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POISSON ENSEMBLES OF LOOPS OF

ONE-DIMENSIONAL DIFFUSIONS

Titus Lupu

Abstract. — We study the analogue of Poisson ensembles of Markov loops (”loop
soups”) in the setting of one-dimensional diffusions. We give a detailed description
of the corresponding intensity measure. The properties of this measure on loops
lead us to an extension of Vervaat’s bridge-to-excursion transformation that relates
the bridges conditioned by their minimum and the excursions of all the diffusion we
consider and not just the Brownian motion. Further we describe the Poisson point
process of loops, their occupation fields and explain how to sample these Poisson
ensembles of loops using two-dimensional Markov processes. Finally we introduce a
couple of interwoven determinantal point processes on the line which is a dual through
Wilson’s algorithm of Poisson ensembles of loops and study the properties of these
determinantal point processes.

Résumé (Ensemble poissonien de boucles des diffusions unidimension-
nelles)

Nous étudions l’analogue des ensembles poissoniens de boucles markoviennes (”loop
soups”) dans le cadre des diffusions unidimensionnelles. Nous donnons une descrip-
tion détaillée de la mesure d’intensité correspondante. Les propriétés de cette mesure
sur les boucles nous amènent à une extension de la transformation de Vervaat pont-
excursion qui relie les ponts conditionnés par leur minimum et les excursions de toutes
le diffusions que nous considérons et non juste ceux du mouvement Brownien. En-
suite nous décrivons le processus ponctuels de Poisson des boucles, leurs champs
d’occupation et expliquons comment séquencer ces ensembles poissoniens de boucles
à partir de processus de Markov bidimensionnels. Enfin nous introduisons un couple
de processus ponctuels déterminantaux sur la droite, entrelacés, qui est un dual, à
travers l’algorithme de Wilson, de l’ensemble poissonien de boucles, et étudions les
propriétés de ces processus ponctuels déterminantaux.
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CHAPTER 1

INTRODUCTION

Lawler and Werner introduced in [19] the notion of Poisson ensemble of Markov

loops (”loop soup”) for planar Brownian motion. In [26] it was used by Sheffield and

Werner to construct the Conformal Loops Ensemble (CLE). Le Jan studied in [13] the

analogue of the Poissonian ensembles of Markov loops in the setting of a symmetric

Markov jump process on a finite graph. In both cases one defines an infinite measure

µ∗ on time-parametrizes unrooted loops (i.e. loops parametrized by a circle where it

is not specified when the cut between the beginning and the end occurs) and considers

the Poisson point ensemble of intensity αµ∗, α > 0, denoted here Lα. In both cases

the ensemble L1 (where α = 1) is related to the loops erased during the loop-erasure

procedure applied to Markovian sample paths.In particular in the discrete setting

Wilson’s algorithm ([31]) leads to a duality between L1 and the Uniform Spanning

Trees. In [13] Le Jan also studied the occupation field of Lα, that is the sum of the

occupation times in a given vertex of the graph of individual loops. In case α = 1
2

he found that it the square of a Gaussian Free Field and related it to the Dynkin’s

Isomorphism ([8]).

The analogue of the measure µ∗ can be defined for a much larger class of Markov

processes ([15], [10]). The aim of this essay is on one hand to study the measure

µ∗ and the Poisson ensembles of Markov loops Lα in the setting of one-dimensional,

not necessarily conservative, diffusion processes, and on the other hand to define

and study some determinatal point processes on R that are analogous to Uniform

Spanning Tress and dual to L1. The diffusion processes we consider take values on

a subinterval I of R, are always killed at hitting a boundary point of I, and may be

killed by a killing measure on the interior of I. One can transform a diffusion process

into an other applying a change of scale, a random change of time, a restriction to a

subinterval, an increase of the killing measure or an h-transform. The measure µ∗ is

covariant with all this transformations on Markov processes. In other words the map

diffusion to measure on loops is a covariant functor. Moreover we will show that µ∗
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is invariant by h-transform on underlying diffusions. We will also extend the scope of

our study by associating a measure on loops to ”generators” which contain a creation

of mass term: If L = L(0) + ν where L(0) is a second order differential operator

on I and ν is a signed measure, and if one sets zero Dirichlet boundary conditions

for L, one can define in a consistent way a measure on loops related to L even in

case the semi-group (etL)t≥0 does not make sense. This extended definition of µ∗

will be particularly handy for computing the exponential moments of the Poissonian

ensemble of Markov loops.

The layout of this paper is the following: In chapter 2 we will recall some facts on

one-dimensional diffusions and set the important notations. We will further consider

”generators” with creation of mass term and characterize a class of such operators

which up to an h-transform are equivalent to the generators of diffusions. In chapter

3 we will define the measure µ∗ and point out different covariance and invariance

properties. Further we will make a connection between the Brownian measure on

loops and the Levy-Itô measure on Brownian excursion using the Vervaat’s bridge-

to-excursion transformation. This in turn will lead us to a conditioned version of

Vervaat’s transformation that holds for any one-dimensional diffusion process, that

is an absolute continuity relation between the bridge conditioned to have a given

minimum and an excursion of the same duration above this minimum. The Vervaat’s

transformation is deeply related to the measure on loops µ∗: The loops are unrooted,
so one can freely chose a moment separating the end from the start. If one chooses

this moment uniformly over the life-time of the loop, then the loop under the measure

µ∗ looks in some sense like a bridge. If one chooses this moment when the loop

hits its minimum, then it looks like an excursion. In chapter 4 we will study the

occupation field of the Poisson ensemble of Markov loops. Each loop is endowed

with a family of local times. The occupation field is the sum of local times over the

loops. We will identify its law as an non-homogeneous continuous state branching

process with immigration parametrised by the position points in I. In case α = 1
2

we will identify it as the square of a Gaussian Free Field and show how it is possible

to derive particular versions of the Dynkin’s Isomorphism using this fact and Palm’s

identity for Poissonian ensembles. In chapter 5 we will root each loop in Lα at its

minimum and obtain this way a collection of positive excursions. Then we will order

this excursions in the decreasing sense of their minima and glue them together. We

will obtain this way a continuous path which can be described using two-dimensional

Markov processes. This is a way to sample Lα. In the particular case α = 1 the path

we obtain is the sample path of an one-dimensional diffusion. This is the analogue in

our setting of the relation between L1 and the loop-erasure procedure observed in the

setting of the two-dimensional Brownian motion or of the symmetric Markov jump

processes on graphs. In chapter 6 we will apply an extension of Wilson’s algorithm to

transient one-dimensional diffusions and obtain a couple of interwoven determinantal
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point processes on R which is dual to L1. In chapter 7 we will prove some monotone

coupling properties for the determinantal point processes introduced in chapter 6.

The author thanks Yves Le Jan for fruitful discussions and its helpful advice in

relation with this work.





CHAPTER 2

PRELIMINARIES ON GENERATORS AND

SEMI-GROUPS

2.1. A second order ODE

In this chapter we will introduce the one-dimensional diffusions we will consider

throughout this work (section 2.2). In the section 2.3 we will extend the framework

to the ”generators” containing a mass-creation term. In the section 2.1 we will prove

or recall some facts on the functions harmonic for these generators.

Let I be an open interval of R and ν a signed measure on I. By signed measure

we mean that the total variation |ν| is a positive Radon measure, but not necessarily

finite, and ν(dx) = ǫ(x)|ν|(dx) where ǫ takes values in {±1}. We look for the solutions

of the linear second order differential equation on I:

(2.1.1)
d2u

dx2
+ uν = 0

Given a solution u of (2.1.1) we will write du
dx
(x+) and du

dx
(x−) for the right-hand side

respectively left-hand side derivative of u at x. The two are related by

du

dx
(x+)− du

dx
(x−) = −u(x)ν({x})

Using a standard fixed point argument one can show that (2.1.1) satisfies a Cauchy-

Lipschitz principle: if x0 ∈ I and u0, v0 ∈ R, there is a unique solution u of (2.1.1),

continuous on I, satisfying u(x0) = u0 and du
dx
(x+0 ) = v0. Let x1 ∈ I ∩ (x0,+∞). A

continuous function u on [x0, x1] is solution of (2.1.1) with previous initial conditions

at x0 if and only if it is a fixed point of the affine operator I on C([x0, x1]) defined as

(Iu)(x) := u0 + (x− x0)v0 −
∫

(x0,x]

(x− y)u(y)ν(dy)

The Lipschitz norm of In is smaller or equal to |ν|([x0,x1])
n(x1−x0)

n

n! . So for n large

enough In is contracting and thus I has a unique fixed point in C([x0, x1]).
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Let W (u1, u2)(x) be the Wronskian of two functions u1, u2:

W (u1, u2)(x) := u1(x)
du2

dx
(x+)− u2(x)

du1

dx
(x+)

If u1, u2 are both solutions of (2.1.1), W (u1, u2) is constant on I. Using this fact we

get a results which is similar to Sturm’s separation theorem for the case of a measure

ν with a continuous density with respect to the Lebesgue measure (see theorem 7,

section 2.6 in [4]):

Property 2.1. — Given x0 < x1 be two points in I:

– (i) Let u1 be a solution of (2.1.1) satisfying u1(x0) = 0, du1

dx
(x+0 ) > 0, and u2 a

solution such that u2(x0) > 0. Assume that u2 ≥ 0 on [x0, x1]. Then u1 > 0 on

(x0, x1].

– (ii) Let u1, u2 be two solutions such that u1(x0) = u2(x0) > 0 and du1

dx
(x+0 ) >

du2

dx
(x+0 ). Assume that u2 ≥ 0 on [x0, x1]. Then u1 > u2 on (x0, x1].

– (iii) If there is a solution u to (2.1.1) positive on (x0, x1) and zero at x0 and x1
then any other linearly independent solution of (2.1.1) has exactly one zero in

(x0, x1).

Next we prove a lemma that will be useful in the section 2.3.

Lemma 2.2. — Let ν+ be the positive part of ν. Let x0 < x1 ∈ I. Let f be a

continuous positive function on [x0, x1] such that min[x0,x1] f > ν+([x0, x1])
2. Then

the equation

(2.1.2)
d2u

dx2
+ uν − uf = 0

has a positive solution that is non-decreasing on [x0, x1].

Proof. — Set a := min[x0,x1] f . Let u be the solution to (2.1.2) with the initial values

u(x0) = 1, du
dx
(x+0 ) =

√
a. We will show that u is non-decreasing on [x0, x1]. Assume

that this is not the case. This means that du
dx
(x+) takes negative values somewhere

in [x0, x1]. Let

x2 := inf
{
x ∈ [x0, x1]

∣∣∣du
dx

(x+) ≤ 0
}

Since du
dx
(x+) is right-continuous, du

dx
(x+2 ) ≤ 0. Let r(x) := 1

u(x)
du
dx
(x+). u is positive

on [x0, x2] hence r is defined [x0, x2]. r(x0) =
√
a. r is cadlag and satisfies the

equation

dr = (f − r2)dx − dν

Let x3 := sup{x ∈ [x0, x2]|r(x) ≥
√
a}. We have

r(x2) = r(x−3 ) +

∫ x2

x3

(f(x) − r2(x))dx − ν([x3, x2])
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By construction r(x−3 ) ≥
√
a. By definition f − r2 ≥ 0 on (x3, x2]. Thus

r(x2) ≥
√
a− ν([x3, x2]) > 0

It follows that r(x2) > 0, which is absurd.

In the case ν = −2κ where κ is a non-zero positive Radon measure, the equation

(2.1.1) becomes:

(2.1.3)
1

2

d2u

dx2
− uκ = 0

It commonly appears when studying the Brownian motion with a killing measure κ.

In this case the two-dimensional linear space of solutions is spanned by two convex

positive solutions u↑ and u↓, u↑ being non-decreasing and u↓ non-increasing. Given

x0 ∈ I, we can construct u↑ as the limit when x1 → inf I of the unique solution

which equals 0 in x1 and 1 in x0. For u↓ we take the limit as x1 → sup I. u↑ and

u↓ are defined up to a positive multiplicative constant. See [5], section 16.11, or [24],

Appendix 8, for more details. Next we give equivalent conditions on the asymptotic

behaviour of u↑ and u↓ that will be used in chapter 6.

Proposition 2.3. — In case [0,+∞) ⊆ I, the following four conditions are equiva-

lent:

– (i)
∫
(0,+∞)

xκ(dx) < +∞
– (ii) u↓(+∞) > 0

– (iii) There is C > 0 such that for all x ≥ 1, u↑(x) ≤ Cx

– (iv)
∫
(0,+∞) u↑(x)u↓(x)κ(dx) < +∞

Proof. — We will prove in order that (ii) implies (i), (iii) implies (i), (i) implies (ii),

(i) implies (iii) and (iv) implies (ii). (iv) is obviously implied by the combination of

(i), (ii) and (iii).

(ii) implies (i): For all x ∈ [0,+∞):

−du↓
dx

(x+) = 2

∫

(x,+∞)

u↓(y)κ(dy) ≤ 2u↓(+∞)κ((x,+∞))

− du↓
dx

(x+) is integrable on (0,+∞). Since u↓(+∞) > 0, this implies that:
∫

(0,+∞)

κ((x,+∞))dx < +∞

But ∫

(0,+∞)

κ((x,+∞))dx =

∫

(0,+∞)

yκ(dy)

and hence (i).

(iii) implies (i): If (iii) holds then for all x ∈ [0,+∞),
du↑
dx

(x+) ≤ C. But

du↑
dx

(x+) =
du↑
dx

(0+) + 2

∫

(0,x]

u↑(y)κ(dy)
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This implies that ∫

(0,+∞)

u↑(y)κ(dy) < +∞

Since u↑ is convex, u↑(y) ≥ u↑(0) +
du↑
dy

(0+)y. So (i) is satisfied.

(i) implies (ii): For all y ∈ [0,+∞):

u↓(y)− u↓(+∞) = 2

∫ +∞

y

∫

(z,+∞)

u↓(x)κ(dx)dz ≤ 2u↓(y)

∫

(y,+∞)

(x− y)κ(dx)

Condition (i) implies that:

lim
y→+∞

2

∫

(y,+∞)

(x− y)κ(dx) = 0

So for y large enough, u↓(y)− u↓(+∞) < u↓(y). Necessarily u↓(+∞) > 0.

(i) implies (iii): For all y < x ∈ [0,+∞):

(2.1.4)
du↑
dx

(x+) =
du↑
dy

(y+) + 2u↑(y)κ((y, x]) + 2

∫

(y,x]

(u↑(z)− u↑(y))κ(dz)

Let y be large enough such that:

2

∫

(y,+∞)

(z − y)κ(dz) < 1

Then there is C > 0 large enough such that:

(2.1.5) C >
du↑
dy

(y+) + 2u↑(y)κ((y,+∞)) + 2C

∫

(y,+∞)

(z − y)κ(dz)

Assume that there is x ∈ [0,+∞) such that
du↑
dx

(x+) ≥ C. Let

x0 := inf
{
x ≥ y

∣∣∣du↑
dx

(x+) ≥ C
}

x 7→ du↑
dx

(x+) is right-continuous. Thus
du↑
dx

(x+0 ) ≥ C. By definition, for all z ∈ [y, x0],
du↑
dz

(z+) ≤ C and hence u↑(z)− u↑(y) ≤ C(z− y). But then (2.1.4) and (2.1.5) imply

that
du↑
dx

(x+0 ) < C which is contradictory. It follows that
du↑
dx

(x+) is bounded by C,

which implies property (iii).

(iv) implies (ii): Applying integration by parts we get that for all x > 0:

2

∫

(0,x]

u↑(y)u↓(y)κ(dy) =

∫

(0,x]

u↓(y)d
(du↑
dy

)
(dy)

=
du↑
dx

(x+)u↓(x)−
du↑
dx

(0+)u↓(0)−
∫ x

0

du↓
dy

(y+)
du↑
dy

(y+)dy

du↑
dx

(x+)u↓(x) is positive. We get that:

(2.1.6)

−
∫ +∞

0

du↓
dy

(y+)
du↑
dy

(y+)dy ≤ 2

∫

(0,+∞)

u↑(y)u↓(y)κ(dy) +
du↑
dx

(0+)u↓(0) < +∞
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Next

du↑
dx

(x+)(u↓(x) − u↓(+∞)) =− du↑
dx

(x+)

∫ +∞

x

du↓
dy

(y+)dy

≤−
∫ +∞

x

du↓
dy

(y+)
du↑
dy

(y+)dy

(2.1.7)

Assume that u↓(+∞) = 0. Then (2.1.7) implies that:

lim
x→+∞

du↑
dx

(x+)u↓(x) = 0

and

(2.1.8) lim
x→+∞

−du↓
dx

(x+)u↑(x) =W (u↓, u↑)− lim
x→+∞

du↑
dx

(x+)u↓(x) =W (u↓, u↑)

(2.1.6) together with (2.1.8) imply that
∫ +∞

0

1

u↑(y)

du↑
dy

(y+)dy < +∞

But this is impossible because log(u↑(+∞)) = +∞. Thus u↓(+∞) > 0.

Next we deal with the continuity of u↑ and u↓ with respect the measure κ. We will

write uκ,↑ and uκ,↓ to denote the dependence on κ.

Lemma 2.4. — Let x0 ∈ I. Let (κn)n≥0 be a sequence of non-zero positive Radon

measures on I converging vaguely (i.e. against functions with compact support) to κ.

Then
uκn,↑

uκn,↑(x0)
converges to

uκ,↑
uκ,↑(x0)

,
uκn,↓

uκn,↓(x0)
converges to

uκ,↓
uκ,↓(x0)

and the conver-

gences are uniform on compact subsets of I.

Proof. — We will deal with the convergence of
uκn,↓

uκn,↓(x0)
, the other one being similar.

To simplify notations we will chose the normalization uκ,↓(x0) = uκn,↓(x0) = 1.

Without loss of generality we will also assume that κ({x0}) = 0. The proof will be

made of two parts. First we will show that if u is the solution of (2.1.3) and un

solution of

(2.1.9)
1

2

d2u

dx2
− uκn = 0

and if un(x0) = u(x0) = 1 and du
dx
(x+0 ) = limn→+∞

dun

dx
(x+0 ) then un converges to u

uniformly on compact subsets of I. After that we will show that
duκn,↓
dx

(x+0 ) converges

to
duκ,↓
dx

(x+0 ).

Let x1 ∈ I ∩ (x0,+∞). Let (vn)n≥0 be a sequence in R converging to v. Let In

respectively I be the following affine operators on C([x0, x1]):

(Inf)(x) := 1 + (x− x0)vn + 2

∫

(x0,x]

(x− y)f(y)κn(dy)

(If)(x) := 1 + (x− x0)v + 2

∫

(x0,x]

(x− y)f(y)κ(dy)
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Let un respectively u be the fixed points of In respectively I. Let ε ∈ (0, 1). The

Lipschitz norm of Ijn is bounded by 2j

j! κn([x0, x1])
j(x1 − x0)

j . For j ≥ jε, for all

n ∈ N, this norm is less then ε. Then

max
[x0,x1]

|un − u| = max
[x0,x1]

|Ijεn un − Ijεu| ≤ max
[x0,x1]

|Ijεn u− Ijεu|+ max
[x0,x1]

|Ijεn un − Ijεn u|

≤ max
[x0,x1]

|Ijεn u− Ijεu|+ ε max
[x0,x1]

|un − u|

Hence

(2.1.10) max
[x0,x1]

|un − u| ≤ 1

1− ε
max
[x0,x1]

|Ijεn u− Ijεu|

For y < x ∈ I and i ∈ N∗ let

fn,i(y, x) :=

∫

y<y1<···<yi−1<x

(x− yi−1) . . . (y2 − y1)(y1 − y)κn(dy1) . . . κn(dyi−1)

fi(y, x) :=

∫

y<y1<···<yi−1<x

(x − yi−1) . . . (y2 − y1)(y1 − y)κ(dy1) . . . κ(dyi−1)

and f0,i(y, x) = f0(y, x) = x− y. fn,i and fi are continuous functions. Moreover the

vague convergence of κn to κ ensures that if (yn, xn)n≥0 is a sequence converging to

(y, x) then fn,i(yn, xn) converges to fi(y, x).

(Ijεn u)(x) =1 + (x− x0)vn +

jε−2∑

i=0

∫ x

x0

(1 + (y − x0)vn)fn,i(y, x)κn(dy)

+

∫ x

x0

u(y)fn,jε−1(y, x)κn(dy)

(Ijεu)(x) =1 + (x− x0)v +

jε−2∑

i=0

∫ x

x0

(1 + (y − x0)v)fi(y, x)κ(dy)

+

∫ x

x0

u(y)fjε−1(y, x)κ(dy)

For fixed x, the functions y 7→ 1x0<y<xfn,i(y, x) and y 7→ 1x0<y<xfi(y, x) have a

compact support but are discontinuous at x0. If (zn)n≥0 is a sequence in [x0, x1]

converging to z, then the convergence of vn to v, the weak convergence of κn to κ and

the condition κ({x0}) = 0 ensure that (Ijεn u)(zn) converges to (Ijεu)(z). This implies

the uniform convergence of Ijεn u to Ijεu on [x0, x1]. From (2.1.10) follows that un
converges uniformly to u on [x0, x1]. The situation is similar for x1 < x0 and we get

the uniform convergence on compact sets of un to u.

