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Global existence and exponential growth for a viscoelastic wave

equation with dynamic boundary conditions

Stéphane Gerbi∗ and Belkacem Said-Houari†

Abstract

The goal of this work is to study a model of the wave equation with dynamic boundary
conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with
the fixed point theorem, we show the existence and uniqueness of a local in time solution.
Second, we show that under some restrictions on the initial data, the solution continues to exist
globally in time. On the other hand, if the interior source dominates the boundary damping,
then the solution is unbounded and grows as an exponential function. In addition, in the absence
of the strong damping, then the solution ceases to exist and blows up in finite time.

Keywords: Damped viscoelastic wave equations, global solutions, exponential growth, blow up in
finite time, dynamic boundary conditions.

1 Introduction

We consider the following problem



































utt −∆u− α∆ut +

∫ t

0
g(t− s)∆u(s)ds = |u|p−2u, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −

[

∂u

∂ν
(x, t)−

∫ t

0
g(t− s)

∂u

∂ν
(x, s)ds+

α∂ut
∂ν

(x, t) + h (ut)

]

x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ Ω ,

(1)

where u = u(x, t) , t ≥ 0 , x ∈ Ω , ∆ denotes the Laplacian operator with respect to the x variable,
Ω is a regular and bounded domain of RN , (N ≥ 1), ∂Ω = Γ0 ∪ Γ1, mes(Γ0) > 0, Γ0 ∩ Γ1 = ∅

and ∂/∂ν denotes the unit outer normal derivative, α is a positive constant, p > 2, h and g are
functions whose properties will be discussed in the next section, u0 , u1 are given functions.
Nowadays the wave equation with dynamic boundary conditions are used in a wide field of

applications. See [24] for some applications. Problems similar to (1) arise (for example) in the
modeling of longitudinal vibrations in a homogeneous bar in which there are viscous effects. The
term ∆ut, indicates that the stress is proportional not only to the strain, but also to the strain
rate, see [6] fore more details.
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From the mathematical point of view, these problems do not neglect acceleration terms on the
boundary. Such type of boundary conditions are usually called dynamic boundary conditions.
They are not only important from the theoretical point of view but also arise in several physical
applications. For instance in one space dimension and for g = 0, problem (1) can modelize the
dynamic evolution of a viscoelastic rod that is fixed at one end and has a tip mass attached to its
free end. The dynamic boundary conditions represents Newton’s law for the attached mass, (see
[5, 2, 8] for more details). In the two dimension space, as showed in [25] and in the references therein,
these boundary conditions arise when we consider the transverse motion of a flexible membrane Ω
whose boundary may be affected by the vibrations only in a region. Also some dynamic boundary
conditions as in problem (1) appear when we assume that Ω is an exterior domain of R3 in which
homogeneous fluid is at rest except for sound waves. Each point of the boundary is subjected to
small normal displacements into the obstacle: this type of dynamic boundary conditions are known
as acoustic boundary conditions, see [3] for more details.
Littman and Markus [19] considered a system which describe an elastic beam, linked at its free

end to a rigid body. The whole system is governed by the Euler-Bernoulli Partial Differential
Equations with dynamic boundary conditions. They used the classical semigroup methods to
establish existence and uniqueness results while the asymptotic stabilization of the structure is
achieved by the use of feedback boundary damping.
In [14] the author introduced the model

utt − uxx − utxx = 0, x ∈ (0, L), t > 0, (2)

which describes the damped longitudinal vibrations of a homogeneous flexible horizontal rod of
length L when the end x = 0 is rigidly fixed while the other end x = L is free to move with an
attached load. Thus she considered Dirichlet boundary condition at x = 0 and dynamic boundary
conditions at x = L , namely

utt(L, t) = − [ux + utx] (L, t), t > 0 . (3)

By rewriting the whole system within the framework of the abstract theories of the so-called B-
evolution theory, the existence of a unique solution in the strong sense has been shown. An
exponential decay result was also proved in [15] for a problem related to (2)-(3), which describe the
weakly damped vibrations of an extensible beam. See [15] for more details.
Subsequently, Zang and Hu [29], considered the problem

utt − p (ux)xt − q (ux)x = 0, x ∈ (0, 1) , t > 0

with
u (0, t) = 0, p (ux)t + q (ux) (1, t) + kutt (1, t) = 0, t ≥ 0.

By using the Nakao inequality, and under appropriate conditions on p and q, they established both
exponential and polynomial decay rates for the energy depending on the form of the terms p and
q.
Recently, the present authors have considered, in [11] and [12], problem (1) with g = 0 and a

nonlinear boundary damping of the form h (ut) = |ut|
m−2 ut. A local existence result was obtained

by combining the Faedo-Galerkin method with the contraction mapping theorem. Concerning the
asymptotic behavior, the authors showed that the solution of such problem is unbounded and grows
up exponentially when time goes to infinity provided that the initial data are large enough and

2



the damping term is nonlinear. The blow up result was shown when the damping is linear (i.e.
m = 2). Also, we proved in [12] that under some restrictions on the exponents m and p, we can
always find initial data for which the solution is global in time and decays exponentially to zero.
These results had been recently generalized for a wide range of nonlinearities in the equation and
in the boundary term: the authors proved the local existence and uniqueness by a sophisticated
application of the non linear semigroup theory, see [13].
In the absence of the strong damping α∆ut and for Dirichlet boundary conditions on the whole

boundary ∂Ω, the question of blow up in finite time of problem (1) has been investigated by many
authors. Messaoudi [23] showed that if the initial energy is negative and if the relaxation function
g satisfies the following assumption

∫ ∞

0
g(s)ds <

(p/2)− 1

(p/2)− 1 + (1/2p)
, (4)

then the solutions blow up in finite time. In fact this last condition has been assumed by other
researchers. See for instance [16, 17, 21, 22, 26, 28].
The main goal of this paper is to prove the local existence and to study the asymptotic behavior

of the solution of problem (1).
One of the main questions is to show a blow-up result of the solution. This question is a difficult

open problem, since in the presence of the strong damping term, i.e. when α 6= 0, the problem has
a parabolic structure, which means that the solution gains more regularity. However, in this paper,
we give a partial answer to this question and show that for α 6= 0 and for large initial data, the
solution is unbounded and grows exponentially as t goes to infinity. While for the case α = 0, the
solution has been shown to blow up in finite time.
The main contribution of this paper in this blow up result is the following: the exponential

growth and blow-up results hold without making the assumption (4). In fact the only requirement
is that the exponent p has to be large enough which is a condition much weaker than condition
(4). Moreover, unlike in the works of Messaoudi and coworkers, we do not assume any polynomial
structure on the damping term h(ut), to obtain an exponential growth of the solution or a blow up
in finite time.
This paper is organized as follows: firstly, applying the Faedo-Galerkin method combined with

the fixed point theorem, we show, in Section 2, the existence and uniqueness of a local in time
solution. Secondly, under the smallness assumption on the initial data, we show, in Section 3,
that the solution continues to exist globally in time. On the other hand, in Section 4, we prove
that under some restrictions on the initial data and if the interior source dominates the boundary
damping then the Lp-norm of the solution grows as an exponential function. Lastly, in Section 5,
we investigate the case when α = 0 and we prove that the solution ceases to exist and blows up in
finite time.

