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Abstract

We consider a two-stage production-inventory system. Each stage is made of an exponential production server and an
output inventory. The downstream inventory faces a Poisson demand and each inventory receives product returns that can
be either accepted or rejected. The objective is to find a production/admission policy minimizing the expected discounted
costs over an infinite horizon. We consider linear holding, backorder, production, admission and rejecting costs. We show
that the optimal policy is characterized by state-dependent base-stock levels and state-dependent disposal thresholds. We
also obtain monotonicity results for these switching curves. Interestingly, our results can be transposed to an hybrid single-
echelon system with a production facility and a remanufacturing facility, both with exponential leadtimes. Finally, we
design heuristics to control production and disposal and we carry out a numerical study to investigate their performances.
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1 Introduction

Products are more and more returned in supply chains. Customers can return products a short time after
purchase due to take-back commitments of the supplier. The proportion of returns is particularly important
in electronic business where customers can not touch a product before purchasing it. Customers might also
return used products a long time after purchase. This type of return has increased in recent years due to new
regulations encouraging waste reduction, especially in Europe. Some industries also encourage it for economical
and marketing reasons.

Returns constitute a reverse flow, from the customer to the supplier, which complicates inventory control.
A recent review of literature on reverse logistics is provided by Ilgin and Gupta [8]. Inventory management
constitutes a part of this review, and we can see that an abundant literature is devoted to the inventory
control of single echelon systems. In several situations, the structure of the optimal policy is similar to the case
without returns. For instance, Fleischmann and Kuik [6] consider a single inventory with stochastic demand
and stochastic independent returns. To model the returns, they consider a demand that can be both positive
or negative. They show average cost optimality of an (s, S) policy.

In this paper, we consider a two-stage production /inventory system with returns of products at each stage and
a disposal option upon arrival of returns. Before presenting in detail our model, we briefly review the related
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literature of inventory control. In particular, we focus on models with a disposal option and on multi-echelon
models.

1.1 Disposal option

We first review the inventory control literature considering a disposal option for returns. Heyman [7] considers
an inventory system with backorders, Poisson demand and Poisson returns. He assumes zero lead-times and
linear costs for both procurement and remanufacturing. These strong assumptions imply that the optimal
production policy is a make-to-order policy. The optimal disposal policy is a simple threshold policy: when the
inventory level exceeds a certain disposal threshold R, every returned item is disposed upon arrival. He also
provides an explicit expression for the optimal disposal threshold. Zerhouni et al. [21] relax the assumption
of zero manufacturing lead-time. Only one item at a time can be manufactured and the manufacturing lead-
time is exponentially distributed. For both lost sale and backorder cases, the optimal policy is an (R,S) policy
stating to produce when the net inventory is below S and to dispose returned items when the net inventory
exceeds R. The ordering of the two optimal parameters depends on the ordering of the linear manufacturing
and remanufacturing costs. In the backorder case, they obtain an explicit expression for the optimal base-stock
level when the difference (S −R) is given. The disposal policy of [7] can be seen as a special case of the (R,S)
policy where S = 0.

Ouyang and Zhu [10] relax the zero lead-time and fixed cost assumptions. The production lead-time is deter-
ministic while the remanufacturing leadtime is neglected. They consider an (sp, Qp, sd) where sp is the reorder
point, Qp the order quantity and sd the disposal threshold (returns are remanufactured if and only if the stock
level is below sd). This policy was first introduced in the paper of van der Laan et al. [14] which is presented in
the next paragraph. Ouyang and Zhu derive analytical expressions for the average cost while van der Laan et
al. use numerical methods. The optimal parameters can then be obtained by solving a difficult nonlinear integer
programming. The (R,S) policy in [21] can be seen as an (sp, Qp, sd) with sp = S − 1, Qp = 1 and sd = R.

