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TWO PROPERTIES OF TWO-VELOCITY TWO-PRESSURE
MODELS FOR TWO-PHASE FLOWS

FRÉDÉRIC COQUEL ∗, JEAN-MARC HÉRARD † , KHALED SALEH ‡ , AND NICOLAS

SEGUIN §

Abstract. We study a class of models of compressible two-phase flows. This class, which
includes the Baer–Nunziato model, is based on the assumption that each phase is described by its
own pressure, velocity and temperature and on the use of void fractions obtained from averaging
process. These models are nonconservative and non-strictly hyperbolic. We prove that the mixture
entropy is non-strictly convex and that the system admits a symmetric form.
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1. Introduction

The modeling of compressible two-phase flows is a challenging task in Thermo-
hydraulics. It is a crucial issue for many applications, for instance for water flows in
some components of nuclear power plants such as the pressurized water reactors or
the steam generators, especially in some specific situations, as the departure from nu-
cleate boiling or the loss of coolant accident. When dealing with highly heterogeneous
and disturbed flows, it is now commonly accepted that averaged models have to be
considered. However, there is no consensus on the “good” model to use, especially
when focusing on the two-fluid approach, where it is assumed that state variables
within each phase (namely pressure, velocity and temperature) should not be con-
fused. When restricting to the latter two-fluid framework, one can distinguish the
Baer–Nunziato model [1] among the huge literature on the modeling of two-phase
flows, both from the mathematical and physical point (see for instance [2, 5, 8, 9, 16]
and references therein). Indeed, this system almost has the expected structure: if we
only consider its convective part (i.e. the first order differential terms), its eigenval-
ues are always real and the associated eigenvectors are linearly independent except
for some sonic cases (this is the resonance phenomenon). Even more, according to
some choices of closure laws, it is possible to provide a wave-by-wave study, in spite
of its nonconservative structure, and obtain some positive results on the solution of
the associated Riemann problem [5, 3, 7].

In this work, we propose to investigate two properties which are crucial in the
theory of nonlinear hyperbolic partial differential equations: the convexity of the
entropy and the existence of a symmetric form. While such properties are very well
understood for systems of conservation laws since Godunov [11] and Mock [15], it
remains an open question for nonconservative and non-strictly hyperbolic systems,
such as the Baer–Nunziato model. Equipped with these properties, it is possible to
pursue our study of the Baer–Nunziato models towards the Cauchy problem, which
will be the subject of forthcoming works.

Actually we will discuss these two properties, not restricting to the exact Baer-
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Nunziato model, and we will consider a larger framework of two-phase flow models,
introduced in [7], that contains the former model [1]. Note that such properties have
been investigated in [6] for a subclass of the systems we are interested in.

2. The two-velocity two-pressure models
In the models we study, each phase is described by its own density, velocity and

pressure (or equivalently any other thermodynamical variable, such as the tempera-
ture). They are obtained after averaging Euler equations or Navier–Stokes equations
and this averaging process introduces the notion of void fraction α(t, x) which repre-
sents the probability of presence (in the case of statistical average) of phase 1 at time
t in position x. The resulting system is composed by a transport equation for the
void fraction α with velocity vi, two equations of mass, momentum and total energy,
and momentum and total energy equations include nonconservative terms due to the
variations of the void fraction α. The main alternative class of models is based on the
assumption of the equality of the two pressures, which replaces the transport equation
on α. The main inconvenience is that these models are conditionally hyperbolic and
their eigen-structure is very difficult to compute. As it is recalled in Proposition 2.1,
the structure of the two-pressure models is more appealing, see for instance [7], and
our aim is to go further into the understanding of the structure of these models.