2 Preliminary and local existence

In this section, we introduce some notations used throughout this paper. We also prove a local
existence result of the solution of problem (1).
We denote

H1
Γ0
(Ω) =

{

u ∈ H1(Ω)/ uΓ0 = 0
}

.
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By (., .) we denote the scalar product in L2(Ω) i.e. (u, v)(t) =
∫

Ω u(x, t)v(x, t)dx. Also we mean by
‖.‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞, and by ‖.‖q,Γ1 the Lq(Γ1) norm.
Let T > 0 be a real number and X a Banach space endowed with norm ‖.‖X . Lp(0, T ;X), 1 ≤

p < ∞ denotes the space of functions f which are Lp over (0, T ) with values in X, which are
measurable and ‖f‖X ∈ Lp (0, T ). This space is a Banach space endowed with the norm

‖f‖Lp(0,T ;X) =

(
∫ T

0
‖f‖pXdt

)1/p

.

L∞ (0, T ;X) denotes the space of functions f : ]0, T [ → X which are measurable and ‖f‖X ∈
L∞ (0, T ). This space is a Banach space endowed with the norm:

‖f‖L∞(0,T ;X) = ess sup
0<t<T

‖f‖X .

We recall that if X and Y are two Banach spaces such that X →֒ Y (continuous embedding), then

Lp (0, T ;X) →֒ Lp (0, T ;Y ) , 1 ≤ p ≤ ∞.

We will also use the embedding (see [1, Therorem 5.8]):

H1
Γ0
(Ω) →֒ Lp(Ω), 2 ≤ p ≤ p̄ where p̄ =







2N

N − 2
if N ≥ 3,

+∞ if N = 1, 2 ,

and also

H1
Γ0
(Ω) →֒ Lq(Γ1), 2 ≤ q ≤ q̄ where q̄ =







2(N − 1)

N − 2
if N ≥ 3,

+∞ if N = 1, 2.

For 2 ≤ m ≤ q̄, let us denote V = H1
Γ0
(Ω) ∩ Lm(Γ1).

We assume that the relaxation functions g is of class C1 on R and satisfies:

∀ s ∈ R , g (s) ≥ 0, and

(

1−

∫ ∞

0
g (s) ds

)

= l > 0 . (5)

Moreover, we suppose that:
∀ s ≥ 0 , g′(s) ≤ 0. (6)

The hypotheses on the function h are the following:

(H1) h is continuous and strongly monotone, i.e. for 2 ≤ m ≤ q̄, there exists a constant m0 > 0
such that

(h(s)− h(v)) (s − v) ≥ m0|s− v|m , (7)

(H2) there exist two positive constants cm and Cm such that

cm|s|m ≤ h(s)s ≤ Cm|s|m, ∀s ∈ R . (8)
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For a function u ∈ C
(

[ 0, T ],H1
Γ0
(Ω)
)

, let us introduce the following notation:

(g ⋄ u) (t) =

∫ t

0
g (t− s) ‖∇u (s)−∇u (t)‖22 ds.

Thus, when u ∈ C
(

[ 0, T ],H1
Γ0
(Ω)
)

∩C1
(

[ 0, T ], L2(Ω)
)

such that ut ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

, we have:

d

dt
(g ⋄ u) (t) =

∫ t

0
g′ (t− s) ‖∇u (s)−∇u (t)‖22 ds

+
d

dt

(

‖∇u (t)‖22

)

∫ t

0
g (s) ds− 2

∫

Ω

∫ t

0
g (t− s)∇u (s)∇ut (t) dsdx

=
(

g′ ⋄ u
)

(t)− 2

∫

Ω

∫ t

0
g (t− s)∇u (s)∇ut (t) dsdx (9)

+
d

dt

{

‖∇u (t)‖22

∫ t

0
g (s) ds

}

− g (t) ‖∇u (t)‖22 .

This last identity implies:

∫

Ω

∫ t

0
g (t− s)∇u (s)∇ut (t) dsdx =

1

2

(

g′ ⋄ u
)

(t) +
1

2

d

dt

{

‖∇u (t)‖22

∫ t

0
g (s) ds

}

−
1

2
g (t) ‖∇u (t)‖22 −

1

2

d

dt
(g ⋄ u) (t) . (10)

For u ∈ C
(

[ 0, T ],H1
Γ0
(Ω)
)

∩C1
(

[ 0, T ], L2(Ω)
)

such that ut ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

, let us define the

modified energy functional E by:

E (t, u, ut) = E (t) =
1

2
‖ut (t) ‖

2
2 +

1

2
‖ut (t) ‖

2
2,Γ1

+
1

2

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22

+
1

2
(g ⋄ u) (t)−

1

p
‖u (t)‖pp . (11)

The following local existence result of the solution of problem (1) is closely related to the one
we have proved for a slightly different problem in [11, Theorem 2.1], where no memory term was
present. Let us sate it:

Theorem 2.1. Assume that (5), (6) and (7) hold. Let 2 ≤ p ≤ q̄ and max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄.

Then given u0 ∈ H1
Γ0
(Ω) and u1 ∈ L2(Ω), there exists T > 0 and a unique solution u of the problem

(1) on (0, T ) such that

u ∈ C
(

[ 0, T ],H1
Γ0
(Ω)
)

∩C1
(

[ 0, T ], L2(Ω)
)

,

ut ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

∩Lm ((0, T )× Γ1) .

Let us mention that Theorem 2.1 also holds for α = 0. The proof of Theorem 2.1 can be done
along the same line as in [11, Theorem 2.1]. The main idea of the proof is based on the combination
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between the Fadeo-Galerkin approximations and the contraction mapping theorem. However, for
the convenience of the reader we give only the outline of the proof here.
For u ∈ C

(

[0, T ],H1
Γ0
(Ω)
)

∩C1
(

[0, T ], L2(Ω)
)

given, let us consider the following problem:











































vtt −∆v − α∆vt +

∫ t

0
g(t− s)∆v(s)ds = |u|p−2u, x ∈ Ω, t > 0 ,

v(x, t) = 0, x ∈ Γ0, t > 0 ,

vtt(x, t) = −

[

∂v

∂ν
(x, t)−

∫ t

0
g(t− s)

∂v

∂ν
(x, s)ds +

α∂vt
∂ν

(x, t) + h (vt)

]

x ∈ Γ1, t > 0 ,

v(x, 0) = u0(x), vt(x, 0) = u1(x) x ∈ Ω.

(12)

Definition 2.2. A function v(x, t) such that

v ∈ L∞
(

0, T ;H1
Γ0
(Ω)
)

,

vt ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

∩ Lm ((0, T )× Γ1) ,

vt ∈ L∞
(

0, T ;H1
Γ0
(Ω)
)

∩ L∞
(

0, T ;L2(Γ1)
)

,

vtt ∈ L∞
(

0, T ;L2(Ω)
)

∩ L∞
(

0, T ;L2(Γ1)
)

,

v(x, 0) = u0(x) ,

vt(x, 0) = u1(x) ,

is a generalized solution to the problem (12) if for any function ω ∈ H1
Γ0
(Ω) ∩ Lm(Γ1) and ϕ ∈

C1(0, T ) with ϕ(T ) = 0, we have the following identity:

∫ T

0
(|u|p−2u,w)(t)ϕ(t) dt =

∫ T

0

[

(vtt, w)(t) + (∇v,∇w)(t) −

∫ t

0
g(t− s)(∇v (s) ,∇w (t))ds

+α(∇vt,∇w)(t)ϕ(t)dt

]

+

∫ T

0
ϕ(t)

(
∫

Γ1

vtt(t)w dΓ + h (vt) dΓ

)

dt.