Let

v := lim inf
n→+∞

duκn,↓
dx

(x+0 ) v := lim sup
n→+∞

duκn,↓
dx

(x+0 )

Let v <
duk,↓
dx

(x+0 ). There is x1 ∈ I ∩ (x0,+∞) such that the solution of (2.1.3) with

initial conditions u(x0) = 1, du
dx
(x+) = v is zero at x1 since uκn,↓ converges to uκ,↓
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uniformly on [x0, x1] and uκ,↓ is positive on [x0, x1], we get that for n large enough,

uκn,↓ is positive on [x0, x1] and
duκn,↓
dx

(x+0 ) > v. Thus v ≥ duk,↓
dx

(x+0 ).

Conversely, let v < v. Let un be the solution of (2.1.9) with initial conditions

un(x0) = 1, dun

dx
(x+0 ) = v. If

duκn,↓
dx

(x+0 ) > v, then for any x ∈ I ∩ [x0,+∞)

dun

dx
(x+) ≤ duκn,↓

dx
(x+)−

(duκn,↓
dx

(x+0 )− v
)
≤ −

(duκn,↓
dx

(x+0 )− v
)

un(x) ≤ uκn,↓ −
(duκn,↓

dx
(x+0 )− v

)
(x− x0)

If sup I < +∞ then by convexity of uκn,↓:

un(x) ≤
sup I − x

sup I − x0
−
(duκn,↓

dx
(x+0 )− v

)
(x− x0)

and un(zn) ≤ 0 where

zn :=
sup I +

(duκn,↓
dx

(x+0 )− v
)
x0(sup I − x0)

1 +
(duκn,↓

dx
(x+0 )− v

)
(sup I − x0)

This is also true if sup I = +∞ and in this case zn = x0 +
(
duκn,↓
dx

(x+0 ) − v
)−1

. Let

u be the solution of of (2.1.3) with initial conditions u(x0) = 1, du
dx
(x+) = v and

z∞ :=
sup I + (v − v)x0(sup I − x0)

1 + (v − v)(sup I − x0)

Considering a subsequence along which
duκn,↓
dx

(x+0 ) converges to v, we get by uniform

convergence of un tu u on compact sets that u(z∞) ≥ 0. It follows that
duκ,↓
dx

(x+0 ) ≥ v.

Hence
duκ,↓
dx

(x+0 ) ≥ v.

Finally v = v =
duκ,↓
dx

(x+0 ) and this implies the uniform convergence on compact

subsets of uκn,↓ to uκ,↓.

2.2. One-dimensional diffusions

In this subsection we will describe the kind of linear diffusion we are interested

in, recall some facts and introduce notations that will be used subsequently. For a

detailed presentation of one-dimensional diffusions see [12] and [5], chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We

consider a diffusion (Xt)0≤t<ζ(0) on I with generator

L(0) :=
1

m(x)

d

dx

(
1

w(x)

d

dx

)

and killed as it hits the boundary of I. In case I is unbounded, we also allow for X

to blow up to infinity in finite time. ζ(0) is the first time X either hits the boundary

or explodes. To avoid some technicalities we will assume that dw
dx

is locally bounded,

although this condition is not essential. Given such a diffusion, the speed measure
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m(x)dx and the scale measure w(x)dx are defined up to a positive multiplicative

constant, but the product mw is uniquely defined. A primitive S of w is a nat-

ural scale function of X . Consider the random time change dt̃ = 1
m(Xt)

dt. Then

(12S(Xt̃))0≤t̃<ζ̃(0) is a standard Brownian motion on S(I) killed when it first hits the

boundary of S(I). For all f, g smooth, compactly supported in I,
∫

I

(L(0)f)(x)g(x)m(x)dx =

∫

I

f(x)(L(0)g)(x)m(x)dx

The diffusion X has a family of local times (ℓxt (X))x∈I,t≥0 with respect to the measure

m(x)dx such that (x, t) 7→ ℓxt (X) is continuous. We can further consider diffusions

with killing measures. Let κ be a non-negative Radon measure on I. We kill X as

soon as
∫
I
ℓxt (X)m(x)κ(dx) hits an independent exponential time with parameter 1.

The corresponding generator is

(2.2.1) L =
1

m(x)

d

dx

(
1

w(x)

d

dx

)
− κ

Let (Xt)0≤t<ζ be the diffusion of generator (2.2.1), which is killed either by hitting

∂I, or by exploding, or by the killing measure k. For x ∈ I let η>xexc and η<xexc be the

excursion measures of X above and below the level x up to the last time X visits x.

The behaviour of X from the first to the last time it visits x is a Poisson point process

with intensity η>xexc + η<xexc, parametrized by the local time at x up to the value ℓζt (X).

η>xexc and η
<x
exc are obtained from the Levy-Itô measure on Brownian excursions through

scale change, time change and multiplication by a density function accounting for the

killing. See [25] for details on excursion measures in case of recurrent diffusions.

If X is transient the Green’s function of L,

G(x, y) := Ex[ℓ
ζ
t (X)]

is finite, continuous and symmetric. For x ≤ y it can be written

G(x, y) = u↑(x)u↓(y)

where u↑(x) and u↓(y) are positive , respectively non-decreasing and non-increasing

solutions to the equation Lu = 0, which through a change of scale reduces to an equa-

tion of form (2.1.3). If S is bounded from below, u↑(inf I+) = 0. If S is bounded from

above, u↓(sup I−) = 0. u↑(x) and u↓(y) are each determined up to a multiplication

by a positive constant, but when entering the expression of G, the two constants are

related. For x ≤ y ∈ I:

u↑(x)

u↑(y)
= Py(X hits x before time ζ)

u↓(y)

u↓(x)
= Px(X hits y before time ζ)

See [12] or [5], chapter 16, for details. Let W (u↓, u↑) be the Wronskian of u↓ and u↑:

W (u↓, u↑)(x) := u↓(x)
du↑
dx

(x+)− u↑(x)
du↓
dx

(x+)
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This Wronskian is actually the density of the scale measure: W (u↓, u↑) ≡ w. We may

write GL when there is an ambiguity on L.

If the killing measure κ is non zero, then the probability that X , starting

from x, gets killed by κ before reaching a boundary of I or exploding equals∫
I
G(x, y)m(y)κ(dy). Conditionally on this event, the distribution of Xζ− is:

1z∈IG(x, z)m(z)κ(dz)∫
I
G(x, y)m(y)κ(dy)

Indeed, let f be a non-negative compactly supported measurable function on I and

τl := inf
{
t ∈ [0, ζ(0)

∣∣∣
∫

I

ℓ
y
t (X)m(y)κ(dy) > l

}

Then by definition

Ex
[
f(Xζ−)

]
=

∫ +∞

0

e−lEx
[
f(Xτl∧ζ(0))

]
dl =

∫ +∞

0

dve−vEx
[ ∫ v

0

f(Xτl∧ζ(0))dl
]

But ∫ v

0

f(Xτl∧ζ(0))dl =

∫

I

ℓ
y

τv∧ζ(0)(X)m(y)κ(dy)

(see corollary 2.13, chapter X in [24]). It follows that

E
[
f(Xζ−)

]
=

∫

I

f(y)
[ ∫ +∞

0

e−vℓy
τv∧ζ(0)(X)dv

]
m(y)κ(dy) =

∫

I

f(y)G(x, y)m(y)κ(dy)

The semi-group of L has positive transition densities pt(x, y) with respect to the

speed measure m(y)dy and (t, x, y) 7→ pt(x, y) is continuous on (0,+∞)×I×I. McK-

ean gives a proof of this in [21] in case when the killing measure k has a continuous

density with respect to the Lebesgue measure. If this is not the case, we can take

u a positive continuous solution to Lu = 0 and consider the h-transform of L by

u: u−1Lu. The latter is the generator of a diffusion without killing measure and by

[21] this diffusion has continuous transition densities p̃t(x, y) with respect to m(y)dy.

Then u(x)p̃t(x, y)
1

u(y) are the transition densities of the semi-group of L. Transition

densities with respect to the speed measure are symmetric: pt(x, y) = pt(y, x). For

all x, y ∈ I and t ≥ 0 the following equality holds:

(2.2.2) Ex
[
ℓ
y
t∧ζ(X)

]
=

∫ t

0

ps(x, y)ds

Next we deal with bridge probability measures.

Proposition 2.5. — The bridge probability measures Ptx,y(·) (bridge of X from x to

y in time t conditioned neither to die nor to explode in the interval) satisfy: for all

x ∈ I the map (x, y, t) 7→ Ptx,y(·) is continuous for the weak topology on probability

measures on continuous paths.
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Proof. — Our proof mainly relies on absolute continuity arguments of [22] and [6],

and the time reversal argument of [22]. [6] gives a proof of weak continuity of bridges

for conservative Feller cadlag processes on second countable locally compact spaces.

But since the proof contains an error and we do not restrict to conservative diffusions,

we give here accurate arguments for the weak continuity.

First we can restrict to the case κ = 0. Otherwise consider u a solution to Lu = 0,

positive on I. The generator of the h-transform of L by u is

1

u(x)2m(x)

d

dx

(
u(x)2

w(x)

d

dx

)

and does not contain any killing measure. The h-transform preserves the bridge

measures and changes the density functions relatively to m(y)dy to 1
u(x)pt(x, y)u(y),

and thus preserves their continuity.

Then we normalise the length of bridges: if (X
(x,y,t)
s )0≤s≤t is a path under the

law Ptx,y(·), let P̃tx,y(·) be the law of (X
(x,y,t)
rt )0≤r≤1. It is sufficient to prove that

(x, y, t) 7→ P̃tx,y(·) is continuous. For v ∈ [0, 1], let P̃t,vx,y(·) be the law of (X
(x,y,t)
rt )0≤r≤v.

Let P̃t,vx (·) be the law of the Markovian path (Xrt)0≤r≤v starting from x. For v ∈ [0, 1)

we have the following absolute continuity relationship:

(2.2.3) dP̃t,vx,y = 1vt<ζ
p(1−v)t(Xvt, y)

pt(x, y)
dP̃t,vx

Let (Jn)n≥0 be an increasing sequence of compact subintervals of I such that

I =
⋃
n≥0 Jn. Let Tn be the first exit time from Jn. Let fn be continuous compactly

supported function on I such that 0 ≤ fn ≤ 1 and fn|Jn
≡ 1. We can further assume

that the sequence (fn)n≥0 is non-decreasing. The map

(x, y, t) 7→ fn( sup
[0,vt]

X)fn( inf
[0,vt]

X)dP̃t,vx

is weakly continuous. Let (xj , yj, tj)j≥0 be a sequence converging to (x, y, t). Let F

be a continuous bounded functional on C([0, v]). Then applying (2.2.3) we get:

(2.2.4) P̃tj,vxj,yj
(fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)F (γ))− P̃t,vx,y(fn(sup
[0,v]

γ)fn( inf
[0,v]

γ)F (γ)) =

(2.2.5) P̃tj ,vxj

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)F (γ)

)

(2.2.6) −P̃t,vx

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)F (γ)

)

(2.2.7) +P̃tj,vxj

(
p(1−v)tj (γ(v), yj)

ptj (xj , yj)
fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)F (γ)

)
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(2.2.8) −P̃tj ,vxj

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)F (γ)

)

Since
p(1−v)t(·,y)
pt(x,y)

is continuous and bounded on Jn, (2.2.5)−(2.2.6) converges to 0.

Moreover for j large enough,
p(1−v)tj

(·,yj)
ptj (xj,yj)

is uniformly close on Jn to
p(1−v)t(·,y)
pt(x,y)

. Thus

(2.2.7)−(2.2.8) converges to 0 and finally (2.2.4) converges to 0. Let n0 ∈ N and

n ≥ n0. Then

P̃tj ,vxj,yj
(1− fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)) = 1− P̃tj ,vxj ,yj
(fn(sup

[0,v]

γ)fn( inf
[0,v]

γ))

≤ 1− P̃tj ,vxj,yj
(fn0(sup

[0,v]

γ)fn0( inf
[0,v]

γ)) → 1− P̃t,vx,y(fn0(sup
[0,v]

γ)fn0( inf
[0,v]

γ))

and consequently

lim
n→+∞

lim sup
j→+∞

P̃tj ,vxj,yj
(1− fn(sup

[0,v]

γ)fn( inf
[0,v]

γ)) = 0

It follows that

lim
j→+∞

P̃tj ,vxj ,yj
(F (γ)) = P̃t,vx,y(F (γ))

From this we get that the law of any finite-dimensional family of marginals of P̃tx,y(·)
depends continuously on (x, y, t). To conclude we need a tightness result for (x, y, t) 7→
P̃tx,y(·). We have already tightness for (x, y, t) 7→ P̃t,vx,y(·). The image of P̃tx,y(·) through
time reversal is P̃ty,x(·). So we also have tightness on intervals [1 − v′, 1] where 0 <

v′ < 1. But if v + v′ > 1, tightness on [0, v] and on [1 − v′, 1] implies tightness on

[0, 1]. This concludes. The article [6] contains an error in the proof of the tightness

of bridge measures in the neighbourhood of the endpoint.

2.3. ”Generators” with creation of mass

In this section we consider more general operators

(2.3.1) L =
1

m(x)

d

dx

(
1

w(x)

d

dx

)
+ ν

with zero Dirichlet boundary conditions on ∂I, where ν is a signed measure on I

which is no longer assumed to be negative. We set

L(0) := L− ν

In the sequel we may call L ”generator” even in case the semi-group (etL)t≥0 does not

make sense. Our main goal in this subsection is to characterize through a positivity

condition the subclass of operators of form (2.3.1) that are equivalent up to an h-

transform to the generator of a diffusion of form (2.2.1).
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We will consider several kinds of transformations on operators of the form (2.3.1).

First, the h-transform: Let h be a positive continuous function on I such that d2h
dx2 is

a signed measure. We call Conj(h, L) the operator

Conj(h, L) =
1

h(x)2m(x)

d

dx

(
h(x)2

w(x)

d

dx

)
+ ν +

1

h
L(0)h

If f is smooth function compactly supported in I then

Conj(h, L)f = h−1L(hf)

We will call Conj(h, L) the h-transform of L by h even though h may not be harmonic

(Lh = 0) or superharmonic (Lh ≤ 0) and L is not necessarily the generator of a

diffusion.

Second, the change of scale: If A is a C1 function on I such that dA
dx

> 0 and
d2A
dx2 ∈ L∞

loc(I) and (γ(t))0≤t≤T a continuous path in I, then we will set ScaleA(γ) to

be the continuous path (A(γ(s)))0≤t≤T in A(I). Let ScalegenA (L) be the operator on

functions on A(I) with zero Dirichlet boundary conditions induced by this change of

scale:

Scale
gen
A (L) =

1

m ◦A−1(a)

d

da

(
1

w ◦A−1(a)

d

da

)
+A∗ν

where A∗ν is the push-forward of the measure ν by A.

Third, the change of time: If V is positive continuous on I then we can consider

the change of time ds = V (γ(t))dt. Let SpeedV be the corresponding transformation

on paths. The corresponding ”generator” is 1
V
L.

Finally, the restriction: if Ĩ is an open subinterval of I then set L|I to be the

operator L acting on functions supported in Ĩ and with zero Dirichlet conditions on

∂Ĩ.

For the analysis of L we will use a bit of spectral theory: If [x0, x1] is a compact

interval of R and m̃, w̃ are positive continuous functions on [x0, x1], then the operator

1
m̃(x)

d
dx

(
1

w̃(x)
d
dx

)
with zero Dirichlet boundary conditions has a discrete spectrum

of negative eigenvalues. Let −λ̃1 be the first eigenvalue. It is simple. According

to Sturm-Liouville theory (see for instance [29], section 5.5) we have the following

picture:

Property 2.6. — Let λ > 0 and u a solution to

1

m̃

d

dx

(
1

w̃

d

dx

)
+ λu = 0

with initial conditions u(x0) = 0,
du

dx
(x0) > 0.

– (i) If u is positive on (x0, x1) and u(x1) = 0 then λ = λ̃1 and u is the funda-

mental eigenfunction.

– (ii) If u is positive on (x0, x1] then λ < λ̃1
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– (iii) If u changes sign on (x0, x1) then λ > λ̃1

Next we state and prove the main result of this section.

Proposition 2.7. — The following two conditions are equivalent:

– (i) There is a positive continuous function u on I satisfying Lu = 0.

– (ii) For any f smooth compactly supported in I

(2.3.2)

∫

I

(L(0)f)(x)f(x)m(x)dx +

∫

I

f(x)2m(x)ν(dx) ≤ 0

Proof. — (i) implies (ii): First observe that the equation Lu = 0 reduces through a

change of scale to an equation of the form (2.1.1). Let u be given by condition (i).

Let L̃ := Conj(u, L). Since Lu = 0, L̃ is a generator of a diffusion without killing

measure. Let m̃(x) := u2(x)m(x). Then for all g smooth compactly supported in I,∫
I
(L̃g)(x)g(x)m̃(x)dx ≤ 0. But

∫

I

(L̃g)(x)g(x)m̃(x)dx =

∫

I

(L(0)(ug))(x)(ug)(x)m(x)dx +

∫

I

(ug)(x)2m(x)ν(dx)

Thus (2.3.2) holds for all f positive compactly supported in I such that u−1f is

smooth. By density arguments, this holds for general smooth f .

(ii) implies (i): First we will show that for every compact subinterval J of I there

is a positive continuous function uJ on J̊ satisfying LuJ = 0 on J̊ . Let J be such

an interval. According to lemma 2.2 there is λ > 0 and uλ positive continuous on J

satisfying Luλ − λuλ = 0 on J . Let Lλ := Conj(uλ, L|J̊). Then

Lλ =
1

u2m

d

dx

(
u2

w

d

dx

)
+ λ

Let L
(0)
λ := Lλ−λ. L(0) is the generator of a diffusion on J̊ . We can apply the standard

spectral theorem to L
(0)
λ . Let −λ1 be its fundamental eigenvalue. L

(0)
λ + λ = Lλ is

a non-positive operator because it is an h-transform of L|J which satisfies condition

(ii). This implies that λ ≤ λ1. Let ũ be a solution of L
(0)
λ ũ + λũ = 0 with initial

conditions ũ(min J) = 0 and dũ
dx
(min J) > 0. Since λ ≤ λ1, according to property

2.6, ũ is positive on J̊ . We set uJ := uλũ. Then uJ is positive continuous on J̊ and

satisfies LuJ = 0. This finishes the proof of the first step.

Now consider a fixed point x0 in I and (Jn)n≥0 an increasing sequence of com-

pact subintervals of I such that x0 ∈ J̊0 and
⋃
n≥0 Jn = I. Let uJn

be a posi-

tive L-harmonic function on J̊n. We may assume that uJn
(x0) = 1. The sequence(

duJn

dx
(x+0 )

)
n≥0

is bounded from below. Otherwise some of the uJn
would change

sign on I ∩ (x0,+∞). Similarly, since none of the uJn
changes sign on I ∩ (−∞, x0),
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(
duJn

dx
(x+0 )

)
n≥0

is bounded from above. Let v be an accumulation value of the se-

quence
(
duJn

dx
(x+0 )

)
n≥0

. Then the L-harmonic function satisfying the initial condi-

tions u(x0) = 1 and du
dx
(x+0 ) = v is positive on I.

We will divide the operators of the form (2.3.2) in two sets: D0,− for those that

satisfies the constraints of the proposition 2.7 and D+ for those that don’t. D0,− is

made exactly of operators that are equivalent up to an h-transform to the generator

of a diffusion. We will subdivide the set D0,− in two: D− for the operators that are

an h-transform of the generator of a transient diffusion and D0 for those that are

an h-transform of the generator of a recurrent diffusion. These two subclasses are

well defined since a transient diffusion can not be an h-transform of a recurrent one.

Observe that each of L ∈ D−, D0 and D+ is stable under h-transforms, changes of

scale and of speed. Operators in D− and D0 do not need to be generators of transient

or recurrent diffusions themselves. For instance consider on R

L =
1

2

d2

dx2
+ a+δ1 − a−δ−1

where a+, a− > 0. If 3a+ − a− > 0 then L ∈ D+, if 3a+ − a− = 0 then L ∈ D0, if

3a+ − a− < 0 then L ∈ D−.

