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AFFINE SURFACES WITH A HUGE GROUP OF AUTOMORPHISMS

JÉRÉMY BLANC AND ADRIEN DUBOULOZ

Abstract. We describe a family of rational affine surfaces S with huge groups of automorphisms in the
following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S)
is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg contains
a free group over an uncountable set of generators.

Introduction

The automorphism group of an algebraic curve defined of a field k is always an algebraic group, of
dimension at most 3, the biggest possible group being Aut(P1

k) = PGL(2, k). The situation is very
different starting from dimension 2 even for complete or projective surfaces S: of course some groups such
as Aut(P2

k) = PGL(3, k) are still algebraic groups but in general Aut(S) only exists as a group scheme
locally of finite type over k [7] and it may fail for instance to be algebraic group in the usual sense because
it has (countably) infinitely many connected components. This happens for example for the automorphism
group of the blow-up S → P2 of the base-points of a general pencil of two cubics, which contains a finite
index group isomorphic to Z8, acting on the pencil by translations. Note however that the existence of
Aut(S) as a group scheme implies at least that S has a largest connected algebraic group of automorphisms:
the identity component of Aut(S) equipped with its reduced structure.

The picture tends to be much more complicated for non complete surfaces, in particular affine ones.
For instance the group Aut(A2

k) of the affine plane A
2
k = Spec(k[x, y]) contains algebraic groups of any

dimension hence is very far from being algebraic. In fact, the subgroups

Tn = {(x, y) 7→ (x, y + P (x)), P ∈ k[x], degP ≤ n} ≃ G
n+1
a,k

of unipotent triangular automorphisms of degree at most n form an increasing family of connected sub-
groups of automorphism of A2

k in the sense of [9] so that Aut(A2
k) does not admit any largest connected

algebraic group of automorphisms. It is interesting to observe however that, as a consequence of Jung’s
Theorem [5], Aut(A2

k) is generated by a countable family of connected algebraic subgroups, namely GL(2, k)
and the above triangular subgroups Tn, n ≥ 1. A similar phenomenon turns out to hold for other classical
families of rational affine surfaces with large groups of automorphisms: for instance for the smooth affine
quadric in A

3 with equation xy − z2 + 1 = 0 and more generally for all normal affine surfaces defined by
an equation of the from xy − P (z) = 0 where P (z) is a non constant polynomial, whose automorphism
groups have been described explicitly first by Makar-Limanov [6] by purely algebraic methods and more
recently by the authors [1] in terms of the birational geometry of suitable projective models.

All examples above share the common property that the normal subgroup Aut(S)Alg ⊂ Aut(S) gen-
erated by all algebraic subgroups of Aut(S) is in fact generated by a countable family of such subgroups
and that the quotient Aut(S)/Aut(S)Alg is countable. So one may wonder if such a property holds in
general for quasi-projective surfaces. It turns out that there exists normal affine surfaces which have a
much bigger group of automorphisms and the purpose of this article is to describe explicitly one family of
such surfaces. Our main result can be summarized as follows:

Theorem 1. Let k be an uncountable field and let P,Q ∈ k[w] be polynomials having at least 2 distinct
roots in an algebraic closure k ok k and such that P (0) 6= 0. Then for the affine surface S in A4 =
Spec(k[x, y, u, v]) defined by the system of equations











yu = xP (x)

vx = uQ(u)

yv = P (x)Q(y)

the following holds:
1) The normal subgroup Aut(S)Alg ⊂ Aut(S) is not generated by a countable union of algebraic groups,
2) The quotient Aut(S)/Aut(S)Alg contains a free group over an uncountable set of generators.

First author supported by the Swiss National Science Foundation grant no PP00P2_128422 /1. This research was
supported in part by ANR Grant "BirPol" ANR-11-JS01-004-01 and PHC Grant Germaine de Staël 26470XE..
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Note that that the surfaces described in Theorem 1 can be chosen to be either singular or smooth,
depending on the multiplicity of the roots of P and Q.

The result is obtained from a systematic use of the methods developed in [1] for the study of affine
surfaces admitting many A1-fibrations. By virtue of pioneering work of Gizatullin [4], the latter essentially
coincide with surfaces admitting normal projective completions X for which the boundary divisor is a
so-called zigzag, that is, a chain B of smooth proper rational curves supported in the smooth locus of
X . These have been extensively studied by Gizatullin and Danilov [4, 2, 3] during the seventies and more
recently by the authors in [1].

An important invariant of a zigzag is the sequence of self-intersections of its components, called its
type, which in our context can be chosen to be of the form (0,−1,−a1, . . . ,−ar), where the ai ≥ 2 are
a possibly empty sequence of integers. In this setting, the simplest possible zigzag has type (0,−1) and
the corresponding affine surface is the affine plane A2 viewed as the complement in the Hirzebruch surface
ρ1 : F1 → P1 of the union of a fiber of ρ1, with self-intersection 0, and the exceptional section of ρ1 with
self-intersection −1. The next family in terms of the number of irreducible components in the boundary
zigzag B consists of types (0,−1,−a1), a1 ≥ 2. These correspond to the normal hypersurfaces of A3

defined by equations of the form xy − P (z) = 0 with deg(P ) = a1 which were studied in detail in [1].
The present article is in fact devoted to the study of the next family, that is, affine surfaces corresponding

to zigzags of types (0,−1,−a1, a2), where a1, a2 ≥ 2. The surfaces displayed in Theorem 1 provide
explicit realisations of general members of this family as subvarieties of A4, but we describe more generally
isomorphism classes and automorphism groups of all surfaces in the family.

From this point view, Theorem 1 above says that a relatively minor increasing of the complexity of the
boundary zigzag has very important consequences on the geometry and the automorphism group of the in-
ner affine surface. The next cases, that is zigzags of type (0,−1,−a1, . . . ,−ar) with r ≥ 3, could be studied
in exactly the same way as we do here; the amount of work needed would just be bigger and more technical.

The article is organized as follows: in the first section we review the main techniques introduced in [1]
to study normal affine surfaces completable by a zigzag in terms of the birational geometry of suitable
projective models of them, called standard pairs. We also characterize the nature of algebraic subgroups
of their automorphism groups in this framework (Proposition 1.4.2). The next two sections are devoted to
the study of isomorphism classes of the surfaces associated to zigzags of type (0,−1,−a1,−a2) and the de-
scription of isomorphisms between these in terms of elementary birational links between the corresponding
standard pairs. In the last section, we apply these intermediate results to obtain a the structure of their
automorphism groups and of their A1-fibrations. Theorem 1 is then a direct consequence of this precise
description.

1. Recollection on standard pairs and their birational geometry

1.1. Standard pairs and associated rational fibrations.

Recall that a zigzag on a normal projective surface X is a connected SNC-divisor B, supported in the
smooth locus of X , with irreducible components isomorphic to the projective line over k and whose dual
graph is a chain. In what follows we always assume that the irreducible components Bi, i = 0, . . . , r of B
are ordered in such a way that

Bi · Bj =

{

1 if |i− j| = 1,

0 if |i− j| > 1.

and we write B = B0⊲B1⊲· · ·⊲Br for such an oriented zigzag. The sequence of integers
(

(B0)
2, . . . , (Br)

2
)

is then called the type of B.

Definition 1.1.1. A standard pair∗ is a pair (X,B) consisting of a normal rational projective surface X
and an ordered zigzag B that can be written as B = F ⊲C ⊲E where F and C are smooth irreducible
rational curves with self-intersections F 2 = 0 and C2 = −1, and where E = E1 ⊲ · · ·⊲Er is a (possibly
empty) chain of irreducible rational curves with self-intersections (Ei)

2 ≤ −2 for every i = 1, . . . , r. The
type of the the pair (X,B) is the type (0,−1,−a1, . . . ,−ar) of its ordered zigzag B.

1.1.2. The underlying projective surface of a standard pair (X,B = F ⊲C⊲E) comes equipped with a
rational fibration π̄ = π̄|F | : X → P1 defined by the complete linear system |F |. The latter restricts on the

quasi-projective surface S = X \B to a faithfully flat morphism π : S → A1 with generic fiber isomorphic
to the affine line over the function field of A1, called an A1-fibration. We use the notations (X,B, π̄) and
(X \B, π̄ |X\B) (or simply, (X \B, π) when we consider the corresponding surfaces as equipped with these
respective fibrations).

∗these were called 1-standard in [1]
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When B is the support of an ample divisor, S is an affine surface and π : S → A1 has a unique
degenerate fiber π−1 (π̄ (E)) constisting of a nonempty disjoint union of affine lines, possibly defined over
finite algebraic extensions of k, when equipped with its reduced scheme structure. Furthermore, if any,
the singularities of S are all supported on the degenerate fiber of π and admit a minimal resolution whose
exceptional set consists of a chain of rational curves possibly defined over a finite algebraic extension of
k. In particular, if k is algebraically closed of characteristic 0, then S has at worst Hirzebruch-Jung cyclic
quotient singularities. Furthermore, according to [1, Lemma 1.0.7], the minimal resolution of singularities
of singularities µ : (Y,B) → (X,B) of the pair (X,B) can be obtained from the first Hirzebruch surface
ρ : F1 = P(OP1 ⊕OP1(1)) → P1 by a uniquely determined sequence of blow-ups η : Y → F1 restricting to
isomorphisms outside the degenerate fibers of π̄ ◦ µ in such a way that we have a commutative diagram

Yµ

rrffffff
ffff

ffff

µ◦π̄
��

η

,,YYYYY
YYYY

YYYY
Y

X

π̄ ,,XXXXX
XXXX

XXXX F1

ρrrffffff
ffff

fff

P1.

1.2. Birational maps of standard pairs.

A birational map φ : (X,B) 99K (X ′, B′) between standard pairs is a birational map X 99K X ′ which

restricts to an isomorphism X \B
∼
→ X ′\B′. It is an isomorphism of pairs if it is moreover an isomorphism

from X to X ′. The birational maps between standard pairs play a central role in the study of the
automorphism groups of A1-fibered affine surfaces as in 1.1.2 above. The main result of [1] asserts the
existence of a decomposition of every such birational map into a finite sequence of "basic" birational maps
of standard pairs called fibered modifications and reversions which can be defined respectively as follows:

Definition 1.2.1. ([1, Definition 2.2.1 and Lemma 2.2.3]). A fibered modification is a strictly birational
map of standard pairs

φ : (X,B = F ⊲C⊲E) 99K (X ′, B′ = F ′⊲C′⊲E′)

which induces an isomorphism of A1-fibered quasi-projective surfaces

S = X \B

π̄|S ��

∼

φ
// S′ = X ′ \B′

π̄′|S′��
A1 ∼ // A1

where π̄ |S and π̄′ |′S denotes the restrictions of the rational pencils defined by the complete linear systems
|F | and |F ′| on X and X ′ respectively. Equivalently, with the notation of §1.1.2, the birational map

(µ′)
−1
◦ φ ◦ µ : Y 99K Y ′ induced by φ is the lift via η and η′ of a non affine isomorphism of A1-fibered

affine surfaces

A2 = F1 \ (η(F ) ∪ η(C))
ρ|

A2 ��
Ψ

∼ // A2 = F1 \ (η
′(F ′) ∪ η′(C′))
ρ|

A2��
A1

ψ

∼ // A1

which maps isomorphically the base-points of η−1 onto those of η′−1.