Van der Laan et al. [15] extend the model of Heyman in a different direction. They model explicitly the
inventory of remanufacturable products and the remanufacturing process. The repair lead-time is exponential
and demand/return processes are again independent Poisson processes. They introduce the (sp, Qp, N) policy
where any return is disposed whenever the number of products waiting for repair equals N . The flow of repaired
items is then the output process of an M/M/N/N queue. Analytical expressions are also computed for the
average cost. Van der Laan et al. [14] generalize the policies of [10] and [15] with the (sp, Qp, sd, N) policy. They
compare numerically the optimal policy belonging to this class with the optimal policy belonging to (sp, Qp, sd)
(respectively (sp, Qp, N)) class of policies.

Van der Laan et Salomon [16] consider a model with inter-occurrence times between demands (resp. re-
turns) being Coxian-2 distributed. The demand process and return process are correlated. They compare an
(sp, Qp, Qr, sd) push-disposal policy with an (sp, Qp, sr, Sr, sd) pull-disposal policy to coordinate manufacturing
and remanufacturing decisions. For the push-disposal policy, sp is the manufacturing reorder point and Qp the
manufacturing order quantity. Returned products are remanufactured with batch size Qr and the remanufac-
tured items are disposed if the inventory position reaches sd. For the pull-disposal policy, remanufacturing is
initiated only when the inventory position is below sr and the remanufacturable inventory is above Sr. Teunter
and D. Vlachos [13] complement the numerical study of the above model.

Unlike [7] and [21], other papers do not guarantee that the optimal policy belongs to the class of policies under
consideration.

1.2 Multi-echelon systems

In their seminal work, Clark and Scarf [1] studies a series inventory system with N stages, finite horizon, periodic
review, linear holding and backorder cost, no setup cost and stochastic demand only on the downstream stage.
They prove that a Base-stock echelon policy is optimal. These assumptions have been relaxed in several papers.
For instance, Parker and Kapuscinski [11] add a constraint of capacity on the orders. In general, a base-stock
echelon policy is not optimal when a capacity constraint is added. They show that a base-stock echelon policy
is nearly optimal when the downstream echelon is not overloaded. In the contrary case, the Kanban policy is
nearly optimal.
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In production-inventory systems, replenishment is modelled in a different way than in classical inventory systems.
Items are produced by servers one by one, or possibly by batches. Each unit, or batch, requires a random lead-
time to be produced. Implicitly, in production-inventory systems, replenishments are capacitated. Veatch and
Wein [18] consider a two-stage system with one exponential server at each stage. Otherwise, their assumptions
are similar to [1]. Again, as in [11], they show on numerical experiments that the optimal policy is not a base-
stock echelon policy. They investigate several policy (base-stock, Kanban, fixed buffer and conwip) and compare
them to the optimal policy. Their conclusions are the same as those of [11] : the base-stock policy is generally
the nearest optimal policy but when the downstream station is overloaded the Kanban policy is better. In
another paper, Veatch and Wein [17] characterize the form of the optimal policy for a series system with N
stages and generalize their results to assembly systems, disassembly systems and to the routing problem. The
optimal policy is a state-dependent base-stock policy. It is optimal to produce at stage i when the inventory
level at stage i is smaller than a base-stock level, depending on inventory levels at all other stages. Dallery and
Liberopoulos [2] investigates a Kanban generalized policy. This policy is a mix between Kanban and base-stock
echelon policy. They also provide a review of heuristic policies.

Fewer papers investigate the control of multi-echelon systems with product returns. DeCroix et al. [4] analyze a
setting similar to [1] except that demand can be negative. They prove that a base-stock echelon is still optimal.
They also propose a method to compute a near optimal policy, explain how to extend their model when returns
occur at different stages and compare the base-stock echelon policy to fixed buffer policies. With the same type
of modelling, DeCroix and Zipkin [5] characterize the optimal policy for an assembly system and DeCroix [3]
analyzes a simple series model with only one return in any of the stages and evaluates whether the base-stock
model is optimal. His conclusion is that the base-stock echelon policy is optimal if the return is made at the
upstream station. Vercraene et al. [19] extend [18] for the case with Poisson returns at each stage. The structure
of the optimal policy is similar to [18]. In an extensive numerical study, they compare the performances of
base-stock, Kanban, fixed buffer and half-optimal policies.