Lemma 2.3. Let 2 ≤ p ≤ q̄ and 2 ≤ m ≤ q̄. Let u0 ∈ H2(Ω)∩V, u1 ∈ H2(Ω), then for any T > 0,
there exists a unique generalized solution (in the sense of Definition 2.2), v(t, x) of problem (12).

The proof of Lemma 2.3 is essentially based on the Fadeo-Galerkin approximations combined
with the compactness method and can be done along the same line as in [11, Lemma 2.2], we omit
the details.
In the following lemma we state a local existence result of problem (12).

Lemma 2.4. Let 2 ≤ p ≤ q̄ and max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄. Then given u0 ∈ H1
Γ0
(Ω) , u1 ∈ L2(Ω)

there exists T > 0 and a unique solution v of the problem (12) on (0, T ) such that

v ∈ C
(

[0, T ],H1
Γ0
(Ω)
)

∩C1
(

[0, T ], L2(Ω)
)

,

vt ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

∩Lm ((0, T )× Γ1)

6



and satisfies the energy inequality:

1

2

[

‖ut (t) ‖
2
2 + ‖ut (t) ‖

2
2,Γ1

+

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 + (g ⋄ u) (t)

]t

s

+α

∫ t

s
‖∇vt(τ)‖

2
2dτ +

∫ t

s

∫

Γ1

h(vt(σ, τ))dσdτ

≤

∫ t

s

∫

Ω
|u(τ)|p−2u(τ)vt(τ)dτdx

for 0 ≤ s ≤ t ≤ T .

Proof. We first approximate u ∈ C([0, T ],H1
Γ0
(Ω)) ∩C1

(

[0, T ], L2(Ω)
)

endowed with the standard

norm ‖u‖ = max
t∈[0,T ]

‖ut(t)‖2 + ‖u(t)‖H1(Ω), by a sequence (uk)k∈N ⊂ C∞([0, T ] × Ω) by a standard

convolution arguments (see [4]). Next, we approximate the initial data u1 ∈ L2(Ω) by a sequence
(uk1)k∈N ⊂ C∞

0 (Ω). Finally, since the space H2(Ω) ∩ V ∩ H1
Γ0
(Ω) is dense in H1

Γ0
(Ω) for the H1

norm, we approximate u0 ∈ H1
Γ0
(Ω) by a sequence (uk0)k∈N ⊂ H2(Ω) ∩ V ∩H1

Γ0
(Ω).

We consider now the set of the following problems:










































vktt −∆vk − α∆vkt +

∫ t

0
g(t− s)∆vk(s)ds = |uk|p−2uk, x ∈ Ω, t > 0,

vk(x, t) = 0, x ∈ Γ0, t > 0,

vktt(x, t) = −

[

∂vk

∂ν
(x, t)−

∫ t

0
g(t− s)

∂vk

∂ν
(x, s)ds +

α∂vkt
∂ν

(x, t) + h
(

vkt

)

]

, x ∈ Γ1, t > 0,

vk(x, 0) = uk0 , v
k
t (x, 0) = uk1 , x ∈ Ω.

(13)
Since every hypothesis of Lemma 2.3 are verified, we can find a sequence of unique solution (vk)k∈N
of the problem (13). Our goal now is to show that (vk, vkt )k∈N is a Cauchy sequence in the space

YT =
{

(v, vt)/v ∈ C
(

[0, T ] ,H1
Γ0
(Ω)
)

∩C1
(

[0, T ] , L2(Ω)
)

,

vt ∈ L2
(

0, T ;H1
Γ0
(Ω)
)

∩ Lm ((0, T )× Γ1)
}

endowed with the norm

‖(v, vt)‖
2
YT

= max
0≤t≤T

[

‖vt‖
2
2 + l‖∇v‖22

]

+‖vt‖
2
Lm((0,T )×Γ1)

+

∫ t

0
‖∇vt(s)‖

2
2 ds . (14)

For this purpose, we set U = uk − uk
′
, V = vk − vk

′
. It is straightforward to see that V satisfies:











































Vtt −∆V − α∆Vt +

∫ t

0
g(t− s)∆V (s)ds = |uk|p−2uk − |uk

′

|p−2uk
′

x ∈ Ω, t > 0 ,

V (x, t) = 0 x ∈ Γ0, t > 0 ,

Vtt(x, t) = −

[

∂V

∂ν
(x, t)−

∫ t

0
g(t− s)

∂V

∂ν
(x, s)ds +

α∂Vt

∂ν
(x, t) + h(vkt )− h(vk

′

t )

]

x ∈ Γ1, t > 0 ,

V (x, 0) = uk0 − uk
′

0 , Vt(x, 0) = uk1 − uk
′

1 x ∈ Ω.
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We multiply the above differential equations by Vt, we integrate over (0, t)×Ω, we use integration
by parts and the identity (9) to obtain:

1

2

(

‖Vt (t) ‖
2
2 + ‖Vt (t) ‖

2
2,Γ1

+

(

1−

∫ t

0
g (r) dr

)

‖∇V (t)‖22

)

+α

∫ t

0
‖∇Vt‖

2
2ds+

∫ t

0

∫

Γ1

(

h(vkt (x, τ)) − h(vk
′

t (x, τ))
) (

vkt (x, τ) − vk
′

t (x, τ)
)

dΓdτ

−
1

2

∫ t

0

(

g′ ⋄ V
)

(s) ds+
1

2

∫ t

0
g (s) ‖∇V (s)‖22 ds

=
1

2

(

‖Vt(0)‖
2
2 + ‖∇V (0)‖22 + ‖Vt(0)‖

2
2,Γ1

)

+

∫ t

0

∫

Ω

(

|uk|p−2uk − |uk
′

|p−2uk
′
)(

vkt − vk
′

t

)

dxds, ∀t ∈ (0, T ) .

(15)

Consequently, the above inequality together with (5), (6) and (7) gives

1

2

(

‖Vt (t) ‖
2
2 + ‖Vt (t) ‖

2
2,Γ1

+ l ‖∇V (t)‖22

)

+ α

∫ t

0
‖∇Vt‖

2
2ds+m0

∫ t

0
‖Vt‖

m
m,Γ1

ds

≤
1

2

(

‖Vt(0)‖
2
2 + ‖∇V (0)‖22 + ‖Vt(0)‖

2
2,Γ1

)

+

∫ t

0

∫

Ω

(

|uk|p−2uk − |uk
′

|p−2uk
′
)(

vkt − vk
′

t

)

dxds, ∀t ∈ (0, T ) .

(16)

Following the same method as in [11], we deduce that there exists C depending only on Ω and p
such that:

‖V ‖YT
≤ C

(

‖Vt(0)‖
2
2 + ‖∇V (0)‖22 + ‖Vt(0)‖

2
2,Γ1

)

+ CT‖U‖YT
.

Since (uk0)k∈N is a converging sequence in H1
Γ0

(Ω), (uk1)k∈N is a converging sequence in L2 (Ω)

and
(

uk
)

k∈N
is a converging sequence in C

(

[0, T ] ,H1
Γ0
(Ω)
)

∩C1
(

[0, T ] , L2(Ω)
)

(so in YT also), we

conclude that (vk, vkt )k∈N is a Cauchy sequence in YT . Thus (v
k, vkt ) converges to a limit (v, vt) ∈ YT .

Now by the same procedure used by Georgiev and Todorova in [10], we prove that this limit is a
weak solution of the problem (12). This completes the proof of the Lemma 2.4.

