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In this research report, we study the inverse problem of identifying a Robin coefficient defined on some non accessible part of the boundary from measurements available on the other part of the boundary, for (u, p) solution of the Stokes system. We prove a Lipschitz stability estimate, under the a priori assumption that the Robin coefficient is piecewise constant. To do so, we use unique continuation estimates for the Stokes system proved in [BEG12] and the approach developed by E. Sincich in [Sin07] to solve a similar inverse problem for the Laplace equation.

Introduction

Let Ω ⊂ R d , with d = 2, 3, be a Lipschitz bounded connected open set such that ∂Ω = Γ l ∪ Γ 0 ∪ Γ out .

We are interested in the following system:

                 -∆u + ∇p = 0, in Ω, div u = 0, in Ω, u = 0, in Γ l , ∂u ∂n -pn = g, on Γ 0 , ∂u ∂n -pn + qu = 0, on Γ out , (1) 
where Γ out = N i=1 Γ i and n the exterior normal to Ω. The aim of this paper is to identify the Robin coefficient q defined on the non accessible part of the boundary Γ out from available data on Γ 0 . We provide a Lipschitz stability estimate, under the a priori assumption that the Robin coefficient is piecewise constant on Γ out :

q |Γi = q i ∈ R + , for 1 ≤ i ≤ N.
(2)

Such problems can be viewed as a generalization of some problems which appear naturally in the modeling of biological problems like, for example, blood flow in the cardiovascular system (see [START_REF] Quarteroni | Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations[END_REF] and [START_REF] Vignon-Clementel | Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries[END_REF]) or airflow in the lungs (see [START_REF] Baffico | Multiscale modeling of the respiratory tract[END_REF]). For an introduction on the modeling of the airflow in the lungs and on different boundary conditions which may be prescribed, we refer to [START_REF] Egloffe | Étude de quelques problèmes inverses pour le système de Stokes[END_REF]. The part of the boundary Γ 0 represents a physical boundary on which measurements are available and Γ out represents artificial boundaries on which Robin boundary conditions or mixed boundary conditions involving the fluid stress tensor and its flux at the outlet are prescribed.

The uniqueness for such problems is not an issue and has already been investigate in [START_REF] Boulakia | Stability estimates for a robin coefficient in the two-dimensional stokes system[END_REF]. It is obtained as a corollary of a unique continuation result for the Stokes system proven by C. Fabre and G. Lebeau (see [START_REF] Fabre | Prolongement unique des solutions de l'equation de Stokes[END_REF]). Concerning the stability, logarithmic stability estimates have been obtained in [START_REF] Boulakia | Stability estimates for a robin coefficient in the two-dimensional stokes system[END_REF] and [START_REF] Boulakia | Unique continuation estimates for the stokes system; application to an inverse problem[END_REF] for more general than piecewise constant Robin coefficients. The main tools used in both cases are Carleman inequalities, global in the first case and local in the second one. Let us point out that, due to the mixed boundary conditions, the solution of system (1) is not regular in a neighborhood of the junction between two different boundary conditions. Thus, we can not expect in general that the solution belongs, at least, to H 2 (Ω) × H 1 (Ω). As a consequence, we can not use global Carleman inequalities requiring global regularity on the solution. The Lipschitz stability estimate obtained in this paper is based on local regularity on the solution of system (1) and on the open set Ω and on the stability estimates for the unique continuation property of the Stokes system proved in [START_REF] Boulakia | Unique continuation estimates for the stokes system; application to an inverse problem[END_REF].

Comparable problems have been widely studied for the Laplace equation (see for instance [START_REF] Alessandrini | Stable determination of corrosion by a single electrostatic boundary measurement[END_REF], [START_REF] Bellassoued | Stability estimate for an inverse boundary coefficient problem in thermal imaging[END_REF], [START_REF] Chaabane | Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems[END_REF], [START_REF] Chaabane | Identification of Robin coefficients by the means of boundary measurements[END_REF], [START_REF] Cheng | Stable determination of a boundary coefficient in an elliptic equation[END_REF] and [START_REF] Sincich | Lipschitz stability for the inverse Robin problem[END_REF]. In this case, it is in general a problem arising in corrosion detection which consists of determining a Robin coefficient on the inaccessible portion of the boundary by electrostatic measurements performed on the accessible one. Most of the paper obtained logarithmic stability estimates but under some restricting assumption on the Robin coefficient and on the flux g, it is possible to obtain Lipschitz stability estimate. For instance, S. Chaabane and M. Jaoua obtained in [START_REF] Chaabane | Identification of Robin coefficients by the means of boundary measurements[END_REF] both local and monotone global Lipschitz stability for regular Robin coefficient and under the assumption that the flux g is non negative. Relaxing this constraint, they obtained in [START_REF] Alessandrini | Stable determination of corrosion by a single electrostatic boundary measurement[END_REF] a logarithmic stability estimate. More recently, E. Sincich has obtained in [START_REF] Sincich | Lipschitz stability for the inverse Robin problem[END_REF] a Lipschitz stability estimate under the further a priori assumption of a piecewise constant Robin coefficient.

Let us explain the structure of this paper. In Section 2, we begin with existence and regularity results on (u, p) solution of system (1): we state global and local regularity results which will be useful to prove the Lipschitz stability estimate. Then, we give in Section 3 technical lemmas and unique continuation estimates which will be useful to prove the Lipschitz stability estimate. Finally, Section 4 is dedicated to the main result: we state and prove the Lipschitz stability estimate.

In the following, we will not distinguish vector valued functions and scalar valued functions. Moreover, when we are not more specific, C > 0 is a constant whose value may change from a line to an other. Let us introduce some notations that we will be useful throughout this paper.