Definition 1.2.2. ([1, §2.3]). A reversion is a very special kind of birational map of standard pairs uniquely
determined by the choice of a k-rational point p ∈ F \ E and obtained by the following construction :

Starting from a pair (X,B = F ⊲C ⊲E) of type (0,−1,−a1, . . . ,−ar), the contraction of the (−1)-
curve E followed by the blow-up of p ∈ F \ E yields a birational map θ0 : (X,B) 99K (X0, B0) to a
pair with a zigzag of type (−1, 0,−a1 + 1, . . . ,−ar). Preserving the fibration given by the (0)-curve, one
can then construct an unique birational map ϕ1 : (X0, B0) 99K (X ′

1, B
′
1), where B′

1 is a zigzag of type
(−a1 + 1, 0,−1,−a2, . . . ,−ar). The blow-down of the (−1)-curve followed by the blow-up of the point of
intersection of the (0)-curve with the curve immediately after it yields a birational map θ1 : (X ′

1, B
′
1) 99K

(X1, B1) where B1 is a zigzag of type (−a1,−1, 0,−a2 + 1, . . . ,−ar). Repeating this procedure eventually
yields birational maps θ0, ϕ1, θ1, ..., ϕr, θr described by the following figure.

•
−ar

•
−a2

•
−a1

•
−1

•
0

θ0 •
−ar

•
−a2

•
−a1+1

•
0

•
−1

ϕ1

•
−ar

•
−a2

•
−1

•
0

•
−a1+1

θ1 •
−ar

•
−a2+1

•
0

•
−1

•
−a1

ϕ2

•
−ar

•
−1

•
0

•
−a2+1

•
−a1

θ2

ϕr

•
−1

•
0

•
−ar+1

•
−a2

•
−a1

θr •
0

•
−1

•
−ar

•
−a2

•
−a1

The reversion of (X,B) with center at p is then the strictly birational map of standard pairs

φ = θrϕr · · · θ1ϕ0θ0 : (X,B) 99K (Xr, Br) = (X ′, B′).
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Note that the above construction is symmetric so that the inverse φ−1 : (X ′, B′) 99K (X,B) of φ is again
a reversion, with center at its unique proper base point p′ = φ(E) ∈ F ′ \ E′.

With these definitions, the decomposition results established in [1, Theorem 3.0.2 and Lemma 3.2.4]
can be summarized as follows:

Proposition 1.2.3. For a birational map of standard pairs φ : (X,B) 99K (X ′, B′), the following holds

(1) The map φ is either an isomorphism of pairs or it can decomposed into a finite sequence

φ = φn ◦ · · · ◦ φ1 : (X,B) = (X0, B0)
φ1

99K (X1, B1)
φ2

99K · · ·
φn

99K (Xn, Bn) = (X ′, B′) ,

where each φi is either a fibered modification or a reversion.
(2) If φ is not an isomorphism then a decomposition as above of minimal length is unique up to iso-

morphisms of the intermediate pairs occuring in the decomposition. Furthermore, a decomposition
of minimal length is characterized by the property that it is reduced, which means that for every
i = 1, . . . , n − 1 the induced birational map φi+1φi : (Xi−1, Bi−1) 99K (Xi+1, Bi+1) is of minimal
length 2.

(3) A composition φi+1φi : (Xi−1, Bi−1) 99K (Xi+1, Bi+1) as above is not reduced if and only if one of
the following holds:
(a) φi and φi+1 are both fibered modifications;
(b) φi and φi+1 are both reversions, and φi+1 and (φi)

−1 have the same proper base-point;
(c) φi and φi+1 are both reversions, φi+1 and (φi)

−1 do not have the same proper base-point but
each irreducible component of Bi−1 (equivalently Bi+1) has self-intersection ≥ −2;

In case (a), φi+1φi is either a fibered modification (length 1) or an automorphism of pairs (length
0). In case (b), φi+1φi is an automorphism of pairs (length 0), and in case (c) it is a reversion
(length 1).

Note that starting from a pair (X,B) of type (0,−1,−a1, . . . ,−ar), the type of the pairs which appear
in the sequence are either of the same type or of type (0,−1,−ar, . . . ,−a1). In particular, the fact of
having an irreducible curve of self-intersection ≤ −3 in the boundary only depends of the surface X\B.

1.3. Graphs of A1-fibrations and associated graphs of groups.

The existence of the above decomposition of birational maps between standard pairs into sequences of
fibered modifications and reversions enables to associate to every normal affine surface S completable by a
standard pair an oriented graph which encodes equivalence classes of A1-fibrations on S and links between
these. This graph FS is defined as follows (see [1, Definition 4.0.5]).

Definition 1.3.1. Given a normal affine surface S completable by a standard pair we let FS be the
oriented graph with the following vertices and edges:

a) A vertex of FS is an equivalence class of pairs (X,B) such that X \ B ∼= S, where two 1-standard
pairs (X1, B1, π1), (X2, B2, π2) define the same vertex if and only if the A

1-fibered surfaces (X1 \ B1, π1)
and (X2 \B2, π2) are isomorphic.

b) Any arrow of FS is an equivalence class of reversions. If φ : (X,B) 99K (X ′, B′) is a reversion, then
the class [φ] of φ is an arrow starting from the class [(X,B)] of (X,B) and ending at the class [(X ′, B′)] of
(X ′, B′). Two reversions φ1 : (X1, B1) 99K (X ′

1, B
′
1) and φ2 : (X2, B2) 99K (X ′

2, B
′
2) define the same arrow

if and only if there exist isomorphisms θ : (X1, B1) → (X2, B2) and θ′ : (X ′
1, B

′
1) → (X ′

2, B
′
2), such that

φ2 ◦ θ = θ′ ◦ φ1.

1.3.2. By definition, a vertex of FS represents an equivalence class of A1-fibrations on S, where two A1-
fibrations π : S → A1 and π′ : S → A1 are said to be equivalent if there exist automorphisms Ψ and ψ
of S and A1 respectively such that π′ ◦ Ψ = ψ ◦ π. By virtue of [1, Proposition 4.0.7], the graph FS is
connected. Furthermore, if there exists a standard pair (X,B = F ⊲C⊲E) completing S for which B has
an irreducible component of self-intersection ≤ −3 then there exists a natural exact sequence

0→ H → Aut(S)→ Π1(FS)→ 0

where H is the normal subgroup of the automorphism group Aut(S) generated by all automorphisms of
A

1-fibrations on S and where Π1(FS) is the fundamental group of FS . This implies in particular that
Aut(S) is generated by automorphisms of A1-fibrations if and only if FS is a tree.

We will show (Proposition 1.4.2) that for any algebraic subgroup G of Aut(S), the image in Π1(FS) is
finite, which implies in particular that if Π1(FS) is not countable, then Aut(S) cannot be generated by a
countable set of algebraic subgroups.

1.3.3. Under mild hypotheses that are always satisfied for the surfaces considered in the sequel (see [1,
§4.0.10] for a discussion), it is possible to equip these graphs FS with additional structures of a graphs of
groups (in the sense of [10, 4.4]) determined by the choice of :
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a) for any vertex v of FS , the group Gv = Aut(Xv \ Bv, πv) for a fixed standard pair (Xv, Bv, πv) in
the class v.
b) for any arrow a of FS , the group Ga = {(φ, φ′) ∈ Aut(Xa, Ba) × Aut(X ′

a, B
′
a) | ra ◦ φ = φ′ ◦ ra}

for a fixed reversion ra : (Xa, Ba, πa)
ra
99K (X ′

a, B
′
a, π

′
a) in the class of a, and the injective homomorphism

ρa : Ga → Gt(a), (φ, φ
′)) 7→ µa ◦ φ

′ ◦ (µa)
−1 for a fixed isomorphism µ between (X ′

a, B
′
a, π

′
a) and the fixed

standard pair on the target vertex t(a) of a.
We further require that the chosen reversion rā for the inverse ā of the arrow a is equal to (ra)

−1 and
that the structural anti-isomorphism¯: Ga → Gā is the map (φ, φ′) 7→ (φ′, φ).

When such a structure exists on FS , we established in [1, Theorem 4.0.11] that the automorphism group
Aut(S) of S is isomorphic to the fundamental group of FS as a graph of groups. This means that up to a
choice of a base vertex v in FS , Aut(S) can be identified with the set of closed paths gnangn−1 · · · a2g2a1g1
where ai is an arrow from vi to vi+1, gi ∈ Gvi and v1 = vn = v modulo the relations ρa(h) · a = a · ρā(h̄)
and aā = 1 for any arrow a and any h ∈ Ga.

1.4. Actions of algebraic groups on standard pairs. Here we derive from the decomposition re-
sults some additional informations about algebraic subgroups of automorphism groups of affine surfaces S
completable by a standard pair.

1.4.1. Let us first observe that the automorphism group Aut(S) of an affine surface S = X \B completable
by a standard pair (X,B) contains many algebraic subgroups. For instance, it follows from Definition
1.2.1 (see also [1, Lemma 5.2.1 or Lemma 2.2.3]) that automorphisms of S preserving the A1-fibration
π = π |S : S = X \ B → A1 come as lifts of suitable triangular automorphisms ψ of A2 of the form
(x, y) 7→ (ax+R(y), cy) where a, c ∈ k∗ and R(y) ∈ k[y]. It follows in particular the subgroup Aut(X\B, π)
of Aut(X \B) consisting of automorphisms preserving an A1-fibration π is a (countable) increasing union
of algebraic subgroups. Furthermore the group Aut(X,B) of automorphisms of the pair (X,B) is itself
algebraic as B is the support of an ample divisor and coincides with the subgroup of Aut(X \ B, π)
consisting of lifts of affine automorphisms ψ as above.

The following Proposition describes more generally the structure of all possible algebraic subgroups of
Aut(S).

