A; B is also an unambiguous description of the synchronous composition of the
form “signal” A synchronized with “signal” B with possible overlaps. In some
sense, every tiled signal can thus be seen both as an asynchronous event or as
a synchronous signal.

From an algebraic point of view, the synchronization profile of an (abstract)
tiled signal can be seen as triple of integers (s, l, r) ∈ Z×N×N with both 0 ≤ l+s
and 0 ≤ s + r. When s ≥ 0 this can be depicted as in Figure 4. The integer s is

l s r

A

Figure 4: A tiled signal with profile (s, l, r)

the (relative) distance (in time units) from the beginning of the synchronization
interval to its end, the integer l is the positive distance from the beginning of
the realization interval to the beginning of the synchronization interval, and the
integer r is the positive distance from the end of the synchronization interval to
the end of the realization interval (integer r).

Then, the synchronization profile of the product of two abstract tiled signals
with profiles (s, l, r) and (s′, l′, r′) is directly defined as the product of their
synchronization profiles

(s, l, r) · (s′, l′, r′) = (s + s′, max(l, l′ − s), max(r − s′, r′))

It occurs that this product is associative with neutral element 1 = (0, 0, 0).
The resulting algebraic structure, the sync profiles monoid, turns out to be well
known in algebra. It is the free inverse monoid induced by a single generator [16].
As such, every element (s, l, r) has an inverse defined by (s, l, r)−1 = (−s, l +
s, s + r). Two special tiled signal transformations can also be derived: the left
projection L(A) and the right projection R(A) of the tiled signal A as depicted
in Figure 5.
Their resulting synchronization profiles are defined by (s, l, r) · (s, l, r)−1 =
(0, l, s + r) for L(A) and (s, l, r)−1 · (s, l, r) = (0, l + s, r) for R(A).

In [2], it is shown that these specific operators considerably increase the
expressive power of tiled signal expressions. Indeed, they allow to extend the
default synchronization product by two other derived products, with either syn-
chronization on the beginnings (see Figure 6) or on the ends (see Figure 7) of
their synchronization intervals.

7

l s r

L(A)

R(A)

Figure 5: Left and right projection of a tiled signal with profile (l, s, r)

L(A)

B

Figure 6: The Fork product L(A) · B of A and B

Extending the tiled signal algebra with additional typed operators that can
be applied to the synchronized product of tiles, we show, in this paper, that this
leads to the definition of rather subtle dynamic synchronization mechanisms.

2.4 Tiling signals : an old idea

As already mentioned, the notion of tiled signals goes back to early music writ-
ing. Indeed, this notion can just be seen as a generalization of the notion of
bars in music.

When writing music, it is common practice for composers to write pieces of
music with bars. Combining two such pieces of scores amounts then to synchro-
nizing one bar in the first piece with one bar in the second piece. Some notes,
especially before the first bar, i.e. appearing in a musical anacrusis, induce thus
an overlaps between the two pieces of score.

In computer science, the notion of tiling signals is not new either. For in-
stance, it already appeared more than twenty years ago in the music programing
language LOCO [5] though in a rather adhoc formalism with PRE and POST
synchronization indicators. Rediscovered recently in a study of traditional west-
ern music writing [11], a study oriented towards rhythm modeling for computer
application, it was formalized in algebraic terms a little later [2] for being used
either in static audio and symbolic music construction.

Though fairly simple, such an idea still seems both underexplored and un-
derexploited in computer science. This paper is part of a more general research
program that aims at studying and developing the potential great benefit of
that idea.

8

A

R(B)

Figure 7: The Join product A · R(B) of A and B

2.5 A presentation based on program semantics

The purpose of this paper is to present and study the T -calculus : the typed
functional extension of the tiled signal algebra [2]. Doing so, we obtain a fairly
versatile programing language that conveys a new programing paradigm: tiled
programing.

As there shall be no surprise in describing the syntax of our proposal (any
typed functional programing language syntax can fit our needs) we essentially
concentrate our presentation on the underlying objects and operations.

