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served in smooth systems only under particular cir-
cumstances [8, 15]. They are more likely to appear in
nonsmooth systems [21, 22], as those possessing dis-
continuous restoring forces [23–27].

The aim of this paper is to investigate the dynamics
of systems expected to exhibit superabundant modes.
An important example of piecewise smooth system
(PSS) is considered, as a beam with a breathing crack
by taking advantage of related works present in litera-
ture [23, 28–30]. For this system, the phase-space con-
sists of two regions separated by a surface at which the
vector field is continuous while the Jacobian is discon-
tinuous. As major novelty of the approach followed
here, the Lindstedt–Poincarè method is applied un-
der the hypothesis the discontinuity is small. In other
words, the nondifferentiable part (nonsmoothness) of
the equation of motion is assumed as a perturbation
of a generating linear (i.e., smooth) system. In spite
of this apparently strong limitation, numerical results
show that the asymptotic solution truncated at the sec-
ond order works well also for considerably large dis-
continuities. Although the asymptotic analysis is lim-
ited to the fundamental solutions and their stability,
it clarifies the main peculiar aspects of the nonlinear
modal characteristics of the PSS considered. It also
furnishes a frame for a global analysis, performed by a
numerical approach based on the Poincaré map, used
here only to describe the bifurcated NNMs.

2 Two-degrees-of-freedom model

In order to illustrate the method, a simple two-degrees-
of-freedom model is considered, coarsely modeling a
flexible cracked beam. It consists of a double pendu-
lum (Fig. 1a) with two lumped masses, mi (i = 1,2),
located at the endpoints of two massless rigid rods.
A linear rotational spring of constant k1 connects the
first rod to the ground, while a piecewise linear rota-
tional spring connects the two rods. The model is only
a small refinement of that studied in [23]. By assum-
ing the rotations q1 and q2 as Lagrangian coordinates
(Fig. 1a), the constitutive law of the internal nonlinear
rotational spring reads:

M2 =
{

k2(1 − ε)η if η > 0,

k2η if η ≤ 0
(1)

or, equivalently:

M2 = k2
(
1 − εH [η])η (2)

where M2 is the internal piecewise linear moment
(Fig. 1b), k2 is the undamaged stiffness, ε is the dam-
age parameter, equal to the relative jump in the piece-
wise constant rotational stiffness (Fig. 1c), H is the
Heaviside function and η is the relative rotation be-
tween the two bars, i.e., η = q2 − q1. Since

η = aT q (3)

with a = (−1, 1)T and q = (q1, q2)
T , a is a vector in

the configuration space {qi} (i = 1,2), normal to the

Fig. 1 (a) Mechanical
model and Lagrangian
parameters; (b) piecewise
linear moment;
(c) piecewise constant
rotational stiffness;
(d) configuration space
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Fig. 2 Isoenergetic curves of the undamaged (U ), reduced stiff-
ness (RS) and piecewise (P ) system

straight line for the origin that separates states in which
the crack is open from states in which it is closed
(Fig. 1d).

Using the notations of Fig. 1, the following dimen-
sional equations of motion are found:

(m1 + m2)l
2
1 q̈1 + m2l1l2q̈2 + [k1 + k2

(
1 − εH [η])]q1

− k2
(
1 − εH [η])q2 = 0,

m2l1l2q̈1 + m2l
2
2 q̈2 − k2

(
1 − εH [η])q1

+ k2
(
1 − εH [η])q2 = 0

(4)

where dots denote differentiation with respect to
time t . By letting L = l1 + l2 and M = m1 + m2, and
introducing the following dimensionless quantities:

m̃i = mi

M
, l̃i = li

L
, k̃i = ki

k1
, i = 1,2 (5)

the equations of motion (4) are rewritten in nondimen-
sional form:

Mq̈ + (K0 − εH [η]K2
)
q = 0 (6)

where dots now denote differentiation with respect to
the dimensionless time t̃ := (k1/ML2)1/2 t , and:

M =
[

l̃2
1 m̃2 l̃1 l̃2

m̃2 l̃1 l̃2 m̃2 l̃2
2

]
,

K0 =
[

1 + k̃2 −k̃2

−k̃2 k̃2

]
,

K2 = k̃2

[
1 −1

−1 1

]
.

(7)

3 Asymptotic solution: the Lindstedt–Poincarè
method

Equations (6) are solved asymptotically for small val-
ues of the damage parameter, ε � 1. The undamaged
(ε = 0) system admits 2 eigenpairs (ωx,ux), (ωy,uy)

so that

K0uα − ω2
αMuα = 0, α = x, y. (8)

The modal matrix of the undamaged system is used
to perform a transformation to normal coordinates.
Putting q = xux + yuy , (6) become

ẍ + ω2
xx − εH [η] (cxxx + cxyy

)= 0,

ÿ + ω2
yy − εH [η] (cyxx + cyyy

)= 0
(9)

where cαβ := uT
α K2uβ , (α,β) = (x, y).