1.3 Our contributions

To the best of our knowledge, we are not aware of papers dealing with a multi-stage inventory system with a
disposal option upon arrival of returns . We fill this gap by considering an extension to [19] where items can be
rejected or accepted when they are returned.

In Section 2, we detail the problem formulation. More precisely, each stage is made of an exponential production
server and an output inventory. The downstream inventory faces a Poisson demand and each inventory receives
product returns, according to Poisson processes, that can be either accepted or rejected. The objective is to find
a production/admission policy minimizing the expected discounted costs over an infinite horizon. We consider
linear holding, backorder, production, admission and rejecting costs. In Section 3, we show that the optimal
policy is characterized by four switching curves: a state-dependent base-stock level and a state-dependent
admission threshold for each stage. We also derive monotonicity results for the switching curves.

In Section 4, we show that our results can be extended to the case with two types of returns at each stage: one
type has a disposal option while the other one does not have a disposal option. Then we explain how our results
can be transposed to an hybrid single-stage system with a production facility and a remanufacturing facility
where both facilities have exponential replenishment leadtimes.

In Section 5, we design several simple heuristics and study the performances of some of them. The production
servers can be controlled according to classic multi-echelon policies (e.g. Kanban, base-stock echelon, fixed buffer
or generalized Kanban). At stage 1, due to the symmetry between production control and admission control, we
suggest to use admission controls that are similar to the production controls at the upstream server. At stage
2, it is less clear that we can adapt the production policy to the admission control policy and we propose new
control policies. After a brief explanation on how to compute the policies, we compare the performance of some
of them in Section 6.

2 Problem formulation

We consider a 2-stage production/inventory system in series which satisfies end-customer demand (see Figure
1). Station Mi produces items one by one. The production lead-time of station Mi is exponentially distributed
with rate µi. Preemption is allowed and station Mi can be started or stopped at any time. Produced items
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are stocked in a buffer Bi just after Mi. The end buffer M2 sees customer demands arriving according to a
Poisson process with rate λ. We assume that backorders are allowed. At time t, the on-hand inventory at Bi is
denoted by Xi(t). Note that X2(t) can be negative due to backorders. When buffer B1 is empty, the production
is blocked at station M2. Returns of products occur at buffer Bi according to an independent Poisson process
with rate δi. Another way to see these two return flows is to consider a situation where there is a single flow
of returns for the whole system (rate δ1 + δ2) and, after an inspection, returned products are routed to the
Finished Good (FG) inventory with probability δ2/δ1 + δ2 and to the Work-In-Process (WIP) inventory with
probability δ1/(δ1 + δ2). To ensure the stability of queue lengths, we assume that the demand is smaller than
the production capacity for each echelon: λ < µ1 + δ1 + δ2 (echelon 1) and λ < µ2 + δ2 (echelon 2). Unlike the
system without disposal options [19], we don’t have to assume that the total return rate is smaller than the
demand rate.

Fig. 1. Model

Upon arrival at buffer Bi, a returned product is either accepted with cost Ca
i or disposed (rejected) with cost

Cd
i . When a return is accepted in buffer Bi, it can be used immediately as a new product (we neglect the

remanufacturing lead-time). Let Cr
i = Ca

i −Cd
i be the relative remanufacturing cost. The unit production cost

is Cp
i . The system incurs in state (X1, X2) a cost rate c(X1, X2) = h1X1+h2X

+
2 +bX−

2 where hi is the inventory
holding cost per unit of time at buffer Bi and b is the backorder cost per unit of time.

A production policy π specifies when to produce and when to accept returns, for each stage. The discounted
expected cost over an infinite horizon of a policy π, with initial state (x1, x2) and discount rate α > 0, is given
by :
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j (i)) respectively represent the ith time instant at stage j when a product is produced,
when a return item is accepted and when a return is disposed.

The objective is to minimize the expected discounted cost over an infinite horizon. This problem can be
formulated as a continuous-time Markov Decision Process (MDP). Let v⋆ be the optimal value function:
v⋆(x1, x2) = minπ v

π(x1, x2) = vπ
⋆

(x1, x2).

