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Abstract— In this paper we present Time Slot Groups (TSG), a novel, efficient data structure for QoS-constrained advance 

bandwidth reservation and admission control. The data structure divides the time horizon into T equally sized time slots and can 

be used for serving efficiently complex bandwidth reservation requests specifying the duration of the reservation, the minimum 

required bandwidth, the earliest possible starting time and the latest possible finish time. The data structure supports reservation 

queries in time O(k+(T/k)·log(k)) and reservation updates in time O(k+(T/k)), where k is a user-defined parameter. 

I. INTRODUCTION 

In this paper we present a novel, efficient data structure which is used for offering bandwidth guarantees to non-preemptive 
data transfers on a single network link, subject to time constraints, in the following context: applications submit bandwidth 
reservation requests to a bandwidth broker which either satisfies the requests or rejects them. The data structure divides the 
time horizon upon which bandwidth reservations are performed into T discrete equally-sized time slots and supports efficiently 
the following types of operations: find(s1,s2,D,B) - finds a time slot interval [s,s+D-1], where at least a given amount of 
bandwidth B is available during every time slot of the interval, subject to the following QoS constraints: the length of the 
interval is D time slots, the earliest possible starting time slot is s1 and the latest possible finish time slot is s2 (i.e. s1≤s≤s+D-
1≤s2); reserve(s1,s2,B) - decreases by B the available bandwidth for each slot within the time slot interval [s1,s2] (if the value of 
B is negative, an increase takes place). The reserve (update) operation takes O(k+(T/k)) time and the find (query) operation 
takes O(k+(T/k)·log(k)) time, where 1≤k≤T is a user-defined parameter (e.g. a constant value or a function f(T)). Some 
situations where this functionality is useful are the transfer of multimedia streams to customers who are only available within 
some specific time intervals or the transfer of large data files in Grids and other distributed systems. 

The rest of this paper is organized as follows. In Section II we present related work. In Section III we present an enhanced 
version of the standard time slot array, which is the building block for the Time Slot Groups data structure presented in Section 
IV. The performance of the data structure is tested in Section V, where we also conclude. 

II. RELATED WORK 

Many resource reservation and scheduling techniques [5] make use of efficient data structures capable of improving the 
response time. The simplest one is an array storing the available bandwidth for each time slot, but this takes O(T) time per 
operation. The segment tree [1] and the bandwidth tree [6] provide a time complexity of O(log(T)) per operation, but only for 
simple requests: for D=1 (D=s2-s1+1) we need a range maximum (minimum) query operation, together with a range addition 
update. A dynamic version of an augmented segment tree is proposed in [2] and a linked-list data structure is presented in [7]. 
None of the data structures we mentioned (or that we are aware of) can efficiently support the complex requests our structure 
does. All of them exhibit linear (O(T)) or superlinear (O(T·log(T))) time for at least one of the two operations, while our data 
structure takes sublinear time for both. We note that we incorrectly claimed in [1] that a segment tree or block partition can 
solve a more relaxed version of this problem. 

III. THE ENHANCED TIME SLOT ARRAY 

We first show how a time slot array (TSA), availbw, can support the two operations. The slots are numbered from 0 to T-1 
and the time parameters and the operations’ results are expressed in time slots. We give the reserve function below: 

reserve_TSA(s1 , s2  , B): 
for s = s1  to s2 do availbw[s] = availbw[s] – B 

The bandwidth of a time slot interval [sa, sb] is: 

]}{availbw[sminB
sbssa

interval
≤≤

= .   (1) 

In the find function we are looking for an interval of D slots, with a bandwidth greater than or equal to B. We will traverse 
the [s1,s2] interval with a sliding window consisting of D time slots and maintain a min-heap with the available bandwidths of 
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the time slots in the window. When we move the right end of the window one position to the right, from s (s≥s1+D-1) to s+1, 
we remove from the heap the (leftmost) time slot s-D+1 (which now falls outside of the window) and insert into the heap the 
time slot s+1. We can reduce the time complexity from O(T·log(T)) to O(T), if we replace the min-heap by a double-ended 
queue (deque) [4] which stores (time slot, available bandwidth) pairs. The elements of the deque are sorted increasingly 
according both to the bandwidth and the time slot. The first element of the deque is always the one with the minimum 
bandwidth among the slots inside the current window. As the right end of the window slides to the next slot s, all the pairs at 
the end of the deque whose bandwidths are larger than the available bandwidth of slot s are removed. The element at the front 
of the deque is removed when it falls outside of the sliding window. This takes O(T) time, because we insert each time slot 
once and remove it at most once from the deque. 

