
HAL Id: hal-00789151
https://hal.science/hal-00789151v1

Submitted on 3 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Slot Groups - A Data Structure for
QoS-Constrained Advance Bandwidth Reservation and

Admission Control
Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Time Slot Groups - A Data Structure for QoS-Constrained
Advance Bandwidth Reservation and Admission Control. 10th IEEE International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Sep 2008, Timisoara, Roma-
nia. pp.354-357, �10.1109/SYNASC.2008.99�. �hal-00789151�

https://hal.science/hal-00789151v1
https://hal.archives-ouvertes.fr

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Time Slot Groups - A Data Structure for QoS-Constrained Advance Bandwidth

Reservation and Admission Control

Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Computer Science and Engineering Department

Politehnica University of Bucharest

Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract— In this paper we present Time Slot Groups (TSG), a novel, efficient data structure for QoS-constrained advance

bandwidth reservation and admission control. The data structure divides the time horizon into T equally sized time slots and can

be used for serving efficiently complex bandwidth reservation requests specifying the duration of the reservation, the minimum

required bandwidth, the earliest possible starting time and the latest possible finish time. The data structure supports reservation

queries in time O(k+(T/k)·log(k)) and reservation updates in time O(k+(T/k)), where k is a user-defined parameter.

I. INTRODUCTION

In this paper we present a novel, efficient data structure which is used for offering bandwidth guarantees to non-preemptive
data transfers on a single network link, subject to time constraints, in the following context: applications submit bandwidth
reservation requests to a bandwidth broker which either satisfies the requests or rejects them. The data structure divides the
time horizon upon which bandwidth reservations are performed into T discrete equally-sized time slots and supports efficiently
the following types of operations: find(s1,s2,D,B) - finds a time slot interval [s,s+D-1], where at least a given amount of
bandwidth B is available during every time slot of the interval, subject to the following QoS constraints: the length of the
interval is D time slots, the earliest possible starting time slot is s1 and the latest possible finish time slot is s2 (i.e. s1≤s≤s+D-
1≤s2); reserve(s1,s2,B) - decreases by B the available bandwidth for each slot within the time slot interval [s1,s2] (if the value of
B is negative, an increase takes place). The reserve (update) operation takes O(k+(T/k)) time and the find (query) operation
takes O(k+(T/k)·log(k)) time, where 1≤k≤T is a user-defined parameter (e.g. a constant value or a function f(T)). Some
situations where this functionality is useful are the transfer of multimedia streams to customers who are only available within
some specific time intervals or the transfer of large data files in Grids and other distributed systems.

The rest of this paper is organized as follows. In Section II we present related work. In Section III we present an enhanced
version of the standard time slot array, which is the building block for the Time Slot Groups data structure presented in Section
IV. The performance of the data structure is tested in Section V, where we also conclude.

II. RELATED WORK

Many resource reservation and scheduling techniques [5] make use of efficient data structures capable of improving the
response time. The simplest one is an array storing the available bandwidth for each time slot, but this takes O(T) time per
operation. The segment tree [1] and the bandwidth tree [6] provide a time complexity of O(log(T)) per operation, but only for
simple requests: for D=1 (D=s2-s1+1) we need a range maximum (minimum) query operation, together with a range addition
update. A dynamic version of an augmented segment tree is proposed in [2] and a linked-list data structure is presented in [7].
None of the data structures we mentioned (or that we are aware of) can efficiently support the complex requests our structure
does. All of them exhibit linear (O(T)) or superlinear (O(T·log(T))) time for at least one of the two operations, while our data
structure takes sublinear time for both. We note that we incorrectly claimed in [1] that a segment tree or block partition can
solve a more relaxed version of this problem.