After uniformization of the MDP with rate τ = λ+µ1+µ2+ δ1+ δ2+α, we can transform the continuous-time
MDP into a discrete time MDP[12]. The optimal value function can be shown to satisfy the following optimality
equations:
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3 Characterization of the Optimal Policy

In order to derive structural properties of the optimal policy, we will show that the optimal value function
belongs to the following set of value functions V .

Definition 1 A value function v belongs to V if, for all x1, x2, we have

(a) v(x1 + 1, x2)− v(x1, x2) ≤ v(x1 + 1, x2 + 1)− v(x1, x2 + 1)
(b) (i) v(x1 + 1, x2)− v(x1, x2 + 1) ≤ v(x1 + 2, x2) + v(x1 + 1, x2 + 1)

and
(ii) v(x1, x2 + 1)− v(x1 + 1, x2) ≤ v(x1, x2 + 2)− v(x1 + 1, x2 + 1)

(c) v(x1 + 1, x2)− v(x1, x2) ≤ v(x1 + 2, x2)− v(x1 + 1, x2)
(d) v(x1, x2 + 1)− v(x1, x2) ≤ v(x1, x2 + 2)− v(x1, x2 + 1)

In Koole [9], property (a) is called supermodularity and denoted Super(1, 2). Property (b) is called supercon-
vexity and denoted SuperC(1,2). Finally (c) and (d) refer to the convexity of v in x1 and x2 and are denoted
Conv(1) et Conv(2). Properties (a) and (b) imply together properties (c) and (d).

Lemma 2 If v ∈ V then Tv ∈ V . Moreover v⋆ belongs to V .

Proof: Due to page constraints, we provide only a sketch of the proof. As operator T is a contraction mapping,
the fixed point theorem in a Banach space [12] ensures that any sequence of value functions (vn) defined as
vn+1 = Tvn will converge to the optimal value function v∗, the unique solution of the optimality equations
v∗ = Tv∗.

The operator T is a linear combination of operators that propagate Super(1, 2) and SuperC(1, 2) (see [9]). As
a result, if a value function v is in V , then the value function Tv is also in V . If we take a null value function
v0, it is clear that v0 ∈ V . By recursion, we conclude that v∗ ∈ V . 2

We can now state our main theorem.

Theorem 3 The optimal policy is a state-dependent policy. There exists four switching curves s1(x2), s2(x1),
r1(x2) and r2(x1) such that :

• Produce at M1 if and only if x1 < s1(x2). Moreover s1(x2)− 1 ≤ s1(x2 + 1) ≤ s1(x2).
• Produce at M2 if and only if x2 < s2(x1). Moreover s2(x1)− 1 ≤ s2(x1 + 1) ≤ s2(x1).
• Accept return at R1 if and only if x1 < r1(x2). Moreover r1(x2)− 1 ≤ r1(x2 + 1) ≤ r1(x2).
• Accept return at R2 if and only if x2 < r2(x1). Moreover r2(x1) + 1 ≥ r2(x1 + 1) ≥ r2(x1).

In addition, s1(x2) and r1(x2) can be ordered for each x2 in the following way: s1(x2) ≤ r1(x2) if Cr
1 > Cp

1 ,
s1(x2) = r1(x2) if C

r
1 = Cp

1 and s1(x2) ≥ r1(x2) if C
r
1 > Cp

1 .

Proof: As v∗ ∈ V , the four switching curves are well defined. Conv(1) ensures that we can define the production
threshold s1(x2) = min[x1|v(x1+1, x2)−v(x1, x2)+Cp

1 > 0] and the disposal threshold r1(x2) = min[x1|v(x1+
1, x2) − v(x1, x2) + Cr

1 > 0]. SuperC(1, 2) ensures that we can define the production threshold s2(x1) =
min[x2|v(x1−1, x2+1)−v(x1, x2)+Cp

2 > 0]. Finally Conv(2) ensures that we can define the disposal threshold
r2(x1) = min[x2|v(x1, x2 + 1)− v(x1, x2) + Cr

2 > 0].