The modifications of individual modes are studied
separately; the nonlinear normal mode of the damaged
(ε �= 0) system, close to the linear eigenvector ux is
sought. Consequently, the x is referred to as an active
coordinate, while the y is called a passive coordinate;
to obtain the other nonlinear normal mode, x and y

must be interchanged. The Lindstedt–Poincarè tech-
nique is applied to the nonlinear, nonsmooth equations
of motion, by letting:

θ = Ωxt, Ωx = ωx

(
1 + εμ1 + ε2μ2 + · · · ) (10)

where Ωx is the unknown nonlinear frequency and
μi ’s are frequency corrections to be determined. The
modal coordinates are expanded in series of ε:

(
x

y

)
=
(

x0

0

)
+ ε

(
x1

y1

)
+ ε2
(

x2

y2

)
+ · · · . (11)
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Since η = η(ε), the Heaviside function appearing in
the equation of motion admits the generalized power
series:

H
[
η(ε)
] = H [η0] + δ[η0]

(
εη1 + ε2η2 + · · · )

+ 1

2
δ′[η0]
(
ε2η2

1 + · · · ) (12)

where δ is the Dirac function and ηj = aT (uxxj +
uyyj ) (j = 0,1, . . .). Previous expansions and the
chain rule lead to the following perturbation equations:

ε0 :
{
ω2

x (ẍ0 + x0) = 0,

ε1 :
{

ω2
x(ẍ1 + x1) = H [η0]cxxx0 − 2ω2

xμ1ẍ0,

ω2
x(ÿ1 + λ2y1) = H [η0]cyxx0,

ε2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
x(ẍ2 + x2)

= H [η0](cxxx1 + cxyy1) − ω2
x(2μ2 + μ2

1)ẍ0

− 2μ1ω
2
x ẍ1 + δ[η0]η1cxxx0,

ω2
x(ÿ2 + λ2y2)

= H [η0](cyxx1 + cyyy1) − 2μ1ω
2
x ÿ1

+ δ[η0]η1cyxx0

(13)

where λ = ωy/ωx . These equations must be integrated
together with the 2π -periodicity conditions on the θ -
scale:

ξi(−π) = ξi(π), ξ̇i(−π) = ξ̇i (π),

ξ = x, y, i = 0,1,2, . . . .
(14)

The ε0-order equation admits the periodic (generating)
solution:

x0 = a sin θ, θ ∈ [−π,π] (15)

where a is the amplitude and the inessential initial
phase has been taken equal to zero, since the system
is autonomous. By normalizing the ux eigenvector in
such a way that aT ux > 0, it follows that η0 > 0 when
θ ∈ (0,π), η0 < 0 when θ ∈ (−π,0) and η0 = 0 when
θ ≡ (−π,0,π); therefore, in the higher-order pertur-
bation equations:

H [η0] ≡ W [0,π] (16)

where W [0,π] = H [θ ] − H [θ − π]. Moreover, up-to
the ε2-order, neither δ nor its derivatives furnish con-
tribution to the perturbation solution, according to de-
finition of the Dirac function. A brief sketch on how

to deal, at higher orders, with perturbation equations
containing such a generalized function is given in Ap-
pendix A.

The ε2- and ε3-order equations govern the motion
of a linear smooth system (namely, the undamaged
one), subjected to a nonsmooth or discontinuous exci-
tation. They are of the following type:

ω2
x(ẍi + xi) =

{
F+

i (θ), θ ∈ (0,π],
F−

i (θ), θ ∈ [−π,0),

ω2
x

(
ÿi + λ2yi

)=
{

G+
i (θ), θ ∈ (0,π],

G−
i (θ), θ ∈ [−π,0),

i = 1,2

(17)

where F±
i (θ) and G±

i (θ) are smooth laws. By denot-
ing by ξ+

i (θ) and ξ−
i (θ) (ξ = x, y), the relevant re-

sponses, continuity requires that:

ξ−
i (0) = ξ+

i (0), ξ̇−
i (0) = ξ̇+

i (0), i = 1,2 (18)

and periodicity calls for:

ξ−
i (−π) = ξ+

i (π), ξ̇−
i (−π) = ξ̇+

i (π),

i = 1,2. (19)

All these prescriptions will be referred to in the fol-
lowing as “boundary conditions”.

3.1 First-order solution

Substitution of (15) into (132) leads to:

ẍ1 + x1 =
{

acxx sin θ

ω2
x

+ 2aμ1 sin θ, θ ∈ [0,π],
2aμ1 sin θ, θ ∈ [−π,0],

ÿ1 + λ2y1 =
{

acyx sin θ

ω2
x

, θ ∈ [0,π],
0, θ ∈ [−π,0].