The first-order part of the models we focus on can be written under the form

∂tu + ∂xf(u) + c(u)∂xα = 0 (2.1)

where

uT = (α, αuT1 , (1− α)uT2 ), f(u)T = (0, αf1(u1)T , (1− α)f2(u2)T ),

uTk = (ρk, ρkuk, ρkEk), fk(uk)T = (ρkuk, ρku
2
k/2 + pk, uk(ρkEk + pk)),

c(u)T = (vi, 0,−pi,−vipi, 0, pi, vipi),

with k = 1, 2. The notations are classical: α is the void fraction of phase 1 (and 1−α
the void fraction of phase 2), ρk the density, uk the velocity, pk the pressure and Ek
the specific total energy of the phase k, with k = 1, 2. Besides, vi and pi, usually
called the interfacial velocity and the interfacial pressure, are given functions of u.
The total energies are defined by

Ek = εk +
u2k
2
,

where εk denotes the specific internal energy of the phase k. We assume in the sequel
that each phase admits an entropy sk, complying with

Tkdsk = dεk + pkdτk, (2.2)

noting Tk the temperature and τk = 1/ρk the specific volume of the phase k. The
knowledge of these entropies enables us to deduce the temperature and the pressure
of each phase:

∂sk
∂τk

(τk, εk) =
pk
Tk

(τk, εk) and
∂sk
∂εk

(τk, εk) =
1

Tk
(τk, εk).

Besides, we assume that each entropy sk is a strictly concave function of τk and εk.
Moreover, one can define the sound speeds ck by

ρk(ck)2 =

(
pk
ρk
− ρk(∂ρkεk)(ρk, pk)

)(
(∂pkεk)(ρk, pk)

)−1
.
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Let us recall the hyperbolicity property of system (2.1) for solutions in the set of
admissible states

Ω = {u ∈ R7;α ∈ (0, 1), ρk > 0, εk > 0, k = 1, 2}. (2.3)

Proposition 2.1. System (2.1) admits seven real eigenvalues on Ω: vi, uk and
uk ± ck, k = 1, 2. The corresponding eigenvectors form a basis of R7 as soon as

(uk − vi)2 6= (ck)2, k = 1, 2. (2.4)

This is called the non-resonance condition.

3. Non strict convexity of the mixture entropy
Let us introduce the entropy pair (Sk, Fk) defined by

Sk(uk) = −ρksk and F ′k(uk) = (S′k(uk))T f ′k(uk), (3.1)

associated with the Euler systems ∂tuk + ∂xfk(uk) = 0.
It is classical to define the entropy of the two-phase model (2.1) by

Definition 3.1. The mixture entropy for system (2.1) is

S(u) = αS1(u1) + (1− α)S2(u2), (3.2)

and the associated mixture entropy flux

F (u) = αF1(u1) + (1− α)F2(u2). (3.3)

These definitions are classical and may lead to a conservative entropy inequality
under some assumptions on pi, see [3, 7].

We state now the crucial property of the mixture entropy:
Theorem 3.2. The mixture entropy S is a convex, but not strictly convex, function
of u. Moreover, for any u = (α, αu1, (1 − α)u2) ∈ Ω, the degeneracy manifold of
S′′(u) is only due to variations with respect to the void fraction:

v ∈ D(u) = {v ∈ Ω; v = (β, βu1, (1− β)u2)), β ∈ (0, 1) \ {α}}
⇐⇒ S(v)− S(u) = S′(u)T (v − u).

Proof. With a slight abuse of notation, let us rewrite the mixture entropy S as a
function of (α, αu1, (1− α)u2):

S(α, αu1, (1− α)u2) = αS1

(αu1

α

)
+ (1− α)S2

( (1− α)u2

1− α

)
.

Then, the Hessian matrix of S with respect to (α, αu1, (1− α)u2) has the form

S′′(u) =

A BT CT

B 1
αS
′′
1 (u1) 0

C 0 1
1−αS

′′
2 (u2)


with

A =
1

α
uT1 S

′′
1 (u1)u1 +

1

1− α
uT2 S

′′
2 (u2)u2,

B = − 1

α
S′′1 (u1)u1 and C =

1

1− α
S′′2 (u2)u2.
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Let (a, bT , cT ) be a non-null vector of R7. Let us check that the Hessian S′′ is positive
as soon as S′′1 and S′′2 are positive. We have

(a, bT , cT ) S′′(u)

ab
c

 = a2A+ aBT b+ aCT c

+ abTB +
1

α
bTS′′1 (u1)b+ acTC +

1

1− α
cTS′′2 (u2)c.