If L ∈ D0,−, the semi-group (etL)t≥0 is well defined. Indeed, let X be the diffusion

on I of generator L(0) and ζ the first time it hits the boundary of I or blows up

to infinity. Let u be a positive L-harmonic function and L̃ := Conj(u, L). L̃ is the

generator of a diffusion X̃ on I without killing measure. Let ζ̃ be the first time X̃ hits

the boundary of I or blows up to infinity. Using Girsanov’s theorem, one can show

that for any F positive measurable functional on paths, x ∈ I and t > 0 the following

equality holds:

Ex

[
1t<ζ exp

(∫

I

ℓ
y
t (X)m(y)ν(dy)

)
F ((Xs)0≤s≤t)

]
=

1

u(x)
Ex
[
1t<ζ̃u(X̃t)F ((X̃s)0≤s≤t)

]

In case L ∈ D−, let (G
L̃
(x, y))x,y∈I be the Green’s function of L̃ relatively to the

measure u(x)2m(x)dx. Then L has a Green’s function (GL(x, y))x,y∈I that equals

GL(x, y) = Ex

[∫ ζ

0

exp

(∫

I

ℓzt (X)m(z)ν(dz)

)
dtℓ

y
t (X)

]
= u(x)u(y)G

L̃
(x, y)

For L ∈ D−, the Green’s functions GL satisfy the following resolvent identities
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Lemma 2.8. — If L ∈ D− and ν̃ is a signed measure with compact support on I

such that L+ ν̃ ∈ D−, then for all x, y ∈ I

GL+ν̃(x, y)−GL(x, y) =

∫

I

GL+ν̃(x, z)GL(z, y)m(z)ν̃(dz)

=

∫

I

GL(x, z)GL+ν̃(z, y)m(z)ν̃(dz)

Proof. — We decompose L as L = L(0)+ν where L(0) does not contain measures and

ν is a signed measure on I. Let (Xt)0≤t<ζ be the diffusion of generator L(0). Then

GL(x, y) = Ex

[∫ ξ

0

exp

(∫

I

ℓat (X)m(a)ν(da)

)
dtℓ

y
t (X)

]

GL+ν̃(x, y) = Ex

[∫ ξ

0

exp

(∫

I

ℓat (X)m(a)(ν + ν̃)(da)

)
dtℓ

y
t (X)

]

and

exp

(∫

I

ℓat (X)m(a)(ν + ν̃)(da)

)
− exp

(∫

I

ℓat (X)m(a)ν(da)

)

= exp

(∫

I

ℓat (X)m(a)ν(da)

)
×
(
exp

(∫

I

ℓat (X)m(a)ν̃(da)

)
− 1

)

= exp

(∫

I

ℓat (X)m(a)ν(da)

)∫

I

∫ t

0

exp

(∫

I

ℓas(X)m(a)ν̃(da)

)
dsℓ

z
s(X)m(z)ν̃(dz)

Thus GL+ν̃(x, y)−GL(x, y) equals

(2.3.3)

Ex

[∫

I

∫ ξ

0

∫ t

0

exp

(∫

I

m(a)(ℓat (X)ν(da) + ℓas(X)ν̃(da))

)
dsℓ

z
s(X)dsℓ

y
t (X)m(z)ν̃(dz)

]

We would like to interchange Ex [·] and
∫
I
(·)m(z)ν̃(dz). Let z ∈ I and (X

(x)
t )0≤t<ζx ,

(X
(z)
t )0≤t<ζz be two independent diffusions of generator L(0) starting in x respectively

z. Applying Markov property, we get

Ex

[∫ ξ

0

∫ t

0

exp

(∫

I

m(a)(ℓat (X)ν(da) + ℓas(X)ν̃(da))

)
dsℓ

z
s(X)dsℓ

y
t (X)

]

=E

[ ∫ ζx

0

∫ ζz

0

exp

(∫

I

m(a)(ℓas(X
(x))(ν + ν̃)(da)

)

× exp

(∫

I

m(a)(ℓau(X
(z))ν(da)

)
duℓ

z
u(X

(z))dsℓ
x
s (X

(x))

]

=GL+ν̃(x, z)GL(z, y)
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Since ν̃ has compact support

Ex

[∫

I

∫ ξ

0

∫ t

0

exp

(∫

I

m(a)(ℓat (X)ν(da) + ℓas(X)ν̃(da))

)
dsℓ

z
s(X)dsℓ

y
t (X)m(z)|ν̃|(dz)

]

=

∫

I

Ex

[∫ ξ

0

∫ t

0

exp

(∫

I

m(a)(ℓat (X)ν(da) + ℓas(X)ν̃(da))

)

dsℓ
z
s(X)dsℓ

y
t (X)

]
m(z)|ν̃|(dz)

=

∫

I

GL+ν̃(x, z)GL(z, y)m(z)|ν̃|(dz) < +∞

Thus in (2.3.3) we can interchange Ex [·] and
∫
I
(·)m(z)ν̃(dz) and get

GL+ν̃(x, y)−GL(x, y) =

∫

I

GL+ν̃(x, z)GL(z, y)m(z)ν̃(dz)

Since L and L+ ν̃ play symmetric roles, we also have

GL(x, y)−GL+ν̃(x, y) =

∫

I

GL(x, z)GL+ν̃(z, y)m(z)(−ν̃)(dz)

The discrete analogue of the sets D−, D0 and D+ are symmetric matrices with

non-negative off-diagonal coefficients inducing a connected transition graph, with the

highest eigenvalue that is respectively negative, zero and positive. However in con-

tinuous case the sets L ∈ D−, D0 and D+ can not be defined spectrally because

for operators from L ∈ D− and D+ the maximum of the spectrum can also equal

zero. However the next result shows that the sets D− and D+ are stable under small

perturbations of the measure ν and that D0 is not.

Proposition 2.9. — – (i) If L ∈ D0 and κ is a non-zero positive Radon measure

on I then L− κ ∈ D− and L+ κ ∈ D+.

– (ii) If L ∈ D− and J is a compact subinterval of I then there is K > 0 such

that for any positive measure κ supported in J satisfying κ(J) < K we have

L+ κ ∈ D−.
– (iii) If L ∈ D+ then there is K > 0 such that for any positive finite measure κ

satisfying κ(I) < K we have L− κ ∈ D+.

– (iv) If L ∈ D+, there is a positive Radon measure κ on I such that L− κ ∈ D0.

– (v) Let L ∈ D+ and x0 < x1 ∈ I. Then L|(x0,x1) ∈ D0 if and only if there is an

L-harmonic function u positive on (x0, x1) and zero in x0 and x1.

Proof. — (i): Consider h positive continuous on I such that Conj(h, L) is the gener-

ator of a recurrent diffusion. Since Conj(h, L− κ) = Conj(h, L)− κ, Conj(h, L− κ)

is the generator of a diffusion killed at rate κ and thus L− κ ∈ D−. Similarly we can

not have L+ κ ∈ D0,− because this would mean L = (L+ κ)− κ ∈ D−.
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(ii): Without loss of generality we may assume that L is the generator of a transient

diffusion and that it is at natural scale, that is L = 1
m(x)

d2

dx2 . Since the diffusion is

transient, I 6= R. We may assume that x0 := inf I > −∞. Write J = [x1, x2]. Let κ

be a positive measure supported in [x1, x2]. Let u be the solution to Lu+uκ = 0 with

the initial conditions u(x0) = 0, du
dx
(x+0 ) = 1. u is affine on [x0, x1] and on [x2, sup I).

On [x1, x2] u is bounded from above by x2 − x0. Thus, if

κ([x1, x2]) ≤
min[x1,x2]m

(x2 − x0)

then u is non-decreasing on I and hence positive. This implies that L + κ ∈ D0,−.

By the point (i) of current proposition, if κ([x1, x2]) <
min[x1,x2]m

(x2−x0)
then L+ κ ∈ D−.

(iii): By definition there is f smooth compactly supported in I such that (2.3.2)

does not hold for f . Let U be the value of the left-hand side in (2.3.2). U > 0. If κ

is a positive finite measure on I satisfying

κ(I) <
U

‖f‖2∞maxSuppf m

then if we replace ν by ν − κ in (2.3.2), keeping the same function f , we still get

something positive. Thus L− κ ∈ D+.

(iv): Let f be a smooth function compactly supported in I such that (2.3.2) does

not hold for f . Let J be a compact subinterval of I containing the support of f . The

set

{s ∈ [0, 1]|L− ν+ + s 1Jν+ ∈ D−}
is not empty because it contains 0, and open by proposition 2.9 (ii). Let smax by its

supremum. Then smax < 1 and L− ν+ + smax1Jν+ ∈ D0. Then

κ := 1I\Jν+ + (1− smax)1Jν+

is appropriate.

(v): First assume that there is such a function u. Then by definition L|(x0,x1) ∈
D0,−. Conj(u, L|(x0,x1)) does not have any killing measure and the derivative of its

natural scale function is w
u2 . It is not integrable in the neighbourhood of x0 or x1.

Thus the corresponding diffusion never hits x0 or x1. This means that it is recurrent.

Conversely, assume that L|(x0,x2) ∈ D0. Let u be a solution to Lu = 0 satisfying

u(x0) = 0 and du
dx
(x+0 ) > 0. If u changed its sign on (x0, x1) then according to the

preceding we would have L|(x0,x1) ∈ D+. If u were positive on an interval larger that

(x0, x1) we would have L|(x0,x1) ∈ D−. The only possibility is that u is positive on

(x0, x1) and zero in x1.





CHAPTER 3

MEASURE ON LOOPS AND ITS BASIC PROPERTIES

3.1. Spaces of loops

In this chapter, in the section 3.3, we will introduce the infinite measure µ∗ on loops

which is at the center of this work. Prior to this, in the section 3.2 we will introduce

measures µx,y on finite life-time paths which will be instrumental for defining µ∗. In
the sections 3.4, 3.5, 3.7, 3.8 will be explored different aspects of µ∗. In the section 3.6

we will extend the Vervaat’s Brownian bridge to Brownian excursion transformation

to general diffusions. This generalisation can be easily interpreted in terms of measure

µ∗ and is related to the results of section 3.5. In the section 3.1 we will introduce

the spaces of paths and loops on witch will be defined the measures we will consider

throughout the paper.

First we will consider continuous, time parametrized, paths on R, (γ(t))0≤t≤T (γ),

with finite life-time T (γ) ∈ (0,+∞). Given two such paths (γ(t))0≤t≤T (γ) and

(γ′(t))0≤t≤T (γ′), a natural distance between them is

dpaths(γ, γ) := | log(T (γ))− log(T (γ′))|+ max
v∈[0,1]

|γ(vT (γ))− γ′(vT (γ′))|

A rooted loop in R will be a continuous finite life-time path (γ(t))0≤t≤T (γ) such

that γ(T (γ)) = γ(0) and L will stand for the space of such loops. L endowed with

the metric dpaths is a Polish space. In the sequel we will use the corresponding

Borel σ-algebra, BL, for the definition of measures on L. For v ∈ [0, 1] we define a

parametrisation shift transformation shiftv on L: shiftv(γ) = γ̃ where T (γ̃) = T (γ)

and

γ̃(t) =

{
γ(vT (γ) + t) if t ≤ (1 − v)T (γ)

γ(t− (1− v)T (γ)) if t ≥ (1 − v)T (γ)

We introduce an equivalence relation on L: γ ∼ γ if T (γ′) = T (γ) and there is

v ∈ [0, 1] such that γ′ = shiftv(γ). We call the quotient space L�∼ the space of

unrooted loops, or just loops, and denote it L∗. Let π be the projection π : L → L∗.
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There is a natural metric δL∗ on L∗:

dL∗(π(γ), π(γ′)) := min
v∈[0,1]

dpaths(shiftv(γ), γ
′)

(L∗, dL∗) is a Polish space and π is continuous. For defining measures on L∗ we will

use its Borel σ-algebra, BL∗ . π−1(BL∗), the inverse image of BL∗ by π, is a sub-algebra

of BL.

In the sequel we will consider paths and loops that have a continuous family of local

times (ℓxt (γ))x∈R,0≤t≤T (γ) relatively to a measure m(x)dx such that for any positive

measurable function f on R and any t ∈ [0, T (γ)]
∫ t

0

f(γ(s))ds =

∫

I

ℓxt (γ)m(x)dx

We will simply write ℓx(γ) for ℓxT (γ)(γ).

In the sequel we will also consider transformations on paths and loops and the

images of different measures by these transformation. We will use everywhere the

following notation: If E and E ′ are two measurable spaces, ϕ : E 7→ E ′ a measurable

map and η a positive measure on E , ϕ∗η will be the measure on E ′ obtained as the

image of η trough ϕ.

3.2. Measures µx,y on finite life-time paths

First we recall the framework that Le Jan used in [13]: G = (V,E) is a finite

connected undirected graph. LG is the generator of a symmetric Markov jump process

with killing on G. mG is the duality measure for LG. (p
G
t (x, y))x,y∈V,t≥0 is the family

of transition densities of the jump process and (PG,t
x,y(·))x,y∈V,t≥0 the family of bridge

probability measures. The measure on rooted loops associated with LG is

(3.2.1) µLG
(·) =

∫

t>0

∑

x∈V
PG,t
x,x(·)pGt (x, x)mG(x)

dt

t

µ∗
LG

is the image of µLG
by the projection on unrooted loops. The definition of µ∗

LG

is the exact formal analogue of the definition used in [19] for the loops of the two-

dimensional Brownian motion. In [13] also appear variable life-time bridge measures

(µx,yLG
)x,y∈V which are related to µ∗

LG
:

(3.2.2) µ
x,y
LG

(·) =
∫ +∞

0

PG,t
x,y(·)pGt (x, y)dt

In this subsection we will define and give the important properties of the formal

analogue of the measures µx,yLG
in case of one-dimensional diffusions. In the next

section 3.2 we will do the same with the measure on loops µ∗
LG

.

I is an open interval of R. (Xt)0≤t<ζ is a diffusion on I with a generator L of the

form (2.2.1). We use the notations of the section 2.1. Let x, y ∈ I. Following the

pattern of (3.2.2) we define:
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Definition 3.1. —

µ
x,y
L (·) :=

∫ +∞

0

Ptx,y(·)pt(x, y)dt

We will write µx,y instead of µx,yL whenever there is no ambiguity on L. The defi-

nition of µx,y depends on the choice of m, but m(y)µx,y does not. Measures µx,y were

first introduced by Dynkin in [7] and enter the expression of Dynkin’s isomorphism

between the Gaussian Free Field and the local times of random paths. Pitman and

Yor studied this measures in [23] in the setting of one-dimensional diffusions without

killing measure (κ = 0). Next we give a handy representation of µx,y in the setting

of one-dimensional diffusions. It was observed and proved by Pitman and Yor in case

κ = 0. We consider the general case.

Proposition 3.2. — Let F be a non-negative measurable functional on the space of

variable life-time paths starting from x. Then

(3.2.3) µx,y(F (γ)) = Ex

[∫ ζ

0

F ((Xs)0≤s≤t)dtℓ
y
t (X)

]

Equivalently

µx,y(F (γ)) = Ex

[∫ ℓ
y
ζ
(X)

0

F ((Xs)0≤s≤τy
l
)dl

]

where τyl := inf{t ≥ 0|ℓzt (X) > l}.

Proof. — It is enough to prove this for F non-negative continuous bounded functional

witch takes value 0 if either the life-time of the paths exceeds some value tmax < +∞
or of it is inferior to some value tmin or if the endpoint of the path lies out of a

compact subinterval [z1, z2] of I. For j ≤ n ∈ N, set tj,n := tmin + j(tmax−tmin)
n

and

∆tn := tmax−tmin

n
. Almost surely

∫ ζ
0
F ((Xs)0≤s≤t)dtl

y
t is a limit as n→ +∞ of

(3.2.4)

n−1∑

j=0

F ((Xs)0≤s≤tj,n)(ℓ
y
tj+1,n∧ζ(X)− ℓ

y
tj,n∧ζ(X))

Moreover (3.2.4) is dominated by ‖F‖∞lytmax∧ζ . It follows that the expectations

converge too. Using the Markov property and (2.2.2), we get that the expectation of

(3.2.4) equals

(3.2.5)

n−1∑

j=0

∫

z∈I

∫ ∆tn

0

Ptj,nx,z

(
F ((Xs)0≤s≤tj,n)

)
ptj,n(x, z)pr(z, y)drm(z)dz

Using the fact that pr(·, ·) is symmetric, we can rewrite (3.2.5) as

(3.2.6)
∫ z2

z1

( n−1∑

j=0

∆tnP
tj,n
x,z

(
F ((Xs)0≤s≤tj,n)

)
ptj,n(x, z)

) 1

∆tn

∫ ∆tn

0

pr(y, z)drm(z)dz
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As n → +∞ the measure 1
∆tn

∫ ∆tn
0

pr(y, z)drm(z)dz converges weakly to δy. Us-

ing the weak continuity of bridge probabilities (proposition 2.5) we get that (3.2.6)

converges to ∫ tmax

tmin

Ptx,y (F ((Xs)0≤s≤t)) pt(x, y)dt

Proposition 3.2 also holds in case of a Markov jump processes on a graph, where

the local time is replaced by the occupation time in a vertex dived by its weight.

Proposition 3.2 shows that we can consider µx,y as a measure on paths (γ(t))0≤t≤T (γ)

endowed with continuous occupation densities (ℓzt (γ))z∈I,0≤t≤T (γ). Next we state

several properties that either follow almost immediately from the definition 3.1 and

proposition 3.2 or are already known.

Property 3.3. — – (i) The total mass of the measure µx,y is finite if and only

if X is transient and then it equals G(x, y). If it is the case, 1
G(x,x)µ

x,x is the

law of X, starting from X(0) = x, up to the last time it visits x. 1
G(x,y)µ

x,y is

the law of X, starting from X(0) = x, conditioned to visit y before ζ, up to the

last time it visits y.

– (ii) The measure µy,x is image of the measure µx,y by time reversal.

– (iii) If Ĩ is an open subinterval of I then

µ
x,y
L|Ĩ

(dγ) = 1γ contained in Ĩµ
x,y
L (dγ)

– (iv) If κ̃ is a positive Radon measure on I then

µ
x,y
L−κ̃(dγ) = exp

(
−
∫

I

ℓz(γ)m(z)κ̃(dz)

)
µ
x,y
L (dγ)

– (v) If A is a change of scale function then

µ
A(x),A(y)

Scale
gen
A L

= ScaleA∗µ
x,y
L

– (vi) If V is a positive continuous function on I then for the time changed diffu-

sion of generator 1
V
L:

µ
x,y
1
V
L
= SpeedV ∗µ

x,y
L

– (vii) If h is a positive continuous function on I such that d
2h
dx2 is a signed measure

and Lu is a negative measure then

µ
x,y

Conj(h,L) =
1

h(x)h(y)
µ
x,y
L

– (viii) Let X and X̃ be two independent Markovian paths of generator L starting

from X(0) = x and X̃(0) = y. For a ≤ x ∧ y, we introduce Ta and T̃a the first

time X respectively X̃ hits a. Let PTa
x be the first passage bridge of X from x to

a, conditioned by the event Ta < ζ. Let P̃T̃a
y be the analogue for X̃. Let P̃T̃a∧

y be
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the image of P̃T̃a
y through time reversal and PTa

x ⊳ P̃T̃a∧
y the image of PTa

x ⊗ P̃T̃a∧
y

through concatenation at a of two paths, one ending and the other starting in a.

Then

µx,y(·) =
∫

a∈I,a≤x∧y
Px(Ta < ζ)Py(T̃a < ζ̃)

(
PTa
x ⊳ P̃T̃a∧

y

)
(·)w(a)da

Previous equalities depend on a particular choice of the speed measure for the mod-

ified generator. For (iv) we keep the measurem(y)dy. For (iii) we restrictm(y)dy to Ĩ.

For (v) we choose
(
dA
dx

◦A−1
)−1

m◦A−1da. For (vi) we choose 1
V (y)m(y)dy. For (vii)

we choose h(y)2m(y) dy. Property (ii) follows from that pt(x, y) = pt(y, x) and Pty,x(·)
is the image of Ptx,y(·) by time reversal. Property (vi) is not immediate from definition

1 because fixed times are transformed by time change in random times, but follows

from proposition 3.2. Property (vii) follows from that an h-transform does not change

bridge probability measures and changes the semi-group (pt(x, y)m(y)dy)t≥0,x∈I to

( 1
u(x)pt(x, y)u(y)m(y)dy)t≥0,x∈I . Properties (ii) and (viii) were proved by Pitman and

Yor in case κ = 0. See [23]. The case κ 6= 0 can be obtained through h-transforms.

Next property was given without proof by Dynkin in [7].

Lemma 3.4. — Assume κ 6= 0. Let Px(·) be the law of (Xt)0≤t<ζ where X(0) = x.