Proposition 1.4.2. Let S be an affine normal surface completable by a standard pair, and let G ⊂ Aut(S)

be an algebraic subgroup. Then there exists a standard pair (X,B) and an isomorphism ψ : S
∼
→ X \ B

such that for the conjugate Gψ = ψGψ−1 ⊂ Aut(X \B) of G the following alternative holds:

(1) Gψ is a subgroup of Aut(X\B, π);
(2) Gψ contains a reversion (X,B) 99K (X,B) and every other element of Gψ is either a reversion

from (X,B) to itself or an element of Aut(X,B). More precisely, one of the following holds:
(a) There exists a k-rational point p ∈ B such that every reversion in Gψ is centered at p, and

every element in Gψ0 = Gψ ∩ Aut(X,B) fixes the point p. We then have an exact sequence

1→ Gψ0 → Gψ → Z/2Z→ 0, and Gψ0 is an algebraic group of dimension ≤ 2.
(b) Every irreducible component of B has self-intersection ≥ −2 and the contraction (X,B) →

(Y,D) of all irreducible components of negative self-intersection in B conjugates Gψ whence
G to a subgroup of Aut(Y,D), where Y is a projective rational surface and D ∼= P

1 is the
support of an ample divisor.

Proof. Up to fixing a standard pair such that X\B is isomorphic to S, we may assume from the very
beginning that S = X \ B. Let G ⊂ Aut(S) be an algebraic group. According to [11], there exists a
projective surface Y which contains S as an open dense subset, and such that G extends to a group of
automorphisms of Y . Since the induced birational map X 99K Y has only a finite number r of base-points
(including infinitely near ones), it follows that every element element g ∈ G considered as a birational
self-map of X has at most 2r base-points (again including infinitely near ones). This implies in turn that
the number n of fibered modifications and reversions occuring in a minimal decomposition g = φn . . . φ1
(see Proposition 1.2.3) of every element g ∈ G considered as a birational self-map of (X,B) is bounded.
We call this integer n the length of g (by convention an automorphism of the pair (X,B) has length 0).
We denote m = m(G) the maximum length of elements of G.

a) If m ≤ 1 and no element of G is a reversion, then G ⊂ Aut(X \B, π) and we get (1).
b) Otherwise, if m ≤ 1 and G contains a reversion, then m = 1 and all elements of G are either

reversions or automorphisms of (X,B) because the composition of a fibered modification and a reversion
has always length 2. If there exists a k-rational point p ∈ B such that every reversion in G is centered at
p and every element in G0 = G∩Aut(X,B) fixes the point p, then the product of any two reversions in G
is an automorphism (Proposition 1.2.3 3)c) ). It follows that G/G0

∼= Z/2Z, which gives 2a). Otherwise,
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if G contains two reversions φ, φ′ with distinct proper base-points then since φ′φ−1 has length at most 1
by hypothesis, it cannot be reduced. By Proposition 1.2.3 3)c), it follows that all components of B have
self-intersection ≥ −2. But in this case, reversions simply correspond to contracting all components of
B = F⊲C⊲E negative self-intersections to a point p on the proper transform D of F and then blowing-up
a new chain of the same type starting from a point p′ ∈ D distinct from p. The conjugation by the
corresponding contraction (X,B)→ (Y,D) identifies G with a subgroup of Aut(Y,D), which gives 2b).

To complete the proof, it remains to show that we can always reduce by an appropriate conjugation
to the case m ≤ 1. If m ≥ 2, then we consider an element g ∈ G of length m and we fix a reduced
decomposition g = φm · · ·φ1. Writing φ1 : (X,B) 99K (X1, B1) and arguing by induction on m, it is
enough to show that the length of every element in φ1Gφ

−1
1 considered as a group of birational self-maps

(X1, B1) 99K (X1, B1) is at most m − 1. Given an element h ∈ G of lenght n ≥ 0, we have the following
possibilities:

1) If n = 0 then h is an automorphism of (X,B). If it fixes the proper base-point of φ1, then φ1hφ
−1
1

is not reduced whence has length at most 1 ≤ m − 1. Otherwise, if the proper base-point of φ1 is not a
fixed point of h, then since by hypothesis ghg−1 = φm · · ·φ1hφ

−1
1 · · ·φ

−1
m has length ≤ m, it cannot be

reduced. It follows necessarily that φ1hφ
−1
1 is not reduced which implies in turn that φ1 is a reversion and

that every irreducible curve in B has self-intersection ≥ −2 (using again case 3)c) of Proposition 1.2.3). In
this case, φ1hφ

−1
1 is a non-reduced composition of two reversions, and has thus length at most 1 ≤ m− 1.

2) If h has length n ≥ 1, then we consider a reduced decomposition h = ψn · · ·ψ1 of h into fibered
modifications and reversions. Since gh−1 = φm · · ·φ1ψ

−1
1 · · ·ψ

−1
n is not reduced, then so is ν = φ1ψ

−1
1 ,

which has thus length ≤ 1. This implies that φ1 and ψ1 are both fibered modifications or both reversions.
a) If n = 1 and φ1 and h = ψ1 are both fibered modifications, then φ1hφ

−1
1 is a fibered modification

or an automorphism of the pair (X1, B1), and hence has length ≤ 1 ≤ m − 1. Otherwise, if n = 1 and
φ1 and h = ψ1 are both reversions, then either ν is an isomorphism of pairs, in which case φ1hφ

−1
1 has

length 1, or it is a reversion and then all irreducibles curves of B and B′ have self-intersection ≥ −2. This
implies that φ1hφ

−1
1 is again a reversion or an automorphism, hence has length ≤ 1.

b) Finally, if n ≥ 2, then the composition φ2νψ
−1
2 is not reduced which implies that ν is an isomor-

phism of pairs. Replacing h with h−1, we also conclude that φ1ψn is an isomorphism of pairs. This implies
that φ1hφ

−1
1 has length at most m− 2 and completes the proof. �

Remark 1.4.3. Writing S = X \ B, Proposition 1.4.2 implies that the image of an algebraic subgroup of
Aut(S) under the morphism Aut(S) → Π1(FS) described in 1.3.2 is very special: it consists of a path of
the form ϕ−1σϕ, where ϕ is a path from [(X,B)] to another vertex [(X ′, B′)] and σ is either trivial or a
loop of length 1 based at the vertex [(X ′, B′)] representing a reversion (X ′, B′) 99K (X ′′, B′′) between two
isomorphic pairs (see Definition 1.3.2). This implies in turn that in most cases, in particular whenever
the type (0,−1,−a1, . . . ,−ar) of B does not satisfy (a1, . . . , ar) = (ar, . . . , a1), the image in Π1(FS) of an
algebraic subgroup of Aut(S) is trivial.

2. Affine surfaces completable by a standard pair of type (0,−1,−a,−b)

In this section we classify all models of standard pairs (X,B) of type (0,−1,−a,−b), a, b ≥ 2 for which
X \B is a normal affine surface.

2.1. Construction of standard pairs.

Here we construct standard pairs of type (0,−1,−a,−b) in terms of the base points of the birational
morphism η : Y → F1 from their minimal resolution of singularities as in 1.1.2.

2.1.1. In what follows, we consider F1 embedded into P2 × P1 as

F1 = {((x : y : z), (s : t)) ⊂ P
2 × P

1 | yt = zs};

the projection on the first factor yields the birational morphism τ : F1 → P2 which is the blow-up of
(1 : 0 : 0) ∈ P2 and the projection on the second factor yields the P1-bundle ρ : F1 → P1, corresponding
to the projection of P2 from (1 : 0 : 0). We denote by F,L ⊂ P2 the lines with equations z = 0 and y = 0
respectively. We also call F,L ⊂ F1 their proper transforms on F1, and denote by C ⊂ F1 the exceptional
curve τ−1((1 : 0 : 0)) = (1 : 0 : 0)× P1. The affine line L \ C ⊂ F1 and its image L \ (1 : 0 : 0) ⊂ P2 will
be called L0. The morphism A2 = Spec(k[x, y]) → P2 × P1, (x, y) → ((x : y : 1), (y : 1)) induces an open
embedding of A2 into F1 as the complement of F ∪ C for which L0 coincides with the line y = 0. With
this notation each of the points blown-up by η belongs – as proper or infinitely near point – to the affine
line L0, is defined over k but not necessarily over k; however, the set of all points blown-up by η is defined
over k.

2.1.2. Given polynomials P,Q ∈ k[w] of degrees a − 1 and b − 1 respectively, we define a birational
morphism ηP,Q : Y → F1 which blows-up a+ b− 1 points that belong, as proper or infinitely near points,
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to L \C. The morphism ηP,Q is equal to ηwP ◦ ǫP,Q, where ηwP and ǫP,Q are birational morphisms which
blow-up respectively a and b− 1 points, defined as follows:

(1) The map ηwP : W → F1 is a birational morphism associated to wP (w) which blows-up a points
as follows. Let α0 = 0, α1, . . . , αl be the distinct roots of wP (w) with respective multiplicities
r0 + 1 > 0 and ri > 0, i = 1, . . . , l. Then ηwP is obtained by first blowing each of the points
(αi, 0) ∈ (L \ C)(k) and then ri − 1 other points in their respective infinitesimal neighborhoods,
each one belonging to the proper transform of L. We denote by Ai the last exceptional divisor
produced by the this sequence of blow-ups over each point (αi, 0), i = 0, . . . , l and by Ai the union
of the ri − 1 other components in the inverse image of (αi, 0) of self-intersection (−2). The r0
blow-ups over above (0, 0) are described locally by (u, v) 7→ (x, y) = (u, ur0v); the curve {v = 0}
corresponds to the proper transform of L. The last step consists of the blow-up of (u, v) = (0, 0)
with exceptional divisor E2.

(2) The map ǫP,Q : Y → W is the blow-up of b − 1 points as follows. If P (0) 6= 0 then we let

β1, . . . , βm be the distinct roots of Q in k. Otherwise if P (0) = 0 then we let β0 = 0 and we denote

by β1, . . . , βm the non-zero distinct roots of Q in k. In each case, we denote by sj the multiplicity
of βj as a root of Q. Then ǫP,Q consists for every j = 0, 1, . . . ,m of the blow-up of the point in

E2 \L(k) corresponding to the direction u+ βjv = 0 is blown-up followed by the blow-up of sj − 1
other points in its infinitesimal neighborhood, each one belonging to the proper transform of E2.
For every j = 0, . . . ,m, we denote respectively by Bj and Bj the last exceptional divisor and the
union of the sj − 1 other components of self-intersection −2 of the exceptional locus of ǫP,Q over
the corresponding point of E2.

We denote by E1 the proper transform of L on the smooth projective surface Y obtained by the
above procedure and we let E = E1⊲E2. Then the contraction of every exceptional divisor of ηP,Q not
intersecting E yields a birational morphism µP,Q : Y → X to a normal projective surface X for which
the zigzag B = F ⊲C⊲E1⊲E2 has type (0,−1,−a,−b). The definition of ηwP and ǫP,Q implies that when
P (0) = 0 the direction of the line u = 0 is a special point in E2 ⊂W corresponding to the curve contracted
by ηwP which intersects E2. Furthermore, this point is blown-up by ǫP,Q if and only if Q(0) = 0.