(20)

The right-hand members of (20), F1(θ) and G1(θ) are
plotted in the upper part of Fig. 3 for the sample sys-
tem described in Sect. 4, and for the first and sec-
ond modes. The graphs differ only in a scaling fac-
tor, showing that nonlinearities are higher in the sec-
ond mode. Under the assumption that no internal res-
onance occurs, namely λ �= 1, the following solution



A perturbation method for evaluating nonlinear normal modes of a piecewise linear 383

Fig. 3 Nonsmooth excitations of the first-order perturbation equations (20) and relevant responses; (a) first mode; (b) second mode

is found:

x1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
1 cos θ + B+

1 sin θ − ( cxx

2ω2
x

+ μ1)aθ cos θ,

θ ∈ [0,π],
A−

1 cos θ + B−
1 sin θ − μ1aθ cos θ,

θ ∈ [−π,0],

y1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C+
1 cos(λθ) + D+

1 sin(λθ) + acyx sin θ

(λ2−1)ω2
x
,

θ ∈ [0,π],
C−

1 cos(λθ) + D−
1 sin(λθ),

θ ∈ [−π,0],

(21)

where A’s, B’s, C’s and D’s are arbitrary constants. It
is worth noting that such constants must be introduced
to satisfy the boundary conditions, in contrast to the
usual applications of the Lindstedt–Poincaré method
for smooth systems, where the C1’s and D1’s con-
stants must be ignored, in order to avoid the destruc-
tion of the 2π -periodicity by the incommensurable
frequency λ. The x-coordinate is considered first. By
requiring:

x−
1 (0) = x+

1 (0), ẋ−
1 (0) = ẋ+

1 (0),

x−
1 (−π) = x+

1 (π), ẋ−
1 (−π) = ẋ+

1 (π)
(22)

the following system in the A±
1 , B±

1 constants is
found:

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎝

A+
1

B+
1

A−
1

B−
1

⎞
⎟⎟⎟⎠

= 1

2ω2
x

⎛
⎜⎜⎜⎜⎝

0
cxx + μ1ω

2
x

π
(
cxx + 4μ1ω

2
x

)
cxx + μ1ω

2
x

⎞
⎟⎟⎟⎟⎠ , (23)

The matrix is singular, since the associate homoge-
neous problem of the undamaged case admits the non-
trivial independent solutions, A+

1 = A−
1 and B+

1 =
B−

1 , corresponding to free motions in the x-mode
(this, indeed, satisfies 2π -periodicity and continuity).
Therefore, for solvability, the known term must be in
the range of the matrix. The two conditions of orthog-
onality to the eigensolutions of the transpose problem
degenerate in a unique (solvability) condition, from
which the first frequency correction μ1 is drawn:

μ1 = − cxx

4ω2
x

. (24)

Two out of four constants A±
1 , B±

1 , however, remain
indeterminate and can be chosen through somewhat
arbitrary normalization conditions. Here the following
normalization:

x+
1 (π) = 0, ẋ+

1 (π) = 0 (25)

is adopted, from which:

A+
1 = A−

1 = acxxπ

4ω2
x

; B+
1 = −B−

1 = acxx

4ω2
x

(26)

is obtained. The responses (21) are plotted in the bot-
tom part of Fig. 3.

As an alternative to the procedure illustrated, and
similarly to the classical Lindstedt–Poincarè approach
to the smooth systems, one can recognize the need to
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remove the resonance between the 2π -periodic piece-
wise forcing and the x-mode, of the same period. We
avoid the usual locution “removing secular terms”,
which in contrast, do appear in the x±

1 (θ) laws, and
which do not diverge to infinity, since they are de-
fined in the finite intervals [−π,0], [0,π]. According
to this procedure, the following orthogonality condi-
tions must hold:

(
acxx sin θ

ω2
x

+ 2aμ1 sin θ

)
a

∫ π

0
sin2 θ dθ

+ 2a2μ1 sin θ

∫ 0

−π

sin2 θ dθ = 0 (27)

thus, suppressing the forcing fundamental harmonic
on the x-mode. If this approach is followed, the peri-
odicity conditions on x(θ) are automatically satisfied,
as a consequence of the periodicity of the forcing and
removing resonance, so that only continuity must be
enforced.

Moving to the passive y-coordinate, the boundary
conditions are imposed by requiring:

y−
1 (0) = y+

1 (0), ẏ−
1 (0) = ẏ+

1 (0),

y−
1 (−π) = y+

1 (π), ẏ−
1 (−π) = ẏ+

1 (π)
(28)

and the following system in the C±
1 , D±

1 constants is
found:

⎡
⎢⎢⎣

1 0 −1 0
0 λ 0 −λ

c(πλ) s(πλ) −c(πλ) s(πλ)

−λs(πλ) λc(πλ) −λs(πλ) −λc(πλ)

⎤
⎥⎥⎦

×

⎛
⎜⎜⎜⎝

C+
1

D+
1

C−
1

D−
1

⎞
⎟⎟⎟⎠= acyx

ω2
x(λ

2 − 1)

⎛
⎜⎜⎝

0
−1
0
1

⎞
⎟⎟⎠ (29)

where c and s denote cosine and sine functions, re-
spectively. Differently from the active variable, the
matrix is nonsingular. In fact, the undamaged sys-
tem does not admit 2π -periodic motions in the y-
coordinate, since λ �= 1. Forcing terms, however, make
the y-response 2π -periodic, if the previous equations
are satisfied. By solving them, a unique solution is

found:

C+
1 = C−

1 = acxy cot(πλ/2)

2λ(1 − λ2)ω2
x

,

D+
1 = −D−

1 = acxy

2λ(1 − λ2)ω2
x

.