Then ∫

y∈I
µx,y(·)m(y)κ(dy) = 1X killed by κPx(·)

Proof. — Let 0 < t1 < t2 < · · · < tn and let A1, A2, . . . An, An+1 be Borel subsets of

I. The measure µx,y satisfies the following Markov property

µx,y(T (γ) > tn, γ(t1) ∈ A1, . . . γ(tn) ∈ An, γ(T (γ)) ∈ An+1) =∫

A1×···×An

pt1(x, x1)m(x1) . . . ptn−tn−1(xn−1, xn)m(xn)µ
xn,y(T (γ) ∈ An+1)dx1 . . . dxn

= 1y∈An+1

∫

A1×···×An

pt1(x, x1)m(x1) . . . ptn−tn−1(xn−1, xn)m(xn)G(xn, y)dx1 . . . dxn

Hence

(3.2.7)∫

y∈I
µx,y(T (γ) > tn, γ(t1) ∈ A1, . . . γ(tn) ∈ An, γ(T (γ)) ∈ An+1)m(y)κ(dy) =

∫

A1×···×An+1

pt1(x, x1)m(x1) . . . ptn−tn−1(xn−1, xn)m(xn)G(xn, y)m(y)dx1 . . . dxnκ(dy)

From Markov property of X follows

Px(ζ > tn, Xt1 ∈ A1, . . . , Xtn ∈ An, Xζ− ∈ An+1) =∫

A1×···×An

pt1(x, x1)m(x1) . . . ptn−tn−1(xn−1, xn)m(xn)Pxn
(Xζ− ∈ An+1)dx1 . . . dxn
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Since the distribution of Xζ− on the event of X killed by κ is 1y∈IG(X0, y)m(y)κ(dy),

we get

(3.2.8) Px(ζ > tn, Xt1 ∈ A1, . . . , Xtn ∈ An, Xζ− ∈ An+1) =∫

A1×···×An+1

pt1(x, x1)m(x1) . . . ptn−tn−1(xn−1, xn)m(xn)G(xn, y)m(y)dx1 . . . dxnκ(dy)

The equality between (3.2.7) and (3.2.8) implies the lemma.

Next we study the continuity of (x, y) 7→ µx,y.

Lemma 3.5. — Let J be a compact subinterval of I. Then the family of local times

of X satisfies: for every ε > 0

lim
t→0+

sup
x∈J

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
= 0

Proof. — It is enough to prove it in case the killing measure κ is zero because adding

a killing measure only lowers ℓyt∧ζ(X). Without loss of generality we may also assume

that the diffusion is on its natural scale, that is to say w ≡ 2. Then X is just a time

changed Brownian motion on some open subinterval of R. For a Brownian motion

(Bt)t≥0 the statement is clear. In this case Px
(
supy∈R ℓ

y
t∧ζ(B) > ε

)
does not depend

on x and for a given x

lim
t→0+

Px

(
sup
y∈R

ℓ
y
t∧ζ(B) > ε

)
= 0

Otherwise let

It :=
∫ t

0

m(Xs)ds

Then given the time change that transforms X into a Brownian motion B, we have

ℓ
y
t (X) = ℓ

y
It
(B)

Let J = [x0, x1]. Let xmin ∈ I, xmin < x0 and xmax ∈ I, xmax > x1. Let Txmin,xmax

the first time X hits either xmin or xmax. Let s > 0, ε > 0 and x ∈ J . If t ≤
s

max[xmin,xmax]m
then on the event Txmin,xmax

≥ t, It is less or equal to s. So for t

small enough

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
≤ Px

(
sup
y∈R

ℓys(B) > ε

)
+ Px (Txmin,xmax

< t)

But

Px (Txmin,xmax
< t) = Px0 (Txmin,xmax

< t) + Px1 (Txmin,xmax
< t)

and

lim
t→0+

sup
x∈J

Px (Txmin,xmax
< t) = 0
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Thus

lim sup
t→0+

sup
x∈J

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
≤ Px

(
sup
y∈R

ℓys(B) > ε

)

Letting s go to 0 we get the statement of the lemma.

Proposition 3.6. — Let tmax > 0. Let F be a bounded functional on finite life-

time paths endowed with continuous local times that depends continuously on the path

(γt)0≤t≤T (γ) and on (lxT (γ)(γ))x∈I where we take the topology of uniform convergence

for the occupation densities on I. On top of that we assume that F is zero if T (γ) >

tmax. Then the function (x, y) 7→ µx,y(F (γ)) is continuous on I × I.

Proof. — If we had assumed that F does only depend on the path regardless to its

occupation field then the continuity of (x, y) 7→ µx,y(F (γ)) would just be a conse-

quence of the continuity of transition densities and of the weak continuity of bridge

probability measures. For our proof we further assume that L does not contain any

killing measure. If this is not the case, then we can consider a continuous positive

L-harmonic function u. Then Conj(u, L) does not contain any killing measure and

up to a continuous factor u(x)u(y) gives the same measure µx,y (property 3.3 (vii)).

We will mainly rely on the representation given by proposition 3.2.

Let x, y ∈ I and (xj , yj)j≥0 a sequence in I × I converging to (x, y). Without

loss of generality we assume that (xj)j≥0 is increasing. We consider sample paths

(Xt)0≤t<ζ and (X
(j)
t )0≤t<ζj of the diffusion of generator L starting from x and each

of xj , coupled on a same probability space in the following way: First we sample X

starting from x. Then we sample X(0) starting from x0. It starts independently from

X until the first time X
(0)
t = Xt. After that time X(0) sticks to X . This two paths

may never meet if one of them dies to early. If X , X(0),..., X(j) are already sampled,

we start X(j+1) from xj+1 independently from the preceding sample paths until it

meets one of them. After that time X(j+1) sticks to the path it has met. Let

T (j) := inf{t ≥ 0|X(j)
t = Xt}

If X(j) does not meet X , we set T (j) = +∞. By construction, (T (j))j≥0 is a non-

increasing sequence. Here we use that there is no killing measure. T (j) is equal

in law to the first time two independent sample paths of the diffusion, one starting

from x and the other from xj , meet. Thus the sequence (T (j))j≥0 converges to 0 in

probability. Since it is decreasing, it converges almost surely to 0.

We use reduction to absurdity. The sequence (µxj ,yj(F (γ)))j≥0 is bounded

because F is bounded and zero on paths with life-time greater then tmax. As-

sume that it does not converge to µx,y(F (γ)). Then there is a subsequence that

converges to a value other than µx,y(F (γ)). We may as well assume that the

whole sequence (µxj ,yj(F (γ)))j≥0 converges to a value v 6= µx,y(F (γ)). According

to lemma 3.5, the sequence ((ℓz
T (j)(X

(j)))z∈I)j≥0 of occupation density functions
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converges in probability to the null function. Thus there is an extracted subse-

quence ((ℓz
T (jn)(X

(jn)))z∈I)n≥0 that converges almost surely uniformly to the null

function. We will show that (µxjn ,yjn (F (γ)))n≥0 converges to µx,y(F (γ)) and obtain

a contradiction.

For z ∈ I and l > 0 let

τzl := inf{t ≥ 0|ℓzt (X) > l}

and

τzj,l := inf{t ≥ 0|ℓzt (X(j)) > l}
Then according to proposition 3.2

µx,y(F (γ)) = E

[ ∫ ℓ
y
tmax∧ζ

(X)

0

F ((Xs)0≤s≤τ
y
l )dl

]

µxj ,yj(F (γ)) = E

[ ∫ ℓ
yj

tmax∧ζj
(X(j))

0

F ((X(j)
s )0≤s≤τ

yj
j,l )dl

]

For any z ∈ I, if τzj,l ∈ [T (j), ζj) then τ
z
j,l = τzl′ where

l′ = l + ℓzT (j)(X)− ℓzT (j)(X
(j))

Along the subset of indices (jn)n≥0, τ
yjn
jn,l

converges to τ
y
l for every l ∈ (0, lyζ (X))

except possibly the countable set of values of l where l 7→ τ
y
j,l jumps. For any l such

that τ
yjn
jn,l

converges to τyl , the path (X
(j)
s )

0≤s≤τyjn
jn,l

converges to the path (Xs)0≤s≤τ
y
l .

Moreover for such l the occupation densities (lz
τ
yjn
jn,l

(X(jn)))z∈I converge uniformly to

(lz
τ
y
l

(X))z∈I . Indeed

ℓz
τ
yjn
jn,l

(X(jn)) = ℓz
τ
yjn
jn,l

(X)− ℓzT (j)(X) + ℓzT (j)(X
(jn))

Thus for all l ∈ (0, ℓyζ (X)), except possibly countably many,

lim
n→+∞

F ((X(jn)
s )0≤s≤τ

yjn
jn,l

) = F ((Xs)0≤s≤τ
y
l )

For n large enough, ζj = ζ and ℓ
yjn
tmax∧ζjn (X

(jn)) converges to ℓytmax∧ζ(X). It follows

that the following almost sure convergence holds

(3.2.9)

lim
n→+∞

∫ ℓ
yjn
tmax∧ζjn

(X(jn))

0

F ((X(jn)
s )0≤s≤τ

yjn
jn,l

)dl =

∫ l
y
tmax∧ζ

(X)

0

F ((Xs)0≤s≤τ
y
l )dl

The left-hand side of (3.2.9) is dominated by ‖F‖+∞ℓ
yjn
tmax∧ζjn (X

(jn)). In order to

conclude that the almost sure convergence (3.2.9) is also an L1 convergence we need

only to show that

(3.2.10) E
[
|ℓyjntmax∧ζjn (X

(jn))− ℓ
y
tmax∧ζ(X)|

]
= 0
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We already know that ℓ
yjn
tmax∧ζjn (X

(jn)) converges almost surely to ℓytmax∧ζ(X). More-

over

E
[
ℓ
yjn
tmax∧ζjn (X

(jn))
]
=

∫ tmax

0

pt(xjn , yjn)

and

E
[
ℓ
y
tmax∧ζ(X)

]
=

∫ tmax

0

pt(x, y)

It follows that the expectations converge. By Scheffe’s lemma, the L1 convergence

(3.2.10) holds.

We have shown that there is always a subsequence (µxjn ,yjn (F (γ)))n≥0 that con-

verges to µx,y(F (γ)) which contradict the convergence of (µxj ,yj (F (γ)))j≥0 to a dif-

ferent value.

3.3. The measure µ∗ on unrooted loops

The measure µx,x can be seen as a measure on the space of rooted loops L. Next

we define a natural measure µ∗
L on L∗ following the pattern (3.2.1)

Definition 3.7. — Let µL be the following measure on L:

µL(dγ) :=

∫

t>0

∫

x∈I
Ptx,x(dγ)pt(x, x)m(x)dx

dt

t
=

1

T (γ)

∫

x∈I
µ
x,x
L (dγ)m(x)dx

µ∗
L := π∗µL is a measure on L∗.

We will drop the subscript L whenever there is no ambiguity on L. The definition

2 does not depend on the choice of the speed measure m(x) dx. The measures µ and

µ∗ are σ-finite but not finite. They satisfy the following elementary properties:

Property 3.8. — – (i) µ is invariant by time reversal.

– (ii) If Ĩ is an open subinterval of I then

µL|Ĩ
(dγ) = 1γ contained in Ĩ µL(dγ)

– (iii) If κ̃ is a positive Radon measure on I then

µL−κ̃(dγ) = exp

(
−
∫

I

ℓz(γ)m(z)κ̃(dz)

)
µL(dγ)

– (iv) If A is a change of scale function then

µScalegen
A

L = ScaleA∗µL

– (v) If h is a positive continuous function on I such that d
2h
dx2 is a signed measure

and Lu is a negative measure then

µConj(h,L) = µL

Same properties hold for µ∗.
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The measures µ and µ∗ contain some information on the diffusion X but the

invariance by h-transforms (property 3.8 (v)) shows that they do not capture its

asymptotic behaviour. In the section 3.4 we will prove a converse to the property

property 3.8 (v). In our setting, most important examples of h-transforms are:

– The Bessel 3 process on (0,+∞) is an h-transform of the Brownian motion on

(0,+∞), killed when hitting 0, through the function x 7→ x.

– The Brownian motion on R killed with uniform rate κdx (i.e. κ constant) is

an h-transform of the drifted Brownian motion on R with constant drift
√
2κ,

through the function x 7→ e−
√
2κx.

In the sequel we will be interested mostly in µ∗ and not µ. As it will be clear from

the next propositions, the measure µ∗ has some nice features that µ does not.

Proposition 3.9. — Let v ∈ [0, 1]. Then shiftv∗µ = µ. In particular

(3.3.1) µ(·) =
∫

v∈[0,1]

shiftv∗µ(·)dv

Proof. — For a rooted loop γ of life-time T (γ) we will introduce γ1 the path restricted

to time interval [0, vT (γ)] and γ2 the path restricted to [vT (γ), T (γ)]. By bridge

decomposition property, the measure µ(dγ1, dγ2) equals
∫

t>0

∫

I

∫

I

Pvtx,y(dγ1)P
(1−v)t
y,x (dγ2)pvt(x, y)p(1−v)t(y, x)m(y) dy m(x) dx

dt

t

Since γ1 and γ2 play symmetric roles, changing the order of γ1 and γ2 does not change

the measure µ.

Formula (3.3.1) shows that we can get back to the measure µ from the measure µ∗

by cutting the circle parametrizing a loop in L∗ in a point chosen uniformly on this

circle, in order to separate the start from the end.

Corollary 3.10. — Let F be a positive measurable functional on L. Then the map

γ 7→
∫ 1

0 F (shiftv(γ))dv is π−1(BL∗)-measurable and

d(F (γ)µ)

dµ |π−1(BL∗ )
=

∫ 1

0

F (shiftv(γ))dv

Proof. — We need only to show that for every F ′ measurable functional on L∗:

(3.3.2)

∫

L

F (γ)F ′(π(γ))µ(dγ) =

∫ 1

0

∫

L

F (shiftv(γ))F
′(π(γ))µ(dγ)dv

From proposition 3.9 follows that for every v ∈ [0, 1]:

(3.3.3)

∫

L

F (γ)F ′(π(γ))µ(dγ) =

∫

L

F (shiftv(γ))F
′(π(γ))µ(dγ)

Integrating (3.3.3) on [0, 1] leads to (3.3.2).



3.3. THE MEASURE µ∗ ON UNROOTED LOOPS 33

The next identity appears in [13] in the setting of Markov jump processes on

graphs. It can be generalized to a wider class of Markov processes admitting local

times (see lemma 2.2 in [10]). We will give a short proof that suits our framework.

Corollary 3.11. — Let x ∈ I. Then

(3.3.4) ℓx(γ)µ∗(dγ) = π∗µ
x,x(dγ)

For l > 0, let Pτ
x
l
x (·) be the law of the sample paths of a diffusion X of generator L,

started from x, until the time τxl when ℓxt (X) hits l, conditioned by τxl < ζ. Then

(3.3.5) 1γ visits xµ
∗(dγ) =

∫ +∞

0

π∗P
τx
l
x (dγ)e−

l
G(x,x)

dl

l

Conventionally we set G(x, x) = +∞ if X is recurrent.

Proof. — Let ε > 0 such that [x− ε, x+ ε] ⊆ I. Let T[x−ε,x+ε](γ) be the time a loop

γ spends in [x− ε, x+ ε]. From the identity (3.3.1) follows that

T[x−ε,x+ε](γ)

T (γ)
µ∗(dγ) =

1

T (γ)

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z)dz

and simplifying T (γ):

T[x−ε,x+ε](γ)µ
∗(dγ) =

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z)dz

Using local times we rewrite the previous expression as

(3.3.6)

∫ x+ε
x−ε ℓ

z(γ)m(z)dz
∫ x+ε
x−ε m(z)dz

µ∗(dγ) =
1

∫ x+ε
x−ε m(z)dz

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z)dz

Let ε0 > 0 such that [x− ε0, x + ε0] ⊆ I. Let F be a continuous bounded functional

on loops endowed with continuous local times such that F is zero if the life-time of

the loop exceeds tmax > 0 and if supz∈[x−ε0,x+ε0] l
z(γ) exceeds lmax. According to

the proposition 2.5, the right-hand side of (3.3.6) applied to F converges as ε → 0

to (π∗µx,x)(F (γ)). By dominated convergence it follows that the left-hand side of

(3.3.6) applied to F converges as ε→ 0 to
∫

L∗
ℓx(γ)F (γ)µ∗(dγ)

Thus we have the equality

(3.3.7)

∫

L∗
ℓx(γ)F (γ)µ∗(dγ) = (π∗µ

x,x)(F (γ))

The set of test functionals F that satisfy (3.3.7) is large enough to deduce the equality

(3.3.4) between measures.

From proposition 3.2 follows that

µx,x(·) =
∫ +∞

0

Pτ
x
l
x (·)e− l

G(x,x) dl
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Applying (3.3.4) to the above disintegration, we get (3.3.5).

Corollary 3.12. — Let V be a positive continuous function on I. We consider a

time change with speed V : ds = V (x)dt. Then

(3.3.8) µ∗
1
V
L
= SpeedV ∗µ

∗
L

Proof. — By definition 3.7 and property 3.3 (vi):

µ 1
V
L(dγ) =

1

T (γ)

∫ T (γ)

0

V (γ(0))

V (γ(s))
ds SpeedV ∗(µL(dγ))

Applying corollary 3.10 we obtain:

dSpeedV ∗µL
dµ 1

V
L |π−1(BL∗ )

=

∫ 1

0
V −1(γ(vT (γ)))dv

1
T (γ)

∫ T (γ)

0
V −1(γ(s))ds

= 1

This concludes.

In dimension two, the time change covariance of the measure µ∗ on loops plays

a key role for the construction of the Conformal Loop Ensembles (CLE) using loop

soups as in [26]: Let D be an open domain of the complex plane, (Bt)0≤t<ζ the

two-dimensional standard Brownian motion in D killed when hitting ∂D and µ∗ the

corresponding measure on loops. If f : D → D is a conformal map, then (f(Bt))0≤t<ζ
is a time changed Brownian motion. If we consider µ∗ not as a measure on loops

parametrized by time but a measure on the geometrical drawings of loops, then µ∗

is invariant by the transformation (γ(t))0≤t≤T (γ) 7→ (f(γ(t)))0≤t≤T (γ). This is proved

in [19].

Given that µ∗ is invariant through h-transforms and covariant with the change of

scale and change of time, if X is a recurrent diffusion, then up to a change of scale

and time, µ∗ is the same as for the Brownian motion on R, and if X is a transient

diffusion, even if the killing measure κ is non-zero, then up to a change of scale and

time, µ∗ is the same as for the Brownian motion on a bounded interval, killed when

it hits the boundary.

3.4. Multiple local times

In this subsection we define the multiple local time functional on loops. Corollary

3.11 gives a link between the measure µ∗ and the measures (µx,x)x∈I . Using multiple

local times we will get a further relation between µ∗ and (µx,y)x,y∈I . This will allow
us to prove a converse to the property 3.8 (v): two diffusions that have the same

measure on unrooted loops are related trough an h-transform.
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Definition 3.13. — If (γ(t))0≤t≤T (γ) is a continuous path in I having a family of lo-

cal times (ℓxt (γ))x∈I,0≤t≤T (γ) relatively to the measure m(x)dx, we introduce multiple

local times ℓx1,x2,...,xn(γ) for x1, x2, . . . , xn ∈ I:

ℓx1,x2,...,xn(γ) :=

∫

0≤t1≤t2≤···≤tn≤T (γ)

dt1ℓ
x1
t1
(γ)dt2ℓ

x2
t2
(γ) . . . dtnℓ

xn

tn
(γ)

If γ ∈ L and has local times, we introduce circular local times for γ:

ℓ∗x1,x2,...,xn(γ) :=
∑

c circular

permutation

of {1, 2, . . . , n}

ℓxc(1),xc(2),...,xc(n)(γ)

ℓ∗x1,x2,...,xn being invariant under the transformations (shiftv)v∈[0,1], we see it as a

functional defined on L∗.

Multiple local times of the form ℓx,x,...,x(γ), called self intersection local times, were

studied by Dynkin in [9]. Circular local times were introduced by Le Jan in [13].

Let n ∈ N∗ and p ∈ {1, . . . , n}. Let Shufflep,n be the set of permutations σ

of {1, . . . , n} such that for all i ≤ j ∈ {1, . . . , p}, σ(i) ≤ σ(j) and for all i ≤ j ∈
{p + 1, . . . , n}, σ(i) ≤ σ(j). Permutations in Shufflep,n are obtained by shuffling

two card decks {1, . . . , p} and {p+ 1, . . . , n}. Let Shuffle′p,n be the permutations of

{1, . . . , n} of the form σ ◦ c where c is a circular permutation of {p + 1, . . . , n} and

σ ∈ Shufflep,n satisfies σ(1) = 1. One can check that

Property 3.14. — For all x1, . . . , xp, xp+1, . . . , xn ∈ I:

– (i)

ℓx1,...,xp(γ)ℓxp+1,...,xn(γ) =
∑

σ∈Shufflep,n
ℓxσ(1),...,xσ(p),xσ(p+1),...,xσ(n)(γ)

– (ii)

ℓ∗x1,...,xp(γ)ℓ∗xp+1,...,xn(γ) =
∑

σ′∈Shuffle′p,n

ℓxσ′(1),...,xσ′(p),xσ′(p+1),...,xσ′(n)(γ)

The equality 3.14 (ii) appears in [13]. It is also shown in [13] that for transient

Markov jump processes:

(3.4.1)

∫
ℓ∗x1,x2,...,xn(γ)µ(dγ) = G(x1, x2)× · · · ×G(xn−1, xn)×G(xn, x1)

It turns out that we have more: We consider L a generator of a diffusion on I of

form (2.2.1). If γi for i ∈ {1, 2, . . . , n− 1} is a continuous path from xi to xi+1, then

we can concatenate γ1, γ2, . . . , γn−1 to obtain a continuous path γ1 ⊳ γ2 ⊳ · · ·⊳ γn−1

from x1 to xn. Let µ
x1,x2 ⊳ · · ·⊳µxn−1,xn be the image measure µx1,x2 ⊗· · ·⊗µxn−1,xn

by this concatenation procedure.

