
ACM ICPC 2011 Asia Region Amritapuri Site

Onsite Editorials

 A - Magic Grid

 A - Magic Grid

● Given a RxC grid, Harry starts at (1,1) and the Sorcerer's
stone is at (R,C)

● At each cell, Harry either gains/loses A[i][j] strength

● Find the minimum strength harry needs to start with, to

collect the Sorcerer's Stone

Problem statement

Solution Idea (A - Magic Grid)

● If Harry starts with strength = S, can he reach (R,C) starting
from (1,1) ?

● Can run a DP (Dynamic Programming) in row major order

and check if S is enough

● Binary Search on the final answer S

● Can also be done using a single DP backwards

 B - Save the Students

 B - Save the Students

● Harry's spell can take the shapes of triangle, circle or
square, and all who fall within that shape (including its
boundaries) are protected.

● Find the number of people saved by Harry's spells.

Problem statement

Solution Idea
(B - Save the Students)
* Look at all the points in a suitable range and count points
which lie within any of the shapes.
* Point in within a square with opposite corners (x1,y1) and (x2,
y2), if x1 <= x <= x2, and y1 <= y <= y2.
* Point is within a circle, if it's distance from the center of the
circle <= the radius of the circle.
* Point P is within a triangle ABC, the sum of the areas of
triangles PAB,PAC,PBC should be equal to area of ABC.

* Tricky case: Some shape might be defined by positive
integers, but it might encompass points with negative
coordinates.

 C - Robbing Gringotts

 C - Robbing Gringotts

● Vault i contains X[i] gold items having weights of the gold
items g[i][1],g[i][2],...,g[i][X[i]].

● Death Eater j has a bag which can hold weight v[j]. They

can fill up his bag completely to its capacity by taking some
subset of the objects present in a vault.

● Find the maximum weight of gold they can take away by

planning their strategy correctly.

Problem statement

* Two parts: First is to determine if Deatheater i will rob vault j.
The second is determine the maximum gold they can get in an
optimal assignment.
* For the first part (subset sum problem), use Meet-in-the-
Middle.
* For the second part, use a Mincost Max Matching algorithm
(hard to code).
* Alternatively for the second part, greedy bipartite matching
possible after sorting the Deatheaters in descending order by
their bag weights. (simple dfs based bipartite matching)
* Complexity: O(N * (M + |Xi|) * 2^(|Xi| / 2) + N * N * M).

Solution Idea
(C - Robbing Gringotts)

D - Wizarding Duels

* Sort the numbers.

* Sequence valid if for each i, (sum of all the array numbers
from 0 to i) >= i * (i + 1) / 2. Also, total sum = n * (n - 1) / 2.

* DP with state (index, previous_number, current_sum) and O
(1) transition - O(N^4) complexity.

* With state (index, previous_number, current_sum), you can
greedily pick next number.
Low = max (previous_number, index * (index + 1) / 2)
High = (n * (n + 1) / 2 - current_sum) / (n - index)
At each step, take the closest number in [Low, High] and
proceed greedily - O(N * logN) complexity.

* Can also be solved with max-flow.

Solution Idea (D - Wizarding Duels)

E - Distinct Primes

* Iterate through all numbers from 1 and check which satisfy the
condition (having at least 3 distinct prime factors) and output
the nthnumber

Solution Idea (E - Distinct Primes)

F - Magical Bridges

Problem statement & Solution Idea
(F - Magical Bridges)
● Problem : Given a circular lane having N buildings and M

bridges across their floors, answer a lot of shortest path

● Solution :
○ Imagine it as a graph with a node for each floor and

edges between the floors directly connected
○ Observation : Only a very few nodes have degree > 2
○ Pick only those canonical nodes and run all pairs shortest

path (Floyd-Warshalls O(N^3) fits in time)
○ Query : Shortest path between qfi and qfj

■ Each floor qfi can connect through canonical nodes
only (at most two - one above and one below)

■ Binary Search for them

G - Here be Dragons

* Check if the input string has the character 'D' or not :)

Solution Idea (G - Here be Dragons)

H - Array Diversity

Problem statement & Solution Idea
(H - Array Diversity)
Problem asks for lists containing the minimum and maximum
Part 1:
Counting number of subsequences which contain both the
minimum and maximum. Tricky case when array contains only
1 distinct element - (4, 4, 4, 4)
The answer for general case is (2count_min-1) * (2count_max -1) *
2rest

Answer for tricky case: 2N-1

Take care with overflow and mod
The runtime of this algorithm is O(N) for counting and O(N) or
O(logN) (using fast exponentiation) for computing the powers of
2.

Part 2:
Counting number of substrings for array A[1..N]
Lets say that a particular substring starts at index i and ends at
index j.
Now we iterate for i, and find the smallest j such that the
segment A[i..j], A[i..j] must contain both the minimum and the
maximum. Now the number of substrings starting at index i is f
(i) = N-j+1. The final answer is sum of all f(i) for 1 <= i <= N
But this O(n^2) and we need something faster.
Now, lets say for index i, we know the index j. For index i+1, if
the corresponding index is j', we can easily see that j <= j'
Thus, we can use a simple algorithm which maintains the count
of min and max and updates j to j' when we increment i. The
amortized runtime of this algorithm is be O(n).

Solution Idea (H - Array Diversity)

I - Generations

* For each dragon c, compute d[i], which is the earliest birth
year of a dragon born i generations later.
* We get k lists, where k is the number of children.
* Merge these k lists into one list cleverly by merging in O
(smaller depth list) at each step.
* Binary search on the final merged list to get the answer for
dragon c.
* Complexity: O(n log n).

* Alternate solution: Do a pre-order traversal so all descendants
of any dragon are positioned contiguously.
* For each dragon, do range query to compute max depth
amongst in that range amongst those which overlap with query
interval.

Solution Idea (I - Generations)

J - Goblin Wars

Solution Idea (J - Goblin Wars)

* Do a BFS simultaneously with each of the civilizations as the
starting point. The state is (x, y) which denote the coordinate of
current cell.

* When transitioning between states, apart from the usual BFS
conditions, note down the set of possible parents which can
lead you to this current state for the same distance.

* Final observation is, for each state, you don't need to note
down more than 2 parents. 0 parents - '.' ; 1 parent - character
of parent ; >= 2 parents - '*'

* Complexity - O(R * C).

Trivia

* 1265 submissions
* 34 Queries asked
* 393 Balloons
* Easiest Problem : Problem G
* Toughest Problem : Problem D
* Max TLE : Problem J
* Max result: Wrong Answer 41.7%
* First (correct) Submission: Team Proof, Problem G (05:27)