(30)

3.2 Second-order solution

The ε2-order perturbation equations can be dealt with
as previously illustrated. Taking into account equa-
tions (26)–(30), substitution of (15) and (21) into (133)
leads to:

ω2
x(ẍ2 + x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
ω2

x
[cxxx1 + cxyy1

− ω2
x(2μ2 + μ2

1)ẍ0 − 2μ1ω
2
x ẍ1],

θ ∈ [0,π],
1
ω2

x
[−ω2

x(2μ2 + μ2
1)ẍ0 − 2μ1ω

2
x ẍ1],

θ ∈ [−π,0],
(31)

ω2
1

(
ÿ2 + λ2y2

)=
⎧⎪⎨
⎪⎩

cxyx1 + cyyy1 − 2μ1ωxÿ1,

θ ∈ [0,π],
− 2μ1ωxÿ1, θ ∈ [−π,0].

By requiring that the r.h.m. of (311) be orthogonal
to the generating solution, we have the following:

−2μ1ω
2
x

∫ π

−π

ẍ1 sin θ dθ

+ ω2
x

(
2μ2 + μ2

1

)
a

∫ π

−π

sin2 θ dθ

+
∫ π

0
(cxxx1 + cxyy1) sin θ dθ = 0. (32)

By substituting x1(θ) in the integral and performing
time integrations, the second-order frequency correc-
tion is obtained as:

μ2 = πλ(λ2 − 1)[2c2
xy + c2

xx(λ2 − 1)] + 4cxy cot(πλ/2)

8πλ(λ2 − 1)ω4
x

.

(33)



A perturbation method for evaluating nonlinear normal modes of a piecewise linear 385

Fig. 4 Nonsmooth excitations of the second-order perturbation equations (31) and relevant responses; (a) first mode; (b) second mode

Finally, using previous results and solving (31), with
the relevant boundary conditions, we find that:

x2 =
{

A+
2 cos θ + B+

2 sin θ + x̂+
2 , θ ∈ [0,π],

A−
2 cos θ + B−

2 sin θ + x̂−
2 , θ ∈ [−π,0],

y2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C+
2 cos(λθ) + D+

2 sin(λθ) + ŷ+
2 ,

θ ∈ [0,π],
C−

2 cos(λθ) + D−
2 sin(λθ) + ŷ−

2 ,

θ ∈ [−π,0],

(34)

where A2’s, B2’s, C2’s and D2’s constants are reported
in Appendix B together with the particular solutions
x̂2’s and ŷ2’s. The forcing functions in (31) and the
responses (34) are plotted in Fig. 4.

By summarizing and returning to the true time t ,
the x-NNM at the ε2-order, reads:

q(t) = ux

[
a sinΩxt + ε

(
A±

1 cosΩxt + B±
1 sinΩxt

∓ acxx

4ω2
x

Ωxt cosΩxt

)

+ ε2(A±
2 cosΩxt + B±

2 sinΩxt

∓ x̂±
2 (Ωxt,Ωyt)

)]

+ uy

[
ε

(
C±

1 cosΩyt + D±
1 sinΩyt

± acyxH [Ωxt]
ω2

x(λ
2 − 1)

sinΩxt

)

+ ε2(C±
2 cosΩyt + D±

2 sinΩyt

∓ ŷ±
2 (Ωxt,Ωyt)

)]
(35)

where:

Ωα = ωα

(
1 + εμ1 + ε2μ2

)
, α = x, y (36)

are the nonlinear frequencies and the upper sign must
be taken when t ∈ [0,π/Ωx] and the lower when t ∈
[−π/Ωx,0]. It should be noted that both frequencies,
the active ωx and the passive ωy , are modified by the
same factor, which depends on the damage intensity ε

and is independent of a, as expected for a piecewise
oscillator and in accordance with [28, 29].