Notation 1.1. For x ∈ R d and r > 0, we denote B r (x) the ball of center x and of radius r.

Notation 1.2. Let Γ ⊂ ∂Ω be a non empty part of the boundary. We denote by

Γ in = {x ∈ Γ/d(x, ∂Ω\Γ) > 0}.
Since the open set Ω is Lipschitz, it satisfies the cone property: Definition 1.3 (Cone property). We say that Ω satisfies the cone property if there exists θ ∈ (0, π 2 ) and R 0 > 0 such that for all x 0 ∈ ∂Ω, there exists ξ ∈ R d , |ξ| = 1 such that the finite cone

C = {x ∈ R d /(x -x 0 ) • ξ > |x -x 0 | cos θ, |x -x 0 | ≤ R 0 } is included in Ω.

Regularity results

We focus in this section on global and local regularity results for system (1). Even if global H 2 ×H 1 regularity is not expected in general due to the mixed Dirichlet and Neumann boundary conditions, we obtain local regularity results inside the domain and near the boundary, as long as we stay away from the junction between two different boundary conditions. We need to introduce functional spaces:

V Γ l = {v ∈ H 1 (Ω)/v |Γ l = 0 and div v = 0}, (3) 
and

H Γ l = V L 2 (Ω) Γ l . (4) Moreover, for g ∈ H -1 2 (∂Ω) and v ∈ H 1 2 (∂Ω), we denote by < g, v > -1 2 , 1
2 ,∂Ω the image of v by the linear form g.

Global regularity

Proposition 2.1. Let R M > 0, 1 Γ0 g ∈ H -1 2 (∂Ω) and assume that q satisfies (2). Then, system (1) admits a unique solution (u, p) ∈ V Γ l × L 2 (Ω). Moreover, if we assume the q ≤ R M , there exists a constant C(R M ) > 0 such that:

u H 1 (Ω) + p L 2 (Ω) ≤ C(R M ) 1 Γ0 g H -1 2 (∂Ω)
.

(5)

Inria

Proof of Proposition 2.1. The variational formulation of the problem is: find u ∈ V Γ l such that for every v ∈ V Γ l ,

Ω ∇u : ∇v + Γout qu • v =< 1 Γ0 g, v > -1 2 , 1 2 ,∂Ω . (6) 
We denote by

a q (u, v) = Ω ∇u : ∇v + Γout qu • v, (7) 
and

L(v) =< 1 Γ0 g, v > -1 2 , 1
2 ,∂Ω . We easily verify that a q is a continuous symmetric bilinear form on V Γ l . According to Poincaré inequality, the bilinear form a q is coercive on V Γ l . On the other hand, L is a continuous linear form on V Γ l . Thus we get the existence and uniqueness of u ∈ V Γ l solution of equations (1) using the Lax-Milgram Theorem.We prove the existence and uniqueness of p ∈ L 2 (Ω) in a classical way, by using De Rham Theorem and the Neumann boundary conditions.

Local regularity

Inside the domain Ω, we have local regularity: this is resumed in Proposition 2.2. Moreover, locally near the boundary, as long as we stay away from the junction between two different boundary conditions, we can also obtain local regularity. We refer to Propositions 2.3 and 2.5 for a statement of these regularity results.

Proposition 2.2. Let R M > 0, m ∈ N * and ω ⊂ Ω be a relatively compact open set. Let 1 Γ0 g ∈ H -1
2 (∂Ω) and assume that q satisfies (2). Then, the solution (u, p) of system (1) belongs to H m+1 (ω)×H m (ω). Moreover, if we assume that q ≤ R M , there exists a constant C(R M ) > 0 such that:

u H m+1 (ω) + p H m (ω) ≤ C(R M ) 1 Γ0 g H -1 2 (∂Ω) . ( 8 
)
Although the proof of this result is classical, we give here a sketch of the proof for the sake of completeness.

Proof of Proposition 2.2. We prove this proposition by induction on m. For m = 0, the result is given by Proposition 2.1.

We assume that Proposition 2.2 holds for some fixed m. Let us prove that the proposition also holds for m + 1. Let ω be an open set of class C m+1,1 such that ω ⊂ ω ⊂ Ω. We localize in the neighborhood of ω. Let χ ∈ C ∞ c (ω) be such that χ = 1 in ω and 0 ≤ χ ≤ 1 everywhere else. We denote by (v, π) = (χu, χp). Note that (v, π) is solution if the following problem:

   -∆v + ∇π = -∆χu -2∇u∇χ + ∇χp, in ω, div v = ∇χ • u, in ω, ∂v ∂n -πn = 0, on ∂ω.
Let us denote by f = -∆χu -2∇u∇χ + ∇χp and h = ∇χ • u. By the induction assumption, we deduce that the (f, h) belongs to H m (ω) × H m+1 (ω). By application of regularity result for the Stokes system with Neumann boundary condition (see [START_REF] Boyer | Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF]), we deduce that (v, π) belongs to H m+2 (ω) × H m+1 (ω). Since χ = 1 on ω, we obtain the desired result.

We now study the regularity near the boundary of the domain. Proposition 2.3 states regularity result in the restriction to Ω of a neighborhood of any point x j ∈ Γ in j , for i = j, . . . , N .

Proposition 2.3. Let m ∈ N * , R M > 0, 1 ≤ j ≤ N and x j ∈ Γ in j . We assume that Γ j is of class C m,1 if m ≥ 1 and Lipschitz otherwise. Let 1 Γ0 g ∈ H -1
2 (∂Ω) and assume that q satisfies (2). Then, there exists R > 0 such that the solution (u, p) of system (1) belongs to

H m+1 (B R (x j )∩ Ω)×H m (B R (x j )∩Ω). Furthermore, if we assume that q ≤ R M , there exists a constant C(R M ) > 0 such that u H m+1 (B R (xj )∩Ω) + p H m (B R (xj )∩Ω) ≤ C(R M ) 1 Γ0 g H -1 2 (∂Ω)
.