The monotonicity results on the switching curves are also implied by the fact that v∗ ∈ V . For instance,
Super(1, 2) ensures that s1(x2 + 1) ≤ s1(x2) and SuperC(1, 2) ensures that s1(x2)− 1 ≥ s1(x2 + 1). The other
monotonicity results are obtained in a similar way. 2

In order to illustrate Theorem 3, we provide a numerical example in Figure 2. It describes the switching curves
in function of the state of the system. We can see four curves because there are four decision operators with
minimization in T , so four decisions to take to control optimaly the system. The optimal policy is simple, we
produce or accept returns in a facility if the system state is below the corresponding switching curve.

For a single-echelon system, the optimal policy is a simple (R,S) policy with S the base-stock level and R the
disposal threshold [20].
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4 Extension to forced returns

Consider an extension of our previous model where there is a Poisson return flow without disposal option (rate
δ′i) in addition to the Poisson return flow with disposal option (Figure 3). Returns without a disposal option will
be called forced returns and returns with a disposal option will be called optional returns. It is straightforward
to extend Theorem 3 to this new problem. So the structure of the optimal policy is exactly the same than the
problem with disposal option only.

Fig. 3. Extension with forced returns

There are now three necessary and sufficient conditions for the stability of the queue lengths. First, the demand
rate must be larger than the sum of forced return rates: λ > δ′1+δ′2. Second, all forced returns at stage 1 must be

treated by station M2: δ
′

1 < µ2. Third, each echelon j must be able to satisfy the demand: λ < µj+
∑2

i=j(δi+δ′i)
for j = 1, 2.

Interestingly, we can use this model with forced returns to model an hybrid production/remanufacturing system
with positive production and remanufacturing leadtimes (Figure 4). It suffices to set δ1 = δ′2 = µ1 = 0 in the
model with forced returns to take another viewpoint (consider return as production and vice versa). The optional
returns at stage 2 (R2) can be seen as a controllable production facility with production rate δ2 and preemption
allowed. This manufacturing facility produces new products for the finished good inventory B2. In parallel,
forced returns occur with rate δ′1. These returns are put in a remanufacturable inventory (B1). Then M2 is a
controllable remanufacturing facility with rate µ2. When a product has been remanufactured, it is placed in
the finished good inventory B2 and can be sold as a new product. The cost structure include linear production,
remanufacturing, return and holding costs. The problem is then to jointly control the manufacturing server and
the remanufacturing server in order to minimize expected discounted costs.
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Fig. 4. Hybrid production/remanufacturing system

5 Heuristic policies

Since the optimal policy has a complex structure and is difficult to implement in industry (see Figure 2), we
use, in this section, our theoretical results (see Theorem 3) to design simple and efficient policies. We propose
the following controls for stations M1, M2 and optional returns R1 and R2.

Control of M1

• Fixed buffer (FBs1) : produce when x1 < sFB
1

• Base-stock echelon (BSs1) : produce when x1 + x2 < sBS
1

• Kanban (KBs1) : produce when x1 + x+
2 < sKB

1

We propose to use classic policies for multi-echelon systems (see e.g. [18]): fixed buffer base-stock echelon
and Kanban. The base-stock echelon (BSs1) states to produce when x1 + x2 < sBS

1 while the Kanban policy
(KBs1) states to produce when x1 + x+

2 < sKB
1 . We don’t recommend to use a fixed buffer policy (FBs1)

which states to produce when x1 < sFB
1 . It is well known that it performs very poorly, most of the time.

Control of M2 :

• Fixed buffer (FBs2) : produce when x2 < sFB
2

The main heuristic used in the literature to control M2 is the fixed buffer policy FBs2 which states to produce
when x1 + x2 < sFB

2 . It might be interesting to explore new heuristics to have a better approximation of
s2(x1) since this switching curve might depend a lot on x1.