3.3 Stability analysis

The stability of the periodic solution so far determined
is analyzed through Floquet’s theory. By denoting by
qs(t) = qs(t + 2π/Ωx) the steady-state periodic solu-
tion and by q̃(t) its perturbation, with ‖q̃‖ � ‖qs‖,

q(t) = qs(t) + q̃(t) (37)

is posed in the equation of motion. Since

H
[
aT q
]= [aT qs

]+ δ
[
aT qs

]
aT q̃ + · · · (38)

the variational equation, linearized in q̃(t), reads

M ¨̃q + (K0 − εH
[
aT qs

]
K2
)
q̃ = 0 (39)

having taken into account that δ[aT qs]qs does not
furnish contribution to the solution. The variational
equation is an o.d.e. with periodic coefficients vary-
ing with a nonsmooth law. According to Floquet’ the-
ory, the stability of qs(t) is governed by the charac-
teristic multipliers γ of the monodromy matrix, i.e.,
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the matrix of a fundamental system of solutions eval-
uated at t = 2π/Ωx , obtained by imposing linearly
independent initial conditions q̃i (0) = δij , ˙̃qi(0) = 0
and q̃i (0) = 0, ˙̃qi(0) = δij (j = 1,2), with δij the Kro-
necher symbol. If all the magnitude of the charac-
teristic multipliers γk (k = 1, . . . ,4) are smaller than
one the periodic solution is asymptotically stable, if
the magnitude of only one characteristic multipliers
γk is larger than one, it is unstable. Here, the mon-
odromy matrix has been obtained by numerically in-
tegrating the variational equation. Analytical solutions
have been left for future investigations.

4 Numerical solution of nonlinear normal modes

To verify the approximation of the perturbative solu-
tion and investigate the global dynamics of some cases
of the piecewise system, a computational approach has
been developed. In searching the periodic solutions, it
is convenient to rewrite the system (6) in the phase
space:

ẋ = A(x; ε)x, x(0) = x0 (40)

where x = (q, q̇)T . Periodic solutions x̂(t;x0) of pe-
riod T are found as roots of the following equations:

x(T ;x0) − x0 = 0, A(x; ε)x0 · (x − x0) = 0 (41)

where the last condition fixes the phase along the or-
bit and represents the Poincaré phase condition. From
a computational point of view, the procedure valid
for generic autonomous systems can be simplified for
piecewise linear systems. Because of the conservative
character of the latter, it is possible to limit the re-
search of the initial conditions x0 in the configura-
tion space along the isoenergetic curves C(ε) = {q |
1/2qT K(q; ε)q = H}. Moreover, since for each solu-
tion x̂(t;x0) of (40) the similarity properties hold [28],
namely:

x̂(t;αx0) = αx̂(t;x0) (42)

it is possible to restrict the initial conditions to one
isoenergy curve only, e.g., H0. This circumstance re-
moves the arbitrariness of the initial phase, so that
the independent parameters are only two, namely a
configuration parameter and the period T . In Fig. 2,
the isoenergetic curve H0 is shown. This curve is of

smooth type, since in correspondence of the discon-
tinuity boundary η = 0 (dashed line in Fig. 2), the
two curves relative to the damaged and the undam-
aged system joint with the same tangent because of
continuity of the restoring bilinear force. Computa-
tional efficiency is improved when the periodicity gap
�(T ,x0) := x(T ;x0) − x0 is projected onto the tan-
gent to the level set H0 (w1 vector in Fig. 2) and on
the direction of the Hamiltonian vector field A(x; ε)x
(w2 vector in Fig. 2).

5 Numerical investigation

A parametric analysis of the NNMs of a sample sys-
tem is performed for different values of the damage
parameter ε. The undamaged system is characterized
by the following values of parameters m̃i = 0.5, l̃i =
0.5, k̃i = 1. The linear frequencies and the associated
eigenvectors normalized to the mass matrix are respec-
tively:

ωx = 1.171, ωy = 6.828,

ux =
(

1.082
1.530

)
, uy =

(−2.613
3.695

)
.

(43)

The nonlinear frequencies furnished by the ε2-order
asymptotic expression (36) are plotted in Fig. 5 ver-
sus the damage parameter, here extended up to the ex-
tremum value ε = 1. As expected, both frequencies
monotonically decrease with ε. These analytical re-
sults were compared with results obtained following
the numerical procedure based on the Poincaré map
approach. The percentage errors between the numeri-
cal and ε- or ε2-order perturbation frequencies are re-
ported in Table 1 for both modes. Although the accu-
racy of the perturbation solution naturally deteriorates
for increasing ε, it is still good for large values of the
parameter. It is noted that for any values of ε, the ap-
proximation of the first frequency is better than that
of the second frequency. Moreover, the second-order
approximation remarkably reduces the error.

A comparison between perturbative and numerical
time-histories of the normal coordinates was then per-
formed. Figure 6 shows the first-order, second-order,
and numerical laws x(θ) and y(θ) when ε = 0.25 for
both modes. The x(θ) law is well approximated al-
ready by the first-order perturbation solution, whereas
the y(θ) law is well averaged approximated by the per-
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Fig. 5 Variation of the (a) first- and (b) second-order perturbation frequencies versus damage parameter ε

Fig. 6 Time-histories of the normal coordinates when ε = 0.25; (a) first-mode, (b) second-mode; dashed line ε-order, dotted line
ε2-order, solid line numerical

Table 1 Percentage error �k between numerical and kth-order
perturbation frequencies

ε 1st mode 2nd mode

�1% �2% �1% �2%

0.25 0.25 0.03 0.84 0.16

0.30 0.50 0.18 1.29 0.28

0.50 1.65 0.76 4.45 1.43

turbation solution. In particular, the approximation im-
proves with the order of the asymptotic expansion.