This leads to the following three possible cases below:

2.1.3. Case I: P (0) 6= 0. The unique degenerate fiber F0 of the rational pencil π̄ : X → P1 defined by
the proper transform of F consists of the total transform (µP,Q)∗(ηP,Q)

∗L of L. The multiplicities of the

roots of P and Q in k coincide with that of the corresponding irreducible components of F0. Furthermore,
each multiple root of P (resp. of Q) yields a cyclic quotient rational double point of X of order ri (resp.
sj) supported on the corresponding irreducible component of F0.

•
−1

Bm

•
−1

B1

sm−1

Bm

...

s1−1

B1

•
−1

Al

•
−1

A1

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

ǫP,Q
•
−1

Al

•
−1

A1

rl−1

Al

...

r1−1

A1

E1E2 C F•
−1

•
−a

•
−1

•
0

ηwP
•
F

0
•
C

−1
•
L

0

Figure 2.1. The morphisms (Y,B)
ǫP,Q

→ (W,B))
ηwP
→ (F1, F ⊲C ⊲L) when P (0) 6= 0. A

block with label t consists of a zigzag of t (−2)-curves.

2.1.4. Case II: P (0) = 0 and Q(0) 6= 0. In the unique degenerate fiber F0 = (µP,Q)∗(ηP,Q)
∗L of the

induced rational pencil π̄ : X → P1, the multiplicities of the roots of P in k coincide with that of the
corresponding irreducible components Ai, i = 0, . . . , l whereas each irreducible component Bj , j = 1, . . . ,m
corresponding to a root βj of Q has multiplicity (r0 + 1)sj in F0. Similarly as in case I, each multiple
root of P (resp. of Q) yields a cyclic quotient rational double point of X supported on the corresponding
irreducible component of F0.

2.1.5. Case III: P (0) = Q(0) = 0. In this model again, the multiplicity of the non-zero roots of P coincide
with that of the corresponding irreducible components of the degenerate fibre F0 = (µP,Q)∗(ηP,Q)

∗L of
π̄ : X → P1, each supporting a cyclic quotient rational double point of order ri. A component Bj of F0

corresponding to a non-zero root of Q has multiplicity (r0 + 1)sj and support a cyclic quotient rational
double point of order sj . Finally the irreducible component B0 of F0 corresponding to the common root
0 of P and Q has multiplicity (s0 + 1)(r0 + 1)− 1. Furthermore, it supports a singular point of X whose
minimal resolution is a zigzag B0⊲E3⊲A0 where E3 is rational curve with self-intersection −3 and where
B0 and A0 are chains of s0 − 1 and r0 − 1 (−2)-curves respectively.



8 JÉRÉMY BLANC AND ADRIEN DUBOULOZ
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Figure 2.2. The morphisms (Y,B)
ǫP,Q

→ (W,B))
ηwP
→ (F1, F ⊲C⊲L) when P (0) = 0 and

Q(0) 6= 0. A block with label t consists of a zigzag of t (−2)-curves.
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Figure 2.3. The morphisms (Y,B)
ǫP,Q

→ (W,B))
ηwP
→ (F1, F⊲C⊲L) when P (0) = Q(0) = 0.

A block with label t consists of a zigzag of t (−2)-curves.

Remark 2.1.6. Case III always leads to a singular surface X \B while in case I and II, the resulting affine
surface X \B is smooth if and only if the polynomials wP (w) and Q(w) both have simple roots in k. The
induced A1-fibration π = π̄ |X\B: X \ B → A1 has unique degenerate fibre π−1(0). If X \ B is smooth
then, the latter is reduced in case I whereas in case II each root of Q gives rise to an irreducible component
of π−1(0) of multiplicity two.

2.1.7. In each of the above three cases, it follows from the construction that the quasi-projective surface
S = X \ B does not contain any complete curve. Furthermore, one checks for instance that the divisor
D = 4abF + 3abC + 2bE1 + E2 has positive intersection with its irreducible components and positive
self-intersection. Hence B is the support of an ample divisor by virtue of the Nakai-Moishezon criterion
and so S is a normal affine surface.

The contraction in the intermediate projective surface W of every exceptional divisor of ηwP not inter-
secting E1 yields a birational morphism µwP : W → X ′ to a normal projective surface X ′ for which the
zigzag B′ = F ⊲C⊲E1 has type (0,−1,−a). The morphisms ηwP : W → F1 and εP,Q : Y → X descend
respectively to birational morphisms η′wP : X ′ → F1 and ε′P,Q : X → X ′ for which the following diagram
is commutative

Y
εP,Q //

µP,Q

��

W

µwP

��

ηwP

!!C
CC

CC
CC

C

X
ε′P,Q // X ′

η′wP // F1.

With the choice of coordinates made in 2.1.1, the affine surface S′ = X ′\B′ embeds into A3 = Spec(k[x, y, u])
as the subvariety defined by the equation yu = xP (x) in such a way that the restriction of η′wP to it co-
incides with the projection prx,y |S′ : S′ → A2 ⊂ F1 (see e.g. [1, Lemma 5.4.4]). One checks further that

S = X \B can be embeded into A4 = Spec(k[x, y, u, v]) as the subvariety S given by the following system
of equations







yu = xP (x)
xv = uQ(u)
yv = P (x)Q(u),

so that ε′P,Q : X → X ′ restricts on S to the projection prx,y,u |S : S → S′ ⊂ A3. In this description, the
intersection with S of the irreducible components Ai and Bj of F0 coincide respectively with the irreducible
components {y = x− αi = 0}, i = 1, . . . , l, and {y = x = u− βj}, j = 1, . . . ,m, of the degenerate fiber of
the induced A1-fibration π̄ |S= pry : S → A1 .

2.2. Isomorphism classes.

Here we show that the construction of the previous subsection describes all possible isomorphism types of
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normal affine A1-fibered surfaces admitting a completion into a standard pair of type (0,−1,−a,−b). We
characterize their isomorphism classes in terms of the corresponding polynomials P and Q.

Proposition 2.2.1. Let (X,B = F ⊲C⊲E1 ⊲E2, π) be a standard pair of type (0,−1,−a,−b), a, b ≥ 2,
with a minimal resolution of singularities µ : (Y,B, π ◦ µ)→ (X,B, π) and let η : Y → F1 be the birational
morphism as in §2.1.1 above. If X \ B is affine then the morphisms η, µ are equal to that ηP,Q, µP,Q
defined in §2.1.2, for some polynomials P,Q ∈ k[w] of degree a− 1 and b− 1 respectively.

In particular, every normal affine surface completable by a zigzag of type (0,−1,−a,−b) (a, b ≥ 2) is
isomorphic to a one in A4 = Spec(k[x, y, u, v]) defined by a system of equations of the form







yu = xP (x)
vx = uQ(u)
yv = P (x)Q(u).

Proof. Since η maps C to the (−1)-curve of F1, it follows that E1 is the strict transform of L ⊂ F1. We
may factor η as η1 ◦ η2, where η1 : Y ′ → F1 is the minimal blow-up which extracts E2 and η2 : Y → Y ′ is
another birational morphism. By definition η1 is the blow-up of a sequence of points p1, ..., pn such that
for every i = 2, . . . , n, pi is in the first neighborhood of pi−1 and such that E2 is the exceptional divisor
of the the blow-up of pn. The fact that E2 and E1 intersect each other implies that pn and hence each
pi belong to the strict transform of L0 = L \ C. Since S = X \ B is affine, it follows from [8, Lemma
1.4.2 p. 195] that every (−1)-curve in the degenerate fibre of π ◦µ intersects either E1 or E2. This implies

that there exist points α1, . . . , αl, β1, . . . , βk ∈ Y
′ where each αi belongs to E1 \ (E2 ∪ C) ∼= k

∗
, each βi

belongs to E2 \E1
∼= k, and some multiplicities associated to them, so that η2 is the blow-up of the points

αi and βi and of infinitely near points belonging only to E1 and E2 respectively. Taking an appropriate

parametrisation for the αi’s in E1 \ (C ∪ E2) ∼= k
∗

and the βi’s in E2 \ E1
∼= k yields the polynomials P

and Q respectively. �

In general (i.e. for pairs of type (0,−1,−a1, . . . ,−ar) with large r), it may happen that non isomorphic
standard pairs (X,B, π) and (X ′, B′, π′) give rise to isomorphic A1-fibered quasi-projective surfaces (X \
B, π|X\B) and (X ′ \ B′, π′|X′\B′). However, the following proposition shows in particular that the A1-

fibered affine surfaces π : S → A1 considered above all admit a unique compatible projective model.

Proposition 2.2.2. Let (X,B, π) and (X ′, B′, π′) be two standard pairs of type (0,−1,−a,−b) obtained
from pairs of polynomials (P,Q) and (P ′, Q′) via the construction of §2.1.2.

(1) The pairs (X,B) and (X ′, B′) are isomorphic if and only if the A1-fibered surfaces (X \B, π|X\B)
and (X ′ \B′, π′|X′\B′) are isomorphic.

(2) This is the case if and only if one of the following holds:
(a) P (0)P ′(0) 6= 0 and P ′(w) = αP (βw), Q′(w) = γQ(δw + t) for some α, β, γ, δ ∈ k∗, t ∈ k.
(b) P (0) = P ′(0) = 0 and P ′(w) = αP (βw), Q′(w) = γQ(δw) for some α, β, γ, δ ∈ k∗.

(3) Letting r0 be the multiplicity of 0 in P , the automorphism group Aut(X,B) of the pair (X,B)
consists of lifts of automorphisms of A2 ⊂ F1 of the form

{(x, y) 7→ (ax+ by, cy) | P (aw)/P (w) ∈ k∗, Q(aw−b
c

)/Q(w) ∈ k∗} if r0 = 0,

{(x, y) 7→ (ax+ by, cy) | P (aw)/P (w) ∈ k∗, Q(a
r0+1

c
· w)/Q(w) ∈ k∗} if r0 ≥ 1.

Proof. Let µP,Q : Y → X and ηP,Q : Y → F1 be the morphisms defined in §2.1.2, and the same with primes.

