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Abstract: In this research report, we study the inverse problem of identifying a Robin coefficient
defined on some non accessible part of the boundary from measurements available on the other
part of the boundary, for (u, p) solution of the Stokes system. We prove a Lipschitz stability
estimate, under the a priori assumption that the Robin coefficient is piecewise constant. To do so,
we use unique continuation estimates for the Stokes system proved in [BEG12] and the approach
developed by E. Sincich in [Sin07] to solve a similar inverse problem for the Laplace equation.
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Estimation de stabilité Lipschitzienne pour le système de
Stokes avec des conditions aux limites de type Robin

Résumé : Nous nous intéressons dans ce rapport de recherche à l’identification d’un coefficient
de Robin défini sur une partie non accessible du bord à partir de mesures disponibles sur une
autre partie du bord, pour (u, p) solution du système de Stokes. Nous prouvons une inégalité
de stabilité Lipschitzienne sous l’hypothèse a priori que le coefficient de Robin est constant par
morceaux. Pour ce faire, nous utilisons les estimations de continuation unique pour le système
de Stokes prouvées dans [BEG12] et l’approche développée par E. Sincich dans [Sin07] pour
résoudre un problème inverse similaire pour l’équation de Laplace.

Mots-clés : Problème inverse, Inégalité de stabilité Lipschitzienne, Système de Stokes.
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1 Introduction

Let Ω ⊂ Rd, with d = 2, 3, be a Lipschitz bounded connected open set such that ∂Ω = Γl ∪ Γ0 ∪
Γout.

We are interested in the following system:

−∆u+∇p = 0, in Ω,
div u = 0, in Ω,
u = 0, in Γl,

∂u

∂n
− pn = g, on Γ0,

∂u

∂n
− pn+ qu = 0, on Γout,

(1)

where Γout =
⋃N
i=1 Γi and n the exterior normal to Ω.

The aim of this paper is to identify the Robin coefficient q defined on the non accessible part
of the boundary Γout from available data on Γ0. We provide a Lipschitz stability estimate, under
the a priori assumption that the Robin coefficient is piecewise constant on Γout:

q|Γi = qi ∈ R+, for 1 ≤ i ≤ N. (2)

Such problems can be viewed as a generalization of some problems which appear naturally
in the modeling of biological problems like, for example, blood flow in the cardiovascular system
(see [QV03] and [VCFJT06]) or airflow in the lungs (see [BGM10]). For an introduction on
the modeling of the airflow in the lungs and on different boundary conditions which may be
prescribed, we refer to [Egl12]. The part of the boundary Γ0 represents a physical boundary
on which measurements are available and Γout represents artificial boundaries on which Robin
boundary conditions or mixed boundary conditions involving the fluid stress tensor and its flux
at the outlet are prescribed.

The uniqueness for such problems is not an issue and has already been investigate in [BEG13].
It is obtained as a corollary of a unique continuation result for the Stokes system proven by C.
Fabre and G. Lebeau (see [FL96]). Concerning the stability, logarithmic stability estimates
have been obtained in [BEG13] and [BEG12] for more general than piecewise constant Robin
coefficients. The main tools used in both cases are Carleman inequalities, global in the first case
and local in the second one. Let us point out that, due to the mixed boundary conditions, the
solution of system (1) is not regular in a neighborhood of the junction between two different
boundary conditions. Thus, we can not expect in general that the solution belongs, at least, to
H2(Ω)×H1(Ω). As a consequence, we can not use global Carleman inequalities requiring global
regularity on the solution. The Lipschitz stability estimate obtained in this paper is based on
local regularity on the solution of system (1) and on the open set Ω and on the stability estimates
for the unique continuation property of the Stokes system proved in [BEG12].

Comparable problems have been widely studied for the Laplace equation (see for instance
[ADPR03], [BCC08], [CFJL04], [CJ99], [CCL08] and [Sin07]. In this case, it is in general a
problem arising in corrosion detection which consists of determining a Robin coefficient on the
inaccessible portion of the boundary by electrostatic measurements performed on the accessible
one. Most of the paper obtained logarithmic stability estimates but under some restricting
assumption on the Robin coefficient and on the flux g, it is possible to obtain Lipschitz stability
estimate. For instance, S. Chaabane and M. Jaoua obtained in [CJ99] both local and monotone
global Lipschitz stability for regular Robin coefficient and under the assumption that the flux
g is non negative. Relaxing this constraint, they obtained in [ADPR03] a logarithmic stability
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4 Anne-Claire Egloffe

estimate. More recently, E. Sincich has obtained in [Sin07] a Lipschitz stability estimate under
the further a priori assumption of a piecewise constant Robin coefficient.

Let us explain the structure of this paper. In Section 2, we begin with existence and regularity
results on (u, p) solution of system (1): we state global and local regularity results which will
be useful to prove the Lipschitz stability estimate. Then, we give in Section 3 technical lemmas
and unique continuation estimates which will be useful to prove the Lipschitz stability estimate.
Finally, Section 4 is dedicated to the main result: we state and prove the Lipschitz stability
estimate.

In the following, we will not distinguish vector valued functions and scalar valued functions.
Moreover, when we are not more specific, C > 0 is a constant whose value may change from a
line to an other. Let us introduce some notations that we will be useful throughout this paper.

Notation 1.1. For x ∈ Rd and r > 0, we denote Br(x) the ball of center x and of radius r.

Notation 1.2. Let Γ ⊂ ∂Ω be a non empty part of the boundary. We denote by

Γin = {x ∈ Γ/d(x, ∂Ω\Γ) > 0}.

Since the open set Ω is Lipschitz, it satisfies the cone property:

Definition 1.3 (Cone property). We say that Ω satisfies the cone property if there exists θ ∈
(0, π2 ) and R0 > 0 such that for all x0 ∈ ∂Ω, there exists ξ ∈ Rd, |ξ| = 1 such that the finite cone

C = {x ∈ Rd/(x− x0) · ξ > |x− x0| cos θ, |x− x0| ≤ R0}

is included in Ω.