find_TSA(s1 , s2 , D, B): 
deque = empty 

for s = s1 to s2 do 

while ((not deque.isEmpty()) and (deque.getLast().value≥ 

                                            availbw[s])) do deque.removeLast() 

  deque.addLast((time_slot = s, value = availbw[s])) 

  if ((s–s1+1>D) and (deque.getFirst().time_slot=s-D)) then 

    deque.removeFirst() 

if ((s–s1+1≥D) and (deque.getFirst().value≥B)) then 

    return [s-D+1,s] 
return “no interval found” 

The enhanced time slot array handles differently only the query and update function calls referring to all the slots (between 
s1=0 and s2=T-1). These calls will be named full-period calls. A full-period update needs to decrease the bandwidth of each 
time slot by the same value B. Instead of doing this, only the value of a variable called globalbw is modified. Thus, the real 
available bandwidth of each slot s will be availbw[s]+globalbw. For each full-period query, we will find the answer in O(1) 
time, by using a previously computed array sibw. sibw[L] contains the maximum bandwidth of an interval of L slots, as well as 
the actual interval. The sibw array will be computed after every non-full-period update. An efficient way to compute the sibw 
array would be to sort the values of the available bandwidths of the T time slots increasingly into an array called values. We 
will maintain a data structure (balanced tree) of (disjoint) time slot intervals which, initially, contains only one time slot 
interval consisting of all the T time slots. Then we will traverse the sorted values array. Every value will split the time slot 
interval inside which it is located into two time slot intervals (or one if it is located at the end of some time slot interval, or zero 
if the time slot interval consisted of just one slot). We will also have a binary max-heap with the length of the current time slot 
intervals. Using the balanced tree, we can retrieve easily the time slot interval into which a given time slot resides. Before 
performing a split at the ith value, we will retrieve the maximum value L from the max-heap, meaning that a time slot interval 
of L time slots having a bandwidth equal to values[i] exists. We will store this interval at the position sibw[L]. After 
performing the split, the time slot interval which was split is removed both from the heap and the balanced tree and will be 
replaced by the resulting smaller intervals (which are inserted in the tree and the heap). After traversing all of the values (and 
performing all the splits), we traverse the array sibw from the largest length to the smallest one; if no interval was stored for  a 
length L, then we use the time slot interval for length L+1, removing from it the leftmost or the rightmost time slot. The overall 
time complexity is O(T·log(T)), because each of the T splits takes O(log(T)) time. 

We can compute the sibw array more efficiently, in O(T) time. If we consider the available bandwidth of a time slot s as the 
“height” of that time slot, we obtain a histogram. We can find all the O(T) maximal area rectangles inside the histogram in 
O(T) time, by adapting an algorithm presented in [3] for finding the largest area rectangle full of ones in a binary matrix. The 
algorithm maintains a stack of (time slot, bandwidth) pairs, sorted increasingly both according to the slot number and the 
bandwidth value. If, after processing a slot s, the stack contains some pair (s’,B), then the time slot interval [s’,s] has 
bandwidth B and is the longest interval ending at slot s having this bandwidth. The pseudocode of the (first version of the) 
functions is given below: 

find_ETSA_v1(s1 , s2 , D , B): 
if (s1=0) and (s2=T-1) then 

  if (sibw[D].bw + globalbw ≥ B) then 

    return [sibw[D].s1 , sibw[D].s2] 

  else return “no interval found” 

else return find_TSA(s1 , s2 , D , B-globalbw) 

reserve_ETSA_v1(s1 , s2 , B): 
if ((s1=0) and (s2=T-1)) then globalbw=globalbw–B  else 

  reserve_TSA(s1 , s2 , B) 

  computeSibw() 

computeSibw(): 
stack=empty; availbw[T]=-∞ 

sibw[L]=undefined, for each  L=1,…,T 
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for s=0 to T do 

  lslot=s 

  while ((not stack.isEmpty()) and (stack.top().bw≥availbw[s])) do 

    L=s-stack.top().leftmost_slot; H=stack.top().bw 

    if (H>availbw[s]) then 

      if ((sibw[L]=undefined) or (sibw[L].bw<H)) then 

        sibw[L].s1= stack.top().leftmost_slot 

        sibw[L].s2=s-1; sibw[L].bw=H 

    lslot=stack.top().leftmost_slot; stack.pop() 