Control of R1 :

• Fixed buffer (FBr1) : accept return when x1 < rFB
1

• Base-stock echelon (BSr1) : accept return when x1 + x2 < rBS
1

• Kanban (KBr1) : accept return when x1 + x+
2 < rKB

1

Due to the equivalence between the control of M1 and the control of optional returns R1, we suggest to
use similar policies to control R1 and M1 : base-stock echelon (BSr1) which states to accept return when
x1 + x2 < rBS

1 and Kanban (KBr1) which states to accept return when x1 + x+
2 < rKB

1 .
Control of R2 :

• Fixed buffer (FBr2) : accept return when x1 < rFB
2

• Base-stock return (BRr2) : accept return when x1 + x2 < rBR
2

• Base-stock return with priority (BPr2) : accept return when x1 + x2 < rBP
2 or x2 < 0

Fixed buffer (FBr2) which states to accept return when x2 < rFB
2 is a very simple heuristic because it

considers only local informations. However, we see in section 3 that optimal r2(x1) decreases. We have an
intuition about that : if the server M2 is fast, stock B1 and stock B2 could be seen as one global stock. In the
limit case (µ2 → ∞) the system is like the single echelon of [20]. Due to this observation a new heuristic called
base-stock return (BRr2 : accept return when x1+x2 < rBR

2 ) seems relevant. But, an other limit observation
have to be noted : if we have a lot of product in B1 the system could be seen as a single echelon with an
infinite stock B1, it assures that limx1→∞ r2(x1) = constant. From this observation we propose an heuristic
called base-stock return with Priority (BPr2) which states to accept return when x1 + x2 < rBP

2 or x2 < 0.
The BPr2 heuristic could be extend to a policy (obviously better) with a variable level of priority x2 < r′BP

2 .
This heuristic would be similar to the generalized Kanban [2]. Here we chose 0 as priority level because we
think it is the easiest to implement in industry.

Moreover we propose to try specific cases with si = ri (i ∈ {1, 2}) and with the same heuristic for the control
of Mi and Ri. We call these cases equal policies. They are obviously worse but easier to implement in industry.
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6 Numerical study

In this numerical study, we focus on the average cost criterion. The optimal policy is computed by a value
iteration algorithm [12] based on the fact that any sequence vn+1 = Tvn converges to the optimal value
function. We truncate the state space in three directions and increase the state space until the average cost is
no more sensitive to the truncation level. Heuristic policies are also computed by a value iteration algorithm
where we adapt the operator T to the heuristic under consideration.

For the heuristic policies, we want to find the parameters s1, s2, r1, r2 that minimize the average cost function
C(s1, s2, r1, r2) which is computed by the previous value iteration algorithm. This optimization problem is a
non linear problem with integer variables that might be long to solve since evaluating a given policy might
already take time. Therefore, we make the plausible assumption that the function C(s1, s2, r1, r2) is unimodal.
A function f is unimodal if for x, y and z on a line and y between x and z : f(x) is finite and f(x) ≤ f(y)
implies f(y) ≤ f(z). The assumption of unimodularity has been validated on several instances. Based on this
assumption, we can solve the system with the maximal gradient with constant step method. This method is very
efficient here because we can start the optimization with an approximate value of s1, s2, r1 and r2 resulting from
the calculation of the optimal policy. Note that if we want to valid that a cost C(s1, s2, r1, r2) is a minimum we
need to check that all adjacent points of (s1, s2, r1, r2) are higher. With 4 dimensions we need to check 34 = 81
points, so the computation time can be long.

We limit our study to a system with δ1 = δ′2 = 0 to have only one flow which could be forced or/and controllable
from production and flow which could be controllable from return. Moreover we make the classical assumption
that h1 = λ = 1. Under these hypotheses we compute several instances.

As expected, the optimal policy respect the structure described in Section 3, the relative position between s1(x2)
and r1(x2) is function of the sign of Cr

1 −Cp
1 and when M2 is fast, we have r2(x1) near curve x1+x2 = constant.

Note that we do not find a clear explanation of the relative position between s2(x1) and r2(x1) (see Figure 5).

About heuristics, the first observation is that equal heuristics (i.e. heuristics with rπi =sπi ) are obviously worse
than others heuristics and even often very bad with a cost gap over > 10%. Their implementation in industries
is easier but the loss can be very important. The second observation is that, for control of M1, we obtain the
same conclusion as [18]. The Kanban policy on M1 is better than others when M2 is overloaded with regard to
µ1. Ordinary the best heuristics for M1 is the base stock echelon policy. The fixed buffer policy is numerically
always the worse. The optimal thresholds plot in Figure 5 show this trend. The last observation is that the
control of R2 is more complicated. We give an more specific study about this control in the following paragraph.