2 Regularity results

We focus in this section on global and local regularity results for system (1). Even if global
H2×H1 regularity is not expected in general due to the mixed Dirichlet and Neumann boundary
conditions, we obtain local regularity results inside the domain and near the boundary, as long
as we stay away from the junction between two different boundary conditions.

We need to introduce functional spaces:

VΓl = {v ∈ H1(Ω)/v|Γl = 0 and div v = 0}, (3)

and
HΓl = V

L2(Ω)

Γl
. (4)

Moreover, for g ∈ H− 1
2 (∂Ω) and v ∈ H 1

2 (∂Ω), we denote by < g, v >− 1
2 ,

1
2 ,∂Ω the image of v by

the linear form g.

2.1 Global regularity

Proposition 2.1. Let RM > 0, 1Γ0
g ∈ H− 1

2 (∂Ω) and assume that q satisfies (2).
Then, system (1) admits a unique solution (u, p) ∈ VΓl ×L2(Ω). Moreover, if we assume the

q ≤ RM , there exists a constant C(RM ) > 0 such that:

‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C(RM )‖1Γ0
g‖
H−

1
2 (∂Ω)

. (5)

Inria



Lipschitz stability estimate for the Stokes system with Robin boundary conditions 5

Proof of Proposition 2.1. The variational formulation of the problem is: find u ∈ VΓl such that
for every v ∈ VΓl , ∫

Ω

∇u : ∇v +

∫
Γout

qu · v =< 1Γ0
g, v >− 1

2 ,
1
2 ,∂Ω . (6)

We denote by

aq(u, v) =

∫
Ω

∇u : ∇v +

∫
Γout

qu · v, (7)

and
L(v) =< 1Γ0g, v >− 1

2 ,
1
2 ,∂Ω .

We easily verify that aq is a continuous symmetric bilinear form on VΓl . According to Poincaré
inequality, the bilinear form aq is coercive on VΓl . On the other hand, L is a continuous linear
form on VΓl . Thus we get the existence and uniqueness of u ∈ VΓl solution of equations (1) using
the Lax-Milgram Theorem.We prove the existence and uniqueness of p ∈ L2(Ω) in a classical
way, by using De Rham Theorem and the Neumann boundary conditions.

2.2 Local regularity
Inside the domain Ω, we have local regularity: this is resumed in Proposition 2.2. Moreover,
locally near the boundary, as long as we stay away from the junction between two different
boundary conditions, we can also obtain local regularity. We refer to Propositions 2.3 and 2.5
for a statement of these regularity results.

Proposition 2.2. Let RM > 0, m ∈ N∗ and ω̂ ⊂ Ω be a relatively compact open set. Let
1Γ0

g ∈ H− 1
2 (∂Ω) and assume that q satisfies (2).

Then, the solution (u, p) of system (1) belongs to Hm+1(ω̂)×Hm(ω̂). Moreover, if we assume
that q ≤ RM , there exists a constant C(RM ) > 0 such that:

‖u‖Hm+1(ω̂) + ‖p‖Hm(ω̂) ≤ C(RM )‖1Γ0
g‖
H−

1
2 (∂Ω)

. (8)

Although the proof of this result is classical, we give here a sketch of the proof for the sake
of completeness.

Proof of Proposition 2.2. We prove this proposition by induction on m. For m = 0, the result is
given by Proposition 2.1.

We assume that Proposition 2.2 holds for some fixed m. Let us prove that the proposition
also holds for m + 1. Let ω be an open set of class Cm+1,1 such that ω̂ ⊂ ω ⊂ Ω. We localize in
the neighborhood of ω̂. Let χ ∈ C∞c (ω) be such that χ = 1 in ω̂ and 0 ≤ χ ≤ 1 everywhere else.
We denote by (v, π) = (χu, χp). Note that (v, π) is solution if the following problem:

−∆v +∇π = −∆χu− 2∇u∇χ+∇χp, in ω,
div v = ∇χ · u, in ω,

∂v
∂n − πn = 0, on ∂ω.

Let us denote by f = −∆χu− 2∇u∇χ+∇χp and h = ∇χ · u. By the induction assumption, we
deduce that the (f, h) belongs to Hm(ω)×Hm+1(ω). By application of regularity result for the
Stokes system with Neumann boundary condition (see [BF06]), we deduce that (v, π) belongs to
Hm+2(ω)×Hm+1(ω). Since χ = 1 on ω̂, we obtain the desired result.

We now study the regularity near the boundary of the domain. Proposition 2.3 states regu-
larity result in the restriction to Ω of a neighborhood of any point xj ∈ Γinj , for i = j, . . . , N .
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6 Anne-Claire Egloffe

Proposition 2.3. Let m ∈ N∗, RM > 0, 1 ≤ j ≤ N and xj ∈ Γinj . We assume that Γj is of class
Cm,1 if m ≥ 1 and Lipschitz otherwise. Let 1Γ0g ∈ H−

1
2 (∂Ω) and assume that q satisfies (2).

Then, there exists R > 0 such that the solution (u, p) of system (1) belongs to Hm+1(BR(xj)∩
Ω)×Hm(BR(xj)∩Ω). Furthermore, if we assume that q ≤ RM , there exists a constant C(RM ) >
0 such that

‖u‖Hm+1(BR(xj)∩Ω) + ‖p‖Hm(BR(xj)∩Ω) ≤ C(RM )‖1Γ0
g‖
H−

1
2 (∂Ω)

.

The proof of Proposition 2.3 relies on classical argument and is similar to the proof of Propo-
sition 2.2.

Then, we deduce from Proposition 2.3 local Hölder regularity on (u, p) solution of system (1)
near the boundary Γj , as long as we stay away from the junction between two different boundary
conditions.

Corollary 2.4. Let 1 ≤ j ≤ N and xj ∈ Γinj . We assume that Γj is of class C2,1. Let
1Γ0

g ∈ H− 1
2 (∂Ω) and assume that q satisfies (2).