Proof of Theorem 2.1. In order to prove Theorem 2.1, we use the contraction mapping theorem.
Indeed, for T > 0, let us define the convex closed subset of YT :

XT = {(v, vt) ∈ YT such that v(0) = u0, vt(0) = u1} .

Let us denote:
BR (XT ) = {v ∈ XT ; ‖v‖YT

≤ R} ,

the ball of radius R in XT . Then, Lemma 2.4 implies that for any u ∈ XT , we may define v = Φ(u)
the unique solution of (12) corresponding to u. Our goal now is to show that for a suitable T > 0,
Φ is a contractive map satisfying Φ (BR(XT )) ⊂ BR(XT ).
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Let u ∈ BR(XT ) and v = Φ(u). Then for all t ∈ [0, T ] we have as in (15):

‖vt‖
2
2 + l‖∇v‖22 + ‖vt‖

2
2,Γ1

+ 2α

t
∫

0

‖∇vt‖
2
2 ds+ c

∫ t

0
‖vt‖

m
m,Γ1

ds

≤ ‖u1‖
2
2 + ‖∇u0‖

2
2 + ‖u1‖

2
2,Γ1

+ 2

t
∫

0

∫

Ω

|u (τ) |p−2u (τ) vt (τ) dx dτ.

(17)

Using Hölder’s inequality, we can control the last term in the right hand side of the inequality (17)
as follows:

t
∫

0

∫

Ω

|u (τ) |p−2u (τ) vt (τ) dxdτ ≤

t
∫

0

‖u (τ) ‖p−1
2N/(N−2)

‖vt (τ) ‖2N/
(

3N−Np+2(p−1)
)dτ

Since p ≤
2N

N − 2
, we have:

2N
(

3N −Np+ 2(p − 1)
) ≤

2N

N − 2
.

Thus, by Young’s and Sobolev’s inequalities, we get for all δ > 0 there exists C(δ) > 0, such that
for all t ∈ (0, T )

t
∫

0

∫

Ω

|u (τ) |p−2u (τ) vt (τ) dxdτ ≤ C(δ)tR2(p−1) + δ

t
∫

0

‖∇vt (τ) ‖
2
2dτ.

Inserting the last estimate in the inequality (17) and choosing δ small enough such that:

‖v‖2YT
≤

1

2
R2 + CTR2(p−1).

Thus, for T sufficiently small, we have ‖v‖YT
≤ R. This shows that v ∈ BR (XT ).

To prove that Φ is a contraction, we have to follow the same steps (up to minor changes) as in
[11]. We omit the details. Thus the proof of Theorem 2.1 is finished.

Remark 2.5. Let us say that the hypothesis on m, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄, is made to pass to

the limit in the nonlinear term, by the same way we have used in [11, Equation (2.28)].

3 Global existence

In this section, we show that, under some restrictions on the initial data, the local solution of
problem (1) can be continued in time and the lifespan of the solution will be [0,∞).

Definition 3.1. Let 2 ≤ p ≤ q̄, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄, u0 ∈ H1
Γ0
(Ω) and u1 ∈ L2(Ω). We

denote by u the solution of (1). We define:

Tmax = sup
{

T > 0 , u = u(t) exists on [0, T ]
}

.
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Since the solution u ∈ YT (the solution is “regular enough”), from the definition of the norm given
by (14), let us recall that if Tmax < ∞, then

lim
t→Tmax
t<Tmax

‖∇u(t)‖2 + ‖ut(t)‖2 = +∞.

If Tmax < ∞, we say that the solution of (1) blows up and that Tmax is the blow up time.
If Tmax = ∞, we say that the solution of (1) is global.

In order to study the blow up phenomenon or the global existence of the solution of (1), for all
0 ≤ t < Tmax, we define:

I(t) = I(u(t)) =

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 + (g ⋄ u) (t)− ‖u‖pp, (18)

J(t) = J(u(t)) =
1

2

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 +
1

2
(g ⋄ u) (t)−

1

p
‖u‖pp. (19)

Thus the energy functional defined in (11) can be rewritten as

E(u(t)) = E(t) = J(t) +
1

2
‖ut‖

2
2 +

1

2
‖ut‖

2
2,Γ1

. (20)

As in [9, 27], we denote by B the best constant in the Poincaré-Sobolev embeddingH1
Γ0
(Ω) →֒ Lp(Ω)

defined by:
B−1 = inf

{

‖∇u‖2 : u ∈ H1
Γ0
(Ω), ‖u‖p = 1

}

. (21)

For u0 ∈ H1
Γ0
(Ω) , u1 ∈ L2(Ω), we define:

E(0) =
1

2
‖u1‖

2
2 +

1

2
‖u1‖

2
2,Γ1

+
1

2
‖∇u0‖

2
2 −

1

p
‖u0‖

p
p .

The first goal is to prove that the above energy E (t) defined in (11) is a non-increasing function
along the trajectories. More precisely, we have the following result:

Lemma 3.2. Let 2 ≤ p ≤ q̄, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄, and u be the solution of (1). Then, for all

t > 0, we have

dE (t)

dt
=

1

2

(

g′ ⋄ u
)

(t)−
1

2
g (t) ‖∇u (t)‖22 − α ‖∇ut‖

2
2 −

∫

Γ1

h (ut)utdΓ

≤
1

2

(

g′ ⋄ u
)

(t)− α ‖∇ut‖
2
2 −

∫

Γ1

h (ut) utdΓ, ∀t ∈ [0, Tmax). (22)

Proof. Multiplying the first equation in (1) by ut, integrating over Ω, using integration by parts we
get:

d

dt

{

1

2
‖ut‖

2
2 +

1

2
‖ut‖

2
2,Γ1

+
1

2
‖∇u‖22 −

1

p
‖u‖pp

}

−

∫

Ω

∫ t

0
g (t− s)∇u (s)∇ut (t) dsdx

= −α ‖∇ut‖
2
2 −

∫

Γ1

h (ut) utdΓ.

(23)

A simple use of the identity (10) gives (22). This completes the proof of Lemma 3.2.
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Lemma 3.3. Let 2 ≤ p ≤ q̄, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄. Assume that (5) and (6) hold. Then given

u0 ∈ H1
Γ0
(Ω) , u1 ∈ L2(Ω) satisfying











β =
Bp

l

(

2p

l (p− 2)
E(0)(p−2)/2

)

< 1,

I (u0) > 0,

(24)

we have:
I (u (t)) > 0, ∀t ∈ [0, Tmax).

Proof. Since I (u0) > 0, then by continuity, there exists T ∗ < Tmax, such that

I (t) > 0, ∀t ∈ [0, T ∗]

which implies that for all t ∈ [0, T ∗],

J (t) =
1

p
I (t) +

p− 2

2p

{(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 + (g ⋄ u) (t)

}

≥
p− 2

2p

{(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 + (g ⋄ u) (t)

}

. (25)

By using (5), (6), (20) and (22), we easily get, for all t ∈ [0, T ∗]

l ‖∇u(t)‖22 ≤
2p

p− 2
J (t) ,

≤
2p

p− 2
E (t) ≤

2p

p− 2
E (0) . (26)

From the definition of the constant B in (21), we first get:

∀t ∈ [0, T ∗] , ‖u(t)‖pp ≤ Bp‖∇u(t)‖p2 .