III. THE ENHANCED TIME SLOT ARRAY

We first show how a time slot array (TSA), availbw, can support the two operations. The slots are numbered from 0 to T-1
and the time parameters and the operations’ results are expressed in time slots. We give the reserve function below:

reserve_TSA(s1 , s2 , B):
for s = s1 to s2 do availbw[s] = availbw[s] – B

The bandwidth of a time slot interval [sa, sb] is:

]}{availbw[sminB
sbssa

interval
≤≤

= . (1)

In the find function we are looking for an interval of D slots, with a bandwidth greater than or equal to B. We will traverse
the [s1,s2] interval with a sliding window consisting of D time slots and maintain a min-heap with the available bandwidths of

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

the time slots in the window. When we move the right end of the window one position to the right, from s (s≥s1+D-1) to s+1,
we remove from the heap the (leftmost) time slot s-D+1 (which now falls outside of the window) and insert into the heap the
time slot s+1. We can reduce the time complexity from O(T·log(T)) to O(T), if we replace the min-heap by a double-ended
queue (deque) [4] which stores (time slot, available bandwidth) pairs. The elements of the deque are sorted increasingly
according both to the bandwidth and the time slot. The first element of the deque is always the one with the minimum
bandwidth among the slots inside the current window. As the right end of the window slides to the next slot s, all the pairs at
the end of the deque whose bandwidths are larger than the available bandwidth of slot s are removed. The element at the front
of the deque is removed when it falls outside of the sliding window. This takes O(T) time, because we insert each time slot
once and remove it at most once from the deque.

find_TSA(s1 , s2 , D, B):
deque = empty

for s = s1 to s2 do

while ((not deque.isEmpty()) and (deque.getLast().value≥

 availbw[s])) do deque.removeLast()

 deque.addLast((time_slot = s, value = availbw[s]))

 if ((s–s1+1>D) and (deque.getFirst().time_slot=s-D)) then

 deque.removeFirst()

if ((s–s1+1≥D) and (deque.getFirst().value≥B)) then

 return [s-D+1,s]
return “no interval found”

The enhanced time slot array handles differently only the query and update function calls referring to all the slots (between
s1=0 and s2=T-1). These calls will be named full-period calls. A full-period update needs to decrease the bandwidth of each
time slot by the same value B. Instead of doing this, only the value of a variable called globalbw is modified. Thus, the real
available bandwidth of each slot s will be availbw[s]+globalbw. For each full-period query, we will find the answer in O(1)
time, by using a previously computed array sibw. sibw[L] contains the maximum bandwidth of an interval of L slots, as well as
the actual interval. The sibw array will be computed after every non-full-period update. An efficient way to compute the sibw
array would be to sort the values of the available bandwidths of the T time slots increasingly into an array called values. We
will maintain a data structure (balanced tree) of (disjoint) time slot intervals which, initially, contains only one time slot
interval consisting of all the T time slots. Then we will traverse the sorted values array. Every value will split the time slot
interval inside which it is located into two time slot intervals (or one if it is located at the end of some time slot interval, or zero
if the time slot interval consisted of just one slot). We will also have a binary max-heap with the length of the current time slot
intervals. Using the balanced tree, we can retrieve easily the time slot interval into which a given time slot resides. Before
performing a split at the ith value, we will retrieve the maximum value L from the max-heap, meaning that a time slot interval
of L time slots having a bandwidth equal to values[i] exists. We will store this interval at the position sibw[L]. After
performing the split, the time slot interval which was split is removed both from the heap and the balanced tree and will be
replaced by the resulting smaller intervals (which are inserted in the tree and the heap). After traversing all of the values (and
performing all the splits), we traverse the array sibw from the largest length to the smallest one; if no interval was stored for a
length L, then we use the time slot interval for length L+1, removing from it the leftmost or the rightmost time slot. The overall
time complexity is O(T·log(T)), because each of the T splits takes O(log(T)) time.