The proof of Proposition 2.3 relies on classical argument and is similar to the proof of Proposition 2.2.

Then, we deduce from Proposition 2.3 local Hölder regularity on (u, p) solution of system (1) near the boundary Γ j , as long as we stay away from the junction between two different boundary conditions.

Corollary 2.4. Let 1 ≤ j ≤ N and x j ∈ Γ in j . We assume that Γ j is of class C 2,1 . Let 1 Γ0 g ∈ H -1
2 (∂Ω) and assume that q satisfies (2). Then, there exists R > 0 and 0 < β < 1 such that the solution (u, p) of system (1) belongs to

C 1,β (B R (x j ) ∩ Ω) × C 0,β (B R (x j ) ∩ Ω) for all j = 1, . . . , N . Proof of Corollary 2.4. Let 1 ≤ j ≤ N . Thanks to Proposition 2.3, there exists R j > 0 such that (u, p) ∈ H 3 (B Rj (x j ) ∩ Ω) × H 2 (B Rj (x j ) ∩ Ω). Thanks to Proposition 2.2, we know that there exists a connected open set Ω ⊂ Ω of class C 2,1 such that N j=1 B Rj (x j ) ∩ Ω ⊂ Ω and (u, p) ∈ H 3 ( Ω) × H 2 ( Ω). Then, since for all m ∈ N such that 2(m -1) ≤ d < 2m, there exists 0 < λ < 1 such that H m ( Ω) → C 0,λ ( Ω) (see [Ada75]), we deduce that there exits 0 < β < 1 such that H 2 ( Ω) ⊂ C 0,β ( Ω), which implies that (u, p) ∈ C 1,β (B R (x j ) ∩ Ω) × C 0,β (B R (x j ) ∩ Ω) for all j = 1, . . . , N , with R = min 1≤j≤N R j .
Proposition 2.5 below states regularity result in the restriction to Ω of a neighborhood of any point

x 0 ∈ Γ in 0 . Proposition 2.5. Let R M > 0, m ∈ N and x 0 ∈ Γ in 0 . We assume that Γ 0 is of class C m,1 if m ≥ 1 and Lipschitz otherwise. Let 1 Γ0 g ∈ H m-1
2 (∂Ω) and assume that q satisfies (2). Then, there exists R > 0 such that the solution (u, p) of system (1) belongs to

H m+1 (B R (x 0 )∩ Ω)×H m (B R (x 0 )∩Ω). Furthermore, if we assume that q ≤ R M , there exists a constant C(R M ) > 0 such that u H m+1 (B R (x0)∩Ω) + p H m (B R (x0)∩Ω) ≤ C(R M ) 1 Γ0 g H m-1 2 (∂Ω)
.

3 Preliminary results

Useful lemmas

The following lemmas will be useful throughout this paper.

Lemma 3.1. Let A > 0, B > 0, C 1 > 0, C 2 > 0 and D > 0. We assume that there exists

γ 1 > 0 such that D ≤ Ae C1γ + Be -C2γ , (9) 
for all γ ≥ γ 1 and c 0 > 0 such that D ≤ c 0 B. Then, there exists C > 0 such that:

D ≤ CA C 2 C 1 +C 2 B C 1 C 1 +C 2 .

Inria

We refer to [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] for a proof of this lemma.

Lemma 3.2. Let A ∈ R, µ ∈ R * and (β k ) k∈N ∈ R N .
If, for all k ∈ N * , we have

β k ≤ 1 µ k-1 (β k-1 ) α A 1-α , ( 10 
)
then β k ≤ 1 µ ι β α k 0 A 1-α k ,
where ι = k-1 j=1 jα k-1-j . This lemma is proved in [START_REF] Bourgeois | About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains[END_REF]. For the sake of completeness, we write it.

Proof of Lemma 3.2. We rewrite inequality (10) under the form:

β k A ≤ 1 µ k-1 β k-1 A α .
By iterating the above inequality, we get:

β k A ≤ 1 µ ι β 0 A α k , where ι = k-1 j=1 jα k-1-j .
Lemma 3.3. Let A, B, C 1 and D be positive numbers and 0 < α < 1. Assume that

D ≤ C 1 A α B 1-α .
Then, for all > 0 D ≤ c A + s B,

where c = C 1 α 1 and s = α 1 -α . Proof of Lemma 3.3. Let > 0. We rewrite C 1 A α B 1-α = C 1/α 1 A α α B 1-α .
Then it is sufficient to apply Young inequality:

D ≤ α C 1/α 1 A + (1 -α) s B.
Since 0 < α < 1, the desired inequality follows.

Unique continuation estimates

In this section, we state some unique continuation estimates for the Stokes system which will be useful in the next subsection to prove the Lipschitz stability estimate. They are obtained as corollaries of unique continuation estimates proved in [START_REF] Boulakia | Unique continuation estimates for the stokes system; application to an inverse problem[END_REF]. Let us begin by recalling a proposition from [START_REF] Boulakia | Unique continuation estimates for the stokes system; application to an inverse problem[END_REF] which allows to transmit information from a part of the boundary of Ω to a relatively compact open set in Ω.