Then, there exists R > 0 and 0 < β < 1 such that the solution (u, p) of system (1) belongs to
C1,β(BR(xj) ∩ Ω)× C0,β(BR(xj) ∩ Ω) for all j = 1, . . . , N .

Proof of Corollary 2.4. Let 1 ≤ j ≤ N . Thanks to Proposition 2.3, there exists Rj > 0 such
that (u, p) ∈ H3(BRj (xj) ∩ Ω) × H2(BRj (xj) ∩ Ω). Thanks to Proposition 2.2, we know that

there exists a connected open set Ω̃ ⊂ Ω of class C2,1 such that
N⋃
j=1

(
BRj (xj) ∩ Ω

)
⊂ Ω̃ and

(u, p) ∈ H3(Ω̃) ×H2(Ω̃). Then, since for all m ∈ N such that 2(m − 1) ≤ d < 2m, there exists
0 < λ < 1 such that Hm(Ω̃) ↪→ C0,λ(Ω̃) (see [Ada75]), we deduce that there exits 0 < β < 1 such
that H2(Ω̃) ⊂ C0,β(Ω̃), which implies that (u, p) ∈ C1,β(BR(xj) ∩ Ω) × C0,β(BR(xj) ∩ Ω) for all
j = 1, . . . , N , with R = min1≤j≤N Rj .

Proposition 2.5 below states regularity result in the restriction to Ω of a neighborhood of any
point x0 ∈ Γin0 .

Proposition 2.5. Let RM > 0, m ∈ N and x0 ∈ Γin0 . We assume that Γ0 is of class Cm,1 if
m ≥ 1 and Lipschitz otherwise. Let 1Γ0

g ∈ Hm− 1
2 (∂Ω) and assume that q satisfies (2).

Then, there exists R > 0 such that the solution (u, p) of system (1) belongs to Hm+1(BR(x0)∩
Ω)×Hm(BR(x0)∩Ω). Furthermore, if we assume that q ≤ RM , there exists a constant C(RM ) >
0 such that

‖u‖Hm+1(BR(x0)∩Ω) + ‖p‖Hm(BR(x0)∩Ω) ≤ C(RM )‖1Γ0
g‖
Hm−

1
2 (∂Ω)

.

3 Preliminary results

3.1 Useful lemmas
The following lemmas will be useful throughout this paper.

Lemma 3.1. Let A > 0, B > 0, C1 > 0, C2 > 0 and D > 0. We assume that there exists γ1 > 0
such that

D ≤ AeC1γ +Be−C2γ , (9)

for all γ ≥ γ1 and c0 > 0 such that D ≤ c0B. Then, there exists C > 0 such that:

D ≤ CA
C2

C1+C2B
C1

C1+C2 .

Inria



Lipschitz stability estimate for the Stokes system with Robin boundary conditions 7

We refer to [Rob95] for a proof of this lemma.

Lemma 3.2. Let A ∈ R, µ ∈ R∗ and (βk)k∈N ∈ RN. If, for all k ∈ N∗, we have

βk ≤
1

µk−1
(βk−1)

α
A1−α, (10)

then
βk ≤

1

µι
βα

k

0 A1−αk ,

where ι =
∑k−1
j=1 jα

k−1−j.

This lemma is proved in [BD10]. For the sake of completeness, we write it.

Proof of Lemma 3.2. We rewrite inequality (10) under the form:

βk
A
≤ 1

µk−1

(
βk−1

A

)α
.

By iterating the above inequality, we get:

βk
A
≤ 1

µι

(
β0

A

)αk
,

where ι =
∑k−1
j=1 jα

k−1−j .

Lemma 3.3. Let A, B, C1 and D be positive numbers and 0 < α < 1. Assume that

D ≤ C1A
αB1−α.

Then, for all ε > 0

D ≤ c

ε
A+ εsB,

where c = C
1
α
1 and s =

α

1− α
.

Proof of Lemma 3.3. Let ε > 0. We rewrite C1A
αB1−α =

(
C

1/α
1

ε A

)α
εαB1−α. Then it is

sufficient to apply Young inequality:

D ≤ αC
1/α
1

ε
A+ (1− α)εsB.

Since 0 < α < 1, the desired inequality follows.

3.2 Unique continuation estimates

In this section, we state some unique continuation estimates for the Stokes system which will
be useful in the next subsection to prove the Lipschitz stability estimate. They are obtained
as corollaries of unique continuation estimates proved in [BEG12]. Let us begin by recalling a
proposition from [BEG12] which allows to transmit information from a part of the boundary of
Ω to a relatively compact open set in Ω.

RR n° 8222



8 Anne-Claire Egloffe

Proposition 3.4. Assume that D is of class C∞. Let 0 < ν ≤ 1
2 . Let Γ be a non empty open

subset of the boundary of D. Let ω̂ be a relatively compact open set in D. Then, there exists
C, σ > 0, such that for all ε > 0 and for all (u, p) ∈ H 3

2 +ν(D)×H 3
2 +ν(D) solution of{

−∆u+∇p = 0, in D,
div u = 0, in D, (11)

‖u‖H1(ω̂) + ‖p‖H1(ω̂) ≤
C

ε

(
‖u‖H1(Γ) + ‖p‖H1(Γ) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γ)

)
+ εσ(‖u‖H1(D) + ‖p‖H1(D)).

In our case, we can not apply directly Proposition 3.4 in the open set Ω to (u, p) solution of
system (1) because regularity is needed both on the solution of the Stokes system (11) and on
the open set. Nevertheless, Proposition 3.5 below is obtain as a corollary of Proposition 3.4 and
allows us to transmit information from a part of the boundary Γ ⊂ Γ0 to a relatively compact
open ω̂ set included in Ω.