3 T-calculus semantics : typed tiles and related
operators

In this section, we define the basic typed objects manipulated by the T-calculus
and the related operators one can define on them.

3.1 Concrete and abstract tiled signals

A concrete signal is defined here as a mapping S : Z → D where Z is the set of
absolute discrete time dates and D is a (presumably finite) set of signal values.

The set D is assumed to be equipped with an associative (and generally com-
mutative) binary operation denoted by + that admits a neutral element denoted
by 0. It can also (and conveniently) be equipped with a product operator with
element 0 acting as absorbant element. Additionally, any other heterogeneous
operators can be used.

In a concrete signal, by opposition to an abstract signal defined below, Z is
interpreted as an absolute time scale. A typical exemple of a concrete signal is
the effective performance of a (framed) audio signal. In that case, every single
frame value is sent to some audio processing devices at a specific absolute date.

A signal is said to be finite when there is an interval [d1, d2[⊆ Z such that
for all t /∈ [d1, d2[we have S(t) = 0. Such an interval is called the realization
interval of signal S. Depending on the context of use, it can be automatically
inferred from the signal values - as the shorter interval [d1, d2[such that S(t) = 0
for every t /∈ [d1, d2[- or given as such.

In the sequel, we assume that every concrete signal S is associated to such
a realization interval r(S) = [s1, d2[, be it implicitly or explicitly defined. The

9

duration of such a finite signal with realization interval is defined to be d(S) =
d2 − d1.

A concrete signal S : Z → D with realization interval r(S) = [d1, d2[is a
concrete tiled signal when it is moreover equipped with a synchronization in-
terval s(S) = [d′

1, d′

2[⊆ [d1, d2[= r(S). Since concrete tiled signals are already
positioned in time, there may be no point to compute the synchronization prod-
uct of two concrete tiled signals. However, a concrete tiled signal can be used
in a product with an abstract tiled signal (see below) so that the abstract tiled
signal is concretized in the product.

The synchronization profile of a concrete tiled signal S is defined to be the
tuple p(S) = (d, s, l, r) ∈ Z×N×N×N where d is the concrete starting date of
the synchronisation interval, and (s, l, r) is the related abstract synchronization
profile defined in Section 2.3. The type T (S) of a signal is defined to be (in
relationship with) its domain D.

In other words, when p(S) = (d, s, l, r) then we have r(S) = [d − l, d + s + r[
and s(S) = [d, d + s[. Such an invariant relationship between synchronization
profiles, realization interval and synchronization interval shall always be satis-
fied.

An abstract tiled signal is a collection of concrete signals equivalent under
the translation equivalence. This equivalence is defined by S ≃ S′ when there
exists k ∈ R such that S′(t) = S(t − k) for every t ∈ R and if p(S) = (d, s, l, r)
then p(S′) = (d + k, s, l, r).

The synchronization profile p([S]) of the complete equivalence class [S] in-
duced by S is defined to be p([S]) = (x, s, l, r) ∈ X ×N×N×N where the starting
date x is now a variable symbol - taken from some set of variable names X -
that may be evaluated (concretized) by any value in Z. In general, abstract
tiled signal may have additional constraints on x.

The distinction we are making from concrete (tiled) signal to abstract (tiled)
signal makes a lot of sense in practical applications. Indeed, a (tiled) audio file
can just be seen as a complete abstract (tiled) finite signal. Then, playing such
a (tiled) audio file amounts to taking one of its concrete (tiled) representation:
the one that starts when the file starts to be processed by the audio engine.

In the sequel, for simplicity, we drop the notation [S] for describing the
equivalence class that defines the abstract tiled signal associated to a concrete
tiled signal S. This causes no ambiguity since the synchronization profile p(S)
of a tiled signal S tells us whether the tiled signal S is a concrete or and abstract
tiled signal.

We extend possible profiles by allowing infinite left or right offsets so that
even tiled signals built on infinite signals (such as constant below) can also be
given a synchronization profile.