Proposition 3.4. Assume that D is of class C ∞ . Let 0 < ν ≤ 1 2 .
Let Γ be a non empty open subset of the boundary of D. Let ω be a relatively compact open set in D. Then, there exists C, σ > 0, such that for all > 0 and for all (u, p) ∈ H

3 2 +ν (D) × H 3 2 +ν (D) solution of -∆u + ∇p = 0, in D, div u = 0, in D, (11) 
u H 1 (ω) + p H 1 (ω) ≤ C u H 1 (Γ) + p H 1 (Γ) + ∂u ∂n L 2 (Γ) + ∂p ∂n L 2 (Γ) + σ ( u H 1 (D) + p H 1 (D) ).
In our case, we can not apply directly Proposition 3.4 in the open set Ω to (u, p) solution of system (1) because regularity is needed both on the solution of the Stokes system (11) and on the open set. Nevertheless, Proposition 3.5 below is obtain as a corollary of Proposition 3.4 and allows us to transmit information from a part of the boundary Γ ⊂ Γ 0 to a relatively compact open ω set included in Ω.

Proposition 3.5. Assume that Γ 0 is of class C ∞ . Let R M > 0, M 1 > 0, Γ ⊆ Γ 0 be a non empty open subset of the boundary of Ω such that Γ ∩ Γ l Γ ∩ Γ out = ∅ and ω ⊂ Ω be a relatively compact open set. Let 1 Γ0 g ∈ H 3 2 (∂Ω) be such that 1 Γ0 g H 3 2 (∂Ω)
≤ M 1 and assume that q satisfies (2) and q ≤ R M .

Then, there exist constants C(R M , M 1 ) > 0 and 0 < δ < 1 such that for all (u, p) solution of system (1), the following inequality is satisfied:

u H 1 (ω) + p H 1 (ω) ≤ C(R M , M 1 ) u L 2 (Γ) + p L 2 (Γ) + ∂u ∂n L 2 (Γ) + ∂p ∂n L 2 (Γ) δ . (12) 
Proof of Proposition 3.5. Thanks to local regularity results stated in Subsection 2.2, we know that there exists a connected open set Ω ⊂ Ω of class C ∞ such that Γ ⊂ ∂ Ω, ω ⊂ Ω and such that the solution (u, p) of (1) belongs to H 3 ( Ω) × H 2 ( Ω). Moreover, there exists a constant C(R M , M 1 ) > 0 such that:

u H 3 ( Ω) + p H 2 ( Ω) ≤ C(R M , M 1 ). (13) 
We apply Proposition 3.4: there exists σ > 0 and C > 0 such that, for all ˜ > 0,

u H 1 (ω) + p H 1 (ω) ≤ C ˜ u H 1 (Γ) + p H 1 (Γ) + ∂u ∂n L 2 (Γ) + ∂p ∂n L 2 (Γ) + ˜ σ u H 1 ( Ω) + p H 1 ( Ω) . ( 14 
)
Note that it is the H 1 norms of u and p on Γ which appear in the first term in the right hand-side of (14). In order to replace them with the L 2 norms of u and p on Γ, we use an interpolation inequality: there exists c > 0 such that

u H 1 (Γ) + p H 1 (Γ) ≤ c u 1 3 L 2 (Γ) u 2 3 H 3 2 (Γ) + p 1 3 L 2 (Γ) p 2 3 H 3 2 (Γ)
.

Let > 0. If we write

u 1 3 L 2 (Γ) u 2 3 H 3 2 (Γ) = 1 u L 2 (Γ) 1 3 1 2 u H 3 2 (Γ) 2 3 , Inria and p 1 3 L 2 (Γ) p 2 3 H 3 2 (Γ) = 1 p L 2 (Γ) 1 3 1 2 p H 3 2 (Γ) 2 3 ,
according to Young inequality and to the trace injection H 2 ( Ω) → H 3 2 (Γ), we obtain:

u H 1 (Γ) + p H 1 (Γ) ≤ c 1 2 u H 3 ( Ω) + p H 2 ( Ω) + 1 u L 2 (Γ) + p L 2 (Γ) . (15) 
Let > 0. By combining inequalities (15) with = ˜ 2(σ+1) and inequalities ( 14) with ˜ = 1 2σ+3 , we obtain the existence of C > 0 and s > 0 such that for all > 0:

u H 1 (ω) + p H 1 (ω) ≤ C 1 u L 2 (Γ) + p L 2 (Γ) + ∂u ∂n L 2 (Γ) + ∂p ∂n L 2 (Γ) + s u H 3 ( Ω) + p H 2 ( Ω) . (16) 
We conclude by using Lemma 3.1 and inequality (13).

Then, Lemma 3.6 allows to transmit information inside the domain Ω, from a relatively compact open set include in Ω to an other. Lemma 3.6. [Three balls inequality] Let ρ > 0 and q ∈ R d . There exist C > 0, 0 < α < 1 such that for all function (u, p) ∈ H 1 (B 8ρ (q)) × H 1 (B 8ρ (q)) solution of

-∆u + ∇p = 0, div u = 0, (17) 
in B 8ρ (q) the following inequality is satisfied:

u H 1 (B3ρ(q)) + p L 2 (B3ρ(q)) ≤ C u H 1 (Bρ(q)) + p L 2 (Bρ(q)) α u H 1 (B8ρ(q)) + p L 2 (B8ρ(q)) 1-α , ( 18 
)
with α = g(3ρ) -g 7 2 ρ g( ρ 3 ) -g 7 2 ρ
and with g(r) = e -λr 2 , for λ large enough.

In the following, in order to refer to this inequality, we will say that the three balls inequality associated to q and ρ is satisfied, with the associated constants C > 0 and α > 0.