Proposition 3.5. Assume that Γ0 is of class C∞. Let RM > 0, M1 > 0, Γ ⊆ Γ0 be a non
empty open subset of the boundary of Ω such that

(
Γ ∩ Γl

)⋃ (
Γ ∩ Γout

)
= ∅ and ω̂ ⊂ Ω be a

relatively compact open set. Let 1Γ0
g ∈ H 3

2 (∂Ω) be such that ‖1Γ0
g‖
H

3
2 (∂Ω)

≤ M1 and assume
that q satisfies (2) and q ≤ RM .

Then, there exist constants C(RM ,M1) > 0 and 0 < δ < 1 such that for all (u, p) solution of
system (1), the following inequality is satisfied:

‖u‖H1(ω̂) + ‖p‖H1(ω̂) ≤ C(RM ,M1)

(
‖u‖L2(Γ) + ‖p‖L2(Γ) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γ)

)δ
. (12)

Proof of Proposition 3.5. Thanks to local regularity results stated in Subsection 2.2, we know
that there exists a connected open set Ω̃ ⊂ Ω of class C∞ such that Γ ⊂ ∂Ω̃, ω̂ ⊂ Ω̃ and such
that the solution (u, p) of (1) belongs to H3(Ω̃) × H2(Ω̃). Moreover, there exists a constant
C(RM ,M1) > 0 such that:

‖u‖H3(Ω̃) + ‖p‖H2(Ω̃) ≤ C(RM ,M1). (13)

We apply Proposition 3.4: there exists σ > 0 and C > 0 such that, for all ε̃ > 0,

‖u‖H1(ω̂) + ‖p‖H1(ω̂)

≤ C

ε̃

(
‖u‖H1(Γ) + ‖p‖H1(Γ) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γ)

)
+ ε̃σ

(
‖u‖H1(Ω̃) + ‖p‖H1(Ω̃)

)
. (14)

Note that it is the H1 norms of u and p on Γ which appear in the first term in the right hand-side
of (14). In order to replace them with the L2 norms of u and p on Γ, we use an interpolation
inequality: there exists c > 0 such that

‖u‖H1(Γ) + ‖p‖H1(Γ) ≤ c
(
‖u‖

1
3

L2(Γ)‖u‖
2
3

H
3
2 (Γ)

+ ‖p‖
1
3

L2(Γ)‖p‖
2
3

H
3
2 (Γ)

)
.

Let ε > 0. If we write

‖u‖
1
3

L2(Γ)‖u‖
2
3

H
3
2 (Γ)

=

(
1

ε
‖u‖L2(Γ)

) 1
3 (
ε

1
2 ‖u‖

H
3
2 (Γ)

) 2
3

,

Inria



Lipschitz stability estimate for the Stokes system with Robin boundary conditions 9

and

‖p‖
1
3

L2(Γ)‖p‖
2
3

H
3
2 (Γ)

=

(
1

ε
‖p‖L2(Γ)

) 1
3 (
ε

1
2 ‖p‖

H
3
2 (Γ)

) 2
3

,

according to Young inequality and to the trace injection H2(Ω̃) ↪→ H
3
2 (Γ), we obtain:

‖u‖H1(Γ) + ‖p‖H1(Γ) ≤ c
(
ε

1
2

(
‖u‖H3(Ω̃) + ‖p‖H2(Ω̃)

)
+

1

ε

(
‖u‖L2(Γ) + ‖p‖L2(Γ)

))
. (15)

Let ε > 0. By combining inequalities (15) with ε = ε̃2(σ+1) and inequalities (14) with ε̃ = ε
1

2σ+3 ,
we obtain the existence of C > 0 and s > 0 such that for all ε > 0:

‖u‖H1(ω̂) + ‖p‖H1(ω̂)

≤ C

(
1

ε

(
‖u‖L2(Γ) + ‖p‖L2(Γ) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γ)

)
+ εs

(
‖u‖H3(Ω̃) + ‖p‖H2(Ω̃)

))
.

(16)

We conclude by using Lemma 3.1 and inequality (13).

Then, Lemma 3.6 allows to transmit information inside the domain Ω, from a relatively
compact open set include in Ω to an other.

Lemma 3.6. [Three balls inequality] Let ρ > 0 and q ∈ Rd. There exist C > 0, 0 < α < 1 such
that for all function (u, p) ∈ H1(B8ρ(q))×H1(B8ρ(q)) solution of{

−∆u+∇p = 0,
div u = 0,

(17)

in B8ρ(q) the following inequality is satisfied:

‖u‖H1(B3ρ(q)) + ‖p‖L2(B3ρ(q))

≤ C
(
‖u‖H1(Bρ(q)) + ‖p‖L2(Bρ(q))

)α (‖u‖H1(B8ρ(q)) + ‖p‖L2(B8ρ(q))

)1−α
, (18)

with α =
g(3ρ)− g

(
7
2ρ
)

g(ρ3 )− g
(

7
2ρ
) and with g(r) = e−λr

2

, for λ large enough.

In the following, in order to refer to this inequality, we will say that the three balls inequality
associated to q and ρ is satisfied, with the associated constants C > 0 and α > 0.

Remark 3.7. Lemma 3.6 is the counterpart, in the case of the Stokes system, of the so-called
three balls inequality for the Laplacian. We refer to [BD10] or [LNW08] for a three balls inequality
for the Laplacian. Note that in [LUW10], C.-H. Lin, G. Uhlmann and J.-N. Wang have obtained
an optimal three balls inequality for the Stokes system involving only the velocity in the L2 norm.
From this inequality, they derive an upper bound on the vanishing order of any non trivial solution
u to the Stokes system.

The ideas of the proof are the same as those developed in [BEG12]. We refer to [Egl12] for
a complete proof of this result. In the proof of the Lipschitz stability estimate, we will apply
Lemma 3.6 to a sequence of balls with decreasing radius which approachs the boundary. To this
aim, we need to know the behavior of the constants when we pass from a ball to another. This
is done in Lemma 3.8 below.