Since we have:

∀t ∈ [0, T ∗] , Bp‖∇u(t)‖p2 =
Bp

l
‖∇u(t)‖p−2

2

(

l‖∇u(t)‖22
)

,

by exploiting (26) and (24), we obtain, for all t ∈ [0, T ∗]:

‖u(t)‖pp ≤ βl
(

‖∇u(t)‖22
)

≤ β

(

1−

∫ t

0
g (s) ds

)

‖∇u(t)‖22

<

(

1−

∫ t

0
g (s) ds

)

‖∇u(t)‖22.

Therefore, by using (18), we conclude that

I (t) > 0, ∀t ∈ [0, T ∗].

Using the fact that E is decreasing along the trajectory, we get:

∀ 0 ≤ t < Tmax ,
Bp

l

(

2p

l (p− 2)
E (t)

)(p−2)/2

≤ β < 1 .

By repeating this procedure, T ∗ is extended to Tmax.
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Now, we are able to state the global existence theorem.

Theorem 3.4. Let 2 ≤ p ≤ q̄, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄. Assume that (5) and (6) hold. Then

given u0 ∈ H1
Γ0
(Ω) , u1 ∈ L2(Ω) satisfying (24). Then the solution of (1) is global and bounded.

Proof. To prove Theorem 3.4, using the definition of Tmax, we have just to check that

‖∇u(t)‖22 + ‖ut(t)‖
2
2

is uniformly bounded in time. To achieve this, we use (19), (20), (22) and (26) to get

E (0) ≥ E (t) = J (t) +
1

2
‖ut‖

2
2 +

1

2
‖ut‖

2
2,Γ1

≥
p− 2

2p
‖∇u(t)‖22 +

1

2
‖ut(t)‖

2
2 . (27)

Therefore,
‖∇u(t)‖22 + ‖ut(t)‖

2
2 ≤ CE(0)

where C is a positive constant, which depends only on p.

4 Exponential growth for α > 0

In this section we will prove that when the initial data are large enough, the energy of the solution
of problem (1) defined by (11) grows exponentially and thus so the Lp norm.
In order to state and prove the exponential growth result, we introduce the following constants:

B1 =
B

l
, α1 = B

−p/(p−2)
1 , E1 =

(

1

2
−

1

p

)

α2
1, E2 =

(

l

2
−

1

p

)

α2
1 (28)

Let us first mention that E2 < E1.
The following Lemma will play an essential role in the proof of the exponential growth result, and

it is inspired by the work in [7] where the authors proved a similar lemma for the wave equation.
First, we define the function

γ (t) :=

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22 + (g ⋄ u) (t) . (29)

Let us rewrite the energy functional E defined by (11) as:

E(t) =
1

2
‖ut (t) ‖

2
2 +

1

2
‖ut (t) ‖

2
2,Γ1

+
1

2
γ (t)−

1

p
‖u(t)‖pp . (30)

Lemma 4.1. Let 2 ≤ p ≤ q̄, max
(

2, q̄
q̄+1−p

)

≤ m ≤ q̄. Let u be the solution of (1). Assume that

E (0) < E1 and ‖∇u0‖2 ≥ α1. (31)

Then there exists a constant α2 > α1 such that

(γ (t))1/2 ≥ α2, ∀t ∈ [0, Tmax) (32)

and
‖u (t)‖p ≥ B1α2, ∀t ∈ [0, Tmax). (33)
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Proof. We first note that, by (30), we have:

E(t) ≥
1

2
γ (t)−

1

p
‖u (t)‖pp

≥
1

2
γ (t)−

Bp
1

p
(l ‖∇u (t)‖2)

p

≥
1

2
γ (t)−

Bp
1

p
(γ (t))p/2 (34)

=
1

2
α2 −

Bp
1

p
αp = F (α) ,

where α = (γ (t))1/2 . It is easy to verify that F is increasing for 0 < α < α1, decreasing for α > α1,
F (α) → −∞ as α → +∞, and

F (α1) = E1,

where α1 is given in (28). Therefore, since E(0) < E1, there exists α2 > α1 such that F (α2) =
E (0) .

If we set α0 = (γ (0))1/2 , then by (34) we have:

F (α0) ≤ E (0) = F (α2) ,

which implies that α0 ≥ α2.
Now to establish (32), we suppose by contradiction that:

(γ (t0))
1/2 < α2,

for some t0 > 0 and by the continuity of γ (.) , we may choose t0 such that

(γ (t0))
1/2 > α1.

Using again (34) leads to:

E (t0) ≥ F
(

γ (t0)
1/2
)

> F (α2) = E (0) .

But this is impossible since for all t > 0, E(t) ≤ E (0). Hence (32) is established.
To prove (33), we use (30) to get:

1

2
γ (t) ≤ E (0) +

1

p
‖u (t)‖pp .

Consequently, using (32) leads to:

1

p
‖u (t)‖pp ≥

1

2
γ (t)− E (0)

≥
1

2
α2
2 − E (0) .

But we have:
1

2
α2
2 − E (0) =

1

2
α2
2 − F (α2) =

Bp
1

p
αp
2 .

Therefore (33) holds. This finishes the proof of Lemma 4.1.
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The exponential growth result reads as follows:

Theorem 4.2. Suppose that (5), (6) (8) hold. Assume that

2 ≤ m and max (m, 2/l) < p ≤ p.

Then, the solution of (1) satisfying

E (0) < E2 and ‖∇u0‖2 ≥ α1, (35)

grows exponentially in the Lp norm.

Remark 4.3. It is obvious that for g = 0, we have E1 = E2, and Theorem 4.2 reduces to Theorem
3.1 in [11].

Remark 4.4. In Theorem 4.2, the condition

∫ ∞

0
g(s)ds <

(p/2) − 1

(p/2) − 1 + (1/2p)

used in [16, 17, 21, 22, 23, 26, 28] is unnecessary and our result holds without it.

Remark 4.5. Let us denote c1 =
(

l − 2
p

)

− 2E2 (B1α2)
−p . Since we have seen that α2 > α1, using

the definition of E2, we easily get c1 > 0. This constant will play an important role in the proof of
Theorem 4.2

Proof of Theorem 4.2. We implement the so-called Georgiev-Todorova method (see [10, 22] and
also [20]). So, we suppose that the solution exists for all time and we will prove an exponential
growth. For this purpose, we set:

H (t) = E2 − E (t) . (36)

Of course by (31) and (22) and since E2 < E1, we deduce that H is a non-decreasing function.
So, by using (30) and, (36) we get successively:

0 < H (0) ≤ H (t) ≤ E2 − E (t) ≤ E1 −
1

2
γ(t) +

1

p
‖u (t)‖pp .