Proposition 3.15. — The following absolute continuity relations hold:
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– (i) (µx1,x2 ⊳ · · ·⊳ µxn−1,xn)(dγ) = ℓx2,...,xn−1(γ)µx1,xn(dγ)

– (ii) π∗(µx1,x2 ⊳ · · ·⊳ µxn−1,xn ⊳ µxn,x1)(dγ) = ℓ∗x1,x2,...,xn(γ)µ∗(dγ)

Proof. — (i): Let ((X
(j)
t )0≤t<ζj )0≤j≤n−1 be n−1 independent diffusions of generator

L, with X
(j)
0 = xj . For l ≥ 0, let

τ
xj+1

j,l := inf
{
tj ≥ 0|ℓxj+1

tj
(X(j)) > l

}

According to proposition 3.2, (µx1,x2 ⊳ · · ·⊳ µxn−1,xn)(F (γ)) equals

(3.4.2)

E
[ ∫

lj<ℓ
xj+1
ζj

(X(j)),1≤j≤n−1

F
(
(X

(1)
t )0≤t≤τx2

1,l1

⊳· · ·⊳(X
(n−1)
t )0≤t≤τxn

n−1,ln−1

)
dl1 . . . dln−1

]

Let (Xt)0≤t<ζ be an other diffusion of generator L. Let

τl1 := inf{t ≥ 0|lx2
t (X) > l1}

and recursively defined

τl1,...lj−1,lj := inf{t ≥ τl1,...lj−1 |ℓ
xj+1

t (X) > lj}
Then by strong Markov property, (3.4.2) equals

E

[∫
1τl1,...,ln−1

≤ζF
(
(Xt)0≤t≤τl1,...,ln−1

)
dl1 . . . dln−1

]

which in turn equals

(3.4.3) E

[∫
1∀j,tj<ζF

(
(Xt)0≤t≤tn−1

)
dt1ℓ

x2
t1
(X) . . . dtn−1ℓ

xn

tn−1
(X)

]

By proposition 3.2, (3.4.3) equals
∫
ℓx1,...,xn−1(γ)F (γ)µx1,xn(dγ).

(ii): According to the identity (i) and corollary 3.10, we have

π∗(µ
x1,x2

⊳ · · ·⊳ µxn−1,xn
⊳ µxn,x1)(dγ) =

∫ 1

0

ℓx2,...,xn(shiftv(γ))dv π∗µ
x1,x1(dγ)

According to corollary 3.11
∫ 1

0

ℓx2,...,xn(shiftv(γ))dvπ∗µ
x1,x1(dγ) = ℓx1(γ)

∫ 1

0

ℓx2,...,xn(shiftv(γ))dvµ
∗(dγ)

But

ℓx1(γ)

∫ 1

0

ℓx2,...,xn(shiftv(γ))dv = ℓ∗x1,x2,...,xn(γ)

which ends the proof.

The proposition 3.15 (ii) implies (3.4.1).

Proposition 3.16. — If L and L̃ are two generators of diffusions on I of the form

(2.2.1) such that µ∗
L = µ∗

L̃
, then there is a positive continuous function h on I such

that d2h
dx2 is a signed measure, Lh a negative measure and L̃ = Conj(h, L). If the

diffusion of generator L is recurrent then L̃ = L.
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Proof. — Let m(x)dx be a speed measure for L and m̃(x)dx be a speed measure

for L̃. First let’s assume that both L and L̃ are generators of transient diffusions.

Applying the identity (3.4.1) to
∫
L∗ ℓ

∗x,y(γ)µ∗(dγ) we get that for all x, y ∈ I:

(3.4.4) G
L̃
(x, y)G

L̃
(y, x)m̃(x)m̃(y) = GL(x, y)GL(y, x)m(x)m(y)

and for all x, y, z ∈ I:

(3.4.5)

G
L̃
(x, y)G

L̃
(y, z)G

L̃
(z, x)m̃(x)m̃(y)m̃(z) = GL(x, y)GL(y, z)GL(z, x)m(x)m(y)m(z)

Fix x0 ∈ I. Let h be

h(x) :=
G
L̃
(x0, x)m̃(x)

GL(x0, x)m(x)

h is positive and continuous. 1
h(x)GL(x, y)h(y)m(y) equals:

(3.4.6)
GL(x0, x)GL(x, y)GL(y, x0)m(x0)m(x)m(y)

G
L̃
(x0, x)GL̃(x, y)GL̃(y, x0)m̃(x0)m̃(x)m̃(y)

× G
L̃
(x0, y)GL̃(y, x0)m̃(x0)m̃(y)

GL(x0, y)GL(y, x0)m(x0)m(y)
×G

L̃
(x, y)m̃(y)

Applying (3.4.4) and (3.4.5) to (3.4.6) we get that

(3.4.7)
1

h(x)
G(x, y)h(y)m(y) = G

L̃
(x, y)m̃(y)

Applying (3.4.7) once to (x, y) and once do (x, x) we get that

(3.4.8) h(y) = h(x)
G
L̃
(x, y)

G(x, y)

G(y, y)

G
L̃
(y, y)

From (3.4.8) we deduce that d2h
dx2 is a signed measure. From (3.4.7) we deduce that

L̃ = Conj(h, L). −Lh is the killing measure of L̃ and is positive.

If we no longer assume that L and L̃ generate transient diffusions then consider

λ > 0. Then µ∗
L−λ = µ∗

L̃−λ. According to the above, there is h positive continuous

function on I such that d2

dx2 is a signed measure and

L̃− λ = Conj(h, L− λ) = Conj(h, L)− λ

Then L̃ = Conj(h, L) and necessarily Lh is a negative measure.

The class of recurrent diffusions is preserved by h-transforms. So if L is the gen-

erator of a recurrent diffusion then so is L̃, and thus h is bound to satisfy Lh = 0.

But since the diffusion of L is recurrent, the only solutions to Lh = 0 are constant

functions. Thus L̃ = L.



38 CHAPTER 3. MEASURE ON LOOPS AND ITS BASIC PROPERTIES

3.5. A disintegration of µ∗ induced by the Vervaat’s transformation

By conditioning the measure µ by the life-time of loops we get a sum of bridge

measures. In this section we will disintegrate the measure µ∗ as a measure on the

minimal value of the loop and its behaviour above this value. By doing this way we

will obtain a sum of excursion measures η>xexc. In case of Brownian loops on R this

disintegration will follow from the Vervaat’s bridge to excursion transformation. The

case of general diffusion will be obtained using covariance of the measure on loops by

time and scale change, restriction to a subinterval, killing, as well as invariance by

h-transforms.

Theorem(Vervaat). — ([30],[3]) Let (γ(s))0≤s≤t be a random path following the

Brownian bridge probability measure PtBM,0,0(·). Let smin := argminγ. Then the

path

s 7→ −min γ + (shift smin
t
γ)(s)

has the law of a positive Brownian excursion of life-time t.

In the sequel if η is a measure on paths and x ∈ R, we will write (x + η) for the

image of η by γ 7→ x + γ. η>0
BM will be the Levy-Itô measure on positive Brownian

excursions and η>0
t,BM the probability measure on positive Brownian excursions of

duration t. Given a continuous loop (γt)0≤t≤T (γ) and tmin the first time γ hits min γ,

let V(γ) be the transformation shift tmin
T (γ)

. V is BL-measurable.

Proposition 3.17. — Let µ∗
BM be the measure on loops associated to the Brownian

motion on R. Then:

(3.5.1) µ∗
BM (dγ) = 2

∫

a∈R

π∗(a+ η>0
BM )(dγ) da

The measure on (min γ,max γ) induced by µ∗
BM is 1a<b(b− a)−2dadb. Let a < b ∈ R

and ρ, ρ̃ two independent Bessel 3 processes starting from 0. Let Tb−a and T̃b−a be

the first times ρ respectively ρ̃ hits b− a. Let (βt)0≤t≤Tb−a+T̃b−a
be the path

βt :=

{
a+ ρt if t ≤ Tb−a
a+ ρ̃

Tb−a+T̃b−a−t if t ≥ Tb−a

Then the law of (βt)0≤t≤Tb−a+T̃b−a
is the probability measure obtained by conditioning

the measure µ∗
BM by (min γ,max γ) = (a, b).

Proof. — For the Brownian motion on R, µBM writes

µBM (·) =
∫

x∈R

∫

t>0

(x+ PtBM,0,0)(·)
dt√
2πt3

dx
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Let χ(a)da be the law of the minimum of the bridge under PtBM,0,0. Applying the

Vervaat’s transformation, we get that

V∗µBM (·) =
∫

a∈R

∫

t>0

(∫

x>a

χ(x− a)dx

)
(a+ η>0

t,BM )(·) dt√
2πt3

da

Since
∫
x>a

χ(x − a) dx = 1, the right-hand side above equals
∫

a∈R

∫

t>0

(a+ η>0
t,BM )(·) dt√

2πt3
da

But ∫

t>0

(a+ η>0
t,BM )(·) dt√

2πt3
= 2(a+ η>0

BM )(·)

The equality (3.5.1) follows. The rest of the proposition is a consequence of the

William’s representation of Brownian excursions.

Corollary 3.18. — Let I be an open interval of R and λ ≥ 0. Let µ∗ be the measure

on loops in I associated to the generator 1
2
d2

dx2 − λ. Given a loop (γ(t))0≤t≤T (γ), let

R(γ) be the loop

R(γ) := (max γ +min γ − γ(t))0≤t≤T (γ)

that is the image of γ through reflection relatively to max γ+minγ
2 . Then

R∗µ
∗ = µ∗

Proof. — It is enough to prove this in case λ = 0 and I = R. Otherwise we multiply

the measure µ∗
BM by a density function that is left invariant by R. Then we use the

description of the measure µ∗
BM conditioned by the value of (min γ,max γ) and the

fact that if a > 0, (ρt)t≥ is a Bessel 3 process starting from 0 and Tb is the first time

it hits b, then (y−ρTb−t)0≤t≤Tb
has the same law as (ρt)0≤t≤Tb

(see [24], chapter VII,

§4).

Now we consider that L is a generator of a diffusion on I of form (2.2.1). Given a

point x0 ∈ I, u+,x0 and u−,x0 will be the L-harmonic functions satisfying the initial

conditions u+,x0(x0) = u−,x0(x0) = 0, du+,x0

dx
(x+0 ) = 1 and du−,x0

dx
(x−0 ) = −1. If

x ≤ y ∈ I then

(3.5.2) w(y)u−,y(x) = w(x)u+,x(y)

Indeed, the Wronskian W (u−,y, u+,x) takes in x the value u−,y(x) and in y the value

u+,x(y), and the ratio 1
w(z)W (u−,y, u+,x)(z) is constant. If κ = 0, then the both sides

of (3.5.2) equal
∫ y
x
w(z)dz. u+,x0 is positive on I ∩ (x0,+∞) and u−,x0 is positive

on I ∩ (−∞, x0). Let L+,x0 be Conj(u+,x0 , L) restricted to I ∩ (x0,+∞) and L−,x0

be Conj(u−,x0 , L) restricted to I ∩ (−∞, x0). L+,x0 and L−,x0 are generators of

transient diffusions without killing measures. If L is the generator of the Brownian

motion on R, then L+,0 is just the generator of a Bessel 3 process. In general case, x0
is an entrance boundary for L+,x0 and L−,x0 , that is to say a diffusion started from
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x 6= x0 will never reach the boundary at x0, and we can also start this diffusions at

the boundary point x0, in which case it will be immediately repelled away from x0.

Let x ∈ I and (ρ+,xt )0≤t<ζ+,x be a diffusion of generator L+,x starting from x. Let

y ∈ I, y > x. Let T+,x
y be the first time ρ+,x hits y and T̂+,x

y the last time it visits

y. Then (ρ+,x
T̂

+,x
y +t

)0≤t<ζ+,x−T̂+,x
y

is a diffusion of generator L+,y starting from y. Let

(ρ−,yt )0≤t<ζ−,y be a diffusion of generator L−,y starting from y and T−,y
x the first time

it hits x. Then (ρ+,xt )0≤t≤T+,x
y

and (ρ−,y
T

−,y
x −t)0≤t≤T−,y

x
are equal in law: Indeed let C

be the constant

C =
w(z)

W (u−,y, u+,x)(z)

The Green’s operator of ρ+,x killed in y is

((−L+,x
|(x,y))

−1f)(x′) = C

∫ y

x

u+,x(x′ ∧ y′)u−,y(x′ ∨ y′)u
+,x(y′)

u+,x(x′)
m(y′)dy′

and the Green’s operator of ρ−,y killed in x is

((−L−,y
|(x,y))

−1f)(x′) = C

∫ y

x

u+,x(x′ ∧ y′)u−,y(x′ ∨ y′)u
−,y(y′)

u−,y(x′)
m(y′)dy′

The potential measure of (ρ+,xt )0≤t≤T+,x
y

starting from x is

U(x′)dx′ = Cu+,x(x′)u−,y(x′)m(x′)dx′

and for any f, g bounded functions on (x, y)

(3.5.3)

∫ y

x

((−L+,x
|(x,y))

−1f)(x′)g(x′)U(x′)dx′ =

∫ y

x

f(x′)((−L−,y
|(x,y))

−1g)(x′)U(x′)dx′

The time reversal property for (ρ+,xt )0≤t≤T+,x
y

follows from the duality relation (3.5.3).

See [24], chapter VII, §4 for details on time reversal.

Corollary 3.19. — If L is a generator of a diffusion on I of form (2.2.1), then

(3.5.4) µ∗(·) =
∫

a∈I
π∗η

>a(·)w(a)da

The measure on (min γ,max γ) induced by µ∗ is 1a<b∈I dadb
u+,a(b)u−,b(a)

. Let a < b ∈ I.

Let (ρ+,at )0≤t<ζ+,a and (ρ−,bt )0≤t<ζ−,b be two independent diffusion, the first of gener-

ator L+,a starting from a and the second of generator L−,b starting from b. Let T+,a
b

be the first time ρ+,a hits b and T−,b
a the first time ρ−,b hits a. Let (βt)0≤t≤T+,a

b
+T−,b

a

be the path

βt :=

{
ρ
+,a
t if t ≤ T

+,a
b

ρ
−,b
t−T+,a

b

if t ≥ T
+,a
b

Then the law of (βt)0≤t≤T+,a

b
+T−,b

a
is the probability measure obtained by conditioning

the measure µ∗ by (min γ,max γ) = (a, b).
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Proof. — Both sides of (3.5.4) are covariant by scale and time change. Moreover both

sides satisfy the property 3.8 (ii) for the restriction to a subinterval and the property

3.8 (iii) when adding a killing measure. Thus the general case (3.5.4) follows from the

Brownian case (3.5.1) by this covariance properties.

If L is a generator without killing measure (κ = 0) then the description of the

measure on (min γ,max γ) and the probabilities obtained after conditioning by the

value of (min γ,max γ) follow through a change of scale and time from the analogous

description in proposition 3.17. If κ 6= 0, then we can take u a positive L-harmonic

function and deduce the result for L from the result for Conj(u, L) using the fact

that µ∗
L = µ∗

Conj(u,L).

The relation between the measure on loops and the excursions measures in dimen-

sion 1 (identity (3.5.4)) is analogous to the relation between the measure on Brownian

loops and the so called bubble measures observed by Lawler and Werner in dimension

2. See propositions 7 and 8 in [19].

3.6. A generalization of the Vervaat’s transformation

In this subsection we will show a conditioned version of the Vervaat’s transforma-

tion that holds for any one-dimensional diffusion of form (2.2.1) and not just for the

Brownian motion. L will be a generator of a diffusion on I of form (2.2.1). From

corollary 3.11 and identity (3.5.4) follows that for every x ∈ I:

(3.6.1)

∫

t>0

V∗P
t
x,x(dγ)pt(x, x)dt =

∫

a∈I,a<x
ℓx(γ)η>a(dγ)w(a)da

Let Ptx,x(dγ|min γ = a) be the bridge probability measure condition by the value

of the minimum to equal a. Further we will show that there is a version that de-

pends continuously on (a, t). Let η>at the probability measure obtained from η>a by

conditioning the excursion to have a life-time t. The identity (3.6.1) suggests the

following:

Proposition 3.20. — For every a < x ∈ I and t > 0

(3.6.2) V∗P
t
x,x(dγ|min γ = a) =

ℓxt (γ)η
>a
t (dγ)

η>at (ℓxt (γ))

The distribution of min γ under Ptx,x equals

(3.6.3) w(a)η>at (ℓxt (γ))
1

pt(x, x)

η>a(T (γ) ∈ (t, t+ dt))

dt
da

where η>a(T (γ)∈(t,t+dt))
dt

is the density of the measure on the life-time of the excursion

induced by η>a. Given an excursion γ following the law
ℓxt (γ)η

>a
t (dγ)

η>a
t (ℓxt (γ))

, the local time

in x is a measure on {s ∈ [0, t]|γ(s) = x}. The transformation V sends the starting
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point of the bridge to a point s ∈ [0, t] distributed conditionally on the excursion γ

according the measure
dsℓ

x
s (γ)

ℓxt (γ)
.

Identities (3.6.2) and (3.6.3) can be viewed as a conditioned analogue of the Ver-

vaat’s relation between the Brownian bridge and the Brownian excursion. The latter

can be deduced from (3.6.2) and (3.6.3) using the translation invariance of the Brown-

ian motion. From (3.6.2) we can only deduce that (3.6.2) and (3.6.3) hold for Lebesgue

almost all t and a. We need to show the weak continuity in (a, t) of conditioned bridge

probabilities and biased conditioned excursion probabilities to conclude. It is enough

to prove the proposition 3.20 for L not containing any killing measure and such that

for all a < x ∈ I, a diffusion starting from x reaches a almost surely. Indeed, for a

general generator, Conj(u↓, L) does satisfy the above constraints and if the proposi-

tion 3.20 is true for Conj(u↓, L) then it is also true for L. From now on we assume

that L satisfies the above constraints. Next we give a more constructive description

of the conditioned bridges and biased conditioned excursions. We start with bridges.

Property 3.3 (viii) shows that the measure PTa
x ⊳ P̃T̃

a∧
x conditioned on Ta+ T̃a = t

is a version of Ptx,x(dγ|min γ = a). Let p
(a×)
t (x, y) be the transition density on

I ∩ (a,+∞) relatively to m(y)dy of the semi-group generated by L|I∩(a,+∞). Then

p
(a×)
t (x, a+) = 0. According to [21], for all t > 0, y 7→ p

(a×)
t (x, y) is C1. Let

∂2p
(a×)
t (x, y) be the derivative relatively to y. It has a positive limit ∂2p

(a×)
t (x, a+)

as y → a+. Extended in this way, the map (t, x, y) 7→ ∂2p
(a×)
t (x, y) is continuous on

(0 +∞) × I ∩ (a,+∞) × I ∩ [a,+∞). The distribution of Ta under Px is (see [12],

page 154):
1

w(a)
∂2p

(a×)
t (x, a+)dt

Let P(a×),t
x,y be the bridge probability measures of L|I∩(a,+∞). It has a weak limit

P(a×),t
x,a+

as y → a+. Let Fs be the sigma-algebra generated by the restriction of a

continuous path to the time interval [0, s]. Let P+,a
a be the law of ρ+,a starting from

a. For all s ∈ (0, t) we have the following absolute continuity relations:

(3.6.4)
dP(a×),t

x,a+

dPx |Fs

= 1s<Ta

∂2p
(a×)
t−s (Xs, a

+)

∂2p
(a×)
t (x, a+)

and for the time reversed bridge

(3.6.5)
dP(a×),t∧

x,a+

dP+,a
a |Fs

=
p
(a×)
t−s (ρ+,as , x)

∂2p
(a×)
t (x, a+)

Using the absolute continuity relation (3.6.4) and (3.6.5) one can prove in a similar

way as in proposition 2.5 that the map (t, y) 7→ P(a×),t
x,a+

is continuous for the weak

topology. The first passage bridge PTa
x disintegrates as follows

(3.6.6) PTa
x (·) = 1

w(a)

∫

t>0

P(a×),t
x,a+

(·)∂2p(a×)
t (x, a+)dt
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From the property 3.3 (viii) and (3.6.6) we get that

Property 3.21. — The distribution of min γ under P tx,x is

(3.6.7)
da

w(a)pt(x, x)

∫ t

0

∂2p
(a×)
s (x, a+)∂2p

(a)
t−s(x, a

+)ds

There is a version of Ptx,x(dγ|min γ = a) that disintegrates as

(3.6.8)

∫ t
0

(
P(a×),s
x,a+

⊳ P(a×),t−s∧
x,a+

)
(dγ)∂2p

(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)ds

∫ t
0
∂2p

(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)ds

Next we show that the probability measure given by (3.6.8) depends continuously

on (a, t).