Using the definitions of A, B and C we obtain

(a, bT , cT ) S′′(u)

ab
c

 =
1

α
(b− au1)TS′′1 (u1)(b− au1)

+
1

1− α
(c+ au2)TS′′2 (u2)(c+ au2).

This right-hand side is clearly non-negative since S1 and S2 are strictly convex, which
proves the non strict convexity of S. The case of degeneracy of S′′(u) corresponds to

(a, bT , cT ) S′′(u)

ab
c

 = 0⇐⇒ (a, b, c) = a(1,u1,−u2). (3.4)

In other words, from a given state u = (α, αu1, (1 − α)u2) ∈ Ω, the degeneracy
manifold of S′′(u) is given by the set {u + (a, au1,−au2), a ∈ R \ {0}} ∩ Ω. Now,
introducing w = (a, au1,−au2), let us remark that u + w = (α + a, (α + a)u1, (1 −
α− a)u2) and setting β = α+ a, we recover the set D(u).

4. The system is symmetrizable out of resonance

Definition 4.1. The system (2.1) is said to be symmetrizable if there exists a
C1-diffeomorphism from R7 to R7 ϕ : u 7→ y, a symmetric positive definite matrix
P (y) ∈ R7×7 and a symmetric matrix Q(y) ∈ R7×7 such that the smooth solutions of
system (2.1) satisfy

P (y)∂ty +Q(y)∂xy = 0. (4.1)

Theorem 4.2. System (2.1) is symmetrizable if and only if the non-resonance con-
dition (2.4) holds.

Proof. Let us define y = ϕ(u) := (α2, u2, p2, s2, u1, p1, s1)t and introduce the
partial masses mk = αkρk. One may check by classical manipulations that the smooth
solutions of system (2.1) satisfy

∂ty +M(y)∂xy = 0

where

M =

 vi 0 0
M2α M2 0
M1α 0 M1

 , Mk =

 uk τk 0
ρk(ck)2 uk 0

0 0 uk


4



and

MT
kα =

(
(−1)k

pk − pi
mk

,M
(2)
kα ,M

(3)
kα

)
,

M
(2)
kα = (−1)k

uk − vi
αk

(
ρk(ck)2 +

pi − pk
ρk

(∂pkεk)−1
)
,

M
(3)
kα = (−1)k(uk − vi)

pi − pk
mkTk

.

The proof we provide here is constructive for the sake of understanding. We seek for
a matrix of symmetrization P (y) of the form

P =

 Pα PT2α PT1α
P2α P2 0
P1α 0 P1

 , Pk =

(ρkck)2 0 0
0 1 0
0 0 1


and the associated symmetric convection matrix is Q(y) = P (y)M(y). We have to
find P such that it is positive definite and that Q is symmetric. Let us first focus on
this latter condition. We have

Q =

Pαvi + PT2αM2α + PT1αM1α PT2αM2 PT1αM1

viP2α + P2M2α P2M2 0
viP1α + P1M1α 0 P1M1

 .

This matrix is symmetric if and only if we have for k = 1, 2

(MT
k − viI)Pkα = PkMkα, (4.2)

where I is the 3× 3 identity matrix. Assume now that

δk := (uk − vi)2 − (ck)2 6= 0,

i.e. inequality (2.4) holds. As a consequence, the first two equations of system (4.2)
can be solved:(

P
(1)
kα

P
(2)
kα

)
=

1

δk

(
uk − vi −ρk(ck)2

−τk uk − vi

)(
(−1)kρk(ck)2 pk−piαk

M
(2)
kα

)
. (4.3)

It remains to solve the third equation of system (4.2), which writes

(uk − vi)P (3)
kα = (−1)k(uk − vi)

pi − pk
mkTk

. (4.4)

Clearly, this equation admits a unique solution if uk 6= vi and infinitely many solutions
if uk = vi. Therefore, if Pkα is defined by (4.3) and (4.4), the matrices P and Q are
symmetric.