On one hand as F (α1) = E1 and ∀ t > 0 , γ(t) ≥ α2
2 > α2

1, we obtain:

E1 −
1

2
γ(t) < F (α1)−

1

2
α2
1

On the other hand, since

F (α1)−
1

2
α2
1 = −

Bp
1

p
αp
1 ,

we obtain the following inequality:

0 < H (0) ≤ H (t) ≤
1

p
‖u (t)‖pp , ∀t ≥ 0. (37)
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For ε small to be chosen later, and inspired by the ideas of the authors in [11], we then define the
auxiliary function:

L (t) = H (t) + ε

∫

Ω
utudx+ ε

∫

Γ1

utudΓ +
εα

2
‖∇u‖22 . (38)

Let us remark that L is a small perturbation of the energy. By taking the time derivative of (38),
using problem (1), we obtain:

dL (t)

dt
= α ‖∇ut‖

2
2 +

∫

Γ1

h (ut)utdΓ + ε ‖ut‖
2
2 − ε ‖∇u‖22

+ε ‖u‖pp + ε ‖ut‖
2
2,Γ1

− ε

∫

Γ1

h (ut) u(x, t)dσ

+

∫

Ω
∇u (t)

∫ t

0
g (t− s)∇u (s) dsdx. (39)

By making use of (8) and the following Young’s inequality

XY ≤
λµXµ

µ
+

λ−νY ν

ν
, (40)

X, Y ≥ 0, λ > 0, µ, ν ∈ R
+ such that 1/µ + 1/ν = 1, then we get

∫

Γ1

h (ut) udΓ ≤ Cm

∫

Γ1

|ut|
m−2 utudΓ

≤ Cm
λm

m
‖u‖mm,Γ1

+ Cm
m− 1

m
λ−m/(m−1) ‖ut‖

m
m,Γ1

. (41)

Now, the term involving g on the right-hand side of (39) can be written as
∫

Ω
∇u (t, x)

∫ t

0
g (t− s)∇u (s, x) dsdx = ‖∇u (t) ‖22

(
∫ t

0
g (s) ds

)

(42)

+

∫

Ω
∇u (t, x)

∫ t

0
g (t− s) (∇u (s, x)−∇u (t, x)) dsdx.

On the other hand, by using Hölder’s and Young’s inequalities, we infer that for all µ > 0, we get
∫

Ω
∇u (t, x)

∫ t

0
g (t− s) (∇u (s, x)−∇u (t, x)) dsdx

≤

∫ t

0
g (t− s) ‖∇u (t) ‖2‖∇u (s)−∇u (t) ‖2ds

≤ µ (g ⋄ u) (t) +
1

4µ

(
∫ t

0
g (s) ds

)

‖∇u (t) ‖22.

(43)

Inserting the estimates (41) and (42) into (39), taking into account the inequality (43) and making
use of (8), we obtain by choosing µ = 1/2 and multiplying by l

lL ′ (t) ≥ αl ‖∇ut‖
2
2 + l

(

cm − Cmε
m− 1

m
λ−m/(m−1)

)

‖ut‖
m
m,Γ1

+ εl ‖ut‖
2
2

+εl ‖u‖pp + εl ‖ut‖
2
2,Γ1

−Cmεl
λm

m
‖u‖mm,Γ1

(44)

−
εl

2
(g ⋄ u) (t)− εl‖∇u (t) ‖22.
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We want now to estimate the term involving ‖u‖mm,Γ1
in (44). We proceed as in [11]. Then, we have

‖u‖m,Γ1
≤ C ‖u‖Hs(Ω) ,

which holds for:

m ≥ 1 and 0 < s < 1, s ≥
N

2
−

N − 1

m
> 0,

where C here and in the sequel denotes a generic positive constant which may change from line to
line.
Recalling the interpolation and Poincaré’s inequalities (see [18])

‖u‖Hs(Ω) ≤ C ‖u‖1−s
2 ‖∇u‖s2 ,

≤ C ‖u‖1−s
p ‖∇u‖s2 ,

we finally have the following inequality:

‖u‖m,Γ1
≤ C ‖u‖1−s

p ‖∇u‖s2 . (45)

If s < 2/m, using again Young’s inequality, we get:

‖u‖mm,Γ1
≤ C

[

(

‖u‖pp

)

m(1−s)µ
p

+
(

‖∇u‖22

)
msθ
2

]

(46)

for 1/µ + 1/θ = 1. Here we choose θ = 2/ms, to get µ = 2/ (2−ms). Therefore the previous
inequality becomes:

‖u‖mm,Γ1
≤ C

[

(

‖u‖pp

)

m(1−s)2
(2−ms)p

+ ‖∇u‖22

]

. (47)

Now, choosing s such that:

0 < s ≤
2 (p−m)

m (p− 2)
,

we get:
2m (1− s)

(2−ms) p
≤ 1. (48)

Once the inequality (48) is satisfied, we use the classical algebraic inequality:

zν ≤ (z + 1) ≤

(

1 +
1

ω

)

(z + ω) , ∀z ≥ 0 , 0 < ν ≤ 1 , ω ≥ 0, (49)

to obtain the following estimate:

(

‖u‖pp

)

m(1−s)2
(2−ms)p

≤ d
(

‖u‖pp + H (0)
)

≤ d
(

‖u‖pp + H (t)
)

, ∀t ≥ 0, (50)

where we have set d = 1 + 1/H (0). Inserting the estimate (50) into (46) we obtain the following
important inequality:

‖u‖mm,Γ1
≤ C

[

‖u‖pp + l ‖∇u‖22 + H (t)
]

. (51)
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Keeping in mind that l = 1−
∫∞

0 g (s) ds, in order to control the term ‖∇u‖22 in equation (44), we
preferely use (as H (t) > 0), the following estimate:

‖u‖mm,Γ1
≤ C

[

‖u‖pp + l ‖∇u‖22 + 2H (t)
]

.

which gives finally:

‖u‖mm,Γ1
≤ C

[

2E2 +

(

1 +
2

p

)

‖u‖pp − ‖ut‖
2
2 − ‖ut‖

2
2,Γ1

+

(

l −
(

1−

∫ t

0
g (s) ds

)

)

‖∇u‖22 − (g ⋄ u) (t)

]

. (52)

Since 1−
∫ t
0 g (s) ds ≥ l, then we obtain from above

‖u‖mm,Γ1
≤ C

[

2E2 +

(

1 +
2

p

)

‖u‖pp − ‖ut‖
2
2 − ‖ut‖

2
2,Γ1

− (g ⋄ u) (t)

]

. (53)

Now, inserting (53) into (44), then we infer that:

lL ′ (t) ≥ αl ‖∇ut‖
2
2 + l

(

cm − Cmε
m− 1

m
λ−m/(m−1)

)

‖ut‖
m
m,Γ1

+ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2 + ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2,Γ1

+ε

{

l − Cml
λm

m
C

(

1 +
2

p

)}

‖u‖pp (54)

+ε

(

Cml
λm

m
C −

l

2

)

(g ⋄ u) (t)− εl‖∇u (t) ‖22 − 2Cmεl
λm

m
CE2 .

From (36), we get

H (t) ≤ E2 −
1

2

(

1−

∫ t

0
g (s) ds

)

‖∇u (t)‖22

−
1

2
(g ⋄ u) (t) +

1

p
‖u (t)‖pp

≤ E2 −
l

2
‖∇u (t)‖22 −

1

2
(g ⋄ u) (t) +

1

p
‖u (t)‖pp .

This last inequality gives

− l ‖∇u (t)‖22 ≥ 2

(

H (t)−E2 +
1

2
(g ⋄ u) (t)−

1

p
‖u (t)‖pp

)

. (55)

Consequently, (54) takes the form

lL ′ (t) ≥ αl ‖∇ut‖
2
2 + l

(

cm − Cmε
m− 1

m
λ−m/(m−1)

)

‖ut‖
m
m,Γ1

+ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2 + ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2,Γ1

+ε

{

l −
2

p
− Cml

λm

m
C

(

1 +
2

p

)}

‖u‖pp − 2εE2 (56)

+ε

(

Cml
λm

m
C −

l

2
+ 1

)

(g ⋄ u) (t) + 2εH (t)− 2Cmεl
λm

m
CE2.
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Now to estimate the terms involving ‖u‖pp and E2 in (56), we simply write:

(

l −
2

p

)

‖u‖pp − 2E2 =

(

l −
2

p

)

‖u‖pp − 2E2
‖u‖pp
‖u‖pp

.