  stack.push((leftmost_slot = lslot , bw=availbw[s])) 

for L=T-1 downto 1 do 

  if (sibw[L]=undefined) then 

    sibw[L].s1=sibw[L+1].s1; sibw[L].bw=sibw[L+1].bw 

    sibw[L].s2=sibw[L+1].s2 -1 
  compute minbw, minBwLtoR and minBwRtoL 

Because by using ETSA_v1, updating short intervals takes a longer time, we will maintain a dirty flag for the sibw array. 
This way, after each non-full-period update, the dirty flag is set and at the next full-period query, the sibw array is recomputed. 
The complexity of the find function for a full-period query becomes O(1) in an amortized sense. The second version of the 
functions (ETSA_v2) is shown below: 

find_ETSA_v2(s1 , s2 , D, B): 
if ((s1 = 0) and (s2 = T-1) and (dirtyFlag.isSet())) then 

  computeSibw() 

  dirtyFlag.clear() 

return find_ETSA_v1(s1 , s2 , D , B) 

reserve_ETSA_v2(s1 , s2 , B): 
if ((s1 = 0) and (s2 = T-1)) then globalbw = globalbw – B  else 

  reserve_TSA(s1 , s2 , B) 

  dirtyFlag.set() 

The enhanced time slot array is augmented with three extra functions, getMinBw, getMinBwLeftToRight and 
getMinBwRightToLeft, computable in O(1) time. getMinBw returns the minimum bandwidth of any time slot. The minimum 
value in the availbw array, minbw, is computed in the computeSibw function (in O(T) time). The real minimum bandwidth is 
the sum of minbw and globalbw. In the computeSibw function we also compute in O(T) time two arrays: minBwLtoR and 
minBwRtoL, defined as follows: 

 ]}{availbw[jmin  i]minBwLtoR[
ij0 ≤≤

= , (2) 

 ]}{availbw[jmin  i]minBwRtoL[
Tji <≤

= . (3) 

The pseudocode of the getMinBwLeftToRight function is shown below. We define the other function 
(getMinBwRightToLeft) in a similar manner. 

getMinBwLeftToRight(p): 
if (p<0) then return +∞ 

else return minBwLtoR[min{p,T-1}]+globalbw 

IV. THE TIME SLOT GROUPS DATA STRUCTURE 

We divide the T time slots into ng=O(T/k) groups, containing k consecutive slots each (the last group may contain less than 
k slots). Each group of time slots is an enhanced time slot array. The groups are stored in an array tsg and are numbered from 0 
to ng-1. Group i contains the slots numbered from (i·k) to ((i+1)·k-1). Within the group, the slots are numbered from 0 to k-1. 
The execution of any function of any group takes at most O(k) time. Considering this division into groups, the time slot 
interval [s1,s2] of the reserve function can have one of the two types of structures: 

• Type A: s1 and s2 lie inside the same group G. 

• Type B: s1 is located inside some group G1 and s2 is located inside a group G2>G1. 
First, we will compute the group numbers (G1 and G2) and sr1 and sr2, the values of the time slots s1 and s2, relative to their 

groups: 

  /Gi ksi= , 1,2)(ik  modssr ii == . (4) 

In the case of a Type A structure, we will simply call the reserve function of the group G with parameters (sr1, sr2, B), 
which will be executed in O(k) time. For a Type B structure, we will update the interval of time slots [sr1, k-1] in G1, the 
interval [0, sr2] in G2 and the intervals [0, k-1] for each group between G1 and G2. Updating G1 and G2 takes O(k) time, while 
updating the other O(T/k) groups takes O(1) time for each group. The overall complexity is O(k+T/k). 

reserve_TSG(s1 , s2 , B): 
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compute G1  , G2 , sr1 , sr2 

if (G1=G2) then tsg[G1].reserve_ETSA_v(1/2)(sr1,sr2,B)  else 

tsg[G1].reserve_ETSA_v(1/2)(sr1 , k-1 , B) 

tsg[G2].reserve_ETSA_v(1/2)(0 , sr2 , B) 
  for G=G1+1 to G2-1 do tsg[G].reserve_ETSA_v(1/2)(0, k-1 , B) 