Lemma 3.22. — The functions (x, a, t) 7→ p
(a×)
t (x, a+) and (x, a, t) 7→ ∂2p

(a×)
t (x, a+)

are continuous on {(x, a)|x > a ∈ I} × (0,+∞).

Proof. — As in [21], we can use the eigendifferential expansion of L to express

p
(a×)
t (x, a+) and ∂2p

(a×)
t (x, a+). Let x0. For λ ∈ R consider e1(·, λ) and e2(·, λ)

two solutions to Lu+ λu = 0 with initial conditions

e1(x0, λ) = 1
∂e1

∂x
(x0, λ) = 0 e2(x0, λ) = 0

∂e2

∂x
(x0, λ) = 1

Let e(x, λ) be the 2-vector whose entries are e1(x, λ) and e2(x, λ). According to

theorems 3.2 and 4.3 in [21], for all a ∈ I there is a Radon measure f(a) on (−∞, 0]

with values in the space of 2× 2 symmetric positive semi-definite matrices such that

for all x ∈ I ∩ (a,+∞)

p
(a×)
t (x, a+) =

∫ 0

−∞
etλ⊺e(x, λ)f(a×)(dλ)e(a, λ)

∂2p
(a×)
t (x, a+) =

∫ 0

−∞
etλ⊺e(x, λ)f(a×)(dλ)

∂e

∂x
(a, λ)

Let x > a ∈ I. Consider a two sequences (xn)n≥0 and (an)n≥0 in I ∩ (−∞, x)

converging to x respectively a such that for all n ≥ 0, xn > an. Let (bj)j≥0 be

an increasing sequence in I ∩ (x, sup I) converging to sup I. Let fn,j be the 2 × 2-

matrix valued measure on (−∞, 0] corresponding to the eigendifferential expansion

of L restricted to (an, bj). fn,j charges only a discrete set of atoms. As shown in

the proof of theorem 3.2 in [21], the total mass of the measures 1 ∧ |λ|−2‖fn,j‖(dλ),
1 ∧ |λ|−2‖f(an×)‖(dλ) and 1 ∧ |λ|−2‖f(a×)‖(dλ) is uniformly bounded. Moreover for a

fixed n, as j → +∞, 1 ∧ |λ|−2fn,j(dλ) converges vaguely, that is against continuous

functions vanishing at infinity, to the measure 1 ∧ |λ|−2f(an×)(dλ). Moreover, for

any increasing integer-valued sequence (jn)n≥0 converging to +∞, 1 ∧ |λ|−2fn,jn(dλ)

converges vaguely as n → +∞ to 1 ∧ |λ|−2f(a×)(dλ). Since the sequence (jn)n≥0
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is arbitrary, this implies that 1 ∧ |λ|−2f(an×)(dλ) converges vaguely as n → +∞ to

1 ∧ |λ|−2f(a×)(dλ).

There are constants C, c′ > 0 such that for all λ ≤ 0 and n ≥ 0

(3.6.9) ‖e(xn, λ)‖ ≤ Cec
′
√

|λ| ‖e(an, λ)‖ ≤ Cec
′
√

|λ| ‖ ∂e
∂x

(an, λ)‖ ≤ Cec
′
√

|λ|

Let t > 0 and (tn)n≥0 a sequence of times converging to t. From (3.6.9) follows that

lim
λ→−∞

sup
n≥0

|λ|2etnλ‖e(xn, λ)‖ × ‖e(an, λ)‖ = 0

λ 7→ 1 ∨ |λ|2etnλ (e(xn, λ), ∂e(an, λ)) vanishes at infinity an converges uniformly on

(−∞, 0] to λ 7→ 1∨|λ|2etλ (e(x, λ), e(a, λ)). The vague convergence of measures implies

that

lim
n→+∞

∫ 0

−∞
etnλ⊺e(xn, λ)f

(an×)(dλ)e(an, λ) =

∫ 0

−∞
etλ⊺e(x, λ)f(a×)(dλ)e(a, λ)

Similarly ∂2p
(an×)
tn

(xn, a
+
n ) converges to ∂2p

(a×)
t (x, a+).

Lemma 3.23. — The map a 7→ P+,a
a is weakly continuous.

Proof. — Let a0 ∈ I. Consider the process (ρ+,a0t )t≥0 following the law P+,a0
a0

. For

a ∈ I ∩ (a0,+∞), let T̂a be the last time ρ+,a0 visits a. Then (ρ+,a0
T̂a+t

)t≥0 follows the

law P+,a
a . The process valued map a 7→ (ρ+,a0

T̂a+t
)t≥0 is almost surely continuous on

I ∩ (a0,+∞) and thus the laws depend weakly continuously on a.

Proposition 3.24. — The version of Ptx,x(dγ|min γ = a) given by (3.6.8) is weakly

continuous in (a, t).

Proof. — From the absolute continuity relations (3.6.4) for the bridge P(a×),t
x,a+

and

(3.6.5) for its time reversal, together with the continuity of the densities which follows

from lemma 3.22, and the weak continuity of a 7→ P+,a
a , we can deduce in a very

similar way as in proposition 2.5 that the map (a, t) 7→ P(a×),t
x,a+

is weakly continuous on

(0,+∞)× I ∩ (−∞, x) and hence (a, s, t) 7→ P(a×),s
x,a+

⊳P(a×),t−s∧
x,a+

is weakly continuous.

Finally the densities that appear in expression (3.6.8) are continuous with respect to

(a, s, t).

Next we will give a decomposition of the measure η>a which is similar to the

Bismut’s decomposition of Brownian excursions (see [24], chapter XII, §4, theorem
4.7). Biane used this Bismut’s decomposition to give an alternative proof for the

Brownian Vervaat’s transformation ([3]). ∂2p
(a×)
t (x, a+) is C1 relatively to x and the

derivative ∂1,2p
(a×)
t (x, a+) has a positive limit ∂1,2p

(a×)
t (a+, a+) as y → a+. Moreover

t 7→ ∂1,2p
(a×)
t (a+, a+) is continuous. The measure on the life-time of the excursion

induced by η>a is (see [25]):

1

w(a)2
∂1,2p

(a×)
t (a+, a+)dt
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Let s ∈ [0, t]. The measure η>at (·) disintegrates as (see [25]):

(3.6.10)

∫

x∈I,x>a

(
P(a×),s∧
x,a+

⊳ P(a×),t−s
x,a+

)
(·)∂2p

(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)m(y)

∂1,2p
(a×)
t (a+, a+)

dy

For every s1 < s2 ∈ [0, s], under the bridge measure P(a×),s
y,z

(3.6.11) P(a×),t
y,z (ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

p
(a×)
r (y, x)p

(a×)
s−r (x, z)

p
(a×)
s (y, z)

dr

and under the bridge measure P(a×),s
y,a+

(3.6.12) P(a×),t

y,a+
(ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

p
(a×)
r (y, x)∂2p

(a×)
s−r (x, a

+)

∂2p
(a×)
s (y, a+)

dr

Combining (3.6.10) and (3.6.12) we get that for every s1 < s2 ∈ [0, s]:

(3.6.13) η>at (ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

∂2p
(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)

∂1,2p
(a×)
t (a+, a+)

ds

Proposition 3.25. — Let F1 and F2 be two non-negative measurable functional on

the paths with variable life-time. Then

(3.6.14) η>at

(∫ t

0

F1((γ(r))0≤r≤s)F2((γ(s+ r))0≤r≤t−s)dsℓ
x
s (γ)

)
=

∫ t

0

P(a×),s∧
x,a+

(F1)P
(a×),t−s
x,a+

(F2)
∂2p

(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)

∂1,2p
(a)
t (a+, a+)

ds

In particular

(3.6.15)

ℓxt (γ)η
>a
t (dγ) =

∫ t

0

(
P(a×),s∧
x,a+

⊳ P(a×),t−s
x,a+

)
(dγ)

∂2p
(a×)
s (x, a+)∂2p

(a×)
t−s (x, a+)

∂1,2p
(a×)
t (a+, a+)

ds

Proof. — It is enough to prove the result in case F1 and F2 are non-negative, contin-

uous and bounded. On top of that we may assume that there are smin < smax ∈ (0, t)

such that F1 respectively F2 takes value 0 if the life-time of a path is smaller than smin
respectively t− smax, and that there is C ∈ I, C > a, such that F1 and F2 take value

0 if max γ > C. For j ≤ n ∈ N set ∆sn := 1
n
(smax − smin) and sj,n := smin + j∆sn.

Then almost surely

(3.6.16)

∫ t

0

F1((γ(r))0≤r≤s)F2((γ(s+ r))0≤r≤t−s)dsℓ
x
s (γ) =

lim
n→+∞

n−1∑

j=0

F1((γ(r))0≤r≤sj,n)(ℓ
x
sj+1,n

(γ)− ℓxsj,n(γ))F2((γ(sj+1,n + r))0≤r≤t−sj+1,n)
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Moreover the right-hand side of (3.6.16) is dominated by ℓxt (γ)‖F1‖∞‖F2‖∞. Thus

the η>at -expectation converges too. Applying (3.6.10) and (3.6.11) we get

η>at
(
F1((γ(r))0≤r≤sj,n)(ℓ

x
sj+1,n

(γ)− ℓxsj,n(γ))F2((γ(sj+1,n + r))0≤r≤t−sj+1,n)
)
=

∫ ∆sn

0

∫

(a,C)2
P(a×),sj,n∧
y,a+

(F1)P
(a×),t−sj+1,n

z,a+
(F2)qn(r, y, z)m(y)dym(z)dzdr

where

qn(r, y, z) =
∂2p

(a×)
sj,n (y, a+)∂2p

(a×)
t−sj+1,n

(z, a+)

∂1,2p
(a×)
t (a+, a+)

p(a×)
r (y, x)p

(a×)
∆sn−r(x, z)

The measure 1y,z>a∈I
1

∆sn

∫∆sn
0 qn(r, y, z)drdydz converges weakly as n → +∞ to

δ(x,x). The maps (s, y) 7→ ∂2p
(a×)
s (x, a+) and (s, y) 7→ P(a×),y,a+

s (·) are continuous.

Moreover ∂2p
(a×)
sj,n (y, a+)∂2p

(a×)
t−sj+1,n

(z, a+) is uniformly bounded for j ≤ n ∈ N and

y, z ∈ (a, C]. All this ensures that the η>at -expectation of the right-hand side of

(3.6.16) converges as n→ +∞ to the right-hand side of (3.6.14).

Now we need only to match the preceding descriptions to prove proposition 3.20.

(3.6.8) and (3.6.15) imply (3.6.2). (3.6.7) and (3.6.13) imply (3.6.3). The fact that

the point where the excursion is split is distributed according to
dsℓ

x
s (γ)

ℓxt (γ)
follows from

(3.6.14).

3.7. Restricting loops to a discrete subset

Let L be the generator of a diffusion on I of form (2.2.1) and (Xt)0≤t<ζ be the

corresponding diffusion. Let J be a countable discrete subset of I. A Markov jump

process to the nearest neighbours on J is naturally embedded in the diffusion X .

In this section we will show that, given any x, y ∈ J, the image of the measure

µ
x,y
L through the restriction application that sends a sample paths of the diffusion

(Xt)0≤t<ζ to a sample path of a Markov jump process on J is a measure on J-valued
paths that follows the pattern (3.2.2). From this we will deduce that the image of

the measure µ∗
L through the restriction to J is a measure on J-valued loops following

the pattern (3.2.1) and which was studied in [13]. This property will be used in

section 4.2 to express the law of finite-dimensional marginals of the occupation field

of a Poisson ensemble of intensity αµ∗
L.

For a continuous path (γ(t))0≤t≤T (γ) in I, endowed with continuous local times,

let

IJ

t (γ) :=
∑

x∈J

ℓxt (γ)m(x)

For s ≥ 0, we introduce the stopping time

τ Js (γ) := inf{t ≥ 0|IJ

t (γ) ≥ s}
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We write γJ for the path (γ(τ Js ))0≤s≤IJ

T (γ)
(γ) on J. Let mJ be the measure

mJ :=
∑

x∈J

m(x)δx

The occupation measure of γJ is
∑

x∈J

ℓx(γ)m(x)δx

and (ℓx(γ))x∈J are also occupation densities of the restricted path γJ with respect to

mJ.

The restricted diffusion XJ is a Markov jump process to nearest neighbours on J,
potentially with killing. If x0 < x1 are two consecutive points in J, the jump rate from

x0 to x1 is 1
m(x0)w(x0)

1
u+,x0(x1)

and the jump rate from x1 to x0 is 1
m(x1)w(x1)

1
u−,x1 (x0)

.

If x0 < x1 < x2 are three consecutive points in J, then the rate of killing while in x1
is

1

m(x1)w(x1)

(
W (u−,x2 , u+,x0)(x1)

u−,x2(x1)u+,x0(x1)
− 1

u−,x1(x0)
− 1

u+,x1(x2)

)

If J has a minimum x0 and x1 is the second lowest point in J, then the killing rate

while in x0 is
1

m(x0)w(x0)

(
W (u−,x1 , u↑)(x0)

u−,x1(x0)u↑(x0)
− 1

u+,x0(x1)

)

An analogous expression holds for the killing rate while in a possible maximum of J.
XJ is transient if and only if X is. Let LJ be the generator of XJ. LJ is symmetric

relatively to mJ. Its Green’s function relatively to mJ is (G(x, y))x,y∈I , that is the

restriction of the Green’s function of L to J× J. XJ may not be conservative even if

the diffusion X is. In case if J is not finite, XJ may blow up performing an infinite

number of jumps in finite time. Measures (µx,yL )x,y∈I , µL and µ∗
L have discrete space

analogues (µx,yLJ
)x,y∈J, µLJ

and µ∗
LJ

as defined in [13], that follow the patterns (3.2.2)

and (3.2.1).

Proposition 3.26. — Let x, y ∈ J. Then γ 7→ γJ transforms µx,yL in µx,yLJ
and µ∗

L in

µ∗
LJ
.

Proof. — The representation (3.2.3) also holds for µx,yLJ
. For l > 0, let

τ
y
l := inf{t ≥ 0|ℓyt (X) > l}

and

τ
y,J
l := inf{s ≥ 0|ℓys(XJ) > l}

Then for any non-negative measurable functional F

µ
x,y
LJ

(F (γ)) =

∫ +∞

0

dlEx
[
1
τ
y,J

l
<IJ

ζ

F ((XJ
s)0≤s≤τy,J

l

)
]
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But (XJ
s)0≤s≤τy,J

λ
is the image of (Xt)0≤t≤τy

λ
by the map γ 7→ γJ and τy,Jl < IJ

ζ if and

only if τyl < ζ. Thus µx,yLJ
is the image of µx,yL through the restriction on path to J.

The second part of the proposition can be deduced from that for any x ∈ J

ℓx(γ)µ∗
L(dγ) = π∗µ

x,x
L (dγ)

and as noticed in [13]

ℓx(γ)µ∗
LJ
(dγJ) = π∗µ

x,x
LJ

(dγJ)

Previous restriction property and the time-change covariance of µ∗ (corollary 3.12)

can be treated in a unified framework of the time change by the inverse of a continuous

additive functional. This is done in [10], section 7.

3.8. Measure on loops in case of creation of mass

We can further extend the definition of the measures µx,y on paths and µ and µ∗

on loops to the case of L being a ”generator” on I containing a creation of mass term

as in (2.3.1). Doing so will enable us to emphasize further the h-transform invariance

of the measure on loops and will be useful in section 4.2 to compute the exponential

moments of the occupation field of Poisson ensembles of Markov loops. Let ν be

signed measure on I. Let L(0) := 1
m(x)

d
dx

(
1

w(x)
d
dx

)
and L := L(0) + ν.

Definition 3.27. — – µ
x,y
L (dγ) := exp

(∫
I
lx(γ)m(x)ν(dx)

)
µ
x,y

L(0)(dγ)

– µL(dγ) := exp
(∫
I
lx(γ)m(x)ν(dx)

)
µL(0)(dγ)

– µ∗
L := π∗µL

Definition 3.27 is consistent with properties 3.3 (iv) and 3.8 (iii). If ν̃ is any other

signed measure on I, then

(3.8.1) µ
x,y
L+ν̃(dγ) := exp

(∫

I

ℓx(γ)m(x)ν̃(dx)

)
µ
x,y
L (dγ)

Same holds for µ and µ∗. Under the extended definition, the measures µx,y still satisfy

properties 3.3 (ii), (iii), (v) and (vi). Proposition 3.6 remains true. µ still satisfies

properties 3.8 (i), (ii) and (iv). Proposition 3.9 and corollary 3.10 still hold. The

identities (3.3.4) and (3.3.8) remain true for µ∗. Concerning the h-transforms, we

have:

Proposition 3.28. — Let h be a continuous positive function on I such that d2h
dx2

is a signed measure. h(x)2m(x)dx is a speed measure for Conj(h, L). Then for all

x, y ∈ I, µx,y
Conj(h,L) = 1

h(x)h(y)µ
x,y
L , and µConj(h,L) = µL. Conversely, if L and

L̃ are two ”generators” with or without creation of mass such that µL = µ
L̃

then

there is a positive continuous function h on I such that d2h
dx2 is a signed measure and

L̃ = Conj(h, L).
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Proof. — There is a positive Radon measure κ̃ on I such that both L − κ̃ and

Conj(h, L)− κ̃ are generators of (killed) diffusions. But

Conj(h, L)− κ̃ = Conj(h, L− κ̃)

It follows that µx,y
Conj(h,L)−κ̃ = 1

h(x)h(y)µ
x,y
L−κ̃ and µConj(h,L)−κ̃ = µL−κ̃. Applying

(3.8.1) we get the result.

If µL = µ
L̃
, we can again consider κ̃ a positive Radon measure on I such that both

L − κ̃ and L̃− κ̃ are generators of (killed) diffusions. Then according to proposition

3.16, there is a positive continuous function h on I such that d2h
dx2 is a signed measure

and L̃− k̃ = Conj(h, L− k̃). Then L̃ = Conj(h, L).

Similarly to the case of generators of diffusions (section 3.5), one can consider L-

harmonic functions u−,x and u+,x in case of L containing creation of mass. If L ∈ D+,

then u−,x respectively u+,x is not necessarily positive on I ∩ (−∞, x) respectively

I ∩ (x,+∞). Let

M(x) := sup{y ∈ I, y ≥ x|∀z ∈ (x, y), u+,x(z) > 0} ∈ I ∪ {sup I}

If L ∈ D0,− then for all x ∈ I, M(x) = sup I. Let y ∈ I, y > x. If y < M(x),

then L|(x,y) ∈ D−. If y = M(x), then L|(x,y) ∈ D0. If y > M(x), then L|(x,y) ∈ D+.

The diffusion ρ+,x of generator L+,x = Conj(u+,x, L+,x
|(x,M(x))) is defined on (x,M(x)).

Similarly for ρ−,y. Moreover if If M(x) ∈ I, then L+,x
|(x,M(x)) = L

−,M(x)
|(x,M(x)).

If L ∈ D0,−, the description of the measure on (min γ,max γ) induced by µ∗

as well as of the probability measures obtained by conditioning µ∗ by the value of

(min γ,max γ) is the same as given by corollary 3.19, with the same formal expressions.

Next we state what happens if L ∈ D+:

Proposition 3.29. — Let L ∈ D+. The measure on (min γ,max γ) induced by

µ∗ and restricted to the set {a ∈ I, b ∈ (a,M(a))} is 1a∈I,b∈(a,M(a))
dadb

u+,a(b)u−,b(a)
.

If a < b < M(a), then the probability measure obtained through conditioning by

(min γ,max γ) = (a, b) has the same description as in corollary 3.19. Outside the set

{a ∈ I, b ∈ (a,M(a))}, the measure on (min γ,max γ) is not locally finite. That is to

say that, if a < b ∈ I and b ≥M(a), then for all ε > 0.