Then by using (33), we get:
(

l −
2

p

)

‖u‖pp − 2E2 ≥ c1 ‖u‖
p
p ,

where c1 > 0 is defined in Remark 4.5. Thus, (56) becomes:

lL ′ (t) ≥ αl ‖∇ut‖
2
2 + l

(

cm − Cmε
m− 1

m
λ−m/(m−1)

)

‖ut‖
m
m,Γ1

+ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2 + ε

(

l + lCm
λm

m
C

)

‖ut‖
2
2,Γ1

+ε

{

c1 − Cml
λm

m
C

(

1 +
2

p

)

− 4Cmεl
λm

m
CE2 (B1α2)

−p

}

‖u‖pp (57)

+ε

(

Cml
λm

m
C −

l

2
+ 1

)

(g ⋄ u) (t) + 2ε

(

H (t) + Cml
λm

m
CE2

)

.

Notice that since l < 1, we first have :

∀λ > 0 , Cml
λm

m
C −

l

2
+ 1 > 0 .

At this point, we pick λ small enough such that:

c1 − Cml
λm

m
C

(

1 +
2

p

)

− 4Cmεl
λm

m
CE2 (B1α2)

−p > 0 .

Once λ is fixed, we may choose ε small enough such that







cm − Cmε
m− 1

m
λ−m/(m−1) > 0,

L (0) > 0.

Consequently, we end up with the estimate:

L
′ (t) ≥ η1

(

‖ut‖
2
2 + ‖ut‖

2
2,Γ1

+ ‖u‖pp + H (t) + E2

)

, ∀t ≥ 0 . (58)

Next, it is clear that, by Young’s and Poincaré’s inequalities, we have:

L (t) ≤ γ
[

H (t) + ‖ut‖
2
2 + ‖ut‖

2
2,Γ1

+ ‖∇u‖22

]

for some γ > 0. (59)

Since H (t) > 0, then for all t ≥ 0, we have:

l

2
‖∇u‖22 ≤

1

p
‖u‖pp + E2, (60)
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Thus, the inequality (59) becomes:

L (t) ≤ ζ
[

H (t) + ‖ut‖
2
2 + ‖ut‖

2
2,Γ1

+ ‖u‖pp + E2

]

for some ζ > 0. (61)

From the two inequalities (58) and (61), we finally obtain the differential inequality:

dL (t)

dt
≥ µL (t) for some µ > 0. (62)

An integration of the previous differential inequality (62) between 0 and t gives the following
estimate for the function L :

L (t) ≥ L (0) eµt. (63)

On the other hand, from the definition of the function L , from inequality (37) and for small values
of the parameter ε, it follows that:

L (t) ≤
1

p
‖u‖pp . (64)

From the two inequalities (63) and (64) we conclude the exponential growth of the solution in the
Lp-norm.

5 Blow up in finite time for α = 0

In this section, we prove that in the absence of the strong damping −∆ut, (i.e. α = 0), the solution
of problem (1) blows up in finite time that is it exists 0 < T ∗ < ∞ such that ‖u(t)‖p → ∞ as
t → T ∗.
The blow up result reads as follows:

Theorem 5.1. Suppose that (5), (6) and (8) hold. Assume that

2 < m and max (m, 2/l) < p ≤ p.

Then, the solution of (1) satisfying

E (0) < E2, ‖∇u0‖2 ≥ α1, (65)

blows up in finite time. That is ‖u (t)‖p → ∞ as t → T ∗ for some 0 < T ∗ < ∞.

Remark 5.2. The requirement m > 2 in Theorem 5.1 is technical but it seems necessary in our
proof. The case m = 2 cannot be handled with the method we use here. But the same result can be
shown for m = 2 by using the concavity method. See [12] for more details.

Proof of Theorem 5.1. To prove Theorem 5.1, we suppose that the solution exists for all time and
we reach to a contradiction. Following the idea introduced in [10] and developed in [20] and [27],
we will define a function L̂ which is a perturbation of the total energy of the system and which will
satisfy the differential inequality

dL̂ (t)

dt
≥ ξL̂1+ν (t) , (66)

where ν > 0. Inequality (66) leads to a blow up of the solution in finite time T ∗ ≥ L̂ (0)−ν ξ−1ν−1,
provided that L̂ (0) > 0.
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To do so, we define the functional L̂ as follows:

L̂ (t) = H
1−σ(t) + ǫ

∫

Ω
utudx+ ǫ

∫

Γ1

utudΓ, (67)

where the functional H is defined in (36), σ is satisfying

0 < σ ≤ min

(

p−m

p (m− 1)
,
p− 2

2p
,
m− 2

2m
, σ̂

)

, (68)

where σ̂ is defined later in (71) and ǫ is a small positive constant to be chosen later. Taking the
time derivative of L̂(t) and following the same steps as in the proof of Theorem 4.2, we get (instead
of inequality (44)), for all λ > 0,

lL̂′ (t) ≥ lcm (1− σ)H
−σ (t) ‖ut‖

m
m,Γ1

− Cmǫ
m− 1

m
λ−m/(m−1) ‖ut‖

m
m,Γ1

+ ǫl ‖ut‖
2
2

+ǫl ‖u‖pp + ǫl ‖ut‖
2
2,Γ1

− Cmǫl
λm

m
‖u‖mm,Γ1

(69)

−
ǫl

2
(g ⋄ u) (t)− ǫl‖∇u (t) ‖22.

Next, for large positive M , we select λ−m/(m−1) = MH −σ (t). Then the estimate (69) takes the
form:

lL̂′ (t) ≥

(

lcm (1− σ)−MCmǫ
m− 1

m

)

H
−σ (t) ‖ut‖

m
m,Γ1

+ ǫl ‖ut‖
2
2

+ǫl ‖u‖pp + ǫl ‖ut‖
2
2,Γ1

− Cmǫl
M−(m−1)

m
Hσ(m−1) ‖u‖mm,Γ1

(70)

−
ǫl

2
(g ⋄ u) (t)− ǫl‖∇u (t) ‖22.

Exploiting (37) and (45), we get:

H
σ(m−1) ‖u‖mm,Γ1

≤ C ‖u‖(1−s)m+σp(m−1)
p ‖∇u‖sm2 .

Thus, as in section 4, we have

‖u‖(1−s)m+σp(m−1)
p ‖∇u‖sm2 ≤ C

[

(

‖u‖pp

)

(

m(1−s)
p

+σ(m−1)
)

µ
+
(

‖∇u‖22

)
msθ
2

]

.