By virtue of [1, Lemma 5.2.1 or Lemma 2.2.3], (X \B, π|X\B) and (X ′ \B′, π′|X′\B′) are isomorphic if and

only if there exists an automorphism ψ of A2 ⊂ F1 preserving the A1-fibration pry and sending the base

locus Z of η−1
P,Q isomorphically onto that Z ′ of η−1

P ′,Q′ while (X,B, π) and (X ′, B′, π′) are isomorphic if and
only if there exists an affine automorphism ψ of this type. An automorphism f preserving the fibration
pry and mapping Z isomorphically onto Z ′ must preserve the fiber L0 = pr−1

y (0) and fix the point (0, 0).
Thus f has the form f : (x, y) 7→ (ax+yR(y), cy), with a, c ∈ k∗ and R ∈ k[y]. Such an automorphism acts
on L0 by x 7→ ax. We identify points of E2 \L with directions u+βv = 0 in the blow-up (u, v) 7→ (u, ur0v)
as in §2.1.2,where r0 ≥ 0 denotes the multiplicity of 0 as a root of P . We claim that f acts on E2 in the
following way:

{

β 7→ aβ−R(0)
c

if r0 = 0

β 7→ ar0+1

c
· β if r0 ≥ 1

Indeed, if r0 = 0, then the action of f−1 on the tangent directions is given by u + βv 7→ au + vR(0) +

βcv = a(u + R(0)+βc
a

v) and so f maps β to (aβ − R(0))/c. Otherwise, if r0 > 0, then the lift of f by
(u, v) 99K (u, ur0v) takes the form

(u, v) 7→ (au+ ur0vR(ur0v), cv
(a+ur0−1vR(ur0v))r0

).
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In the local chart (û, v) 7→ (ûv, v) = (u, v) of the blow-up of the origin (0, 0), the later lifts further to the
map

(û, v) 7→ ( (aû+(ûv)r0R((ûv)r0v))(a+(ûv)r0−1vR((ûv)r0v))r0

c
, cv
(a+(ûv)r0−1vR((ûv)r0v))r0

).

By construction the tangent direction u + βv = 0 corresponds to the point (û, v) = (−β, 0) which is thus

mapped to (−β · a
r0+1

c
, 0) as claimed.

It follows from the above description that the affine automorphism ψ : (x, y) 7→ (ax + yR(0), cy) also
maps Z isomorphically onto Z ′ and so, we obtain the equivalence between isomorphism classes of standard
pairs and isomorphism classes between induced A1-fibered surfaces. The second assertion then follows
immediately from the description of the action of ψ on L0 and E2.

Finally, as explained earlier, the group Aut(X,B) consists of lifts of automorphisms of F1 which preserve
the set Z. Since they fix the origin (0, 0), these automorphism can be written in the form (x, y) 7→
(ax + by, cy) where a, c ∈ k∗, b ∈ k. By virtue of the above description, the induced action on the line
L0 = pr−1

y (0) which supports the points of Z corresponding to roots of P is given by x 7→ ax, whereas the

action on the line E2 \ L which supports the points of Z corresponding to roots of Q is either β 7→ aβ−b
c

,

or β 7→ ar0+1

c
· β, depending if r0 is 0 or positive. This yields the last assertion. �

Corollary 2.2.3. Let (X,B, π) and (X ′, B′, π′) be two standard pairs of type (0,−1,−a,−b) obtained from
pairs of polynomials (P,Q) and (P ′, Q′) via the construction of §2.1.2. If the pairs (X,B) and (X ′, B′)
are isomorphic, then one of the following holds:

(1) Both pairs are of type I, i.e. P (0)P ′(0) 6= 0;
(2) Both pairs are of type II, i.e. P (0) = P ′(0) = 0 and Q(0)Q′(0) 6= 0;
(3) Both pairs are of type III, i.e. P (0) = P ′(0) = Q(0) = Q′(0) = 0.

Proof. Follows directly from Proposition 2.2.2. �

3. Reversions between standard pairs of type (0,−1,−a,−b)

To classify the existing A1-fibrations on the affine surfaces constructed in the previous section, the next
step consists in studying birational maps between the corresponding standard pairs (X,B). In view of
the description recalled in §1.2, this amounts to describe all possible fibered modifications and reversions
between these pairs. Since Proposition 2.2.2 guarantees that there cannot exists fibered modifications
between two non isomorphic such pairs, it remains to characterize the possible reversions between these.

3.1. Preliminaries.

Here we set-up notations that will be used in the sequel to describe the geometry of the different pairs
that can obtained by reversing a given standard pair (X,B = F ⊲C⊲E) of type (0,−1,−a,−b).

3.1.1. For such pairs, the general description of reversions given in 1.2.2 above specializes to the following
simpler form: Given a k-rational point p ∈ F \ C, the contraction of C followed by the blow-up of p
yields a birational map θ0 : (X,B) 99K (X0, B0) to a pair with a zigzag of type (−b,−a+ 1, 0,−1). Then
we produce a birational map ϕ1 : (X0, B0) 99K (X ′

1, B
′
1), where B′

1 is of type (−b,−1, 0,−a + 1). The
blow-down of the (−1)-curve in B′

1 followed by the blow-up of the point of intersection of its (0)-curve
with the curve immediately after it yields a birational map θ1 : (X ′

1, B
′
1) 99K (X1, B1) where B1 is a zigzag

of type (−b+1, 0,−1,−a). Repeating this process yields birational maps θ0, ϕ1, θ1, ϕ2, θ2 described by the
following figure.

•
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•
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θ2 •
0

•
−1

•
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•
−a

The reversion of (X,B) with center at p ∈ F \ C is then the composition

φ = θ2ϕ2θ1ϕ1θ0 : (X,B) 99K (X ′, B′) = (X2, B2).

3.1.2. The model of the pair (X ′, B′) obtained after a reversion is essentially determined by the proper
transform of the lines in P2 passing through the image of the center p of the reversion by the blow-up
τ : F1 → P2. By virtue of Proposition 2.2.1 we may assume that the initial pair (X,B) is obtained from a
pair of polynomial P,Q ∈ k[w] of respective degrees a−1, b−1 ≥ 1 by means of the construction described
in §2.1.2. We let

(X,B = F ⊲C⊲E1⊲E2, π)
µP,Q

←− (Y,B, πµP,Q)
ηP,Q

−→ (F1, F ⊲C⊲L)
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be the corresponding birational morphisms, where ηP,Q = ηwP ◦ εP,Q. The k-rational point p ∈ F \ C

corresponds via τ : F1 → P2 to a point (λ : 1 : 0) ∈ P2 for some λ ∈ k. For every root αi of P in k we
denote by Di ⊂ Y the proper transform by (τ ◦ ηP,Q)

−1 of the line of equation x− λy − αiz = 0, passing
through (λ : 1 : 0) and τ(αi) = (αi : 0 : 1). Recall that if P (0) 6= 0 then β1, . . . , βm denote the distinct
roots of Q in k. With this notation, we have the following description.

Lemma 3.1.3. The possible dual graphs for the divisor η−1
P,Q(F ⊲C⊲L) ∪

⋃m
i=0Di are the following:

•
−1

Bm

•
−1

B1

sm−1

Bm

...

s1−1

B1

•
−1

Al

•
−1

A1

•
0

Dl

•
0

D1

•
0

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

•
−1

Bm

•
−1

B1

sm−1

Bm

...

s1−1

B1

•
−1

Al

•
−1

A1

•
0

Dl

•
0

D1

•
−1

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

Ia: P (0) 6= 0, and λ /∈ {β1, . . . , βm} Ib: P (0) 6= 0, and λ ∈ {β1, . . . , βm}
(for the picture, λ = β1)

•
−1

Bm

•
−1

B1

•
−2

A0

sm−1

Bm

...

s1−1

B1

r0−1

A0

•
−1

Al

•
−1

A1

•
0

Dl

•
0

D1

•
0

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

•
−1

Bm

•
−1

B1

•
−1

B0 •
−3

A0

sm−1

Bm

...

s1−1

B1

s0−1

B0

r0−1

A0

•
−1

Al

•
−1

A1

•
0

Dl

•
0

D1

•
0

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

II: P (0) = 0, and Q(0) 6= 0 III: P (0) = Q(0) = 0

Proof. The structure of the dual graph of η−1
P,Q(F ⊲C⊲L) has been already discussed in 2.1.2 (see Figures

2.1, 2.2 and 2.3). It remains to consider the properties of the additional curves Di, i = 0, . . . , l. By
definition, Di is the proper transform of the line Li ⊂ P2 of equation x = λy + αiz. Since the latter does
not pass through the point (1 : 0 : 0) blown-up by τ , its proper transform in F1 still have self-intersection
1. Moreover, since Di passes through αi (corresponding to (αi : 0 : 1)) and not through any other αj , with

j 6= i, its proper transform by ηwP : W → F1 has self-intersection 0 in W and it intersects η−1
wP (F ⊲C⊲L)

transversally at a point of Ai if αi is a simple root of wP (w) and at a point on the last component of Ai
otherwise. The only case where a point belonging to the proper transform of Li in W is blown-up by εP,Q
is when i = 0, P (0) 6= 0 and L0 corresponds to a tangent direction x = βjy for a certain root of Q in k. In

this case, D0 has self-intersection −1 in Y and it intersects η−1
P,Q(F ⊲C⊲L) transversally at a point of Bj

if βj is a simple root of Q and at a point on the last component of Bj otherwise. This gives all diagrams
pictured above (recall that A0 = E2 if P (0) 6= 0). �

3.2. Classification of reversions.

Recall that two standard pairs (X,B) and (X ′, B′) of respective types (0,−1,−a,−b) and (0,−1,−a′,−b′)
can be linked by a reversion only if a′ = b and b′ = a (see e.g. §3.1.1). To decide which types of reversions
can occur between the different models of standard pairs, we may thus consider the situation that (X,B)
and (X ′, B′) are obtained by means of the construction of §2.1.2 for pairs of polynomials (P,Q) and (P ′, Q′)
of degrees (a− 1, b− 1) and (b− 1, a− 1) respectively. We let let

(X,B = F ⊲C⊲E1⊲E2, π)
µP,Q

← (Y,B, πµP,Q)
ηP,Q

→ (F1, F ⊲C⊲L)

(X ′, B′ = F ′⊲C′⊲E′
1⊲E

′
2, π

′)
µP ′,Q′

← (Y ′, B′, π′µP ′,Q′)
ηP ′,Q′

→ (F1, F ⊲C⊲L)

be as in §2.1.2. Given a reversion φ : (X,B) 99K (X ′, B′) centred at p ∈ F \ C, with φ−1 centred at
p′ ∈ F ′ \ C′, which correspond respectively to (λ : 1 : 0), (λ′ : 1 : 0) ∈ P2, we use the notation of §3.1.2 for

α1, . . . , αl ∈ k, Ai, Bi,Ai,Bi, Di,⊂ Y and the same notation with primes on Y ′.