RR n° 8222



10 Anne-Claire Egloffe

Lemma 3.8. Let ρ > 0, (q, q) ∈ Rd×Rd, and µ ∈ (0, 1). We denote by ρ = µρ. We assume that
the three balls inequality (18) associated to q and ρ holds for some constants C > 0 and α > 0.

Then, for all functions (u, p) ∈ H1(B8ρ(q)) × H1(B8ρ(q)) solution of (17) in B8ρ(q), the
following inequality is satisfied:

‖u‖H1(B3ρ(q)) + ‖p‖L2(B3ρ(q))

≤ C̃
(
‖u‖H1(Bρ(q)) + ‖p‖L2(Bρ(q))

)α (‖u‖H1(B8ρ(q)) + ‖p‖L2(B8ρ(q))

)1−α
, (19)

where C̃ =
C

µ
> 0. In other words, the three balls inequality associated to q and ρ is satisfied

with the associated constants
C

µ
> 0 and α > 0.

Proof of Lemma 3.8. This lemma is inspired from [BD10] where L. Bourgeois and J. Dardé are
concerned with the operator Pk = −∆− k, with k ∈ R, and use similar techniques.

Let m ∈ N∗. By performing the change of variables

Bmρ(q) → Bmρ(q),
x → q + (x− q)µ,

we get:∫
Bmρ(q)

|u(x)|2 + |∇u(x)|2dx = µd
∫
Bmρ(q)

|u(q + µ(x− q))|2 + |∇u(q + µ(x− q))|2dx.

Let us denote by u(x) = u(q + µ(x − q)) and p(x) = µp(q + µ(x − q)). Noticing that ∇u(x) =
µ∇u(q + µ(x− q)), we get:∫

Bmρ(q)

|u(x)|2 + |∇u(x)|2dx = µd
∫
Bmρ(q)

|u(x)|2dx+
1

µ2
|∇u(x)|2dx.

Moreover, since ∫
Bmρ(q)

|p(x)|2dx = µd−2

∫
Bmρ(q)

|p(x)|2dx,

and since 0 < µ < 1, we obtain:

µ
d
2

(
‖u‖H1(Bmρ(q)) + ‖p‖L2(Bmρ(q))

)
≤ ‖u‖H1(Bmρ(q)) + ‖p‖L2(Bmρ(q))

≤ µ d2−1
(
‖u‖H1(Bmρ(q)) + ‖p‖L2(Bmρ(q))

)
.

Observe that (u, p) is solution in B8ρ(q) of system (17):

−∆u(x) +∇p(x) = µ2 (−∆u(x) +∇p(x)) = 0,

for x ∈ B8ρ(q) and where x = q + (x− q)µ ∈ B8ρ(q).
Thus, (u, p) satisfies (18) for C > 0 and α > 0. We deduce that:

‖u‖H1(B3ρ(q)) + ‖p‖L2(B3ρ(q)) ≤ µ
d
2−1

(
‖u‖H1(B3ρ(q)) + ‖p‖L2(B3ρ(q))

)
≤ µ d2−1C

(
‖u‖H1(Bρ(q)) + ‖p‖L2(Bρ(q))

)α (‖u‖H1(B8ρ(q)) + ‖p‖L2(B8ρ(q))

)1−α
≤ C

µ

(
‖u‖H1(Bρ(q)) + ‖p‖L2(Bρ(q))

)α (‖u‖H1(B8ρ(q)) + ‖p‖L2(B8ρ(q))

)1−α
.
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Lipschitz stability estimate for the Stokes system with Robin boundary conditions 11

4 Main result
Theorem 4.1. Assume that Γ0 is of class C∞ and Γi is of class C2,1 for i = 1, . . . , N . Let
m > 0, RM > 0, M1 > 0, Γ ⊆ Γ0 be a non empty open subset of the boundary of Ω such
that

(
Γ ∩ Γl

)⋃ (
Γ ∩ Γout

)
= ∅ and let g ∈ H 3

2 (Γ0) be non identically zero on Γ0 and such that
‖g‖

H
3
2 (Γ0)

≤ M1. We assume that qk satisfies (2) with qi = qki be such that qki ≤ RM for

i = 1, . . . , N and k = 1, 2. Let us denote by (uk, pk) the solution of (1) associated to q = qk for
k=1,2. We assume that there exists xj ∈ Γinj such that |u2(xj)| > m, for all j = 1, . . . , N .

Then, there exists C(RM ,M1, N,m) > 0 such that

‖q1 − q2‖L∞(Γout)

≤ C(RM ,M1, N,m)

(
‖u1 − u2‖L2(Γ) + ‖p1 − p2‖L2(Γ) +

∥∥∥∥∂p1

∂n
− ∂p2

∂n

∥∥∥∥
L2(Γ)

)
. (20)

Remark 4.2. Since g is not identically zero on Γ0, we know, thanks to the uniqueness result
(see [BEG13]), that for all j = 1, . . . , N , there exists xj ∈ Γinj such that u2(xj) 6= 0. We notice
however that the constant involved in the estimate (20) depends on u2 through the constant m.
Finding a uniform lower bound for a solution u of system (1) remains an open question.

Remark 4.3. Let 1 ≤ i ≤ N and xi ∈ Γini be such that |u2(xi)| > m. Let us give an idea of
how information goes from Γ to a neighborhood Vi of xi. Thanks to Proposition 3.5, information
goes from Γ to a relatively compact open set B0 included in Ω. Then, we use a sequence of balls
(Bk)k∈N with decreasing radius to approach the boundary near xi, taking into account Lemma 3.8.
Finally, we use the boundary condition on Γi and the local Hölder regularity of the solution on
Vi (see Corollary 2.4). We refer to Figure 1 for an illustration.

Proof of Theorem 4.1. We follow the approach developed in [Sin07] in the case of the Laplace
equation.