We compute instances with heuristic BSs1 for the control of M1 and FBs2 for the control of M2 given Figures 5
and 6. The first figure, shows the variation of production capacity in server M2. The rate µ2 can vary on ]0.6,∞[.
Here we start from 0.65 because compute near limit of stability increased the state space and the computation
time. FBr2 is the best heuristic when M2 is overloaded (i.e. µ2 near 0.6). But BRr2 and BPr2 are very efficient
when utilization of M2 is low (i.e. µ2 >> λ). This phenomenon is expected because optimal curves r2(x1) on
the three other plots have this behavior. When µ2 = 0.65, r2(x1) is near horizontal so FBr2 threshold is a good
approximation. But when µ2 is bigger, r2(x1) is near curve x1 + x2 = constant so BRr2 heuristic became the
best. Note that s2(x1) increases a lot when M2 is overloaded. We do not have a clear intuition about this but
a heuristic with threshold which increasing in x1 could be tested in this case. Moreover, note that peaks and
irregularity are due to discrete character of parameters si and r2.

The BPr2 policy seems a good heuristic, but it is not always the case. For instance, if we have a lot of forced
returns, then r2(x1) became negative for all x1. So BPr2 became a bad approximation of optimal threshold
because rBP

2 can not be negative. To solve this problem we could relax the constraint that priority level is 0
and look for the optimal priority level. Figure 6 shows the variation of forced return in stock B1. The return
rate δ′1 can varies on [0, 1[. This figure shows clearly the limit of BPr2 when optimal r2(x1) < 0. Nevertheless
for δ′1 < 0.7 it is generally a good heuristic.



IESM 2011, METZ - FRANCE, May 25 - May 27

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7  8  9

G
ap

 w
ith

 O
pt

im
al

 P
ol

ic
y 

(%
)

µ2

Comparison of heuristics for the control of R2

FBr2BRr2BPr2

-4

 0

 4

 8

 12

 0  4  8  12  16  20

x 2

x1

Optimal policy with µ2=0.65

s1(x2)
s2(x1)
r2(x1)

-4

 0

 4

 8

 12

 0  4  8  12  16  20

x 2

x1

Optimal policy with µ2=3

s1(x2)
s2(x1)
r2(x1)

-4

 0

 4

 8

 12

 0  4  8  12  16  20

x 2

x1

Optimal policy with µ2=9

s1(x2)
s2(x1)
r2(x1)

Fig. 5. Variation of µ2 for the set of parameters : µ1 = 0.6, δ′1 = 0, δ2 = 0.6, λ = 1, h1 = 1, h2 = 2, b = 4, Cr

2 = 10,
C

p

1
= C

p

2
= 0

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.2  0.4  0.6  0.8  1

G
ap

 w
ith

 O
pt

im
al

 P
ol

ic
y 

(%
)

δ1
f

Comparison of heuristics for the control of R2

FBr2BRr2BPr2

-8

-4

 0

 4

 8

 12

 0  4  8  12  16  20

x 2

x1

Optimal policies
s2(x1) (insceased) and r2(x1) (decreased)

δ’1=0.1
δ’1=0.9

Fig. 6. Variation of δ′1 for the set of parameters : µ1 = 0, µ2 = 1.5, δ2 = 1, λ = 1, h1 = 1, h2 = 2, b = 4, Cr

2 = 10,
C

p

1
= C

p

2
= 0

7 Conclusion

In this paper, we prove the structure of the optimal policy of a two-stage production/inventory system with
returns at each stage that could be disposed or not. Due to the complexity of the optimal policy, we propose
heuristics policies to simplify their implementation in industry. At the end, we make an numerical study to test
their efficiency. Our results are complementary to those in the literature but it would be interesting to extend
the numerical study and investigate efficient heuristics to control the downstream server.
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