3.2 Typical examples of typed tiled signals

Audio and related tiles. The set of signal values is defined as a set D ⊆ R of
sample’s values equipped with (bounded) sum, (bounded) product and opposite.

10

As soon as a product is available, one may think about other types of tiled
signals such as, for instance, amplitude signals with values in [0, 1] used for
defining dynamic mixing and cross-fading of audio signals.

Boolean tiles. These are signals with set of possible values B = {0, 1} with
boolean disjunction as sum, boolean conjunction as product and 0 as neutral
element for sum and absorbant element for product.

Boolean signals are especially interesting for modeling linked pairs of events
of the form (On, Off) respectively occurring when the boolean signal shifts On
or shifts Off .

Control states tiles. The set of values of control states signal is defined as a set
of the form P(N) for some finite set of states N with union as sum and empty
set as zero. Optionally, intersection can act as a product too.

For instance, when modeling interactive music, a state n ∈ N can be used
to model the fact that some keyboard key is being pressed. Following such a
modeling intention, given a concrete signal S : Z → P(N), the value S(t) ⊆ N ,
defined at a given date t ∈ Z, models the set of notes that are being pressed at
date t.

Constant tiles. For every constant value v ∈ D the canonical abstract tiled
signal associated to v, still denoted by v, is defined to be the constant signal v
with profile p(v) = (x, 0, ∞, ∞).

Another important class of constant boolean tiles is also defined from positive
integers as follows. For every constant n ∈ N, let [n] be the abstract boolean
tiled signal defined by (the equivalence class of) boolean signals that are true on
intervals of the form [x, x + n[and false everywhere else, with synchronization
profile p([n]) = (x, n, 0, 0).

3.3 Operators on tiled signals : general principle

We describe here a general principle that tells how to lift any operator defined
on signal values to an operator defined on tiled signals.

Let D1, D2, D3 be three signal value domains. Let op : D1 × D2 → D3 be
an operator defined between these domains. Operator op is lifted to a signal
operator op that maps every signal S1 : Z → D1 and S2 : Z → D2 as a signal
S1 op S2 : Z → D3 defined by (S1 op S2)(t) = S1(t) op S2(t) for every t ∈ R.

The operator op is lifted to a tiled signal operator as follows. Let 01 ∈ D1,
02 ∈ D2, 03 ∈ D3 are the zeros of these domains. We say that operator op is a
max-operator when, for every x1 ∈ D1 and x2 ∈ D2 we have x1 op x2 = 03 when
x1 = 01 and x2 = 02. Similarly, we say that the operator op is a min-operator
when, for every x1 ∈ D1 and x2 ∈ D2 we have x1 op x2 = 03 when x1 = 01 or
x2 = 02.

Having said so, let S1 and S2 be two tiled signals with synchronization
profiles p(S1) = (x1, s1, l1, r1) and p(S2) = (x2, s2, l2, r2). Assume that the
synchronization equation x2 = x1 + s1 has a solution, be it concrete (effective
values for both x1 and x2) or abstract (inducing, in presence of variables, a
solvable system of constraints). Then, the tiled product S1 op S2 is defined, for

11

the resulting signal, by (S1 op S2)(t) = S1(t) op S2(t − s1) for every t ∈ Z, and,
for the resulting synchronization profile, by

p(S1 op S2) = (x1, s1 + s2, max(l1, l1 − s2), max(r1 − s1, r2)

when op is a max-operator, and by

p(S1 op S2) = (x1, s1 + s2, max(0, min(l1, l1 − s2)), max(0, min(r1 − s1, r2)))

when op is a min-operator. Observe that the additional max operation added
here is just to ensure that the left and right offsets remain positive. In both
cases, the type T (S1 op S2) = D3.