We consider:

(w, π) =

(
u1 − u2∑N
j=1 |q1

j − q2
j |
,

p1 − p2∑N
j=1 |q1

j − q2
j |

)
. (21)

According to Proposition 2.1, (w, π) belongs to VΓl × L2(Ω). Since for k = 1, 2, qk is piecewise
constant, (w, π) is solution of:

−∆w +∇π = 0, in Ω,
div w = 0, in Ω,
w = 0, on Γl,

∂w

∂n
− πn = 0, on Γ0,

∂w

∂n
− πn+ q1w =

(q2 − q1)∑N
j=1 |q1

j − q2
j |
u2, on Γout.

(22)

Observe that if we do not assume that qk is piecewise constant, we get additional terms which
depend on the derivative of qk in system (22).

Step 1 : Since the open set Ω satisfies the cone property, there exists θ ∈ (0, 1) and R0 > 0

such that for all i = 1, . . . , N there exists ξi ∈ Rd, |ξi| = 1 such that the finite cone Ci = {x ∈
Rd/(x− xi) · ξi > |x− xi| cos θ and |x− xi| ≤ R0} is included in Ω.

We are going to construct a sequence of balls (Bρk(ζi,k))k∈N with decreasing radius and whose
center is converging through xi.
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12 Anne-Claire Egloffe

Γ	
  

xi	
  

B0	
  

B1	
  

V	
  xi	
  

Figure 1: Figure illustrating how informations spread in the proof of Theorem 4.1.

For this sequence of balls, we will prove that there exists 0 < α < 1, 0 < µ < 1 and C > 0
such that for all i = 1, . . . , N and k ∈ N, the following estimate is satisfied for all ε > 0:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ e
C

αk
log

(
1

µk−1

)
ε

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ Cεα

k
(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)
, (23)

where Ω̃i ⊂ Ω is an open set such that Γ ⊂ ∂Ω̃i and Ci ⊂ Ω̃i and such that (w, π) ∈ H3(Ω̃i) ×
H2(Ω̃i).

We consider

C′i = {x ∈ Rd/(x− xi) · ξi > |x− xi| cos θ′ et |x− xi| ≤ R0},

with
θ′ = arcsin(t sin θ). (24)

The parameter t belongs to (0, 1) and will be specified later on. Note that we have C′i ⊂ Ci ⊂ Ω.

We denote by ζi,0 = xi +
R0

2
ξi, d0 = |ζi,0 − xi| =

R0

2
and ρ0 = d0 sin θ′. For k ∈ N∗, we define

the sequence of balls by induction:

ζi,k+1 = xi + µ|ζi,k − xi|ξi, dk+1 = |ζi,k+1 − xi|, ρk+1 = dk+1 sin(θ′),

with

µ =
1− sin θ′

1 + sin θ′
⇐⇒ sin θ′ =

1− µ
1 + µ

. (25)

We refer to Figure 2 for an illustration of this construction. This construction implies that
dk+1 = µdk and ρk+1 = µρk. We choose the parameter t involved in (24) such that B8ρk(ζi,k) ⊂
Ci ⊂ Ω for all k ∈ N, that is to say, using (24), 8ρk = 8dk sin θ′ ≤ sin θdk ⇔ t ≤ 1

8
.
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ζi,k	
  

xi	
  

ϑ’	
  ϑ	
  
dk	
  

ρk	
  

ξi !

✗	
  
ζi,0	
  

Figure 2: Figure illustrating the construction of the sequence of balls with decreasing radius and
whose center is approaching xi.

Next, we apply Lemma 3.6 with ρ = ρ0 and q = ζi,0: there exists C > 0 and α > 0 such that

‖w‖H1(B3ρ0 (ζi,0)) + ‖π‖L2(B3ρ0 (ζi,0))

≤ C
(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)α (
‖w‖H1(B8ρ0 (ζi,0)) + ‖π‖L2(B8ρ0 (ζi,0))

)1−α
.

Taking into account Lemma 3.8, since ρk−1 = µk−1ρ0, it follows that, for all k ∈ N∗:

‖w‖H1(B3ρk−1
(ζi,k−1))

+ ‖π‖L2(B3ρk−1
(ζi,k−1))

≤ C

µk−1

(
‖w‖H1(Bρk−1

(ζi,k−1))
+ ‖π‖L2(Bρk−1

(ζi,k−1))

)α
×(

‖w‖H1(B8ρk−1
(ζi,k−1))

+ ‖π‖L2(B8ρk−1
(ζi,k−1))

)1−α
. (26)

By construction, we have:
Bρk(ζi,k) ⊆ B3ρk−1

(ζi,k−1). (27)

Indeed, we have ζi,k − ζi,k−1 = µ(dk−1− dk−2)ξi =
µ

sin θ′
(ρk−1− ρk−2)ξi = − µ

sin θ′
(1−µ)ρk−2ξi

and using (24), we obtain ζi,k − ζi,k−1 = −µ(1 + µ)ρk−2ξi. Then, if x ∈ Bρk(ζi,k), we have:

|x− ζi,k−1| ≤ |x− ζi,k|+ |ζi,k−1 − ζi,k| ≤ ρk + µ(1 + µ)ρk−2 ≤ 3ρk−1.

By combining (26) and (27) we deduce that there exists C > 0 and 0 < α < 1 such that for all
k ∈ N∗, we have:

‖w‖H1(Bρk (ζi,k))
+ ‖π‖L2(Bρk (ζi,k))

≤ C

µk−1

(
‖w‖H1(Bρk−1

(ζi,k−1))
+ ‖π‖L2(Bρk−1

(ζi,k−1))

)α (
‖w‖H1(B8ρk−1

(ζi,k−1))
+ ‖π‖L2(B8ρk−1

(ζi,k−1))

)1−α
.