The x(θ) and y(θ) laws are the parametric equa-
tions of a curve, which represents the projection on
the configuration space of the modal line belong-
ing to the phase space. The modal lines associated
with the ε-order time-histories of Fig. 6 are plot-
ted in Fig. 7. It is observed that the perturbation
method furnishes two slightly different curves for
each half-cycle (two-way modal lines), instead of a
unique open curve, since in the two intervals [−π,0]
and [0,π], they are described by different paramet-
ric laws. However, since the curves are very close
to each other, it is possible to refer to only one of



388 F. Vestroni et al.

Fig. 7 Two-wise ε-order modal lines in the normal coordinate space when ε = 0.25; (a) first-mode, (b) second-mode

Fig. 8 Modal lines in the normal coordinates space when ε = 0.25; (a) first-mode, (b) second-mode; dashed line ε-order, dotted line
ε2-order, solid line numerical

Fig. 9 Modal lines in the configuration-space for the
first-mode; (a) ε = 0.25; (b) ε = 0.50; dashed line ε-order, dot-
ted line ε2-order, solid line numerical

them. The associated modal lines, where the y-scale
is magnified with respect to the x-scale, are plotted in
Fig. 8.

Due to nonlinearities, the linear x-mode line is
slightly bent in the first mode, and remarkably shifted
in the second mode. Both effects are fairly well cap-
tured by the perturbation method. When the curves
are plotted (in the same scale) in Lagrangian coordi-
nates, they assume the shapes shown in Figs. 9a and
10a, while in Figs. 9b and 10b, the curves are drawn
for ε = 0.50. Comparison among the first and second
modal curves highlights some differences, namely:
(a) the first modal curves are slightly bent in sev-
eral waves, while the second modal curves are nearly
straight; (b) the second modal curves undergo a more
marked drift than the first modal curves, with differ-
ences increasing with ε; (c) the shape of the first modal
curve depends on ε, while the second is independent of
it. The perturbation solution throws light on such be-
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Fig. 10 Modal lines in the configuration-space for the sec-
ond-mode; (a) ε = 0.25; (b) ε = 0.50; dashed line ε-order, dot-
ted line ε2-order, solid line numerical

haviors. First of all, the occurrence of drift is explained
by the ε-order perturbation equations, from which it
emerges that the forcing term (see (202)) consists of
an intermittent signal having constant sign (Figs. 4
and 5). Moreover, since nonlinear forces consist of
self-equilibrated couples acting at hinge 2 (namely, the
gap of the internal moment), nonlinearities in the uy -
mode are stronger than those in the ux -mode due to
larger relative rotations. This circumstance entails that
the contribution of uy to the first NNM is greater than
the contribution of ux to the second NNM, thus ex-
plaining why the latter remains almost linear. In ad-
dition, the perturbation solution (see (35)) shows that
the passive mode participates in the NNM with two
contributions: a forced motion at the basic frequency,
and a free motion at the (slightly modified) proper fre-
quency, which is higher than the basic frequency in the
first NNM and smaller than the basic frequency in the
second NNM as is evidenced in Fig. 6, thus explaining
the presence (or absence) of waves in the modal lines.

Stability analysis of NNMs is then performed.
Asymptotic analysis of the first mode shows that
(Fig. 5a): at ε 
 0.28 a flip critical condition arises,
i.e., two eigenvalues γi (i = 1,2) of the monodromy
matrix leave the unit circle at Re(γi) = −1; at ε 
 0.31,

they return to the unit circle always with Re(γi) = −1;
at ε 
 0.64 another critical condition occurs, in par-
ticular, two eigenvalues leave the unit circle with
Re(γi) = 1 (divergence bifurcation). Consequently, in
the intervals A and C of Fig. 5a, the first NNM is sta-

Fig. 11 Superabundant normal modes when ε = 0.3

ble, while in the intervals B and D are unstable. The
second mode is found to be stable in the whole range
of the parameter ε. The stability analysis was repeated
following the numerical Poincaré map approach. It
confirmed that the second mode is always stable while
it was found that at ε 
 0.72 (i.e., at a slightly dif-
ferent value of the perturbation result), the first mode
encounters a turning point and is unstable in the in-
terval [0.28–0.31] coincident to that evidenced by the
perturbation solution. In particular in the B region,
additional substantially different solutions of period
approximately double those of the first mode were fur-
nished by the numerical analysis; it was demonstrated
that in this region the system exhibits superabundant
modes. Their shape is markedly different from the ba-
sic shape and they are shown in Fig. 11, when ε = 0.3.