The partial operator op extended to tiled signals is completed, in the case
the synchronization equation cannot be satisfied, by saying that the resulting
tiled signal is the undefined tiled signal ⊥D3

of type D3.
Several operations are allowed on concrete signals. There is no much point

to propose here an exhaustive list since these operations strongly depend on the
sets of signal values that are used. However, one must keep in mind that, a
priori, we only allow operations that preserve finiteness. We give below a brief
list of such a kind of operators.

3.4 Operator examples

Synchronization product. We formally define here the synchronization product
presented in Section 2.2. Given any pair of tiled signals S1 and S2 with domains
D1 and D2 one can define the tiled signal S1; S2 with domain D1 × D2 that is
defined by extending to tiled signals the pairing function p : D1 → D2 → D1×D2

that maps any x1 ∈ D1 and x2 ∈ D2 to the pair (x1, x2) ∈ D1 × D2. This is a
first, fundamental, max-operator.

Signal sum. Assume 〈D, +, 0〉 is a monoid. In that case, the operator + in
domain D is a typical example of max-operator. The sum, as defined above,
of every two tiled signals with value domain D is a first generic example. The
resulting tiled signal operator is still associative. Its neutral element, denoted by
00, being defined as the constant signal 0 tiled with the synchronization profile
(x, 0, 0, 0).

Signal product. Assume 〈D, ·, 1〉 is a monoid with absorbant element 0. In that
case, the product · in domain D is a typical example of min-operator. The
product, as defined above, of every two tiled signals with value domain D is
a second generic example. The resulting (partial) tiled signal operator is still
associative with the constant tiled signal 1 as neutral element. In that case, the
tiled signal 00 is an absorbant element.

Observe that for every tiled signal S, the product S · 0 = 0 · S equals the
constant signal 0 tiled by the synchronization profile p(S) of S. It follows that,
in particular, we have 00 = 0 · [0] = [0] · 0.

Audio signal filter. As a particular case of product, we can define tiled audio
signal filters as follows. Lifting the mixed product of a boolean by a frame value,

12

given a boolean tiled signal B and an audio tiled signal A, the On-Off filter of A
by B can be defined by B · A. More generally, assuming that B is a amplitude
tiled signal with values in R

+, we can also define the filter of A by B similarly.

State change detection. Given a control tiled signal C with value domain P(N)
for some set of states N , given some state n ∈ N , we define, lifting the member-
ship operator ∈: (N × P(N)) → B to a tiled signal operator, the state change
detection signal (n ∈ C) that is set to true (resp. false) whenever the state n is
activated (resp. deactivated) in the set of states C.

Similarly, given an audio tiled signal S on some frame value domain D, given
some positive sample value v ∈ D, another possible event detection is defined
by (|S| > v) that is set to true whenever the absolute value of S is above v.

4 T-calculus semantics : dynamical tiling

Every operator defined above can be used on either concrete or abstract tiled
signals (although possibly generating the undefined tiled signal). The main
question is then how to dynamically tile the handled signals.

4.1 Tiling input signals

An input signal S of any of the above type, is, by definition, a concrete signal
(positioned in the absolute time scale) which value S(t) is moreover unknown
till the absolute date t is passed.

Tiling such a signal can be done dynamically by saying that both realization
and synchronization intervals coincide and, moreover, that this interval is the
least interval outside which the signal value is zero. In other words, the syn-
chronization profile of an external tiled signal S is of the form p(S) = (t, s, 0, 0)
with r(S) = [t, s + t[= s(S) with, depending on the absolute execution time,
either none, or t, or s + t (henceforth s) known.

Induced dynamic conditionals. This implicit tiling leads to the definition of
rather subtle scheduling features.

Indeed, assume that B is such a input boolean tiled signal with synchro-
nization profile p(B) = (t, s1, 0, 0)). Let S be any other (abstract) signal with a
profile of the form p(S) = (x, s2, l, r). We can define the tiled signal expression

if B play S ≡ L(B).0 + S

where L(B) is the left reset operator defined in Section 2.3 applied to B. This
piece of a T-program specifies that S is dynamically “played” when B becomes
true. The resulting synchronization profile is (t, s2, l, r). The abstract synchro-
nization interval is inherited from the tiled signal S.