We can compute the sibw array more efficiently, in O(T) time. If we consider the available bandwidth of a time slot s as the
“height” of that time slot, we obtain a histogram. We can find all the O(T) maximal area rectangles inside the histogram in
O(T) time, by adapting an algorithm presented in [3] for finding the largest area rectangle full of ones in a binary matrix. The
algorithm maintains a stack of (time slot, bandwidth) pairs, sorted increasingly both according to the slot number and the
bandwidth value. If, after processing a slot s, the stack contains some pair (s’,B), then the time slot interval [s’,s] has
bandwidth B and is the longest interval ending at slot s having this bandwidth. The pseudocode of the (first version of the)
functions is given below:

find_ETSA_v1(s1 , s2 , D , B):
if (s1=0) and (s2=T-1) then

 if (sibw[D].bw + globalbw ≥ B) then

 return [sibw[D].s1 , sibw[D].s2]

 else return “no interval found”

else return find_TSA(s1 , s2 , D , B-globalbw)

reserve_ETSA_v1(s1 , s2 , B):
if ((s1=0) and (s2=T-1)) then globalbw=globalbw–B else

 reserve_TSA(s1 , s2 , B)

 computeSibw()

computeSibw():
stack=empty; availbw[T]=-∞

sibw[L]=undefined, for each L=1,…,T

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

for s=0 to T do

 lslot=s

 while ((not stack.isEmpty()) and (stack.top().bw≥availbw[s])) do

 L=s-stack.top().leftmost_slot; H=stack.top().bw

 if (H>availbw[s]) then

 if ((sibw[L]=undefined) or (sibw[L].bw<H)) then

 sibw[L].s1= stack.top().leftmost_slot

 sibw[L].s2=s-1; sibw[L].bw=H

 lslot=stack.top().leftmost_slot; stack.pop()

 stack.push((leftmost_slot = lslot , bw=availbw[s]))

for L=T-1 downto 1 do

 if (sibw[L]=undefined) then

 sibw[L].s1=sibw[L+1].s1; sibw[L].bw=sibw[L+1].bw

 sibw[L].s2=sibw[L+1].s2 -1
 compute minbw, minBwLtoR and minBwRtoL

Because by using ETSA_v1, updating short intervals takes a longer time, we will maintain a dirty flag for the sibw array.
This way, after each non-full-period update, the dirty flag is set and at the next full-period query, the sibw array is recomputed.
The complexity of the find function for a full-period query becomes O(1) in an amortized sense. The second version of the
functions (ETSA_v2) is shown below:

find_ETSA_v2(s1 , s2 , D, B):
if ((s1 = 0) and (s2 = T-1) and (dirtyFlag.isSet())) then

 computeSibw()

 dirtyFlag.clear()

return find_ETSA_v1(s1 , s2 , D , B)

reserve_ETSA_v2(s1 , s2 , B):
if ((s1 = 0) and (s2 = T-1)) then globalbw = globalbw – B else

 reserve_TSA(s1 , s2 , B)

 dirtyFlag.set()

The enhanced time slot array is augmented with three extra functions, getMinBw, getMinBwLeftToRight and
getMinBwRightToLeft, computable in O(1) time. getMinBw returns the minimum bandwidth of any time slot. The minimum
value in the availbw array, minbw, is computed in the computeSibw function (in O(T) time). The real minimum bandwidth is
the sum of minbw and globalbw. In the computeSibw function we also compute in O(T) time two arrays: minBwLtoR and
minBwRtoL, defined as follows:

]}{availbw[jmin i]minBwLtoR[
ij0 ≤≤

= , (2)

]}{availbw[jmin i]minBwRtoL[
Tji <≤

= . (3)

The pseudocode of the getMinBwLeftToRight function is shown below. We define the other function
(getMinBwRightToLeft) in a similar manner.

getMinBwLeftToRight(p):
if (p<0) then return +∞

else return minBwLtoR[min{p,T-1}]+globalbw

IV. THE TIME SLOT GROUPS DATA STRUCTURE

We divide the T time slots into ng=O(T/k) groups, containing k consecutive slots each (the last group may contain less than
k slots). Each group of time slots is an enhanced time slot array. The groups are stored in an array tsg and are numbered from 0
to ng-1. Group i contains the slots numbered from (i·k) to ((i+1)·k-1). Within the group, the slots are numbered from 0 to k-1.
The execution of any function of any group takes at most O(k) time. Considering this division into groups, the time slot
interval [s1,s2] of the reserve function can have one of the two types of structures:

• Type A: s1 and s2 lie inside the same group G.