Remark 3.7. Lemma 3.6 is the counterpart, in the case of the Stokes system, of the so-called three balls inequality for the Laplacian. We refer to [START_REF] Bourgeois | About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains[END_REF] or [START_REF] Lin | Quantitative uniqueness for the power of laplacian with singular coefficients[END_REF] for a three balls inequality for the Laplacian. Note that in [START_REF] Lin | Optimal three-ball inequalities and quantitative uniqueness for the Stokes system[END_REF], C.-H. Lin, G. Uhlmann and J.-N. Wang have obtained an optimal three balls inequality for the Stokes system involving only the velocity in the L 2 norm. From this inequality, they derive an upper bound on the vanishing order of any non trivial solution u to the Stokes system.

The ideas of the proof are the same as those developed in [START_REF] Boulakia | Unique continuation estimates for the stokes system; application to an inverse problem[END_REF]. We refer to [START_REF] Egloffe | Étude de quelques problèmes inverses pour le système de Stokes[END_REF] for a complete proof of this result. In the proof of the Lipschitz stability estimate, we will apply Lemma 3.6 to a sequence of balls with decreasing radius which approachs the boundary. To this aim, we need to know the behavior of the constants when we pass from a ball to another. This is done in Lemma 3.8 below.

Lemma 3.8. Let ρ > 0, (q, q) ∈ R d × R d , and µ ∈ (0, 1). We denote by ρ = µρ. We assume that the three balls inequality (18) associated to q and ρ holds for some constants C > 0 and α > 0.

Then, for all functions (u, p) ∈ H 1 (B 8ρ (q)) × H 1 (B 8ρ (q)) solution of (17) in B 8ρ (q), the following inequality is satisfied:

u H 1 (B3ρ(q)) + p L 2 (B3ρ(q)) ≤ C u H 1 (Bρ(q)) + p L 2 (Bρ(q)) α u H 1 (B8ρ(q)) + p L 2 (B8ρ(q)) 1-α , ( 19 
)
where C = C µ > 0. In other words, the three balls inequality associated to q and ρ is satisfied with the associated constants C µ > 0 and α > 0.

Proof of Lemma 3.8. This lemma is inspired from [START_REF] Bourgeois | About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains[END_REF] where L. Bourgeois and J. Dardé are concerned with the operator P k = -∆ -k, with k ∈ R, and use similar techniques. Let m ∈ N * . By performing the change of variables B mρ (q) → B mρ (q), x → q + (x -q)µ, we get:

Bmρ(q) |u(x)| 2 + |∇u(x)| 2 dx = µ d Bmρ(q) |u(q + µ(x -q))| 2 + |∇u(q + µ(x -q))| 2 dx.
Let us denote by u(x) = u(q + µ(x -q)) and p(x) = µp(q + µ(x -q)). Noticing that ∇u(x) = µ∇u(q + µ(x -q)), we get:

Bmρ(q) |u(x)| 2 + |∇u(x)| 2 dx = µ d Bmρ(q) |u(x)| 2 dx + 1 µ 2 |∇u(x)| 2 dx.

Moreover, since

Bmρ(q) |p(x)| 2 dx = µ d-2 Bmρ(q) |p(x)| 2 dx,
and since 0 < µ < 1, we obtain:

µ d 2 u H 1 (Bmρ(q)) + p L 2 (Bmρ(q)) ≤ u H 1 (Bmρ(q)) + p L 2 (Bmρ(q)) ≤ µ d 2 -1 u H 1 (Bmρ(q)) + p L 2 (Bmρ(q)) .
Observe that (u, p) is solution in B 8ρ (q) of system (17):

-∆u(x) + ∇p(x) = µ 2 (-∆u(x) + ∇p(x)) = 0, for x ∈ B 8ρ (q) and where x = q + (x -q)µ ∈ B 8ρ (q). Thus, (u, p) satisfies (18) for C > 0 and α > 0. We deduce that:

u H 1 (B3ρ(q)) + p L 2 (B3ρ(q)) ≤ µ d 2 -1 u H 1 (B3ρ(q)) + p L 2 (B3ρ(q)) ≤ µ d 2 -1 C u H 1 (Bρ(q)) + p L 2 (Bρ(q)) α u H 1 (B8ρ(q)) + p L 2 (B8ρ(q)) 1-α ≤ C µ u H 1 (Bρ(q)) + p L 2 (Bρ(q)) α u H 1 (B8ρ(q)) + p L 2 (B8ρ(q)) 1-α . Inria 4 Main result Theorem 4.1. Assume that Γ 0 is of class C ∞ and Γ i is of class C 2,1 for i = 1, . . . , N . Let m > 0, R M > 0, M 1 > 0, Γ ⊆ Γ 0 be a non empty open subset of the boundary of Ω such that Γ ∩ Γ l Γ ∩ Γ out = ∅ and let g ∈ H 3 
2 (Γ 0 ) be non identically zero on Γ 0 and such that g

H 3 2 (Γ0)
≤ M 1 . We assume that q k satisfies (2) with q i = q k i be such that q k i ≤ R M for i = 1, . . . , N and k = 1, 2. Let us denote by (u k , p k ) the solution of (1) associated to q = q k for k=1,2. We assume that there exists x j ∈ Γ in j such that |u 2 (x j )| > m, for all j = 1, . . . , N . Then, there exists C(R M , M 1 , N, m) > 0 such that

q 1 -q 2 L ∞ (Γout) ≤ C(R M , M 1 , N, m) u 1 -u 2 L 2 (Γ) + p 1 -p 2 L 2 (Γ) + ∂p 1 ∂n - ∂p 2 ∂n L 2 (Γ) . ( 20 
)
Remark 4.2. Since g is not identically zero on Γ 0 , we know, thanks to the uniqueness result (see [START_REF] Boulakia | Stability estimates for a robin coefficient in the two-dimensional stokes system[END_REF]), that for all j = 1, . . . , N , there exists x j ∈ Γ in j such that u 2 (x j ) = 0. We notice however that the constant involved in the estimate (20) depends on u 2 through the constant m. Finding a uniform lower bound for a solution u of system (1) remains an open question.