Let us now check that P is a positive definite matrix, that is to say for all non-null
vector (a, bT2 , b

T
1 ) of R7, we have

(a, bT2 , b
T
1 ) P

 a
b2
b1

 = a2Pα + 2a(PT2αb2 + PT1αb1) + bT2 P2b2 + bT1 P1b1 > 0.
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This is a polynomial of degree 2 in a and its discriminant is

∆ = 4
[
|PT2αb2 + PT1αb1|2 − Pα(bT2 P2b2 + bT1 P1b1)

]
= 4
[∣∣(P−1/22 P2α)T b̄2 + (P

−1/2
1 P1α)T b̄1

∣∣2 − Pα(|b̄2|2 + |b̄1|2)
]

= 4
[(
|P−1/22 P2α|2 + |P−1/21 P1α|2 − Pα

)
(|b̄2|2 + |b̄1|2)

−
∣∣(P−1/22 P2α)T b̄1 − (P

−1/2
1 P1α)T b̄2

∣∣2]
where b̄k = P

1/2
k bk (as usual, P

1/2
k is the symmetric positive definite matrix such that

P
1/2
k P

1/2
k = Pk and P

−1/2
k is its inverse). The discriminant ∆ is negative if

Pα > |P−1/22 P2α|2 + |P−1/21 P1α|2, (4.5)

which is realizable under the condition of non-resonance (2.4).

5. Consequences and further works
First of all, it is worth noting that Theorems 3.2 and 4.2 have been obtained

for system (2.1) without any assumption on the definitions of vi and pi. Moreover,
these results have been obtained for any admissible equations of state within each
phase. It is then straightforward to extend these results to similar models (such as
the barotropic Baer-Nunziato model, or the extended model introduced in [4]) and it
also seems to be a reasonable assumption for the model discussed in [8]. Moreover, we
have restricted ourselves to the one-dimensional case, but since this model is invariant
under frame rotation (under some natural conditions on vi and pi), these properties
are still verified in the multidimensional setting.

It is well-known for hyperbolic symmetric systems that the L∞ norm of the spatial
derivative of the solution may blow up in finite time. Here, the symmetric form (4.1)
is admissible far from resonance. As a consequence, starting from a non-resonant
solution, there exists a local-in-time smooth solution to the Cauchy problem. The
final time corresponds to the smaller time for which the L∞ norm of the spatial
derivative of the solution blows up or for which the solution becomes resonant. This
is a direct application of Kato’s theorem [14]. Let us mention that the resonance
phenomenon prevents us from proving a well-posedness result in a weaker setting
(as entropy weak solutions with small total variation), since the Riemann problem is
known to admit up to three solutions [13, 10].

Nonetheless, we must recall here that the full version of two-phase models also
includes source terms which govern the trend of a flow to converge towards equilib-
rium: equality of pressures, velocities, temperatures and chemical potential. These
respective equilibria correspond to mechanic, kinematic, thermal and thermodynam-
ical equilibrium, and thus they tend to remove the occurrence of the resonance phe-
nomenon, since condition (2.4) is expected to be satisfied when an equilibrium is not
far from being reached. Such source terms are entropy-dissipative, that is to say that
their contribution to the mixture entropy balance law is non-positive (see for instance
[4]). As a consequence, one may wonder if they may help to obtain a global-in-time
solution to the Cauchy problem, following [12] and [17]. Even if these two papers
are dedicated to systems of conservation laws, the analysis relies on the use of the
entropy (and equivalently in the conservation case, upon the symmetric form of the
equations). Let us note that the crucial assumptions exhibited in [12] and [17] are
the following: entropy dissipative source terms and Kawashima–Shizuta structure.
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It is well-known that the aforementioned source terms are entropy dissipative with
respect to entropy (3.1). As far as the Kawashima–Shizuta structure is concerned,
the situation is not so clear and it is probable that all the relaxation source terms will
be needed. Moreover, the degeneracy of the Hessian of the entropy has to be carefully
handled to obtain the global-in-time result. This work is under investigation.

Eventually, these properties may also be used for computational purposes.
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