• Type B: s1 is located inside some group G1 and s2 is located inside a group G2>G1.
First, we will compute the group numbers (G1 and G2) and sr1 and sr2, the values of the time slots s1 and s2, relative to their

groups:

 /Gi ksi= , 1,2)(ik modssr ii == . (4)

In the case of a Type A structure, we will simply call the reserve function of the group G with parameters (sr1, sr2, B),
which will be executed in O(k) time. For a Type B structure, we will update the interval of time slots [sr1, k-1] in G1, the
interval [0, sr2] in G2 and the intervals [0, k-1] for each group between G1 and G2. Updating G1 and G2 takes O(k) time, while
updating the other O(T/k) groups takes O(1) time for each group. The overall complexity is O(k+T/k).

reserve_TSG(s1 , s2 , B):

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

compute G1 , G2 , sr1 , sr2

if (G1=G2) then tsg[G1].reserve_ETSA_v(1/2)(sr1,sr2,B) else

tsg[G1].reserve_ETSA_v(1/2)(sr1 , k-1 , B)

tsg[G2].reserve_ETSA_v(1/2)(0 , sr2 , B)
 for G=G1+1 to G2-1 do tsg[G].reserve_ETSA_v(1/2)(0, k-1 , B)

For the find function, the time slot interval [s1,s2] can also have one of the two types of structures presented previously. We
will also compute the group numbers of s1 and s2 (G1 and G2) and the values sr1 and sr2. If G1=G2, we just call the find function
of G1, with (sr1, sr2, D, B) as parameters. This call takes O(k) time. If G1<G2, then we will first deal with a particular sub-case.
If D is at most k, then the desired slot interval could be completely located within one of the groups G1+1,…,G2-1. For each
such group, we call the find function, with parameters (0, k-1, D, B). Each

Figure 1. All the events for: T=25, k=5, s1=1, s2=22, D=13.

call takes O(1) time. The time complexity of this particular case is O(T/k), as there are O(T/k) groups between G1 and G2. The
interval could also lie in G1 (between sr1 and k-1) or G2 (between 0 and sr2), if D is at most k-sr1, or at most sr2+1,
respectively. Calling the appropriate functions for G1 and G2 takes O(k) time. The case where D>1 and the desired slot interval
might cross several groups is presented next.

Before going any further, we will introduce several concepts. A candidate interval is an interval of D time slots fully
included inside [s1,s2]. There are s2-s1-D+2=O(T) candidate intervals, one for each possible starting time slot. We will traverse
the [s1,s2] interval from left to right with an interval consisting of D time slots, named the event interval. However, the first and
last slots of this interval take only a special subset of values, each corresponding to an event. The set of all events is {[sfirst, slast]

| [sfirst, slast] ⊆ [s1, s2] and (sfirst=s1 or sfirst=the first time slot of some group or slast=s2 or slast=the last time slot of some group)

and (s2=s1+D-1)}. The events can be sorted from left to right, according to their leftmost time slot (see Fig. 1).
The slot interval [s1,s2] contains at most (T/k)-2 groups between G1 and G2. Thus, the number of events is O(T/k). For each