Lemma 3.2.1. With the notation above, let ψ = (µP ′,Q′)−1φµP,Q : Y 99K Y ′ be the lift of φ . Then one
of the following three situations occurs:

(1) We have case Ia on both Y and Y ′: P (0)P ′(0)P (λ)P ′(λ′) 6= 0. We have l = m′, m = l′ and up to
renumbering, ψ sends Bi, Bi, Ai and Di on D′

i, A
′
i, B

′
i and Bi respectively. Moreover, ψ(D0) = D′

0 and
the situation is described by the following diagram:
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•
−1

Bm

•
−1

B1

sm−1

Bm

...

s1−1

B1

•
0

Dl

•
0

D1

•
0

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

ψ

•
0

D
′

m

•
0

D
′

1

•
0

D
′

0

r′m−1

A
′

m

...

r′1−1

A
′

1

•
−1

B
′

l

•
−1

B
′

1

s′l−1

B
′

l

...

s′1−1

B
′

1

F
′

C
′ E

′

1 E
′

2•
0

•
−1

•
−a

•
−b

Furthermore, P ′(w) = cQ(dw + λ), and P (w) = eQ′(fw + λ′) for some c, d, e, f ∈ k∗.
(2) Up to an exchange of Y and Y ′, we have case Ib on Y and case II on Y ′: P (0)Q(0)Q′(0) 6= 0,

P ′(0) = P (λ) = 0. Up to renumbering, λ = βm, ψ sends Bm,Bm and D0 onto D′
0,A

′
0 and A′

0 respectively,
and sends the other Bi, Bi, Ai and Di onto D′

i, A
′
i, B

′
i and Bi respectively. The situation is described by

the following diagram:

•
−1

Bm

•
−1

B1

sm−1

Bm

...

s1−1

B1

•
0

Dl

•
0

D1

•
−1

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

ψ

•
0

D′

m−1

•
0

D
′

1

•
0

D
′

0

sm−1

A
′

m−1

...

s1−1

A
′

1

s1−1

A
′

0

•
−1

B
′

l

•
−1

B
′

1

•
−2

A
′

0

rl−1

B
′

l

...

r1−1

B
′

1

F
′

C
′ E

′

1 E
′

2•
0

•
−1

•
−a

•
−b

Furthermore, P ′(x) = cQ(dx+ λ), and P (x) = eQ′(fx) for some c, d, e, f ∈ k∗.
(3) We have case III on Y and Y ′: P (0) = P ′(0) = Q(0) = Q′(0) = 0. Up to renumbering ψ sends

Bi, Bi, Ai and Di onto D′
i, A

′
i, B

′
i and Bi respectively. Moreover, ψ sends A0 onto A′

0. The situation is
described by the following diagram:

•
−1

Bm

•
−1

B1

•
−1

B0 •
−3

A0

sm−1

Bm

...

s1−1

B1

s0−1

B0

r0−1

A0

•
0

Dl

•
0

D1

•
0

D0

rl−1

Al

...

r1−1

A1

E1E2 C F•
−b

•
−a

•
−1

•
0

ψ

•
0

D
′

m

•
0

D
′

1

•
0

D
′

0 •
−3

A
′

0

sm−1

A
′

m

...

s1−1

A
′

1

s0−1

A
′

0

r0−1

B
′

0

•
−1

B
′

l

•
−1

B
′

1

•
−1

B
′

0

rl−1

B
′

l

...

r1−1

B
′

1

F
′

C
′ E

′

1 E
′

2•
0

•
−1

•
−a

•
−b

Furthermore, P ′(x) = cQ(dx), and P (x) = eQ′(fx) for some c, d, e, f ∈ k∗.

Proof. We decompose φ into φ = θ2ϕ2θ1ϕ1θ0 as in §3.1.1, and use this decomposition to see that E2 and
E′

2 correspond respectively to the curves E ′p and Ep obtained by blowing-up p′ and p.
According to Lemma 3.1.3, there are four possibilities for the situation on Y , depending on P,Q, λ. We

study the image of the curves D0, . . . , Dl, which intersect F at the point p.
Let i ∈ {0, . . . , r} and assume that Di ⊂ Y does not intersect the boundary E2 ∪E1 ∪C ∪F at another

point (which occurs in all cases, except for i = 0 in case Ia). In the decomposition of φ, the curve Di is
affected by the blow-up of p ∈ Di and then is not affected by all other maps. In consequence, the image
φ(Di) of Di on Y ′ is a curve that intersects the boundary only at one point, being on E′

2, and which has
self-intersection φ(Di)

2 = (Di)
2−1. The curve φ(Di) is thus contained in the special fibre and corresponds

therefore to one of the B′
i if (Di)

2 = 0 and to A′
0 in case II if (Di)

2 = −1. This shows that we obtain
case II if and only if we start from Ib. We can only go to III if we start from III, because of the special
singularity, and then we see that Ia goes to Ia.

The diagrams above follow from the discussion made on the image of the Di. It remains to see the
correspondence between P,Q, P ′, Q′, λ, λ′. The map φ induces an isomorphism between the blow-up Ep
of p and the line E′

2 ⊂ Y ′. This isomorphism sends the tangent direction of Di, which has equation
x− λy = αiz, onto φ(Di) ∩ E2. It also sends the direction of F , which is z = 0, onto E′

2 ∩ E
′
1. We obtain

therefore an isomorphism P1 → E′
2 which sends (0 : 1) onto E′

2 ∩E
′
1 and (1 : αi) onto E′

2 ∩ φ(Di) for each
i. Studying each of the three diagrams gives P ′ and Q′ in terms of Q and P .

In the first diagram (case Ia on both sides), E′
2 corresponds to the blow-up of (0 : 0 : 1), and the

intersection of B′
i with E′

2 corresponds to the tangent direction of x = β′
iy (§2.1.2). The curve D′

0 is the
tangent direction of x = λ′y. We obtain an affine automorphism of k which sends αi on β′

i for i = 1, . . . , l
and which sends 0 onto λ′. This means that P (x) = eQ′(fx + λ′) for some e, f ∈ k∗. Doing the same in
the other direction, we obtain P ′(x) = cQ(dx+ λ) for c, d ∈ k∗.

In the second diagram (case Ib on Y and II on Y ′), the curve E′
2 is the blow-up of the point (u, v) = (0, 0)

obtained after blowing-up (0 : 0 : 1) via (u, v) 7→ (u, ur
′

0v), where r′0 > 0 is the multiplicity of 0 in P ′(x)
(see §2.1.2). The intersection of B′

i with E′
2 corresponds to the direction of u = β′

iv, the point E′
1 ∩ E

′
2

corresponds to v = 0, and A′
0 ∩ E

′
2 to u = 0. We obtain an automorphism of k∗ that sends αi onto β′

i
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for i = 1, . . . , l, so P (x) = eQ′(fx) for some e, f ∈ k∗. To obtain P ′(x) from Q(x), we do the same
computation in the other direction: we have an isomorphism P1 → E2 which sends (0 : 1) onto E2 ∩ E1

and (1 : α′
i) onto E2 ∩ φ

−1(D′
i) for each i. Recall that φ−1(D′

0) = Bm and φ−1(D′
i) = Bi for i = 1, . . . ,m.

The curve E2 corresponds to the blow-up of (0 : 0 : 1), the intersection of Bi with E2 corresponds to
the direction x = βiy, and Bm = φ−1(D′

0) corresponds to x = λy, which is x = βmy. We get an affine
automorphism of k that sends α′

i onto βi for i = 1, . . . ,m− 1 and 0 = α′
0 onto βm = λ. This implies that

P ′(x) = cQ(dx+ λ) for some c, d ∈ k∗.
The last diagram is when Y, Y ′ are in case III, and is symmetrical. As in the second diagram, the curve

E′
2 is the blow-up of the point (u, v) = (0, 0) obtained after blowing-up (0 : 0 : 1) via (u, v) 7→ (u, ur

′

0v),
where r′0 > 0 is the multiplicity of 0 in P ′(x). The intersection of B′

i with E′
2 corresponds to the direction

of u = β′
iv, the point E′

1 ∩E
′
2 corresponds to v = 0, and A′

0 ∩E
′
2 to u = 0. We obtain an automorphism of

k∗ that sends αi onto β′
i for i = 1, . . . , l, so P (x) = eQ′(fx) for some e, f ∈ k∗. And in the other direction,

we get P ′(x) = cQ(dx) for some c, d ∈ k∗. �

To conclude this section, we give a complete characterization of when two reversions are equivalent in
the sense of Definition 1.3.1, which will be needed in the next section to describe the graphs associated to
the surfaces X \B.

Proposition 3.2.2. Let (X,B = F ⊲C⊲E1⊲E2) be a pair constructed from polynomials P,Q ∈ k[w]. For
two reversions φi : (X,B) 99K (Xi, Bi), i = 1, 2, the following are equivalent:

(1) The pairs (X1, B1) and (X2, B2) are isomorphic.
(2) The reversions φ1, φ2 are equivalent, i.e. there exists θ ∈ Aut(X,B) and an isomorphism θ′ :

(X1, B1)→ (X2, B2), such that φ2 ◦ θ = θ′ ◦ φ1.

Moreover, these equivalent properties are always satisfied if P (0) = 0.

Proof. The implication (2) ⇒ (1) is obvious. Conversely, we may suppose that φ1, φ2 are respectively
centred at points p1, p2 ∈ F \ C which we identify in turn with the points (λ1 : 1 : 0), (λ2 : 1 : 0) ∈ P2

(see §2.1.2). We denote by (P1, Q1) and (P2, Q2) the polynomials associated to the pairs (X1, B1) and
(X2, B2). Since the reversions are uniquely determined by the choice of their proper base-point, assertion
(2) is equivalent to the existence of an automorphism θ ∈ Aut(X,B) which sends p1 onto p2. If P (0) = 0,
then the automorphism (x, y) 7→ (x + (λ2 − λ1)y, y) of A2 lifts to an automorphism θ ∈ Aut(X,B)
(Proposition 2.2.2) such that θ(p1) = p2. So it remains to consider the case where P (0) 6= 0 (case I). By
Lemma 3.2.1 (assertions (1) and (2)), we have Pi(w) = ciQ(diw+ λi), for some ci, di ∈ k∗. Since (X1, B1)
and (X2, B2) are isomorphic we also have P1(w) = αP2(βw), for some α, β ∈ k∗ (Proposition 2.2.2). This
yields

c1Q(d1w + λ1) = P1(w) = αP2(βw) = αc2Q(d2βw + λ2),

which implies (replacing w by (w − λ1)/d1) that Q(d2β(w − λ1)/d1 + λ2)/Q(w) = αc2/c1 ∈ k∗. Letting

c = d1
d2β

and b = λ1 − λ2c, we obtain that Q(w−b
c

)/Q(w) ∈ k∗ and cλ2 = λ1 + b. The first condition

guarantees that the automorphism ν : (x, y) 7→ (x + by, cy) of A2 lifts to an automorphism of (X,B) (see
Proposition 2.2.2) while the second equality says precisely that the extension of ν to P2 maps p1 = [λ1 : 1 : 0]
onto p2 = [λ2 : 1 : 0]. �

Remark 3.2.3. Proposition 3.2.2 implies in particular that in the graph FS associated to S = X \B as in
Definition 1.3.1, two arrows corresponding to reversions are equal if and only if they have the same source
and target. Consequently, the graph FS does not contain any cycle of length 2 and each of its vertices is
the base vertex of at most one cycle of length 1.