(3.8.2) µ∗({min γ ∈ (a, a+ ε),max γ ∈ (b − ε, b)}) = +∞

Proof. — For the behaviour on {a ∈ I, b ∈ (a,M(a))}: There is a countable collection
(Ij)j≥0 of open subintervals of I such that

{a ∈ I, b ∈ (a,M(a))} =
⋃

j≥0

{x < y ∈ Ij}

Since for all j, L|Ij ∈ D0,−, corollary 3.19 applies to L|Ij . Combining the descriptions

on different {a < b ∈ Ij}, we get the description on {a ∈ I, b ∈ (a,M(a))}.
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For the behaviour outside {a ∈ I, b ∈ (a,M(a))}: Let A < B ∈ R. Then

(3.8.3) µ∗
BM ({min γ < A,max γ > B}) =

∫ +∞

B

∫ A

−∞

dadb

(b− a)2
= +∞

If a < b ∈ I and M(a) = b, then 1a<γ<bµ
∗ is the image of µ∗

BM through a change of

scale and time. In this case (3.8.2) follows from (3.8.3). If b > M(a), then L|(a,b) ∈
D+. According to proposition 2.9 (iv), there is a positive measure Radon measure κ

on (a, b) such that L|(a,b) − κ ∈ D0. From what precedes, (3.8.2) holds for µ∗
L|(a,b)−κ.

Moreover, µ∗
L|(a,b)

≥ µ∗
L|(a,b)−κ. So (3.8.2) holds for µ∗

L|(a,b)
.



CHAPTER 4

OCCUPATION FIELDS OF THE POISSON ENSEMBLES

OF MARKOV LOOPS

4.1. Inhomogeneous continuous state branching processes with immigra-

tion

We will identify the occupation fields of the Poisson ensembles of Markov loops

as inhomogeneous continuous state branching processes with immigration. This will

be done in section 4.2. In the section 4.1 we will give the basic properties of such

processes. In section 4.3 we will deal with the particular case of the intensity being
1
2µ

∗, in relation with Dynkin’s isomorphism.

Let I be an open interval of R. We will consider stochastic processes where x ∈ I

is the evolution variable. We do not call it time because in the sequel it will rather

represent a space variable. Let (Bx)x∈R be a standard Brownian motion. Consider

the following SDE:

(4.1.1) dZ̃x = σ(x)

√
Z̃xdBx + b(x)Z̃xdx

(4.1.2) dZx = σ(x)
√
ZxdBx + b(x)Zxdx+ c(x)dx

For our needs we will assume that σ is positive and continuous on I, that b and

c are only locally bounded and that c is non negative. In this case existence and

pathwise uniqueness holds for (4.1.1) and (4.1.2) (see [24], chapter IX, §3), and Z̃

and Z take values in R+. 0 is an absorbing state for Z̃.

(4.1.1) satisfies the branching property: if Z̃(1) and Z̃(2) are two independent pro-

cesses solutions in law to (4.1.1), defined on I ∩ [x0,+∞), then Z̃(1) + Z̃(2) is a

solution in law to (4.1.1). If Z̃ and Z are two independent processes, Z̃ solution in

law to (4.1.1) and Z solution in law to (4.1.2), defined on I ∩ [x0,+∞), then Z + Z̃

is a solution in law to (4.1.2). Solutions to (4.1.2) are (inhomogeneous) continuous

state branching processes with immigration. The branching mechanism is given by

(4.1.1) and the immigration measure is c(x)dx. The homogeneous case (σ, b and c

constant) was extensively studied. See [17].
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The case of inhomogeneous branching without immigration reduces to the homo-

geneous case as follows: Let x0 ∈ I and let

C(x) := exp

(
−
∫ x

x0

b(y) dy

)
A(x) :=

∫ x

x0

σ(y)2C(y)2dy

If (Z̃x)x∈I is a solution to (4.1.1), then (C(A−1(a))Z̃A−1(a))a∈A(I) is a solution in law

to

dZ̃a = 2

√
Z̃adBa

Let Z̃ be a solution to (4.1.1) defined on I ∩ [x0,+∞), starting at x0 with the

initial condition Z̃x0 = z0 ≥ 0. Then, for λ ≥ 0 and x ∈ I, x ≥ x0:

E
Z̃x0=z0

[
e−λZ̃x

]
= e−z0ψ(x0,x,λ)

ψ(x0, x, λ) depends continuously on (x0, x, λ). If x = x0 then

(4.1.3) ψ(x0, x0, λ) = λ

If x0 ≤ x1 ≤ x2 ∈ I then

ψ(x0, x2, λ) = ψ(x0, x1, ψ(x1, x2, λ))

ψ satisfies the differential equation

(4.1.4)
∂ψ

∂x0
(x0, x, λ) =

σ(x0)
2

2
ψ(x0, x, λ)

2 − b(x0)ψ(x0, x, λ)

If b is not continuous, equation (4.1.4) should be understand in the weak sense. If be

is continuous, then (4.1.4) satisfies the Cauchy-Lipschitz conditions, and ψ is uniquely

determined by (4.1.4) and the initial condition (4.1.3). This is also the case even if

b is not continuous. Indeed, by considering C(x)Z̃x rather than Z̃x, that is to say

considering C(x)
C(x0)

ψ(x0, x, λ) rather than ψ(x0, x, λ), we get rid of b.

Inhomogeneous branching processes are related to the local times of general one-

dimensional diffusions:

Proposition 4.1. — Let x0 ∈ I and let (Xt)0≤t<ζ be a diffusion on I of generator

L of form (2.2.1) starting from x0. Let z0 > 0 and

τx0
z0

:= inf{t ≥ 0|ℓx0
t (X) > z0}

Then conditionally on τx0
z0
< ζ, (ℓx

τ
x0
z0

(X))x∈I,x≥x0 is a solution in law to the SDE:

(4.1.5) dZ̃x =
√
2w(x)

√
Z̃xdBx + 2

d log u↓
dx

(x)Z̃xdx

Proof. — If X is the Brownian motion on R, then w ≡ 2 and u↓ is constant. In

this case the assertion is the second Ray-Knight theorem. See [24], chapter XI,

§2. The equation (4.1.5) is then the equation of a square of Bessel 0 process. If

xmin < x0 and X is the Brownian motion on (xmin,+∞) killed in xmin then the law
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of (ℓx
τ
x0
z0

(X))x∈I,x≥x0 conditionally on τx0
z0

< ζ does not depend on xmin and is the

same as in case of the Brownian motion on R. Equation (4.1.5) is still satisfied.

If X is a diffusion on I that satisfies that for all x > a ∈ I, starting from x,

X reaches almost surly a, which is equivalent to u↓ being constant, then through

a change of scale and time X is the Brownian motion on some (xmin,+∞) where

xmin ∈ [−∞,+∞). Time change does not change the local times because we defined

them relatively to the speed measure. Only the change of scale matters. If S is a

primitive of w, then conditionally on τx0
z0

< ζ, (ℓ
S−1(2y)

τ
x0
z0

(X))y≥ 1
2S(x0) is a square of

Bessel 0 process. The equation (4.1.5) follows from the equation of the square of

Bessel 0 process by deterministic change of variable dy := 1
2w(x)dx.

Now the general case: let (X̃t)0≤t<ζ̃ be the diffusion of generator Conj(u↓, L).
w(x)
u↓(x)2

dx is the natural scale measure of X̃ and u↓(x)2m(x)dx is its speed measure.

We assume that both X and X̃ start from x0. The law of X̃ up to the last time it

visits x0 is the same as for X . Let

τ̃ := inf

{
t ≥ 0|ℓx0

t (X̃) >
1

u↓(x0)2
z0

}

Then the law of (ℓx
τ
x0
z0

(X))x∈I,x≥x0 conditionally on τx0
z0

< ζ is the same as the law

of (u↓(x)2ℓxτ̃ (X̃))x∈I,x≥x0 conditionally on τ̃ < ζ̃. The factor u↓(x)2 comes from the

fact that performing an h-transform we change the measure relatively to which the

local times are defined. For any a < x0 ∈ I, X̃ reaches a a.s. Thus (ℓxτ̃ (X̃))x∈I,x≥x0

satisfies the SDE

dZ̃x =

√
2w(x)

u↓(x)

√
Z̃xdBx

and (u↓(x)2ℓxτ̃x0
z0

(X̃))x∈I,x≥x0 satisfies (4.1.5).

If there is immigration: Let Z be a solution to (4.1.2) defined on I ∩ [x0,+∞),

starting at x0 with the initial condition Zx0 = z0 ≥ 0. Then, for λ ≥ 0 and x ∈ I,

x ≥ x0:

(4.1.6) EZx0=z0

[
e−λZx

]
= exp

(
−z0ψ(x0, x, λ)−

∫ x

x0

ψ(y, x, λ)c(y)dy

)

4.2. Occupation field

Let L be the generator of a diffusion on I of form (2.2.1). Let Lα,L be a Poisson

ensemble of intensity αµ∗
L. Lα,L is a random infinite countable collection of unrooted

loops supported in I. It is sometimes called ”loop soup”.

Definition 4.2. — The occupation field of Lα,L is (L̂xα,L)x∈I where

L̂xα,L :=
∑

γ∈Lα,L

ℓx(γ)
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We will drop out the subscript L whenever there is no ambiguity on L. In this

subsection we will identify the law of (L̂xα)x∈I as an inhomogeneous continuous state

branching process with immigration. If J is a discrete subset of I, then applying

proposition 3.26 we deduce that (L̂xα)x∈J is the occupation field of the Poisson ensem-

ble of discrete loops of intensity αµ∗
LJ

as defined in [13], chapter 4. This fact allows

us to apply the results of [13] in order to describe the finite-dimensional marginals of

the occupation field. If the diffusion is recurrent, then for all x ∈ I, L̂xα = +∞ a.s. If

the diffusion is transient, then for all x ∈ I, L̂xα < +∞ a.s. Next we state how does

the occupation field behave if we apply various transformations on L.

Property 4.3. — Let L be the generator of a transient diffusion.

– (i) If A is a change of scale function, then

L̂A(x)

α,Scale
gen
A

L
= L̂xα,L

– (ii) If V is a positive continuous function on I, then

L̂x
α, 1

V
L
= L̂xα,L

– (iii) If h is a positive continuous function on I such that Lh is a negative

measure, then

L̂xα,Conj(h,L) =
1

h(x)2
L̂xα,L

Previous equalities depend on a particular choice of the speed measure for the

modification of L. For (i) we choose
(
dA
dx

◦A−1
)−1

m ◦ A−1da. For (ii) we choose
1

V (x)m(x)dx. For (iii) we choose h(x)2m(x)dx. The fact that L̂xα,Conj(h,L) 6= L̂xα,L
despite Lα,Conj(h,L) = Lα,L comes from a change of speed measure.

Next we characterize the finite-dimensional marginals of the occupation field by

stating the results that appear in [13], chapter 4.

Property 4.4. — The distribution of L̂xα is

(GL(x, x))
α

Γ(α)
lα−1 exp

(
− l

GL(x, x)

)
1l>0dl

Let x1, x2, . . . , xn ∈ I and λ1, λ2, . . . , λn ≥ 0. Then

(4.2.1) E

[
exp

(
−

n∑

i=1

λiL̂xi
α

)]
=

(
det(GL−∑

n
i=1 λiδxi

(xi, xj))1≤i,j≤n

det(GL(xi, xj))1≤i,j≤n

)α

The moment E
[
L̂x1
α L̂x2

α . . . L̂xn
α

]
is an α-permanent:

E
[
L̂x1
α L̂x2

α . . . L̂xn
α

]
=
∑

σ∈Sn

α♯ cycles of σ

n∏

i=1

G(xi, xσ(i))
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If J is a discrete subset of I, then (L̂xα)x∈J, viewed as a stochastic process that evolves

when x increases, is an inhomogeneous continuous state branching process with im-

migration defined on the discrete set J. In particular, for any x1 ≤ x2 ≤ · · · ≤ xn ∈ I

and p ∈ {1, 2, . . . , n},
(
L̂x1
α , L̂x2

α , . . . , L̂
xp
α

)
and

(
L̂xp
α , L̂xp+1

α , . . . , L̂xn
α

)
are independent

conditionally on L̂xp
α .

Next we show that the processes x 7→ L̂xα parametrized by x ∈ I, where x is

assumed to increase, is an inhomogeneous branching process with immigration of

form (4.1.2). In particular, it has a continuous version and is inhomogeneous Markov.

Proposition 4.5. — (L̂xα)x∈I has the same finite-dimensional marginals as a solu-

tion to the stochastic differential equation

(4.2.2) dZx =
√
2w(x)

√
ZxdBx + 2

d log u↓
dx

(x)Zxdx+ αw(x)dx

If L is the generator of a Brownian motion on (0,+∞) killed when it hits 0, then

(L̂xα)x>0 has the same law as the square of a Bessel process of dimension 2α starting

from 0 at x = 0. If L is the generator of a Brownian motion on (0, xmax), killed when

hitting the boundary, then (L̂xα)0<x<xmax
has the same law as the square of a Bessel

bridge of dimension 2α from 0 at x = 0 to 0 at x = xmax.

Proof. — Let x0 < x ∈ I and λ0, λ ≥ 0. Applying the identity (4.2.1) to the case of

two points, we get that

(4.2.3)

E
[
exp

(
−λ0L̂x0

α − λL̂xα
)]

=
(
(1 + λ0G(x0, x0))(1 + λG(x, x)) − λ0λ(G(x0, x))

2
)−α

Let

Λ(x0, λ0) := E
[
e−λ0L̂x0

α

]
=

(
G(x0, x0)

G(x0, x0) + λ0

)α

For y ≤ x, let

ψ(y, x, λ) :=
G(x, y)G(y, x)λ

G(y, y)(G(y, y) + λdety,xG)

ϕ(y, x, λ) := − log

(
G(y, y)

G(y, y) + λdety,xG

)

One can check that the right-hand side of (4.2.3) equals

Λ(x0, λ0 + ψ(x0, x, λ)) exp(−αϕ(x0, x, λ))

In particular for the conditional Laplace transform:

(4.2.4) E
[
exp

(
−λL̂xα

)
|L̂x0
α

]
= exp

(
−L̂x0

α ψ(x0, x, λ)
)
exp(−αϕ(x0, x, λ)) a.s.
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Moreover

∂ψ

∂y
(y, x, λ) =W (u↓, u↑)(y)ψ(y, x, λ)

2 − 2

u↓(y)

du↓
dy

(y)ψ(y, x, λ)

=w(y)ψ(y, x, λ)2 − 2
d log u↓
dy

(y)ψ(y, x, λ)

and
∂ϕ

∂y
(y, x, λ) = −W (u↓, u↑)(y)ψ(y, x, λ) = −w(y)ψ(y, x, λ)

and we have the initial conditions ψ(x, x, λ) = λ and ϕ(x, x, λ) = 0. Thus (4.2.4)

has the same form as (4.1.6) where c(y) = αw(y). Let (Zy)y∈I,y≥x0 be a solution to

(4.2.2) with the initial condition Zx0 being a gamma random variable of parameter α

with mean αG(x0, x0). It follows from what precedes that (L̂x0
α , L̂xα) has the same law

as (Zx0 , Zx). Using the conditional independence satisfied by the occupation field, we

deduce that (L̂yα)y∈I,y≥x0 has the same finite-dimensional marginals as (Zy)y∈I,y≥x0 .

Making x0 converge to inf I along a countable subset, we get a consistent family of con-

tinuous stochastic processes, which induces a continuous stochastic process (Zy)y∈I
defined on whole I. It satisfies (4.2.2) and has the same finite-dimensional marginals

as (L̂yα)y∈I .
In case of a Brownian motion in (0,+∞) killed in 0, the equation (4.2.2) becomes

dZx = 2
√
ZxdBx + 2αdx

which is the SDE satisfied by the square of a Bessel process of dimension 2α. Moreover

(L̂xα)x>0 has the same one-dimensional marginals as the latter, more precisely L̂xα is

a gamma r.v. of parameter α with mean 2αx. This shows the equality in law.

In case of a Brownian motion in (0, xmax) killed in 0 and xmax the equation (4.2.2)

becomes

dZx = 2
√
ZxdBx +

1

xmax − x
Zxdx+ 2αdx

which is the SDE satisfied by the square of a Bessel bridge of dimension 2α from

0 at x = 0 to 0 at x = xmax. Moreover the latter process and (L̂xα)0<x<xmax
have

the same one-dimensional marginals, more precisely gamma r.v. of parameter α with

mean 2α(xmax − x) x
xmax

. Thus the two have the same law.

We showed that (L̂xα)x∈I has the same finite-dimensional marginals as a continu-

ous stochastic process. We will assume in the sequel and prove in section 5.2 that

one can couple the Poisson ensemble Lα and a continuous version of its occupation

field (L̂xα)x∈I on the same probability space. This does not follow trivially from the

fact that the process (L̂xα)x∈I has a continuous version. Consider the following coun-

terexample: Let U be an uniform r.v. on (0, 1). Let E be a countable random set of

Brownian excursions defined as follows: conditionally on U E is a Poisson ensemble



4.2. OCCUPATION FIELD 57

with intensity η>UBM + η<UBM . Let (Êx)x∈R be the occupation field of E . Then Ê is

continuous on (−∞, U) and (U,+∞) but not at U . Indeed ÊU = 0 and

lim
x→U−

Êx = lim
x→U−

Êx = 1

Let (Ê ′
x)x∈R be the field defined by: Ê ′

x = Êx if x 6= U and Ê ′
U = 1. (Ê ′

x)x∈R is

continuous and for any fixed x ∈ R Ê ′
x = Êx a.s. Thus (Ê ′

x)x∈R is a continuous version

of the process (Êx)x∈R but it can not be implemented as a sum of local time across

the excursions in E . As we will show in section 5.2, such a difficulty does not arise in

case of Lα.
(L̂xα)x∈I is an inhomogeneous continuous state branching with immigration. The

branching mechanism is the same as for the local times of the diffusion X , given by

(4.1). The immigration measure is αw(x)dx. The interpretation is the following:

given a loop in Lα, its family of local times performs a branching according to the

mechanism (4.1), independently from the other loops. The immigration between x and

x+∆x comes from the loops whose minima belong to (x, x+∆x). It is remarkable that

although the immigration measure is absolutely continuous with respect to Lebesgue

measure, there is only a countable number of moments at which immigration occurs.

These are the positions of the minima of loops in Lα. Moreover the local time of each

loop at its minimum is zero. For x > a ∈ I, let

L̂(a),x
α :=

∑

γ ∈ Lα

minγ > a

ℓx(γ)

Let a < b ∈ I. For j ≤ n ∈ N, let ∆xn := 1
n
(b − a) and let xj,n := a + j∆xn. Then(

L̂(xj−1),xj
α

)
1≤j≤n

is a sequence of independent gamma r.v. of parameter α and the

mean of L̂(xj−1),xj
α is α

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)
. For n large

G(xj , xj)−
G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)
= w(xj−1)∆xn + o(∆xn)

and o(∆xn) is uniform in j. Thus

lim
n→+∞

E
[ n∑

j=1

L̂(xj−1),xj
α

]
=

lim
n→+∞

α

n∑

j=1

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)
= α

∫ b

a

w(x)dx
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and

lim
n→+∞

V ar
( n∑

j=1

L̂(xj−1),xj
α

)
=

lim
n→+∞

α

n∑

j=1

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)2

= 0

It follows that
∑n

j=1 L̂
(xj−1),xj
α converges in probability to α

∫ b
a
w(x) dx. This is con-

sistent with our interpretation of immigration.

Next proposition deals with the zeroes of the occupation field.

Proposition 4.6. — Let x0 ∈ I. If
∫ x0

inf I
w(x)dx < +∞ then

lim
x→inf I

L̂xα = 0

Analogous result holds if
∫ sup I

x0
w(x) dx < +∞.

If α ≥ 1, then the continuous process (L̂xα)x∈I stays almost surely positive on I. If

α < 1 then (L̂xα)x∈I hits 0 infinitely many times on I.

Proof. — If
∫ x0

inf I w(x)dx < +∞, then L + κ, where κ is the killing measure of L, is

also the generator of a transient diffusion. We can couple (L̂xα,L)x∈I and (L̂xα,L+κ)x∈I
on the same probability space such that a.s. for all x ∈ I, L̂xα,L ≤ L̂xα,L+κ. But

according to property 4.3 (i), (L̂xα,L+κ)x∈I is just a scale changed square of Bessel

process starting from 0 or square of a Bessel bridge from 0 to 0. Thus

lim
x→inf I

L̂xα,L ≤ lim
x→inf I

L̂xα,L+κ = 0

Regarding the number of zeros of (L̂xα)x∈I on I, property 4.3 ensures that it remains

unchanged if we apply scale, time changes and h-transforms to L. Since any generator

of a transient diffusion is equivalent through latter transformation to the generator

of a Brownian motion on (0,+∞) killed in 0, the result on the number of zeros of

(L̂xα)x∈I follows from standard properties of Bessel processes.