event E, we will find the candidate interval having the maximum bandwidth, with the first time slot located between the first
slot of E (inclusive) and the first slot of the next event (exclusive). If E is the last event, the next event is considered one slot to
the right. Let’s assume that for the current event E, the first time slot is in the group Gbegin and its relative slot number in that
group is sbegin. Similarly, the ending time slot’s group is Gend and its relative time slot number in that group is send. If E is not the
last event (i.e. the ending slot of E is not s2), then we will also assume that send is not the last time slot in the group Gend (if it is,
we consider send=-1 in the group Gend+1, i.e. right before the first time slot of Gend+1; after this, we also set Gend=Gend+1). If
Gbegin<Gend, we compute in O(1) time the distance dist (in terms of time slots) between E and the next event (if E is the last
event, then dist=1). If we slide the event interval by any number of time slots between 0 and dist-1, the values of Gbegin and
Gend will remain the same (although sbegin and send would increase). Let’s call the groups from Gbegin+1 to Gend-1 interior groups
and let’s assume that we already know their minimum bandwidth Bgroups (the minimum of the values returned by the getMinBw
function of each group). We will define cand(p)=the candidate interval obtained by sliding the current event interval p
positions to the right. For 0≤p≤dist-1, cand(p) contains all the interior groups of the event interval. Only the intersections with
the groups Gbegin and Gend change.

TABLE I. RUNNING TIMES (IN SECONDS): T=262,144 ; K=512(=T1/2).

Total #

of

opera-

tions

Number

of time

slots per

query

Number

of time

slots per

update

Time

Slot

Array

TSG

without

dirty

flag

TSG

with

dirty

flag

10,000 0 1 - 3000 0.13 1.4 0.1

10,000 0 150,000 -

262,144

8.75 1.17 0.1

10,000 10 - 2000 0 0.31 0.29 0.28

10,000 190,000 -

262,144

0 45.18 0.31 1.16

10,000 210,000 -

262,144

0 55.49 0.45 0.5

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

10,000 10 -

262,144

20,000 -

262,144

18.74 0.62 0.8

Sum of running times : 128.6 4.24 2.94

 We define Bbegin(p)=the minimum bandwidth among the time slots located in the intersection of cand(p) and Gbegin.
Bbegin(p) is computed as getMinBwRightToLeft(sbegin+p) (in O(1) time), called for the group Gbegin. Analogously, we define
Bend(p)=the minimum bandwidth among the time slots located in the intersection of cand(p) with the group Gend. Bend(p) =
tsg[Gend].getMinBwLeftToRight(send + p). Since getMinBwRightToLeft(x) ≤ getMinBwRightToLeft(x+1) for any x, we have
Bbegin(0) ≤ Bbegin(1) ≤ … ≤ Bbegin(dist-1). Similarly, we have Bend(0)≥Bend(1)≥…≥Bend(dist-1). We want to find the value of p
(0≤p≤dist-1) for which min{Bbegin(p), Bend(p)} is maximum. We distinguish between 3 cases:

• Case 1: Bbegin(0)≥Bend(0). The optimal value for p is 0, because for every p, min{Bbegin(p), Bend(p)}=Bend(p) and Bend(0) has
the highest value.

• Case 2: Bbegin(dist-1)≤Bend(dist-1). The optimal value for p is dist-1, because min{Bbegin(p), Bend(p)}=Bbegin(p) and
Bbegin(dist-1) has the highest value.

• Case 3: Bbegin(p)≤Bend(p) for 0≤p≤pw and Bbegin(p)>Bend(p) for pw<p≤dist-1. The value of pw can be found using a simple

binary search. Since dist≤k, the binary search takes O(log(k)) time. Then, the value (p)}} B(p), B{minmax{ endbegin
dist-1p0 ≤≤

is

found either for p=pw or for p=pw+1.
Once the optimal value for p is found (popt), we compute the bandwidth of the candidate interval determined, which is

min{Bgroups, Bbegin(popt), Bend(popt)} and compare it to the required bandwidth. In order to efficiently find the value Bgroups while
moving from the current event to the next, we will use again a sorted deque (intGDQ), as presented in Section III. It is easy to
see that, when moving to the next event, the former rightmost group Gend may become an interior group and the leftmost
interior group may fall outside of the interval of interior groups. Thus, Bgroups can be computed in O(1) time for each event. The
time complexity of the find function is dominated by the computation of the best candidate intervals and is of the order
O(T/k·log(k)+k). For the case of simple requests (i.e. D=1 or D=s2-s1+1), the complexity of the query operation is only
O(k+T/k).