Example 3.2.4. As explained in § 2.1.7, given polynomials P,Q ∈ k[w] of degrees ≥ 1, the surface S in
A4 = Spec(k[x, y, u, v]) defined by the system of equations







yu = xP (x)
vx = uQ(u)
yv = P (x)Q(u)

comes equipped with the A1-fibration π = pry |S induced by the restriction of the rational pencil π̄ on the
standard pair (X,B = F ⊲C⊲E, π̄) associated with the pair (P,Q) via the construction of § 2.1.2.

The automorphism (x, y, u, v) 7→ (u, v, x, y) of A4 induces an isomorphism σ of S with the surface
S′ ⊂ A4 defined by the system of equations







yu = xQ(x)
vx = uP (u)
yv = Q(x)P (u),
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which comes equipped with the A1-fibration π′ = pry |S′ induced by the restriction of the rational pencil π̄′

on the standard pair (X ′, B′ = F ′⊲C′⊲E′, π̄′) associated with the pair (P ′, Q′) = (Q,P ) via the construction
of § 2.1.2.

With our choice of coordinates, the closure in X of the general fibers of π′ ◦ σ = prv |S all intersect B
at the point p ∈ F with image τ(p) = [0 : 1 : 0] ∈ P2, and one checks that the birational map of standard
pairs (X,B) 99K (X ′, B′) corresponding to σ is a reversion centered at p.

Note that if P (0) 6= 0 and Q(0) = 0 then S equipped with π is of type I while it is of type II when
equipped with σπ′ = prv |S .

4. Graphs of A1-fibrations and associated graphs of groups

Here we apply the results of the previous section to characterize equivalence classes of A1-fibrations on
normal affine surfaces admitting a completion by a standard pair (X,B) of type (0,−1,−a,−b). We also
give explicit description of automorphism groups of certain of these surfaces.

4.0.5. Notation. Given polynomials P,Q ∈ k[w], we denote by [P,Q] the isomorphism class of the
standard pair (X,B, π̄) obtained obtained by means of the construction of § 2.1.2. By virtue of Propo-
sition 2.2.2, [P,Q] = [P ′, Q′] if and only if the corresponding A1-fibered surfaces (X \ B, π̄ |X\B) and
(X ′ \ B′, π̄′ |X′\B′) are isomorphic. Recall that by virtue of Proposition 2.2.2, this holds if and only if
P ′(w) = αP (βw), Q′(w) = γQ(δw + t) , where α, β, γ, δ ∈ k∗ and t ∈ k being 0 if P (0) = 0.

We say that [P,Q] is equivalent to [P ′, Q′] if X \B and X ′\B′ are isomorphic as abstract affine surfaces.
With this convention, the vertices of the graph of A1-fibrations FX\B of X \B as defined in §1.3.1 are in
one-to-one correspondence with pairs [P ′, Q′] equivalent to [P,Q]. In what follows we denote this graph
simply by F[P,Q].

Note that arrows of the graph F[P,Q] correspond to equivalence classes of reversions between pairs
equivalent to [P,Q]. Given one such pair [P ′, Q′], represented by a pair (X ′, B′ = F ′⊲C′⊲E′

1⊲E
′
2, π

′), the
possible reversions starting from it are parametrized by the k-rational points of the line F ′ \C′. Moreover,
if σ1, σ2 are two reversions centred at points p1, p2 ∈ F

′ \C′, they are equivalent, or give the same arrow,
(see Definition 1.3.1) if and only if there exists an automorphism of (X ′, B′) that sends p1 onto p2. By
Proposition 2.2.2, this always holds when P (0) = 0.

4.1. Affine surfaces of type III.

As noted above normal affine surfaces corresponding to case III in the the construction of § 2.1.2 are
always singular and form a distinguished class stable under taking reversions. For such a surface S in
A4 = Spec(k[x, y, u, v]) defined by a system of equations







yu = xP (x)
vx = uQ(u)
yv = P (x)Q(u)

corresponding to a pair [P,Q] with P (0) = Q(0) = 0, the structure of the graph F[P,Q] is particularly
simple: Indeed, Lemma 3.2.1 implies that [Q,P ] is the only pair equivalent to [P,Q] and that they can be
obtained from each other by performing a reversion. Since [P,Q] = [Q,P ] if and only if Q = αP (βw) for
some α, β ∈ k∗, the corresponding F[P,Q] is thus

<< [P,Q] if Q(w) = αP (βw), α, β ∈ k∗ or [P,Q] oo // [Q,P ] otherwise

Denoting by Jy = Aut(S, pry) and Jv = Aut(S, prv) the groups of automorphisms of S which preserve

the A1-fibrations pry : S → A1 and prv : S → A1 respectively and by Diag(S) ⊂ Aut(S) the subgroup

consisting of restrictions to S of diagonal automorphisms of A
4 preserving S, we obtain the following

description of automorphism groups of affine surfaces of type III:

Proposition 4.1.1. For an affine surface S in A4 = Spec(k[x, y, u, v]) defined by the equations






yu = xP (x)
vx = uQ(u)
yv = P (x)Q(u).

where P,Q are non constant polynomials with P (0) = Q(0) = 0, the following holds:

(1) Every A1-fibration on S is conjugated either to pry : S → A1 or prv : S → A1 and these two
fibrations are isomorphic to each other if and only if Q(w) = αP (βw) for some α, β ∈ k∗.

(2) If Q(w) = αP (βw) for some α, β ∈ k∗, then [P,Q] = [P, P ] and, assuming further that Q = P ,
the group Aut(S) is the amalgamated product A ⋆Diag Jy of Jy = Aut(S, pry) and the subgroup A
of Aut(S) generated by Diag(S) and the involution σ : (x, y, u, v)→ (u, v, x, y).
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(3) If Q(w) 6= αP (βw), for any α, β ∈ k∗, then Jy ∩ Jv = Diag(S) and Aut(S) is the amalgamated
product Jy ⋆Diag(S) Jv of Jy = Aut(S, pry) and Jv = Aut(S, prv).

Proof. The first assertion is an immediate consequence of the description of FS = F[P,Q]. Similarly
as in Example 3.2.4, we consider S as X \ B where (X,B = F ⊲C ⊲E, π̄) is associated with the pair
(P,Q) via the construction of § 2.1.2 in such a way that pry |S coincides with π̄ |S . We denote by
σ : (X,B) 99K (X ′, B′) the reversion corresponding to the morphism (x, y, u, v) 7→ (u, v, x, y) where (X ′, B′)
is the standard pair associated with the pair of polynomials (Q,P ). By virtue of Proposition 2.2.2, elements
of Aut(X,B) are lifts of automorphisms of A2 the form (x, y) 7→ (ax + by, cy) satisfying P (aw)/P (w) ∈

k∗, Q(a
r0+1

c
· w)/Q(w) ∈ k∗, where r0 ≥ 1 is the multiplicity of 0 as a root of P . The extension of such an

automorphisms to P2 fixes the center [1 : 0 : 0] of σ if and only if b = 0. If so, we write λ = P (aw)/P (w) =

ar0 and µ = Q(a
r0+1

c
· w)/Q(w) = Q(aλ

c
w)/Q(w), and check that the lift to S of the corresponding

automorphism coincides with the restriction of the diagonal automorphism (x, y, u, v) 7→ (ax, cy, aλ
c
u, λµ

c
v)

of A4. Furthermore, every diagonal automorphism of A4 which preserves S is necessarily of this form. This
implies in particular the group Diag(S) coincides precisely with the subgroup of Aut(X,B) consisting of
lifts of automorphisms whose extensions to P2 fix the point [1 : 0 : 0]. By Proposition 1.2.3, every birational
map f : (X,B) 99K (X,B) is either an element of Aut(X,B) (and in this case belongs to Jy) or decomposes
into a finite sequence of fibered modifications and reversions. Since all reversions are equivalent to σ or
σ−1, we can assume that f is a product of σ, σ−1, and fibered modifications and automorphisms of the
pairs (X,B) and (X ′, B′).

(2) If Q(w) = αP (βw) for some α, β ∈ k∗, we can assume further that Q = P so that σ becomes in
fact an automorphism of S. This implies that Aut(S) is generated by Jy and σ, and hence by Jy and
A = 〈Diag(S), σ〉. It remains to see that every element h = jmam . . . j2a2j1a1 with al ∈ A \ Jy, jl ∈ Jy \A
is not trivial. By definition every jl ∈ Jy \ A is either a fibered modification (X,B) 99K (X,B) or an
automorphism which does not fix the center of the reversion σ. On the other hand, every al ∈ A \ Jy is
a reversion (X,B) 99K (X,B) which has the same center as σ. It follows that h is either an element of
A \ Jy or admits a reduced decomposition containing at least a reversion. So h is never trivial, as desired.

(3) If Q(w) 6= αP (βw) for any α, β ∈ k∗, then (X ′, B′) is not isomorphic to (X,B). In particular, every
element f : (X,B) 99K (X ′, B′) decomposes into

f = σ−1a′nσ . . . σ
−1a′2σ2a2σ

−1a′1σa1,

where the ai and a′j are either fibered modifications or automorphisms of (X,B) and (X ′, B′) respectively.

In consequence, every ai is an element of Jy and every σ−1a′iσ is an element of Jv, which shows that
Aut(S) is generated by Jy and Jv. Furthermore, a ∈ Jy is an element of Jv if and only if it is equal to
σ−1bσ for a certain automorphism or a fibered modification b of (X ′, B′). The equality a = σ−1bσ implies
that a and b are automorphisms of (X,B) and (X ′, B′) respectively, and that a (respectively b) fixes the
center of σ (respectively of σ−1). In particular, Jy ∩ Jv = Diag(S).

It remains to show that every element h = bmam . . . b2a2b1a1 with al ∈ Jy \ Jv, bl = σ−1b′lσ ∈ Jv \ Jy
is not trivial. By virtue of the above description, each ai is either an automorphism of (X,B) not fixing
the center of σ or a fibered modification while each b′j is either an automorphism of (X ′, B′) not fixing the

center of σ−1 or a fibered modification of (X ′, B′). This implies that h is either an element of Aut(X,B)
not fixing the center of σ or admits a reduced decomposition containing at least a reversion. In any case,
h is not trivial which achieves the proof. �

Example 4.1.2. Let S be the surface in A4 = Spec(k[x, y, u, v]) defined by the equations






yu = x2(x− 1)
vx = u2(u− 1)
yv = x(x− 1)u(u− 1)

corresponding to the polynomials P (w) = Q(w) = w(w − 1). Since P (aw)/P (w) and Q(a
2

c
· w)/Q(w)

belong to k∗ if and only if a = c = 1, it follows from the proof of the above proposition that Diag(S) =
{idS}. Furthermore, one checks that the group Jy = Aut(S, pry) consist of lifts to S via the projection

prx,y : S → A2 = Spec(k[x, y]) of automorphisms of A2 of the form (x, y) 7→ (x+y2R(y), y), where R ∈ k[y]
is an arbitrary polynomial. So Jy is isomorphic as a group to (k[y],+) ≃ G∞

a,k and we conclude that Aut(S)
is isomorphic to the free product Z2 ⋆G

∞
a,k.