Remark 4.3. Let 1 ≤ i ≤ N and x i ∈ Γ in i be such that |u 2 (x i )| > m.
Let us give an idea of how information goes from Γ to a neighborhood V i of x i . Thanks to Proposition 3.5, information goes from Γ to a relatively compact open set B 0 included in Ω. Then, we use a sequence of balls (B k ) k∈N with decreasing radius to approach the boundary near x i , taking into account Lemma 3.8. Finally, we use the boundary condition on Γ i and the local Hölder regularity of the solution on V i (see Corollary 2.4). We refer to Figure 1 for an illustration.

Proof of Theorem 4.1. We follow the approach developed in [START_REF] Sincich | Lipschitz stability for the inverse Robin problem[END_REF] in the case of the Laplace equation.

We consider:

(w, π) = u 1 -u 2 N j=1 |q 1 j -q 2 j | , p 1 -p 2 N j=1 |q 1 j -q 2 j | . ( 21 
)
According to Proposition 2.1, (w, π) belongs to V Γ l × L 2 (Ω). Since for k = 1, 2, q k is piecewise constant, (w, π) is solution of:

                   -∆w + ∇π = 0, in Ω, div w = 0, in Ω, w = 0, on Γ l , ∂w ∂n -πn = 0, on Γ 0 , ∂w ∂n -πn + q 1 w = (q 2 -q 1 ) N j=1 |q 1 j -q 2 j | u 2 , on Γ out . ( 22 
)
Observe that if we do not assume that q k is piecewise constant, we get additional terms which depend on the derivative of q k in system (22).

Step 1 : Since the open set Ω satisfies the cone property, there exists θ ∈ (0, 1) and R 0 > 0 such that for all i = 1, . . . , N there exists

ξ i ∈ R d , |ξ i | = 1 such that the finite cone C i = {x ∈ R d /(x -x i ) • ξ i > |x -x i | cos θ and |x -x i | ≤ R 0 } is included in Ω.
We are going to construct a sequence of balls (B ρ k (ζ i,k )) k∈N with decreasing radius and whose center is converging through x i . For this sequence of balls, we will prove that there exists 0 < α < 1, 0 < µ < 1 and C > 0 such that for all i = 1, . . . , N and k ∈ N, the following estimate is satisfied for all > 0:

Γ x i B 0 B 1 V x i
w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ e C α k log 1 µ k-1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C α k w H 3 ( Ωi) + π H 2 ( Ωi) , (23) 
where Ωi ⊂ Ω is an open set such that Γ ⊂ ∂ Ωi and C i ⊂ Ωi and such that (w, π) ∈ H 3 ( Ωi ) × H 2 ( Ωi ). We consider

C i = {x ∈ R d /(x -x i ) • ξ i > |x -x i | cos θ et |x -x i | ≤ R 0 }, with θ = arcsin(t sin θ). (24) 
The parameter t belongs to (0, 1) and will be specified later on. Note that we have

C i ⊂ C i ⊂ Ω.
We denote by

ζ i,0 = x i + R 0 2 ξ i , d 0 = |ζ i,0 -x i | = R 0 2
and ρ 0 = d 0 sin θ . For k ∈ N * , we define the sequence of balls by induction:

ζ i,k+1 = x i + µ|ζ i,k -x i |ξ i , d k+1 = |ζ i,k+1 -x i |, ρ k+1 = d k+1 sin(θ ), with µ = 1 -sin θ 1 + sin θ ⇐⇒ sin θ = 1 -µ 1 + µ . (25) 
We refer to Figure 2 for an illustration of this construction. This construction implies that d k+1 = µd k and ρ k+1 = µρ k . We choose the parameter t involved in (24) such that Next, we apply Lemma 3.6 with ρ = ρ 0 and q = ζ i,0 : there exists C > 0 and α > 0 such that

B 8ρ k (ζ i,k ) ⊂ C i ⊂ Ω for all k ∈ N, that is to say, using (24), 8ρ k = 8d k sin θ ≤ sin θd k ⇔ t ≤ 1 8 . Inria ζ i,k x i ϑ' ϑ d k ρ k ξ i ! ✗ ζ i,0
w H 1 (B3ρ 0 (ζi,0)) + π L 2 (B3ρ 0 (ζi,0)) ≤ C w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) α w H 1 (B8ρ 0 (ζi,0)) + π L 2 (B8ρ 0 (ζi,0)) 1-α .
Taking into account Lemma 3.8, since ρ k-1 = µ k-1 ρ 0 , it follows that, for all k ∈ N * :

w H 1 (B 3ρ k-1 (ζ i,k-1 )) + π L 2 (B 3ρ k-1 (ζ i,k-1 )) ≤ C µ k-1 w H 1 (Bρ k-1 (ζ i,k-1 )) + π L 2 (Bρ k-1 (ζ i,k-1 )) α × w H 1 (B 8ρ k-1 (ζ i,k-1 )) + π L 2 (B 8ρ k-1 (ζ i,k-1 )) 1-α . (26)
By construction, we have:

B ρ k (ζ i,k ) ⊆ B 3ρ k-1 (ζ i,k-1 ). (27) 
Indeed, we have

ζ i,k -ζ i,k-1 = µ(d k-1 -d k-2 )ξ i = µ sin θ (ρ k-1 -ρ k-2 )ξ i = - µ sin θ (1 -µ)ρ k-2 ξ i and using (24), we obtain ζ i,k -ζ i,k-1 = -µ(1 + µ)ρ k-2 ξ i . Then, if x ∈ B ρ k (ζ i,k ), we have: |x -ζ i,k-1 | ≤ |x -ζ i,k | + |ζ i,k-1 -ζ i,k | ≤ ρ k + µ(1 + µ)ρ k-2 ≤ 3ρ k-1 .
By combining (26) and ( 27) we deduce that there exists C > 0 and 0 < α < 1 such that for all k ∈ N * , we have:

w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ C µ k-1 w H 1 (Bρ k-1 (ζ i,k-1 )) + π L 2 (Bρ k-1 (ζ i,k-1 )) α w H 1 (B 8ρ k-1 (ζ i,k-1 )) + π L 2 (B 8ρ k-1 (ζ i,k-1 )) 1-α . ( 28 
)
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Let Ωi ⊂ Ω be an open set such that Γ ⊂ ∂ Ωi , C i ⊂ Ωi and such that (w, π) ∈ H 3 ( Ωi ) × H 2 ( Ωi ). Note that such an open set exists thanks to local regularity results stated in Subsection 2.2. We have, for all k ∈ N * :

w H 1 (B8ρ k-1 (ζ i,k-1 )) + π L 2 (B8ρ k-1 (ζ i,k-1 )) ≤ w H 3 ( Ωi) + π H 2 ( Ωi) .
Thus, we can rewrite inequality (28) as:

w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ C µ k-1 w H 1 (Bρ k-1 (ζ i,k-1 )) + π L 2 (Bρ k-1 (ζ i,k-1 )) α w H 3 ( Ωi) + π H 2 ( Ωi) 1-α .
We now apply Lemma 3.2 with

β k = w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) and A = C w H 3 ( Ωi) + π H 2 ( Ωi)
, to obtain:

w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ 1 µ ι w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) α k C w H 3 ( Ωi) + π H 2 ( Ωi) 1-α k , where ι = k-1 j=1 jα k-1-j . Note that ι ≤ (k -1)   k-2 j=0 α j   ≤ k -1 1 -α .
To summarize, the following inequality is satisfied:

w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ 1 µ k-1 1-α
w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0))

α k C( w H 3 ( Ωi) + π H 2 ( Ωi) ) 1-α k . Let > 0. By Lemma 3.3 with A = w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) , B = C( w H 3 ( Ωi) + π H 2 ( Ωi) ), C 1 = 1 µ k-1 1-α
, and

D = w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k
)) , we obtain:

w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ c k w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C s k w H 3 ( Ωi) + π H 2 ( Ωi) , with s k = α k 1 -α k and c k = 1 µ k-1 1-α 1/α k . Note that s k ≥ α k implies, for 0 < < 1 that: w H 1 (Bρ k (ζ i,k )) + π L 2 (Bρ k (ζ i,k )) ≤ e C α k log 1 µ k-1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C α k w H 3 ( Ωi) + π H 2 ( Ωi) .
Let us remark that the previous inequality is clearly satisfied for ≥ 1 by continuity of the injection

H 1 ( Ωi ) → H 1 (B ρ k (ζ i,k ))
. Thus, we obtain inequality (23).

Step 2 : Combining local Hölder regularity of the solution and inequality (23), and then optimizing the resulting inequality, we will obtain the desired Lipschitz stability estimate (20).

Inria

Let us recall that thanks to Corollary 2.4, there exists R > 0 and 0

< β < 1 such that (w, π) ∈ C 1,β (B R (x i ) ∩ Ω) × C 0,β (B R (x i ) ∩ Ω) for all i = 1, . . . , N . Let 0 < < min(R, 1) = 0 . If d k + ρ k < , that is to say µ k (d 0 + ρ 0 ) < , we have B ρ k (ζ i,k ) ⊂ B (x i ).
Let k 0 = k 0 ( ) be the smallest k which satisfies this inequality. We have:

log((d 0 + ρ 0 )/ ) log (1/µ) ≤ k 0 < log((d 0 + ρ 0 )/ ) log (1/µ) + 1. (29) 
Since (w, π) is solution of system (22), we obtain, using the boundary condition on Γ i :

|q 1 i -q 2 i | N j=1 |q 1 j -q 2 j | |u 2 (x i )| ≤ ∂w ∂n (x i ) +|π(x i )|+|q 1 i ||w(x i )| ≤ |∇w(x i )|+|π(x i )|+R M |w(x i )|. (30) Let y i ∈ B ρ k 0 (ζ i,k0
). Using the Hölder regularity of w, ∇w and π on B ρ k 0 (ζ i,k0 ) ⊂ B (x i ) ⊂ B R (x i ), we have:

|q 1 i -q 2 i | N j=1 |q 1 j -q 2 j | |u 2 (x i )| ≤ |∇w(y i )| + |π(y i )| + R M |w(y i )| + C|x i -y i | β .
Moreover, since |u 2 (x i )| > m, we obtain that, for all y i in B ρ k 0 (ζ i,k0 ),

|q 1 i -q 2 i | N j=1 |q 1 j -q 2 j | m ≤ |∇w(y i )| + |π(y i )| + R M |w(y i )| + C β .
Let us denote by ω d the volume of the unit ball in R d . By integrating in L 2 norm the previous inequality in B ρ k 0 (ζ i,k0 ), we obtain:

|q 1 i -q 2 i | N j=1 |q 1 j -q 2 j | ≤ C(m, R M ) ω 1 2 d ρ d 2 k0 w H 1 Bρ k 0 (ζi,k 0 ) + π L 2 Bρ k 0 (ζi,k 0 ) + C β .
The previous inequality together with (23) yields to the existence of 0 < α < 1, 0 < µ < 1 such that for all i = 1, . . . , N the following estimate holds for all > 0

|q 1 i -q 2 i | N j=1 |q 1 j -q 2 j | ≤ C(m, R M ) ρ d 2 k0 e C α k 0 log 1 µ k 0 -1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C(m, R M ) ρ d 2 k0 α k 0 w H 3 ( Ωi) + π H 2 ( Ωi) + C β .
By summing up the previous inequality for i = 1, ..., N , we obtain:

1 ≤ C(m, R M ) ρ d 2 k0 e C α k 0 log 1 µ k 0 -1 N i=1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C(m, R M , N ) ρ d 2 k0 α k 0 w H 3 ( Ω) + π H 2 ( Ω) + C(N ) β ,
where Ω =

N i=1

Ωi . Moreover, µ k0-1 (d 0 + ρ 0 ) ≥ and ρ k0 = µ k0 ρ 0 imply that ρ k0 ≥ µ ρ 0 d 0 + ρ 0 .