Of course, since the arrival of B is unpredictable, this expression is incoherent
w.r.t. the time flow whenever l > 0. In that case, it is set to ⊥D where D is the
type of S. Indeed, there is no way to anticipate by l time units the beginning of
the tile B. It appears that detecting incoherent tiled expressions is a key issue

13

for defining and proving the validity of T-calculus program. In general, with a
T-calculus that allows recursive calls, this is probably an undecidable problem.
Investigating that decidability is however left to further studies.

Another event-guarded tiled signal expression worth being identified is given
by

play S when B ≡ L(S) + B.0

This still denotes the dynamical firing of the tile S when B becomes true. For
the same reason, this expression is incoherent when l > 0. However, in that
case, the resulting synchronization profile is now defined by (t, s1, l, r). The
abstract synchronization interval is now inherited from the tiled signal B.

4.2 Recursion mechanism: (least) fixpoint equations

The above construction suggests that, using tile variables of the form X ∈ S
from some set of tile variables S, one can define a recursion mechanism by

means of (least) fixpoint equations of the form X
def
= F (X1, · · · , Xn). Classical

constructions apply to define the semantics of such operations.

Induced dynamical conditional loops. With the same tiled signals as above, a
typical example is defined by the fixpoint equation

while B play S ≡
(

X
def
= (L(B).0 + S) + X

)

From an execution point of view, this amounts to playing S repeatedly, with
the overlaps that can occur in the synchronized sums S + S, until the boolean
tiled signal B eventually becomes false. When S is a fixed abstract signals, e.g.
an audio file, the resulting synchronization profile is of the form (t, k ∗ s2, l, r)
where k is the number of iterations that are performed.

In other words, even though the number of iterations depends on the real-
ization interval of B, the synchronization interval of the resulting tiled signal
is a multiple of the synchronization interval of the tiled signal S. Such a pro-
gramatic feature is especially relevant (and confortable for the musician) when
programing dance music where strong beats play a key role.

Another typical example is defined by

play S while B ≡ L(X) + 0.B

with X defined as above. The computations of X or Y are essentially the same
up to the fact that, for Y , the resulting synchronization interval is now the one
inherited from B; a feature most welcome for any musician who wants to keep
control on his positioning in time.

In both case, when B is a tiled input boolean signal, we require that l = 0
otherwise the resulting tiled signal is set to ⊥D.

14

4.3 Memory management features

Last, a feature that is especially crucial in signal processing languages is the
capacity one may have to record some concrete computed signals in a buffer for
it to be reused later many times.

This recording capacity is handled via an additional operator (save) used as
follows. For every concrete tiled signal S with profile p(S) = (t, s, l, r), equation

X
def
= (save) S

converts the concrete tiled signal S into the corresponding abstract tiled signal
X that contains S and with a profile p(X) approximated by (x, s, l, r) with the
additional constraint that x ≥ t+ l. Indeed, at a date t′ < t+ l the value of S(t′)
can be unknown when S results from the evaluation of a T-calculus program
triggered by an input tiled signal.

For instance, a program of the form

X
def
= (save)[p] · L(B) · f · X

encodes the echo audio effect defined with period p and decreasing factor f . Of
course, an additional approximating mechanism is needed to make the induced
computation effective.

4.4 Expressive power

The expressive power of (fragments of) the T-calculus appears when showing
how to recover other programing languages. For instance, restricting to bi-
infinite constant tiled signals with synchronization profiles of the form (x, 0, ∞, ∞)
yields to defined yet another classical typed functional langage. Restricting to
tiled signals with profiles of the form (x, s, 0, ∞) and no save operator, yields
to the definition of the superset of a typical synchronous programing language.
Restricting to finite states tiled signals with synchronization profiles of the form
(x, y, 0, 0) and no save operator seems to lead to an event based communicating
automata modeling language.