(28)
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14 Anne-Claire Egloffe

Let Ω̃i ⊂ Ω be an open set such that Γ ⊂ ∂Ω̃i, Ci ⊂ Ω̃i and such that (w, π) ∈ H3(Ω̃i)×H2(Ω̃i).
Note that such an open set exists thanks to local regularity results stated in Subsection 2.2. We
have, for all k ∈ N∗:

‖w‖H1(B8ρk−1
(ζi,k−1)) + ‖π‖L2(B8ρk−1

(ζi,k−1)) ≤ ‖w‖H3(Ω̃i)
+ ‖π‖H2(Ω̃i)

.

Thus, we can rewrite inequality (28) as:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ C

µk−1

(
‖w‖H1(Bρk−1

(ζi,k−1)) + ‖π‖L2(Bρk−1
(ζi,k−1))

)α (
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)1−α
.

We now apply Lemma 3.2 with βk = ‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k)) and

A = C
(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)
, to obtain:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ 1

µι

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)αk (
C
(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

))1−αk

,

where ι =

k−1∑
j=1

jαk−1−j . Note that ι ≤ (k − 1)

k−2∑
j=0

αj

 ≤ k − 1

1− α
. To summarize, the following

inequality is satisfied:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ 1

µ
k−1
1−α

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)αk (
C(‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)
)
)1−αk

.

Let ε > 0. By Lemma 3.3 with A = ‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0)), B = C(‖w‖H3(Ω̃i)
+

‖π‖H2(Ω̃i)
), C1 =

1

µ
k−1
1−α

, and D = ‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k)), we obtain:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ ck
ε

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ Cεsk

(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)
,

with sk =
αk

1− αk
and ck =

(
1

µ
k−1
1−α

)1/αk

. Note that sk ≥ αk implies, for 0 < ε < 1 that:

‖w‖H1(Bρk (ζi,k)) + ‖π‖L2(Bρk (ζi,k))

≤ e
C

αk
log

(
1

µk−1

)
ε

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ Cεα

k
(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)
.

Let us remark that the previous inequality is clearly satisfied for ε ≥ 1 by continuity of the
injection H1(Ω̃i) ↪→ H1(Bρk(ζi,k)). Thus, we obtain inequality (23).

Step 2 : Combining local Hölder regularity of the solution and inequality (23), and then
optimizing the resulting inequality, we will obtain the desired Lipschitz stability estimate (20).
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Lipschitz stability estimate for the Stokes system with Robin boundary conditions 15

Let us recall that thanks to Corollary 2.4, there exists R > 0 and 0 < β < 1 such that
(w, π) ∈ C1,β(BR(xi) ∩ Ω)× C0,β(BR(xi) ∩ Ω) for all i = 1, . . . , N .

Let 0 < ε′ < min(R, 1) = ε′0. If dk + ρk < ε′, that is to say µk(d0 + ρ0) < ε′, we have
Bρk(ζi,k) ⊂ Bε′(xi). Let k0 = k0(ε′) be the smallest k which satisfies this inequality. We have:∣∣∣∣ log((d0 + ρ0)/ε′)

log (1/µ)

∣∣∣∣ ≤ k0 <

∣∣∣∣ log((d0 + ρ0)/ε′)

log (1/µ)

∣∣∣∣+ 1. (29)

Since (w, π) is solution of system (22), we obtain, using the boundary condition on Γi:

|q1
i − q2

i |∑N
j=1 |q1

j − q2
j |
|u2(xi)| ≤

∣∣∣∣∂w∂n (xi)

∣∣∣∣+ |π(xi)|+ |q1
i ||w(xi)| ≤ |∇w(xi)|+ |π(xi)|+RM |w(xi)|. (30)

Let yi ∈ Bρk0 (ζi,k0). Using the Hölder regularity of w, ∇w and π on Bρk0 (ζi,k0) ⊂ Bε′(xi) ⊂
BR(xi), we have:

|q1
i − q2

i |∑N
j=1 |q1

j − q2
j |
|u2(xi)| ≤ |∇w(yi)|+ |π(yi)|+RM |w(yi)|+ C|xi − yi|β .

Moreover, since |u2(xi)| > m, we obtain that, for all yi in Bρk0 (ζi,k0),

|q1
i − q2

i |∑N
j=1 |q1

j − q2
j |
m ≤ |∇w(yi)|+ |π(yi)|+RM |w(yi)|+ Cε′

β
.

Let us denote by ωd the volume of the unit ball in Rd. By integrating in L2 norm the previous
inequality in Bρk0 (ζi,k0), we obtain:

|q1
i − q2

i |∑N
j=1 |q1

j − q2
j |
≤ C(m,RM )

ω
1
2

d ρ
d
2

k0

(
‖w‖

H1
(
Bρk0

(ζi,k0)
) + ‖π‖

L2
(
Bρk0

(ζi,k0)
))+ Cε′

β
.

The previous inequality together with (23) yields to the existence of 0 < α < 1, 0 < µ < 1 such
that for all i = 1, . . . , N the following estimate holds for all ε > 0

|q1
i − q2

i |∑N
j=1 |q1

j − q2
j |
≤ C(m,RM )

ρ
d
2

k0

e
C

αk0
log

(
1

µk0−1

)
ε

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+
C(m,RM )

ρ
d
2

k0

εα
k0
(
‖w‖H3(Ω̃i)

+ ‖π‖H2(Ω̃i)

)
+ Cε′

β
.

By summing up the previous inequality for i = 1, ..., N , we obtain:

1 ≤ C(m,RM )

ρ
d
2

k0

e
C

αk0
log

(
1

µk0−1

)
ε

N∑
i=1

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+
C(m,RM , N)

ρ
d
2

k0

εα
k0
(
‖w‖H3(Ω̃) + ‖π‖H2(Ω̃)

)
+ C(N)ε′

β
,
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16 Anne-Claire Egloffe

where Ω̃ =

N⋃
i=1

Ω̃i. Moreover, µk0−1(d0 + ρ0) ≥ ε′ and ρk0 = µk0ρ0 imply that ρk0 ≥ µ
ρ0

d0 + ρ0
ε′.