Choosing µ, θ, and s exactly as in section 4 (with strict inequalities), we choose σ that verifies:

σ ≤
2−ms

2 (m− 1)

(

1−
2m (1− s)

(2−ms) p

)

= σ̂. (71)

The hypotheses on m and p ensure to have 0 < σ < 1.
Consequently, we get from above:

H
σ(m−1) ‖u‖mm,Γ1

≤ C

[

(

‖u‖pp

)

(

m(1−s)
p

+σ(m−1)
)

µ
+ ‖∇u‖22

]

. (72)
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Since,
(

m (1− s)

p
+ σ (m− 1)

)

2

2−ms
≤ 1,

applying the algebraic inequality (49), we get:

(

‖u‖pp

)

(

m(1−s)
p

+σ(m−1)
)

2
2−ms

≤ d
(

‖u‖pp + H (0)
)

≤ d
(

‖u‖pp + H (t)
)

, ∀t ≥ 0 . (73)

Thus, (73) together with (72) leads to (see (53)):

H
σ(m−1) ‖u‖mm,Γ1

≤ Cd
[

‖u‖pp + l ‖∇u‖22 + H (t)
]

≤ Cd

[

2E2 +

(

1 +
2

p

)

‖u‖pp − ‖ut‖
2
2 − ‖ut‖

2
2,Γ1

− (g ⋄ u) (t)

]

. (74)

Inserting (74) into (70) and using (55), we obtain:

lL̂′(t) ≥

(

lcm (1− σ)−MCmǫ
m− 1

m

)

H
−σ (t) ‖ut‖

m
m,Γ1

+ ǫ l

(

1 + Cmǫ
M−(m−1)

m
Cd

)

{

‖ut‖
2
2 + ‖ut‖

2
2,Γ1

}

+ 2ǫH (t)− 2ǫE2 (75)

+ ǫ

{

l −
2

p
−Cml

M−(m−1)

m
Cd

(

1 +
2

p

)

}

‖u‖pp + Cmǫl
M−(m−1)

m
Cd (g ⋄ u) (t)

−2 ǫ Cml
M−(m−1)

m
CdE2 + ǫ

(

1−
l

2

)

(g ⋄ u) (t) .

Writing again E2 = E2‖u‖
p
p/‖u‖

p
p and using again (33), we deduce that:

lL̂′ (t) ≥

(

lcm (1− σ)−MCmǫ
m− 1

m

)

H
−σ (t) ‖ut‖

m
m,Γ1

+ ǫ l

(

1 + Cmǫ
M−(m−1)

m
Cd

)

{

‖ut‖
2
2 + ‖ut‖

2
2,Γ1

}

+ 2ǫH (t) + 2Cmǫl
M−(m−1)

m
CdE2

+ ǫ

{

l −
2

p
− 2E2 (B1α2)

−p − Cml
M−(m−1)

m
Cd

(

1 +
2

p

)

− 4Cml
M−(m−1)

m
CdE2 (B1α2)

−p

}

‖u‖pp

+ ǫ Cml
M−(m−1)

m
Cd (g ⋄ u) (t) .

21



Thus, using the definition of c1 in Remark 4.5, we get:

lL̂′ (t) ≥

(

lcm (1− σ)−MCmǫ
m− 1

m

)

H
−σ (t) ‖ut‖

m
m,Γ1

+ ǫ l

(

1 + Cmǫ
M−(m−1)

m
Cd

)

{

‖ut‖
2
2 + ‖ut‖

2
2,Γ1

}

+ 2ǫH (t) + 2Cmǫl
M−(m−1)

m
CdE2

+ ǫ

{

c1 − Cml
M−(m−1)

m
Cd

(

1 +
2

p

)

− 4Cml
M−(m−1)

m
CdE2 (B1α2)

−p

}

‖u‖pp

+ ǫ Cml
M−(m−1)

m
Cd (g ⋄ u) (t) .

Since c1 > 0, we choose M large enough such that:

c1 − Cml
M−(m−1)

m
Cd

(

1 +
2

p

)

− 4Cml
M−(m−1)

m
CdE2 (B1α2)

−p > 0.

Once M is fixed, we pick ǫ small enough such that

lcm (1− σ)−MCmǫ
m− 1

m
> 0

and L̂ (0) > 0. This leads to

L̂′ (t) ≥ η̂
(

‖ut‖
2
2 + ‖ut‖

2
2,Γ1

+ H (t) + ‖u‖pp + E2

)

(76)

for some η̂ > 0.
On the other hand, it is clear from the definition (67), we have:

L̂
1

1−σ (t) ≤ C (ǫ, σ)

[

H (t) +

(
∫

Ω
ut udx

)
1

1−σ

+

(
∫

Γ1

utudΓ

)
1

1−σ

]

. (77)

By the Cauchy-Schwarz inequality and Hölder’s inequality, we have:

∫

Ω
utudx ≤

(
∫

Ω
u2t dx

)
1
2
(
∫

Ω
u2dx

)
1
2

≤ C

(
∫

Ω
u2tdx

)
1
2
(
∫

Ω
|u|p dx

)
1
p

,

where C is the positive constant which comes from the embedding Lp (Ω) →֒ L2 (Ω). This inequality
implies that there exists a positive constant C1 > 0 such that:

(
∫

Ω
utudx

)
1

1−σ

≤ C1

[

(
∫

Ω
|u|p dx

)
1

(1−σ)p
(
∫

Ω
u2tdx

)
1

2(1−σ)

]

.

Applying Young’s inequality to the right hand-side of the preceding inequality, there exists a positive
constant also denoted C > 0 such that:

(
∫

Ω
utudx

)
1

1−σ

≤ C

[

(
∫

Ω
|u|p dx

)
τ

(1−σ)p

+

(
∫

Ω
u2t dx

)
θ

2(1−σ)

]

, (78)
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for 1/τ + 1/θ = 1. We take θ = 2(1− σ), hence τ = 2 (1− σ) / (1− 2σ), to get:

(
∫

Ω
utudx

)
1

1−σ

≤ C

[

(
∫

Ω
|u|p dx

)
2

(1−2σ)p

+

∫

Ω
u2tdx

]

.

Using the algebraic inequality (49) with z = ‖u‖pp, d = 1+1/H (0), ω = H (0) and ν =
2

p (1− 2σ)
(the condition (68) on σ ensuring that 0 < ν ≤ 1) we get:

zν ≤ d (z + H (0)) ≤ d (z + H (t)) .

Therefore, there exists a positive constant denoted C2 such that for all t ≥ 0,

(
∫

Ω
utudx

)
1

1−σ

≤ C2

[

H (t) + ‖u (t)‖pp + ‖ut (t)‖
2
2

]

. (79)

Following the same method as above, we can show that there exists C3 > 0 such that:

(
∫

Γ1

utudΓ

)
1

1−σ

≤ C3

[

H (t) + ‖u (t)‖mm,Γ1
+ ‖ut (t)‖

2
2,Γ1

]

.

Applying the inequality (51), we get:

(
∫

Γ1

utudΓ

)
1

1−σ

≤ C4

[

H (t) + ‖u (t)‖pp + l ‖∇u (t)‖22 + ‖ut (t)‖
2
2,Γ1

]

.

Furthermore, inequality (60) leads to:

(
∫

Γ1

utudΓ

)
1

1−σ

≤ C5

[

H (t) + ‖u (t)‖pp + ‖ut (t)‖
2
2,Γ1

+ E2

]

. (80)

Collecting (77), (79) and (80), we obtain:

L̂
1

1−σ (t) ≤ η̂1

{

‖ut (t)‖
2
2 + ‖ut‖

2
2,Γ1

+ H (t) + ‖u (t)‖pp + E2

}

, ∀t ≥ 0, (81)

for some η̂1 > 0.
Combining (76) and (81), then, there exists a positive constant ξ > 0, as small as ǫ, such that for

all t ≥ 0,

L̂′(t) ≥ ξL̂
1

1−σ (t). (82)

Thus, inequality (66) holds. Therefore, L̂(t) blows up in a finite time T ∗.
On the other hand, from the definition of the function L̂(t) and using inequality (37), for small

values of the parameter ε, it follows that:

L̂(t) ≤ κ
(

‖u (t)‖pp

)1−σ
, (83)

where κ is a positive constant. Consequently, from the inequality (83) we conclude that the norm
‖u (t)‖p of the solution u, blows up in the finite time T ∗, which implies the desired result. This
completes the proof of Theorem 5.1.
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