For the find function, the time slot interval [s1,s2] can also have one of the two types of structures presented previously. We 
will also compute the group numbers of s1 and s2 (G1 and G2) and the values sr1 and sr2. If G1=G2, we just call the find function 
of G1, with (sr1, sr2, D, B) as parameters. This call takes O(k) time. If G1<G2, then we will first deal with a particular sub-case. 
If D is at most k, then the desired slot interval could be completely located within one of the groups G1+1,…,G2-1. For each 
such group, we call the find function, with parameters  (0,  k-1,  D,  B).  Each 

 

Figure 1.  All the events for: T=25, k=5, s1=1, s2=22, D=13. 

call takes O(1) time. The time complexity of this particular case is O(T/k), as there are O(T/k) groups between G1 and G2. The 
interval could also lie in G1 (between sr1 and k-1) or G2 (between 0 and sr2), if D is at most k-sr1, or at most sr2+1, 
respectively. Calling the appropriate functions for G1 and G2 takes O(k) time. The case where D>1 and the desired slot interval 
might cross several groups is presented next. 

Before going any further, we will introduce several concepts. A candidate interval is an interval of D time slots fully 
included inside [s1,s2]. There are s2-s1-D+2=O(T) candidate intervals, one for each possible starting time slot. We will traverse 
the [s1,s2] interval from left to right with an interval consisting of D time slots, named the event interval. However, the first and 
last slots of this interval take only a special subset of values, each corresponding to an event. The set of all events is {[sfirst, slast] 

| [sfirst, slast] ⊆  [s1, s2] and (sfirst=s1 or sfirst=the first time slot of some group or slast=s2 or slast=the last time slot of some group) 

and (s2=s1+D-1)}. The events can be sorted from left to right, according to their leftmost time slot (see Fig. 1). 
The slot interval [s1,s2] contains at most (T/k)-2 groups between G1 and G2. Thus, the number of events is O(T/k). For each 

event E, we will find the candidate interval having the maximum bandwidth, with the first time slot located between the first 
slot of E (inclusive) and the first slot of the next event (exclusive). If E is the last event, the next event is considered one slot to 
the right. Let’s assume that for the current event E, the first time slot is in the group Gbegin and its relative slot number in that 
group is sbegin. Similarly, the ending time slot’s group is Gend and its relative time slot number in that group is send. If E is not the 
last event (i.e. the ending slot of E is not s2), then we will also assume that send is not the last time slot in the group Gend (if it is, 
we consider send=-1 in the group Gend+1, i.e. right before the first time slot of Gend+1; after this, we also set Gend=Gend+1). If 
Gbegin<Gend, we compute in O(1) time the distance dist (in terms of time slots) between E and the next event (if E is the last 
event, then dist=1). If we slide the event interval by any number of time slots between 0 and dist-1, the values of Gbegin and 
Gend will remain the same (although sbegin and send would increase). Let’s call the groups from Gbegin+1 to Gend-1 interior groups 
and let’s assume that we already know their minimum bandwidth Bgroups (the minimum of the values returned by the getMinBw 
function of each group). We will define cand(p)=the candidate interval obtained by sliding the current event interval p 
positions to the right. For 0≤p≤dist-1, cand(p) contains all the interior groups of the event interval. Only the intersections with 
the groups Gbegin and Gend change.  

TABLE I.   RUNNING TIMES (IN SECONDS): T=262,144 ; K=512(=T1/2). 

Total # 

of 

opera-

tions 

Number 

of time 

slots per 

query 

Number 

of time 

slots per 

update 

Time 

Slot 

Array 

TSG 

without 

dirty 

flag 

TSG 

with 

dirty 

flag 

10,000 0 1 - 3000 0.13 1.4 0.1 

10,000 0 150,000 - 

262,144 

8.75 1.17 0.1 

10,000  10 - 2000 0 0.31 0.29 0.28 

10,000 190,000 - 

262,144 

0 45.18 0.31 1.16 

10,000 210,000 - 

262,144 

0 55.49 0.45 0.5 
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10,000 10 - 