It follows:

1 ≤ C(m,RM )

ε′
d
2

e
C

αk0
log

(
1

µk0−1

)
ε

N∑
i=1

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ C(m,RM , N)

(
‖w‖H3(Ω̃) + ‖π‖H2(Ω̃) + C(N)

)(εαk0
ε′
d
2

+ ε′
β

)
. (31)

Let us denote by
E =

(
‖w‖H3(Ω̃) + ‖π‖H2(Ω̃) + C(N)

)
. (32)

We simplify the last term in the right hand-side in (31) by choosing ε > 0 such that
εα
k0

ε′
d
2

= ε′β .

Since αk0 < 1, we obtain, for all ε′ small enough

1 ≤ C(m,RM , N)
e

C

αk0
log

(
1

µk0−1

)
ε′(β+d)/αk0

N∑
i=1

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ C(m,RM , N)Eε′

β
.

(33)

Since
1

αk0
= ek0 log(1/α), we obtain, using (29):

1

αk0
< e

log(1/α)
(

log((d0+ρ0)/ε′)
log(1/µ)

+1
)

=
1

α

(
d0 + ρ0

ε′

)γ0
,

where γ0 =
log(1/α)

log(1/µ)
. Furthermore, since

1

µk0−1
≤ d0 + ρ0

ε′
by definition of k0, we have

log

(
1

µk0−1

)
< log

(
d0 + ρ0

ε′

)
.

Then,

e
c

αk0
log

(
1

µk0−1

)
ε′(β+d)/αk0

= e
1

αk0

(
c log

(
1

µk0−1

)
+(β+d) log( 1

ε′ )
)

≤ e
1
α ( d0+ρ0

ε′ )
γ0(c log( d0+ρ0

ε′ )+(β+d) log( 1
ε′ )) ≤ e

C

ε′γ0
log( 1

ε′ ). (34)

To summarize, for γ > γ0 and for 0 < ε′ < ε′0, we obtain from (33) and (34):

1 ≤ C(m,RM , N)

(
eC/ε

′γ
N∑
i=1

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ Eε′

β

)
.

By denoting
1

s
= ε′γ , it can be rewritten for all s > s0 =

1

ε′0
γ as:

1 ≤ C(m,RM , N)

(
eCs

N∑
i=1

(
‖w‖H1(Bρ0 (ζi,0)) + ‖π‖L2(Bρ0 (ζi,0))

)
+ E

(
1

s

)β/γ)
.
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By applying Corollary 3.5, there exist C(M1,m,RM , N) > 0 and 0 < δ < 1 such that for all
s > s0:

1 ≤ C(M1,m,RM , N)

eCs(‖w‖L2(Γ) + ‖π‖L2(Γ) +

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥∂π∂n
∥∥∥∥
L2(Γ)

)δ
+ E

(
1

s

)β/γ .

(35)
Note that the previous inequality remains true for 0 < s < s0, eventually by increasing the
constant C(N) involved in (32).

We now look for the lower bound of this inequality with respect to s. We denote by

Λ =

(
‖w‖L2(Γ) + ‖π‖L2(Γ) +

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥∂π∂n
∥∥∥∥
L2(Γ)

)δ
. (36)

and f(s) = eCsΛ + d̃E

(
1

s

)β/γ
, with d̃ ≥ 1. Let us study the function f in R∗+. We have:

{
lims→0 f(s) = +∞,
lims→∞ f(s) = +∞.

So since f is continuous on R+
∗ , f reaches its minimum at a point s0 > 0. At this point,

f ′(s0) = 0⇔ Λ =
Ed̃β

Cγ

e−cs0

s0

β
γ+1

, thus f(s0) =
β

Cγ

Ed̃

s0

β
γ+1

+
Ed̃

s
β
γ

0

.

Hence, (35) leads to:

1 ≤ Ed̃C(M1,m,RM , N)

sλ0

(
β

cγ
+ 1

)
, (37)

where λ =
β

γ
if s0 ≥ 1 and λ = 1 +

β

γ
otherwise. But:

1

Λ
=

Cγ

Ed̃β
s0

β
γ+1ecs0 ≤ Cγ

Ed̃β
e( βγ+1+c)s0 ,

which can be written as follows:
1

s0
≤

β
γ + 1 + C

ln
(
Ed̃β
CγΛ

) ,
for all d̃ large enough. Taking into account (37), it leads to:

1 ≤ Ed̃C(M1,m,RM , N)

ln
(
Ed̃β
CγΛ

)λ .

Thanks to local regularity stated in Subsection 2.2, we know that there exits a constant C(M1, RM ) >
0 such that:

‖w‖H3(Ω̃) + ‖π‖H2(Ω̃) ≤ C(M1, RM ),
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which, remembering the definition (32) of E, leads to E ≤ C(M1, RM , N). Thus, by studying

the variation of the function fy(x) =
x

(ln(xy ))λ
on (y,+∞), for y =

CγΛ

d̃β
we obtain the existence

of two positive constants C1(M1,m,RM , N) and C2(M1, RM , N) such that

1 ≤ C1(M1,m,RM , N)(
ln
(
C2(M1,RM ,N)

Λ

))λ .
Remembering the definition (36) of Λ, the previous inequality is equivalent to

‖w‖L2(Γ) + ‖π‖L2(Γ) +

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ)

+

∥∥∥∥∂π∂n
∥∥∥∥
L2(Γ)

≥ C(M1,m,RM , N).

By replacing (w, π) by (21), we obtain:

N∑
j=1

|q1
j − q2

j | ≤

C(m,RM ,M1, N)

(
‖u1 − u2‖L2(Γ) + ‖p1 − p2‖L2(Γ) +

∥∥∥∥∂u1

∂n
− ∂u2

∂n

∥∥∥∥
L2(Γ)

+

∥∥∥∥∂p1

∂n
− ∂p2

∂n

∥∥∥∥
L2(Γ)

)

which concludes the proof of Theorem 4.1, since
∂u1

∂n
− ∂u2

∂n
= (p1 − p2)n on Γ.
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