Of course, the expressive power of the T-calculus deserves to be studied in
details. However, the above examples already illustrate both the universality
and the robustness of our proposal. As an immediate consequence of universal-
ity, many validation problems are undecidability and this is not a surprise.

5 Conclusion

We have provided an overview of the T-calculus that allows both synchronous
signal processing and asynchronous event handling. A concrete instance of the
T-calculus is currently under development. The low level synchronous tiled sig-
nal algebra is being developed as a library: the libTuile, that integrates both the
(so far static) audio processing library libaudiostream[6] and (compiled) signal

15

processing functions definable in the synchronous programing language faust[7].
Development of some related graphical editor, analyser and compiler/simulator
of T-calculus programs are scheduled.

One can observe that sets of tiles can themselves be seen as (more abstract)
tiles though with a more complex synchronization profile. From the language
theoretical point of view, such a shift from single tiles to sets (or languages)
of tiles, have already demonstrated quite of its mathematical robustness and
simplicity [13, 10, 14, 12]. These successes in theoretical computer science tell
that the T-calculus can probably be extended to a higher order calculus that
permits hierarchical description of system behaviors, from the most abstract
(event based) layers to the most concrete (signal based) layer extending thus
abstraction/refinement methods such as, for instance, event B [3].

References

[1] A. Allombert, M. Desainte-Catherine, and G. Assayag. Iscore: a system
for writing interaction. In Third International Conference on Digital Inter-
active Media in Entertainment and Arts (DIMEA 2008), pages 360–367.
ACM, 2008.

[2] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):1–19, 2012.

[3] D. Cansell and D. Méry. Foundations of the B method. Computers and
Informatics, 22, 2003.

[4] Arshia Cont. Antescofo: Anticipatory synchronization and control of in-
teractive parameters in computer music. In International Computer Music
Conference (ICMC), 2008.

[5] P. Desain and H. Honing. Loco: a composition microworld in logo. Com-
puter Music Journal, 12(3):30–42, 1988.

[6] S. Letz et al. The LibAudioStream library, 2012. http://libaudiostream.

sourceforge.net/.

[7] D. Fober, Y. Orlarey, and S. Letz. Faust architectures design and osc
support. In 14th Int. Conference on Digital Audio Effects (DAFx-11), pages
231–216. IRCAM, 2011.

[8] M. Chemillier G. Assayag, G. Bloch. Omax-ofon. In Sound and Music
Computing (SMC) 2006, 2006.

[9] C. Agon J. Bresson and G. Assayag. Visual lisp/clos programming in
openmusic. Higher-Order and Symbolic Computation, 22(1), 3 2009.

16

[10] D. Janin. Quasi-recognizable vs MSO definable languages of one-
dimensional overlaping tiles. In Mathematical Foundations of computer
Science (MFCS), volume 7464 of LNCS, pages 516–528, 2012.

[11] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[12] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. Technical Report RR-1467-13, LaBRI, Université de Bordeaux, 2013.

[13] D. Janin. On languages of one-dimensional overlapping tiles. In Interna-
tional Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM), volume 7741 of LNCS, pages 244–256, 2013.

[14] D. Janin. Overlaping tile automata. In 8th International Computer Science
Symposium in Russia (CSR), LNCS (to appear). Springer-Verlag, 2013.

[15] J. Kellendonk and M. V. Lawson. Universal groups for point-sets and
tilings. Journal of Algebra, 276:462–492, 2004.

[16] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[17] S. Letz, Y. Orlarey, and D. Fober. Real-time composition in Elody. In
Proceedings of the International Computer Music Conference, pages 336–
339. ICMA, 2000.

[18] F. Pachet. The continuator: Musical interaction with style. In ICMA,
editor, Proceedings of ICMC, pages 211–218, Göteborg, Sweden, September
2002. ICMA. best paper award.

[19] P. Teehan, M. R. Greenstreet, and G. G. Lemieux. A survey and taxonomy
of GALS design styles. IEEE Design & Test of Computers, 24(5):418–428,
2007.

17