262,144 

20,000 - 

262,144 

18.74 0.62 0.8 

Sum of running times : 128.6 4.24 2.94 

 We define Bbegin(p)=the minimum bandwidth among the time slots located in the intersection of cand(p) and Gbegin. 
Bbegin(p) is computed as getMinBwRightToLeft(sbegin+p) (in O(1) time), called for the group Gbegin. Analogously, we define 
Bend(p)=the minimum bandwidth among the time slots located in the intersection of cand(p) with the group Gend. Bend(p) = 
tsg[Gend].getMinBwLeftToRight(send + p). Since getMinBwRightToLeft(x) ≤ getMinBwRightToLeft(x+1) for any x, we have 
Bbegin(0) ≤ Bbegin(1) ≤ … ≤ Bbegin(dist-1). Similarly, we have Bend(0)≥Bend(1)≥…≥Bend(dist-1). We want to find the value of p 
(0≤p≤dist-1) for which min{Bbegin(p), Bend(p)} is maximum. We distinguish between 3 cases: 

• Case 1: Bbegin(0)≥Bend(0). The optimal value for p is 0, because for every p, min{Bbegin(p), Bend(p)}=Bend(p) and Bend(0) has 
the highest value. 

• Case 2: Bbegin(dist-1)≤Bend(dist-1). The optimal value for p is dist-1, because min{Bbegin(p), Bend(p)}=Bbegin(p) and 
Bbegin(dist-1) has the highest value. 

• Case 3: Bbegin(p)≤Bend(p) for 0≤p≤pw and Bbegin(p)>Bend(p) for pw<p≤dist-1. The value of pw can be found using a simple 

binary search. Since dist≤k, the binary search takes O(log(k)) time. Then, the value (p)}} B(p), B{minmax{ endbegin
dist-1p0 ≤≤

is 

found either for p=pw or for p=pw+1. 
Once the optimal value for p is found (popt), we compute the bandwidth of the candidate interval determined, which is 

min{Bgroups, Bbegin(popt), Bend(popt)} and compare it to the required bandwidth. In order to efficiently find the value Bgroups while 
moving from the current event to the next, we will use again a sorted deque (intGDQ), as presented in Section III. It is easy to 
see that, when moving to the next event, the former rightmost group Gend may become an interior group and the leftmost 
interior group may fall outside of the interval of interior groups. Thus, Bgroups can be computed in O(1) time for each event. The 
time complexity of the find function is dominated by the computation of the best candidate intervals and is of the order 
O(T/k·log(k)+k). For the case of simple requests (i.e. D=1 or D=s2-s1+1), the complexity of the query operation is only 
O(k+T/k). 

find_TSG(s1 , s2 , D , B): 
compute G1 , G2 , sr1 , sr2 
if (G1=G2) then return tsg[G1].find_ETSA_v(1/2)(sr1,sr2,D,B) else 

  handle the particular sub-cases: D≤k, D≤k-sr1, D≤sr2+1 

  fts=s1; lts=s1+D-1; compute Gbegin , sbegin , Gend , send 

  intGDQ=empty 

  add to intGDQ  the groups G in [Gbegin+1, Gend-1] (in this order) 

  while (the last event has not been processed) do 

    if (send=k-1) then // move to Gend+1 

      if (Gbegin<Gend) then 

        remove all the elements from the end of intGDQ having a bandwidth larger than the minimum bandwidth of the group Gend 

        intGDQ.addLast((grp=Gend, bw=tsg[Gend].getMinBw()) 

      send=-1 ; Gend=Gend+1 

    dist=the distance between the current event and the next event    

    compute popt // min{Bbegin(popt),Bend(popt)} is maximum 

    if (not intGDQ.isEmpty()) then Bgroups=intGDQ.getFirst().bw 

    else Bgroups=+∞ 

    if ((min{Bbegin(popt), Bend(popt), Bgroups}≥B) and (Gbegin<Gend)) then return [fts+popt, lts+popt] 

    move to the next event (update Gbegin, Gend, sbegin, send, fts, lts) 

    if ((not intGDQ.isEmpty()) and (intGDQ.getFirst().grp=Gbegin)) then  intGDQ.removeFirst() 
  return “no interval found” 

V. EXPERIMENTAL RESULTS AND CONCLUSIONS 

We implemented the data structure in the Java programming language and tested its performance against the standard time 
slot array (see Table I).  For all the updates, B was uniformly distributed between -Bmax and +Bmax (the initial value of the 
available bandwidth of each time slot). For all the queries, D was at most 75% of the length of [s1,s2] and B was between 0 and 
Bmax. The tests were run one after another in the same session. We conclude that the experimental results confirmed the 
theoretical expectations: the running times are of the order O(k+(T/k)) for updates and O(k+(T/k)·log(k)) for queries, where k 
can be chosen according to the expected ratio between update and query operations. Moreover, the data structure behaves 
significantly better than the standard time slot array. 
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