6 Conclusions

A piecewise two degrees-of-freedom system, repre-
sentative of a cracked beam was analyzed. It belongs
to the class of nonsmooth systems that are candidates
to exhibit a number of nonlinear normal modes greater
than the degrees of freedom. An analytical solution, up
to ε2-order, was obtained by an enhanced Lindstedt–
Poincaré method, which makes it possible to give a
closed form expression to the modification of frequen-
cies and mode shapes. Differently from the classical
approach, valid for smooth systems, the complemen-
tary solution of the passive coordinate equations must
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here be taken into account, in order to satisfy con-
tinuity and periodicity of motion. As a result, both
passive and active frequencies, modified by the same
damage-dependent factor, contribute to the motion al-
though they are incommensurable. Moreover, secular
terms appear in the solution that do not diverge in the
finite period of motion. Results of the stability analy-
sis show that while the second mode is always sta-
ble, the first mode is unstable for some values of the
damage parameter. Numerical results, obtained by a
Poincaré map approach, confirm the perturbation re-
sults and also show the existence of superabundant
normal modes which arise in the unstable interval of
the first mode.
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Appendix A: Higher-order solutions involving the
Dirac function

Although the perturbation solution, here developed
up-to ε2-order, does not involve the Dirac function,
nor its derivatives, it is worth discussing how to deal
with higher-order perturbation equations, where such
a generalized function in contrast appears. The equa-
tions to solve have the following form:

⎧⎪⎨
⎪⎩

ẍ + ω2x = δ[e0 sin θ ]F(θ) + δ
′ [e0 sin θ ]G(θ)

+ · · · + R(θ),

x(−π+) = x(π+), ẋ(−π+) = ẋ(π+)

(44)

where, by accounting for (15), η0 = e0 sin θ , e0 > 0,
has been posed. Moreover, F(θ), G(θ), and R(θ) are
2π -periodic known functions, with R(θ) collecting all
the no-δ terms. All these functions are generally dis-
continuous at θ = kπ , k = 0,±1,±2, . . . , i.e., they
are of the type plotted in Fig. 4. Derivatives of δ higher
than first also appear, but δ

′
is sufficient to illustrate

the procedure. It should be noted that since the forcing
δ-terms represent a train of (generalized) impulses ap-
plied at θ = kπ , the periodicity conditions, (19), must
be changed as in (442); in contrast, no continuity is
enforced at θ = 0 (see 18), since (441) holds in the
(−∞,+∞) interval.

By using the Duhamel integral, and writing the
response to the unitary impulse as h(θ) := H(θ) ×
sin(ωθ)/ω, the general solution to (44), for θ ∈
[−π+,+π+], reads

x(θ) = A cos(ωθ) + B sin(ωθ) + xR(θ)

+ 1

ω

∫ 0

−π+
δ[e0 sin θ ]F(τ)H [θ − τ ]

× sin
(
ω(θ − τ)

)
dτ

+ 1

ω

∫ θ

−π+
δ

′ [e0 sin θ ]G(τ)H [θ − τ ]

× sin
(
ω(θ − τ)

)
dτ (45)

where xR(θ) is the answer to R(θ), and A and B are
arbitrary constants to be determined via the periodic-
ity conditions along the lines already discussed (see
Sect. 3.1). By using known properties of the Dirac
function, it is found that

∫ +∞

−∞
δ[sin θ ]f (θ) dθ =

+∞∑
k=−∞

f (kπ),

∫ +∞

−∞
δ

′ [sin θ ]f (θ) dθ = −
+∞∑

k=−∞
(−1)kḟ (kπ)

(46)

where the second integral has been obtained via inte-
gration by parts. With (46), the general solution (45)
becomes:

x(θ) = A cos(ωθ) + B sin(ωθ) + xR(θ)

+ 1

ωe0

{
H [θ ]F (0±) sin(ωθ)

+ H [θ − π]F (π±) sin
(
ω(θ − π)

)}

+ 1

ωe2
0

{
H [θ ](G(0±)ω cos(ωθ)

− G′(0±) sin(ωθ)
)

+ H [θ − π](G(π±))ω cos
(
ω(θ − π)

)
− G′(π±) sin

(
ω(θ − π)

)}
. (47)

Equation (47) expresses a component of motion x(θ)

as the sum of the answers to prescribed jumps of veloc-
ities, proportional to F(kπ), and jumps of displace-
ments, proportional to G(kπ). Both kinds of jumps
are approximations of changes of state really occur-
ring in short-time intervals �θk = O(ε) (see Fig. 12).
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Fig. 12 Perturbation of
H [η(ε)] around
η0 = e0 sin θ , leading to
short-time excitations

These intervals both follow (�θk > 0) or precede
(�θk < 0) the instants θ = kπ , at which jumps have
been lumped, as consequence of having expanded
H [η(ε)] by the series (12). The sign of �θk depends
on the sign of the perturbation �η(kπ), hence, by the
sign of its leading part η1(kπ) (namely, �θ0 > 0 if
η1(0) < 0, �θ1 > 0 if η1(π) > 0, and vice versa).

This interpretation of the mechanical phenom-
enon permits resolving the mathematical ambiguities
present in (47), due to the discontinuity of F and G

functions. Accordingly, the F - and G-values at 0+

(and π+) will be taken if �θ0 > 0 (and �θ1 > 0) and
the values at 0− (and π−) will be taken if �θ0 < 0
(and �θ1 < 0).