find_TSG(s1 , s2 , D , B):
compute G1 , G2 , sr1 , sr2
if (G1=G2) then return tsg[G1].find_ETSA_v(1/2)(sr1,sr2,D,B) else

 handle the particular sub-cases: D≤k, D≤k-sr1, D≤sr2+1

 fts=s1; lts=s1+D-1; compute Gbegin , sbegin , Gend , send

 intGDQ=empty

 add to intGDQ the groups G in [Gbegin+1, Gend-1] (in this order)

 while (the last event has not been processed) do

 if (send=k-1) then // move to Gend+1

 if (Gbegin<Gend) then

 remove all the elements from the end of intGDQ having a bandwidth larger than the minimum bandwidth of the group Gend

 intGDQ.addLast((grp=Gend, bw=tsg[Gend].getMinBw())

 send=-1 ; Gend=Gend+1

 dist=the distance between the current event and the next event

 compute popt // min{Bbegin(popt),Bend(popt)} is maximum

 if (not intGDQ.isEmpty()) then Bgroups=intGDQ.getFirst().bw

 else Bgroups=+∞

 if ((min{Bbegin(popt), Bend(popt), Bgroups}≥B) and (Gbegin<Gend)) then return [fts+popt, lts+popt]

 move to the next event (update Gbegin, Gend, sbegin, send, fts, lts)

 if ((not intGDQ.isEmpty()) and (intGDQ.getFirst().grp=Gbegin)) then intGDQ.removeFirst()
 return “no interval found”

V. EXPERIMENTAL RESULTS AND CONCLUSIONS

We implemented the data structure in the Java programming language and tested its performance against the standard time
slot array (see Table I). For all the updates, B was uniformly distributed between -Bmax and +Bmax (the initial value of the
available bandwidth of each time slot). For all the queries, D was at most 75% of the length of [s1,s2] and B was between 0 and
Bmax. The tests were run one after another in the same session. We conclude that the experimental results confirmed the
theoretical expectations: the running times are of the order O(k+(T/k)) for updates and O(k+(T/k)·log(k)) for queries, where k
can be chosen according to the expected ratio between update and query operations. Moreover, the data structure behaves
significantly better than the standard time slot array.

REFERENCES

[1] M. I. Andreica and N. Ţăpuş, “Efficient data structures for online QoS-constrained data transfer scheduling,” Proc. of the IEEE Intl. Symp. on Parallel
and Distrib. Computing (ISPDC), 2008.

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

[2] A. Brodnik and A. Nilsson, “An Efficient Data Structure for Advance Bandwidth Reservations on the Internet,” Proc. of the 3rd Conference on Comp.
Sci. and Electrical Eng., 2002.

[3] D. Vandevoorde, “The Maximal Rectangle Problem,” Dr. Dobb’s Journal, vol. 23, 1998, pp. 30-32.

[4] P. Berman, et al., “Fast Optimal Genome Tiling with Applications to Microarray Design and Homology Search,” J. Comput. Biol., vol. 11, 2004, pp.
766-785.

[5] L. Marchal, P. V.-B. Primet, Y. Robert, and J. Zeng, “Optimizing Network Resource Sharing in Grids,” Proc. of the 48th IEEE Global Telecomm.
Conf., IEEE Press, 2005, pp. 123-132.

[6] T. Wang and J. Chen, “Bandwidth Tree - a Data Structure for Routing in Networks with Advanced Reservations,” Proc. of the 21st Intl. Perf.,
Computing, and Comm. Conf., IEEE Press, 2002, pp. 37-44.

[7] Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang, “A Linked-List Data Structure for Advance Reservation Admission Control,” Lecture Notes in
Computer Science, vol. 3619, 2005, pp. 901-910.