Example 4.1.3. Let S be the surface in A4 = Spec(k[x, y, u, v]) defined by the equations






yu = x2(x− 1)
vx = u(u− 1)
yv = x(x− 1)(u− 1)



16 JÉRÉMY BLANC AND ADRIEN DUBOULOZ

corresponding to the polynomials P (w) = w(w − 1) and Q(w) = w − 1. Again, the choice of P and Q
guarantees that Diag(S) = {idS}. Similarly as in the previous example, the groups Jy = Aut(S, pry) and
Jv = Aut(S, prv) consists of lifts to S via the projections prx,y and pru,v respectively of automorphisms of

A2 of the form (x, y) 7→ (x + y2R1(y), y), where R1 ∈ k[y], and (u, v) 7→ (u + vR2(v), v) where R2 ∈ k[v].
It follows that Aut(S) is isomorphic to the free product G∞

a,k ⋆G
∞
a,k of two copies of G∞

a,k.

4.2. Affine surfaces of types I and II.

In contrast with surfaces of type III, Example 3.2.4 shows that in general affine surfaces corresponding
to case I and II in the construction of § 2.1.2 can be obtained from each other by performing reversions.
Recall that these models correspond to pairs [P,Q] such that either P (0) 6= 0 or P (0) = 0 but Q(0) 6= 0.
The associated graph F[P,Q] is quite complicated, in particular infinite as soon as the field k is, as shown
by the following result:

Proposition 4.2.1. Let P,Q be two polynomials of degree ≥ 1, and assume that P (0) 6= 0. The set of
pairs equivalent to [P,Q] is

{

[P (w + a), Q(w + b)], [Q(w + b), P (w + a)]
∣

∣

∣
a, b ∈ k, (P (a), Q(b)) 6= (0, 0)

}

The graph F[P,Q] associated to [P,Q] has the following structure

[Q(w + λ), P (w + a)]
ll

,,ZZZZZZ
Z

[Q(w + c), P (w + ξ)]
... [P (w + a), Q(w)] oo //

aa

!!D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

Dee

%%K
KK

KK
KK

KK
KK

KK
KK

KK
KK

KK
K hh

((QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
Q

[Q(w + c), P (w)]
==

}}{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
{{
99

yyss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
66

vvmmm
mm
mm
mm
mm
mm
mm
mm
mm

ll
,,XXXXX

XXX

rr
22eeeeeee ...

[Q(w + µ), P (w + a)]
rr

22ffffffff ...
... [Q(w + c), P (w + ǫ)]

...
...

[Q(w + λ), P (w + b)]
ll

,,YYYYY
YYY

...
... [Q(w + d), P (w + ξ)]

... [P (w + b), Q(w)] oo // [Q(w + d), P (w)] ll ,,ZZZZZZZ

rr
22ffffffff ...

[Q(w + µ), P (w + b)]
rr

22ddddddd
[Q(w + d), P (w + ǫ)]

where P (a)P (b)Q(c)Q(d) 6= 0, Q(λ) = Q(µ) = P (ξ) = P (ǫ) = 0.

Proof. Follows from Lemma 3.2.1 and Proposition 3.2.2:

(1) Starting from [P (w + a), Q(w + b)] with P (a) 6= 0 and performing any reversion, we obtain all
[Q(w + c), P (w + a)] for c ∈ k.

(2) Starting from [P (w+ a), Q(w+ b)] with P (a) = 0 and Q(b) 6= 0 and performing any reversion, we
only obtain [Q(w + b), P (w + a)], which is equivalent to [Q(w + b), P (w + c)] for any c ∈ k.

This yields the result. �

Proposition 4.2.2. Let k be an uncountable field and let P,Q ∈ k[w] be polynomials having at least 2
distinct roots in an algebraic closure k of k and such that P (0) 6= 0. Then for the affine surface S in
A4 = Spec(k[x, y, u, v]) defined by the system of equations







yu = xP (x)
vx = uQ(u)
yv = P (x)Q(u),

the following holds:

(1) S admits uncountably many isomorphism classes of A1-fibrations.
(2) The subgroup H ⊂ Aut(S) generated by all automorphisms of A1-fibrations is not generated by a

countable union of algebraic groups.
(3) The subgroup Aut(S)alg ⊂ Aut(S) generated by all algebraic subgroups of Aut(S) is is not generated

by a countable union of algebraic groups.
(4) The quotient of Aut(S) by its normal subgroup Aut(S)alg contains a free group over an uncountable

set of generators. Furthermore, the same holds for Aut(S)/H ≃ Π1(FS) since H ⊂ Aut(S)alg.

Proof. The conditions on P and Q imply that P (αw + β)/P (w) ∈ k∗ for only finitely many pairs (α, β) ∈
k∗ × k, and the same holds for Q. Furthermore, the fact that the degree of P and Q is at least 2 implies
that for every standard pair (X,B) with X \ B ≃ S, the boundary B contains at least an irreducible
component with self-intersection ≤ −3.



AFFINE SURFACES WITH A HUGE GROUP OF AUTOMORPHISMS 17

Suppose that Q(w) = αP (βw) for some α, β ∈ k∗. Choosing t ∈ k general enough, we then have
P (γ(w + t))/P (w) 6∈ k∗ for any γ ∈ k∗. Applying Proposition 2.2.2, we can replace Q(w) with P (w + t),
and obtain that Q(w) 6= αP (βw) for any α, β ∈ k∗, which implies that [(P (w), Q(w))] 6= [(Q(w), P (w))].

We can now choose an uncountable set A ⊂ k, containing 0, such that for every distinct a1, a2 ∈ A, we
have [P (w + a1), Q(w)] 6= [P (w + a2), Q(w)] and [Q(w+ a1), P (w)] 6= [Q(w+ a2), P (w)] and such that for
any a ∈ A, the four equivalence classes [P (w), Q(w)], [Q(w), P (w)], [P (w+a), Q(w)] and [Q(w+a), P (w)]
are distinct.

For every a ∈ A, we denote by (Xa, Ba) the standard pair obtained from the pair of polynomials
(P (w + a), Q(w)) and by (X ′

a, B
′
a) the one obtained from the pair of polynomials (Q(w + a), P (w)). By

Proposition 4.2.1, each [(Xa, Ba)] and each [(X ′
a, B

′
a)] is a vertex in the graph FS = F[P,Q]. The choice

made on A implies that the four pairs [(Xa, Ba)], [(Xb, Bb)], [(X
′
a, B

′
a)] and [(X ′

b, B
′
b)] are pairwise distinct

for distinct a, b ∈ A. In particular, we obtain uncountably many vertices, which is is equivalent to (1) by
Proposition 2.2.2.

Let (Gi)i∈N be a countable set of algebraic subgroups Gi ⊂ Aut(S). For any i ∈ N, Proposition 1.4.2,

gives a standard pair (X,B) (depending on i), an an isomorphism ψ : S
∼
→ X \B such that the conjugation

of Gi by ψ consists of birational maps (X,B) 99K (X,B) being either fibered modifications, automorphisms
of self-intersections. Viewing any element of Gi as a birational map (X0, B0), we can decompose it into
automorphisms of pairs, fibered modifications and reversions (Proposition 1.2.3), and the existence of ψ
implies that the number of such maps is then bounded. In consequence, there exists a countable set S of
equivalence classes of pairs (X,B) with X \B = S, such that each element of each Gi can be decomposed
into a sequence of automorphisms of pairs, fibered modifications and reversions involving only pairs in S.
There exists thus a ∈ A such that [(X ′

a, B
′
a)] /∈ S. We choose a reversion µ : (X0, B0) 99K (X ′

a, B
′
a), and an

algebraic group Ĝ of fibered modifications (X ′
a, B

′
a) 99K (X ′

a, B
′
a). The group µ−1Ĝµ yields an algebraic

subgroup of Aut(S), which preserves an A1-fibration, and which is not contained in the group generated
by the Gi. This yields (2) and (3).

For every a ∈ A, there exist reversions τ : (X0, B0) 99K (X ′
0, B

′
0), σa : (X

′
0, B

′
0) 99K (Xa, Ba), τa : (Xa, Ba) 99K

(X ′
a, B

′
a) and σ′

a : (X
′
a, B

′
a) 99K (X0, B0), representing the cycle

[P (w), Q(w)] // [Q(w), P (w)]

��
[Q(w + a), P (w)]

OO

[P (w + a), Q(w)]oo

in FS = FP,Q. For every a ∈ A\{0}, the map σ′
aτaσaτ : (X0, B0) 99K (X0, B0) restricts to an automorphism

ζa of S = X0 \B0. The decomposition σ′
aτaσaτ is reduced, because [P (w), Q(w)] 6= [P (w + a), Q(w)] and

[Q(w), P (w)] 6= [Q(w + a), P (w)] (recall that the composition of two reversions is of length 2 or is an
isomorphism of pairs). We denote by F ⊂ Aut(S) the group generated by the ζa, a ∈ A\{0}, and will show
that this one is the free group over the ζa and intersects Aut(S)alg trivially, in order to get (4).

(1) First we observe that for every a, b ∈ A\{0}, a 6= b, the decomposition

ζaζb = σ′
aτaσaτσ

′
bτbσbτ

is reduced. Indeed, τσ′
b is reduced because otherwise it would be an isomorphism between (X ′

b, B
′
b)

and (X ′
0, B

′
0), which is not possible since b 6= 0.

(2) Similarly, the following decomposition

ζa(ζb)
−1 = σ′

aτaσa(σb)
−1(τb)

−1(σ′
b)

−1

is reduced, because otherwise σa(σb)
−1 would be an isomorphism betwen (Xb, Bb) and (Xa, Ba).

(3) The last case gives the following decomposition (ζa)
−1ζb = τ−1(σa)

−1(τa)
−1(σ′

a)
−1σ′

bτbσbτ, which
is again reduced, for otherwise (σ′

a)
−1σ′

b would be an isomorphism between (X ′
b, B

′
b) and (X ′

a, B
′
a).

These three observations implies that every element h = (ζar )
δr · · · (ζa1)

δ1 ∈ F , where a1, . . . , ar ∈ A and
δ1, . . . , δr ∈ Z\{0} and ai 6= ai+1 for i = 1, . . . , r− 1, is not trivial since it admits a reduced decomposition
of positive length. This shows the freeness of F . By construction, the image of h in Π1(FS) consists of a
product of loops based at [(X0, B0)] of length ≥ 4. Since in contrast, the image in Π1(FS) of every element
in Aut(S)alg can only contain loops of length 1 (see Remark 1.4.3), it follows that F ∩Aut(S)alg is trivial,
which completes the proof. �
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