Appendix B: Solution to the second-order
perturbative equations

The constants appearing in (34) assume the following
expressions:

A+
2 = aπ(3(λ2 − 1)c2

xx + 8c2
xy)

32(λ2 − 1)ω4
1

,

B+
2 = −a(8 cot(πλ

2 )c2
xy + πλ((−2 + π2)(λ2 − 1)2c2

xx − 4(λ2 − 5)c2
xy))

32πλ(λ2 − 1)2ω4
1

,

(48)

A−
2 = a(16 cot(πλ

2 )c2
xy + πλ(λ2 − 1)(5(λ2 − 1)c2

xx + 8c2
xy))

32λ(λ2 − 1)2ω4
1

,

B−
2 = −a(8 cot(πλ

2 )c2
xy + πλ(λ2 − 1)((2 + π2)(λ2 − 1)c2

xx + 4c2
xy))

32πλ(λ2 − 1)2ω4
1

,

(49)
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C+
2 = a csc2(πλ

2 )(2π(λ2 − 1) cos(πλ)cxxλ
2 + sin(πλ)((λ2 + 7)cxx − 8cyy)λ − 2π(λ2 − 1)cyy)cxy

32(λ3 − λ)2ω4
1

,

D+
2 = a(2π(λ2 − 1) cot(πλ)cxxλ

2 + ((λ2 + 7)cxx − 8cyy)λ + 2π(λ2 − 1) csc(πλ)cyy)cxy

16(λ3 − λ)2ω4
1

,

(50)

C−
2 = − a csc2(πλ

2 )

32λ3(λ2 − 1)2ω4
1

(
2π(λ2 − 1) cos(πλ)cxxλ

3 − 2π(λ2 − 1)(2λ2cxx − cyy)λ

+ sin(πλ)
(
2(5λ2 − 1)cyy − λ2(λ2 + 7)cxx

))
cxy,

D−
2 = a(−cxxλ

4 + 2π(λ2 − 1) cot(πλ)cxxλ
3 − 7cxxλ

2 + 10cyyλ
2 + 2π(λ2 − 1) csc(πλ)cyyλ − 2cyy)cxy

16λ3(λ2 − 1)2ω4
1

.

(51)

The particular solutions present in the same equations are

x̂+
2 = πc2

xx

32ω4
1

a cos θ + πλ(λ2 − 1)((λ2 − 1)c2
xx + 2c2

xy) − 4 cot(πλ
2 )c2

xy

16πλ(λ2 − 1)2ω4
1

a sin θ

+ cot(πλ
2 )c2

xy

2λ(λ2 − 1)2ω4
1

a cosλθ + c2
xy

2λ(λ2 − 1)2ω4
1

a sinλθ + πc2
xx

16ω4
1

aθ sin θ

− πλ(λ2 − 1)((λ2 − 1)c2
xx + 2c2

xy) − 4 cot(πλ
2 )c2

xy

8πλ(λ2 − 1)2ω4
1

aθ cos θ − c2
xx

32ω4
1

aθ2 sin θ, (52)

x−
2 = −πc2

xx

32ω4
1

a cos θ − 4 cot(πλ
2 )c2

xy + πλ(λ2 − 1)((λ2 − 1)c2
xx + 2c2

xy)

16πλ(λ2 − 1)2ω4
1

a sin θ

+ 4 cot(πλ
2 )c2

xy + πλ(λ2 − 1)((λ2 − 1)c2
xx + 2c2

xy)

8πλ(λ2 − 1)2ω4
1

aθ cos θ − πc2
xx

16ω4
1

aθ sin θ − c2
xx

32ω4
1

aθ2 sin θ, (53)

ŷ+
2 = πcxxcxy

4(λ2 − 1)ω4
1

a cos θ + ((λ2 − 5)cxx + 4cyy)cxy

4(λ2 − 1)2ω4
1

a sin θ + cot(πλ
2 )(λ2cxx − 2cyy)cxy

16λ3(λ2 − 1)ω4
1

a cosλθ

+ (λ2cxx − 2cyy)cxy

16λ3(λ2 − 1)ω4
1

a sinλθ − cxxcxy

4(λ2 − 1)ω4
1

aθ cos θ − (λ2cxx − 2cyy)cxy

8λ2(λ2 − 1)ω4
1

aθ cosλθ

+ cot(πλ
2 )(λ2cxx − 2cyy)cxy

8λ2(λ2 − 1)ω4
1

aθ sinλθ, (54)

y−
2 = cot(πλ

2 )cxxcxy

16(λ3 − λ)ω4
1

a cosλθ − cxxcxy

16(λ3 − λ)ω4
1

a sinλθ + cxxcxy

8(λ2 − 1)ω4
1

aθ cosλθ

+ cot(πλ
2 )cxxcxy

8(λ2 − 1)ω4
1

aθ sinλθ. (55)
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