It follows:

1 ≤ C(m, R M ) d 2 e C α k 0 log 1 µ k 0 -1 N i=1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C(m, R M , N ) w H 3 ( Ω) + π H 2 ( Ω) + C(N ) α k 0 d 2 + β . ( 31 
)
Let us denote by

E = w H 3 ( Ω) + π H 2 ( Ω) + C(N ) . (32) 
We simplify the last term in the right hand-side in (31) by choosing > 0 such that

α k 0 d 2 = β .
Since α k0 < 1, we obtain, for all small enough

1 ≤ C(m, R M , N ) e C α k 0 log 1 µ k 0 -1 (β+d)/α k 0 N i=1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + C(m, R M , N )E β . (33) 
Since 1 α k0 = e k0 log(1/α) , we obtain, using (29):

1 α k0 < e log(1/α) log((d 0 +ρ 0 )/ ) log(1/µ) +1 = 1 α d 0 + ρ 0 γ0
, where γ 0 = log(1/α) log(1/µ) . Furthermore, since 1 µ k0-1 ≤ d 0 + ρ 0 by definition of k 0 , we have

log 1 µ k0-1 < log d 0 + ρ 0 .
Then, (35) Note that the previous inequality remains true for 0 < s < s 0 , eventually by increasing the constant C(N ) involved in (32).

e c α k 0 log 1 µ k 0 -1 (β+d)/α k 0 = e 1 α k 0 c log 1 µ k 0 -1 +(β+d) log
We now look for the lower bound of this inequality with respect to s. We denote by Remembering the definition (36) of Λ, the previous inequality is equivalent to

Λ = w L 2 (Γ) + π L 2 (Γ) + ∂w ∂n L 2 (Γ) + ∂π ∂n L 2 (Γ) δ . (36 
w L 2 (Γ) + π L 2 (Γ) + ∂w ∂n L 2 (Γ) + ∂π ∂n L 2 (Γ) ≥ C(M 1 , m, R M , N ).
By replacing (w, π) by ( 21), we obtain:

N j=1 |q 1 j -q 2 j | ≤ C(m, R M , M 1 , N ) u 1 -u 2 L 2 (Γ) + p 1 -p 2 L 2 (Γ) + ∂u 1 ∂n - ∂u 2 ∂n L 2 (Γ) + ∂p 1 ∂n - ∂p 2 ∂n L 2 (Γ)
which concludes the proof of Theorem 4.1, since ∂u 1 ∂n -∂u 2 ∂n = (p 1 -p 2 )n on Γ.

Figure 1 :

 1 Figure 1: Figure illustrating how informations spread in the proof of Theorem 4.1.

Figure 2 :

 2 Figure 2: Figure illustrating the construction of the sequence of balls with decreasing radius and whose center is approaching x i .

( 1 ) ≤ e 1 α

 1 ( d 0 +ρ 0 ) γ 0 (c log( d 0 +ρ 0 )+(β+d) log( 1 )) ≤ e C γ 0 log( 1 ) . (34)To summarize, for γ > γ 0 and for 0 < < 0 , we obtain from (33) and (34):1 ≤ C(m, R M , N ) e C/ γ N i=1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + E β .By denoting 1 s = γ , it can be rewritten for all s > s 0 = 1 0 γ as:1 ≤ C(m, R M , N ) e Cs N i=1 w H 1 (Bρ 0 (ζi,0)) + π L 2 (Bρ 0 (ζi,0)) + E 1 s β/γ.InriaBy applying Corollary 3.5, there exist C(M 1 , m, R M , N ) > 0 and 0 < δ < 1 such that for all s > s 0 :1 ≤ C(M 1 , m, R M , N )   e Cs w L 2 (Γ) + π L 2 (Γ) + ∂w ∂n L 2 (Γ)

.

  ) and f (s) = e Cs Λ + dE 1 sβ/γ, with d ≥ 1. Let us study the function f in R * + . We have:lim s→0 f (s) = +∞, lim s→∞ f (s) = +∞.So since f is continuous on R + * , f reaches its minimum at a point s 0 > 0. At this point,f (s 0 ) = 0 ⇔ Λ = d large enough.Taking into account (37), it leads to:1 ≤ E dC(M 1 , m, R M , N ) ln E dβ CγΛ λThanks to local regularity stated in Subsection 2.2, we know that there exits a constant C(M 1 , R M ) > 0 such that:w H 3 ( Ω) + π H 2 ( Ω) ≤ C(M 1 , R M ),which, remembering the definition (32) of E, leads to E ≤ C(M 1 , R M , N ). Thus, by studying the variation of the function f y (x) = x (ln( x y )) λ on (y, +∞), for y = CγΛ dβ we obtain the existence of two positive constants C 1 (M 1 , m, R M , N ) and C 2 (M 1 , R M , N ) such that 1 ≤ C 1 (M 1 , m, R M , N ) ln C2(M1,R M ,N ) Λ λ .
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