In [26] respectively [14] are studied the clusters of loops induced by a Poisson

ensemble of loops in the setting of planar Brownian motion respectively Markovian

jump processes on graphs. In our setting of one dimensional diffusions the description

of such clusters is simple and is related to the zeros of the occupation field. We

introduce an equivalence relation on the loops of Lα: γ is in the same class as γ̃ if

there is a chain of loops γ0, γ1, . . . , γn in Lα such that γ0 = γ, γn = γ̃ and for all

i ∈ {0, 1, . . . , n−1}, γi([0, T (γi)])∩γi+1([0, T (γi+1)]) 6= ∅. A cluster is the union of all

γ([0, T (γ)]) where the loops γ belong to the same equivalence class. It is a subinterval

of I. By definition clusters corresponding to different equivalence classes are disjoint.
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Proposition 4.7. — Let L be the generator of a transient diffusion on I. If α ≥ 1,

the loops in Lα form a single cluster: I. If α ∈ (0, 1), there are infinitely many

clusters. These are the maximal open intervals on which (L̂xα)x∈I is positive. In case

of the Brownian motion on (0,+∞) killed at 0, the clusters correspond to the jumps of

a stable subordinator with index 1−α. In case of a general diffusion, by performing a

change of scale of derivative 1
2
w
u2
↓
, we reduce the problem to the previous case. In case

of the Brownian motion on (0,+∞) killed at 0 and with uniform killing κ, the clusters

correspond to the jumps of a subordinator with Levy measure 1x>0
e2

√
2κxdx

(e2
√

2κx−1)2−α
.

Proof. — Assume that Lα and a continuous version of (L̂xα)x∈I are defined on the

same probability space. Almost surely the following holds

– Given γ 6= γ′ ∈ Lα, min γ 6= max γ′ and max γ 6= min γ′.
– For all γ ∈ Lα, ℓminγ(γ) = ℓmaxγ(γ) = 0 and ℓx(γ) is positive for x ∈

(min γ,max γ).

Whenever the above two conditions hold it follows deterministically that the clusters

are the intervals on which (L̂xα)x∈I stays positive. We deduce then the number of

clusters from proposition 4.6.

If L is the generator of the Brownian motion on (0,+∞) killed at 0, then (L̂xα)x∈I
is the square of a Bessel process of dimension 2α and its excursions correspond to the

jumps of a stable subordinator with index 1− α.

In general a generator L has the same measure on loops as Conj(u↓, L). A diffusion

of generator Conj(u↓, L) transforms through a change of time and a change of scale

of density 1
2
w
u2
↓
into a Brownian motion on (0,+∞) killed at 0. For the clusters, the

change of time does not matter.

In case of a Brownian motion on (0,+∞) killed at 0 and with uniform killing κ,

we can take u↓(x) = e−
√
2κx. The scale function is then

S(x) =

∫ x

0

dy

u↓(y)2
=

∫ x

0

e2
√
2κydy =

1

2
√
2κ

(e2
√
2κx − 1)

Let (Yt)t≥0 be an 1− α stable subordinator with Levy measure 1y>0y
−(2−α)dy. The

clusters of L
α, 12

d2

dx2 −κ correspond to the jumps of the process (S−1(Yt))t≥0, which is

not a subordinator. We will that nevertheless the latter process the same set of jumps

as a subordinator with Levy measure 1x>0
e2

√
2κxdx

(e2
√

2κx−1)2−α
. Let ε > 0 and (Yε,t)t≥0 be

the process obtained from (Yt)t≥0 by removing all the jumps of height less then ε.

By construction Yε,t ≤ Yt. (S−1(Yε,t))t≥0 is a Markov process: given the position of

S−1(Yε,t) at time t, the process waits an exponential holding time with inverse of the

mean equal to
∫ +∞

ε

dy

y2−α
=

1

(1− α)ε1−α
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Once a jump occurs, the jump of Yε is distributed according the probability

1y>ε(1− α)ε1−α
dy

y2−α

The distribution of the corresponding jump of S−1(Yε,t) is obtained by pushing for-

ward the above probability by the map y 7→ S−1(y + Yε,t)− S−1(Yε,t) which gives

1x>S−1(ε+Yε,t)−S−1(Yε,t)(1− α)ε1−α
(2
√
2κ)2−αe2

√
2κ(x+S−1(Yε,t))dx

(
e2

√
2κ(x+S−1(Yε,t)) − e2

√
2κS−1(Yε,t)

)2−α

= 1x>S−1(ε+Yε,t)−S−1(Yε,t)(1−α)ε1−α(2
√
2κ)2−αe−(1−α)2

√
2κS−1(Yε,t)

e2
√
2κxdx

(e2
√
2κx − 1)2−α

= 1x>S−1(ε+Yε,t)−S−1(Yε,t)(1− α)ε1−α
(2
√
2κ)2−α

(1 + 2
√
2κYε,t)1−α

e2
√
2κxdx

(e2
√
2κx − 1)2−α

Consider now the random time change

τε(v) := inf

{
t ≥ 0

∣∣∣
∫ t

0

(2
√
2κ)2−α

(1 + 2
√
2κYε,s)1−α

ds ≥ v

}

and at the limit as ε→ 0

τ(v) := inf

{
t ≥ 0

∣∣∣
∫ t

0

(2
√
2κ)2−α

(1 + 2
√
2κYε,s)1−α

ds ≥ v

}

For the time-changed process (S−1(Yε,τε(v)))v≥0, the rate of jumps of height belonging

to [x, x + dx] is




e2
√
2κxdx

(e2
√
2κx − 1)2−α

if x > S−1(ε+ Yε,τε(v))− S−1(Yε,τε(v))

0 otherwise

Thus, as ε goes to 0, on one hand the process (S−1(Yε,τε(v)))v≥0 converges in law to

(S−1(Yτ(v)))v≥0 and on the other hand it converges in law to a subordinator with

Levy measure 1x>0
e2

√
2κxdx

(e2
√

2κx−1)2−α
.

The clusters coalesce when α increases and fragment when α decreases. Some

information on the coalescence of clusters delimited by the zeroes of Bessel processes

is given in [2], section 3. This clusters can be obtained as a limit of clusters of

discrete loops on discrete subsets. In case of a symmetric jump process to the nearest

neighbours on εN, if α > 1, there are finitely many clusters, and if α ∈ (0, 1), there

are infinitely many clusters and these clusters are given by the holding times of a

renewal process, which suitable normalized converges in law as ε→ 0+ to the inverse

of a stable subordinator with index 1− α. See remark 3.3 in [14].

We can consider the occupation field (L̂xα,L)x∈I if L is not the generator of a

diffusion but contains creation of mass as in (2.3.1). In this setting, if h is a positive
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continuous function on I such that d2h
dx2 is a signed measure, then for all x ∈ I

L̂xα,Conj(h,L) =
1

h(x)2
L̂xα,L

It follows that if L ∈ D− then for all x ∈ I, L̂xα,L < +∞ a.s. and if L ∈ D0 then

for all x ∈ I, L̂xα,L = +∞ a.s. If L ∈ D+, then according to proposition 2.9 (iv),

there is a positive Radon measure κ̃ such that L − κ̃ ∈ D0. Then for all x ∈ I,

L̂xα,L ≥ L̂xα,L−κ̃ = +∞. If L ∈ D−, then properties 4.3 (i) and (ii) still hold. The

description given by the property 4.4 of the finite-dimensional marginals of (L̂xα)x∈I
is still true, although the case of creation of mass wasn’t considered in [13]. (L̂xα)x∈I
still satisfies the SDE (4.2.2).

Proposition 4.8. — Let L ∈ D− and ν̃ a finite signed measure with compact support

in I. Then there is equivalence between

– (i) E
[
exp

(∫
I
L̂xα,Lν̃(dx)

)]
< +∞

– (ii) L+ ν̃ ∈ D−

If L+ ν̃ ∈ D− then for s ∈ [0, 1]

(4.2.5) E

[
exp

(∫

I

L̂xα,Lν̃(dx)
)]

= exp

(
α

∫ 1

0

∫

I

GL+sν̃(x, x)ν̃(dx)ds

)

Proof. — First observe that
∫
I
L̂xα,L|ν̃|(dx) is almost surely finite because |ν̃| is finite

and has compact support and (L̂xα,L)x∈I is continuous. Also observe that D− is

convex. So if L+ ν̃ ∈ D−, then for all s ∈ [0, 1], L+ sν̃ ∈ D−.
(i) implies (ii): Let PLα,L

be the law of Lα,L and PLα,L+ν̃
be the law of Lα,L+ν̃ .

There is an absolute continuity relation between the intensity measures:

µL+ν̃(dγ) = exp

(∫

I

ℓx(γ)

)
µL(dγ)

In case (i) is true PLα,L+ν̃
is absolutely continuous with respect to PLα,L

and

(4.2.6) dPLα,L+ν̃
=

exp
(∫

I
L̂xα,Lν̃(dx)

)

E
[
exp

(∫
I
L̂xα,Lν̃(dx)

)]dPLα,L

But this can not be if L + ν̃ 6∈ D− because then for any x ∈ I, L̂xα,L < +∞ and

L̂xα,L+ν̃ = +∞. Thus necessarily L+ ν̃ ∈ D−.
(ii) implies (i): We first assume that ν̃ is a positive measure and L+ ν̃ ∈ D−. Then

PLα,L
is absolutely continuous with respect to PLα,L+ν̃

and

dPLα,L
=

exp
(
−
∫
I
L̂xα,L+ν̃ ν̃(dx)

)

E
[
exp

(
−
∫
I
L̂xα,L+ν̃ ν̃(dx)

)]dPLα,L+ν̃
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Inverting the above absolute continuity relation, we get that

E

[
exp

(∫

I

L̂xα,Lν̃(dx)
)]

= E

[
exp

(
−
∫

I

L̂xα,L+ν̃ ν̃(dx)
)]−1

< +∞

If ν̃ is not positive, let ν̃+ and −ν̃− be its positive respectively negative part. Then

E

[
exp

(∫

I

L̂xα,Lν̃(dx)
)]

= E

[
exp

(∫

I

L̂xα,L−ν̃− ν̃
+(dx)

)]
E

[
exp

(
−
∫

I

L̂xα,Lν̃−(dx)
)]

=
E
[
exp

(
−
∫
I
L̂xα,Lν̃−(dx)

)]

E
[
exp

(
−
∫
I
L̂xα,L+ν̃ ν̃+(dx)

)] < +∞

For the expression (4.2.5) of exponential moments:

(4.2.7)
d

ds
E

[
exp

(
s

∫

I

L̂xα,Lν̃(dx)
)]

= E

[∫

I

L̂xα,Lν̃(dx) exp
(
s

∫

I

L̂xα,Lν̃(dx)
)]

From the absolute continuity relation (4.2.6) follows that the right-hand side of (4.2.7)

equals

α

∫

I

GL+sν̃(x, x)ν̃(dx)E

[
exp

(
s

∫

I

L̂xα,Lν̃(dx)
)]

This implies (4.2.5).

As in discrete space case, the above exponential moments can be expressed using

determinants. On the complex Hilbert space L2(d|ν̃|) define for s ∈ [0, 1] the operators

(Gsν̃f)(x) :=

∫

I

GL+sν̃(x, y)f(y)ν̃(dy)

(|G∗
sν̃ |f)(x) :=

∫

I

GL+sν̃(x, y)f(y)|ν̃|(dy)

The operator |G∗
sν̃ | is self-adjoint, positive semi-definite with continuous kernel func-

tion, and according to [27], theorem 2.12, it is trace class. Since trace class operators

form a two-sided ideal in the algebra of bounded operators, Gsν̃ is also trace class.

Moreover

(4.2.8) Tr(Gsν̃) =

∫

I

GL+sν̃(x, x)ν̃(dx)

The determinant det(Id+Gsν̃) is well defined as a converging product of its eigenvalues

(see [27], chapter 3).

Proposition 4.9. —

exp

(
α

∫ 1

0

∫

I

GL+sν̃(x, x)ν̃(dx)ds

)
= (det(Id+Gν̃))

α
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Proof. — Gν̃ has only real eigenvalues. Indeed, let λ be such an eigenvalue and f a

non zero eigenfunction for λ. The sign of ν̃, sgn(ν̃), is a {−1,+1}-valued function

defined d|ν̃| almost everywhere.

(4.2.9)

∫

I

(sgn(ν̃)f̄)(x)|Gν̃ |(sgn(ν̃)f)(x)|ν̃ |(dx) = λ

∫

I

|f |2(x)ν̃(dx)

The left-hand side of (4.2.9) is non-negative. If the right-hand side of (4.2.9) is non-

zero, then λ is real. If it is zero, consider fε := f + εsgn(ν̃)f . Then

λ = lim
ε→0+

1

2ε

(∫

I

(sgn(ν̃)f̄ε)(x)|Gν̃ |(sgn(ν̃)fε)(x)|ν̃|(dx)
)(∫

I

|f |2(x)|ν̃|(dx)
)−1

and thus λ is real.

The operators Gsν̃ are compact and the characteristic space corresponding to each

of their non-zero eigenvalue is of finite dimension. Let (λi)i≥0 be the non-increasing

sequence of positive eigenvalues of Gν̃ . Each eigenvalue λi appears as many times as

the dimension of its characteristic space ker(Gν̃ − λiId)
n (n large enough). Similarly

let (−λ̃j)j≥0 be the non-decreasing sequence of the negative eigenvalues of Gν̃ . Let

s ∈ [0, 1]. According to the resolvent identity (lemma 2.8), the operators Gν̃ and Gsν̃

commute and satisfy the relation

(4.2.10) Gν̃Gsν̃ = Gsν̃Gν̃ =
1

1− s
(Gν̃ −Gsν̃)

Since Gν̃ and Gsν̃ commute, these operators have common characteristic spaces. From

(4.2.10) follows that
(

λi

1+(1−s)λi

)
i≥0

is a non-increasing sequence of positive eigenvalues

of Gsν̃ . If −1
1−s is not an eigenvalue of Gν̃ , then

( −λ̃j

1−(1−s)λ̃j

)
j≥0

is also a sequence of

eigenvalues of Gsν̃ . But the family of operators (Gsν̃)s∈[0,1] is bounded. Thus none

of
−λ̃j

1−(1−s)λ̃j
can blow up when s varies. So it turns out that Gν̃ has no eigenvalues

in (−∞,−1]. From (4.2.8) we get

∫

I

GL+sν̃(x, x)ν̃(dx) =
∑

i≥0

λi

1 + (1− s)λi
−
∑

j≥0

λ̃j

1− (1− s)λ̃j

The above sum is absolutely convergent, uniformly for s ∈ [0, 1]. Integrating over

[0, 1] yields

∫ 1

0

∫

I

GL+sν̃(x, x)ν̃(dx)ds =
∑

i≥0

log(1 + λi) +
∑

j≥0

log(1− λ̃j)

This concludes the proof.
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4.3. Dynkin’s isomorphism

In this subsection we recall the equality in law observed in [13] between the occu-

pation field (L̂x1
2

)x∈I and the square of a Gaussian Free Field and show how to derive

from this particular versions of Dynkin’s isomorphism.

Let L be a generator of a transient diffusion on I of form (2.2.1). Let (φx)x∈I be

a centred Gaussian process with variance-covariance function:

E[φxφy] = G(x, y)

(φx)x∈I is the Gaussian Free Field associated to L. Let S̃ be a primitive of w
u2
↓
. Then

S̃(sup I) = +∞. Moreover S̃(inf I) > −∞ because L is the generator of a transient

diffusion.
(

1

u↓(S̃−1(a))
φ
S̃−1(a)

)
a∈S̃(I)

is a standard Brownian motion starting from 0 at

S̃(inf I). In particular (φx)x∈I is inhomogeneous Markov and has continuous sample

paths.

It was shown in [13], chapter 5, that when α = 1
2 (L̂x1

2

)x∈I has the same law as

(12φ
2
x)x∈I . In case of a Brownian motion on (0,+∞) killed in 0, (L̂x1

2

)x>0 is the square

of a standard Brownian motion starting from 0. In case of a Brownian motion on

(0, xmax) killed in 0 and xmax, (L̂x1
2

)0<x<xmax
is the square of a standard Brownian

bridge on [0, xmax] from 0 to 0. In case of a Brownian motion on R with constant

killing rate κ, (L̂x1
2

)x∈R is the square of a stationary Ornstein–Uhlenbeck process.

The relation between the occupation field of a Poisson ensemble of Markov loops

and the square of a Gaussian Fee Field extends the Dynkin’s isomorphism which we

state below (see [7] and [9]):

Theorem(Dynkin’s Isomorphism). — Let x1, x2, . . . , x2n ∈ I. Then for any non-

negative measurable functional F on continuous paths on I,

(4.3.1) Eφ

[
2n∏

i=1

φxi
F ((

1

2
φ2x)x∈I)

]
=

∑

pairings

∫
Eφ
[
F ((

1

2
φ2x +

n∑

j=1

ℓx(γj))x∈I)
] ∏

pairs

µyj,zj (dγj)

where
∑

pairings means that the n pairs {yj, zj} are formed with all 2n points xi in

all (2n)!
2nn! possible ways.

Next we will show that in case xi = xi+n, for i ∈ {1, . . . , n} , i.e.
∏2n
i=1 φxi

being

a product of squares
∏n
i=1 φ

2
xi
, one can deduce the Dynkin’s isomorphism from the

relation between the square of the Gaussian Free Field and the occupation field. In

[15] and [10] this is only done in case n = 1 and x1 = x2 using the Palm’s identity

for Poissonian ensembles and the analogue of the relation (3.3.4). To generalize for
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any n we will use an extended version of Palm’s identity and the absolute continuity

relation given by proposition 3.4.1 (ii).

Lemma 4.10. — Let E be an abstract Polish space. Let M(E) be the space of locally

finite measures on E and let M ∈ M(E). Let Φ be a Poisson random measure of

intensity M. Let H be a positive measurable function on M(E) × En. Let Pn be the

set of partitions of {1, . . . , n}. If P ∈ Pn and i ∈ {1, . . . , n}, then P(i) will be the

equivalence class of i under P. The following identity holds:

(4.3.2) E
[ ∫

En

H(Φ, q1, . . . , qn)

n∏

i=1

Φ(dqi)
]
=

∑

P∈Pn

∫

E♯P
E
[
H(Φ +

∑

c∈P
δqc , qP(1), . . . , qP(n))

] ∏

c∈P
M(dqc)

Proof. — We will make a recurrence over n. If n = 1, (4.3.2) is the Palm’s identity

for Poisson random measures. Assume that n ≥ 2 and that (4.3.2) holds for n − 1.

We set

H̃(Φ, q1, . . . , qn−1) :=

∫

E
H(Φ, q1, . . . , qn−1, qn)Φ(dqn)

Then

(4.3.3)

E
[ ∫

En

H(Φ, q1, . . . , qn−1, qn)

n∏

i=1

Φ(dqi)
]
= E

[ ∫

En−1

H̃(Φ, q1, . . . , qn−1)

n−1∏

i=1

Φ(dqi)
]

=
∑

P′∈Pn−1

∫

E♯P′
E

[ ∫

E
H(Φ +

∑

c′∈P′

δqc′ , qP′(1), . . . , qP′(n−1), qn)

× (Φ(dqn) +
∑

c′∈P′

δqc′ (dqn))

] ∏

c′∈P′

M(dqc′)

Given a partition P ′ ∈ Pn−1, one can extend it to a partition of {1, . . . , n−1, n} either
by deciding that n is single in its equivalence class or by choosing an equivalence class

c′ ∈ P ′ and adjoining n to it. In the identity (4.3.3) the first case corresponds to the

integration with respect to Φ(dqn), and according to Palm’s identity

E

[∫

E
H(Φ +

∑

c′∈P′

δqc′ , qP′(1), . . . , qP′(n−1), qn)Φ(dqn)

]
=

∫

E
E

[
H(Φ +

∑

c′∈P′

δqc′ , qP′(1), . . . , qP′(n−1), qn)

]
M(dqn)

The second case corresponds to the integration with respect to δqc′ (dqn). Thus the

right-hand side of (4.3.3) equals the right-hand side of (4.3.2).
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Next we show how derive a particular case of Dynkin’s isomorphism using the

above extended Palm’s formula. Since (L̂x1
2

)x∈I and (12φ
2
x)x∈I are equal in law:

Eφ

[
n∏

i=1

φ2xi
F ((

1

2
φ2x)x∈I)

]
= 2nEL 1

2

[
n∏

i=1

L̂xi
1
2

F ((L̂x1
2
)x∈I)

]

Applying lemma 4.10 we get that

EL 1
2

[
n∏

i=1

L̂xi
1
2

F ((L̂x1
2
)x∈I)

]
=

∑

P∈Pn

∫ n∏

i=1

ℓxi(γP(i))E

[
F ((L̂x1

2
+
∑

c∈P
ℓx(γc))x∈I)

]
∏

c∈P

1

2
µ∗(dγc)

LetSn(P) be all the permutations σ of {1, . . . , n} such that the classes of the partition

P are the supports of the disjoint cycles of σ. Given a class c ∈ P , let jc be its smallest

element. From property 3.14 (ii) follows that
n∏

i=1

ℓxi(γP(i)) =
∑

σ∈Sn(P)

∏

c∈P
ℓ
∗xjc ,xσ(jc),...,xσ|c|(jc)(γc)

Proposition 3.15 (ii) states that

ℓ
∗xjc ,xσ(jc),...,xσ|c|(jc)(γc)µ

∗(dγc) =

π∗(µ
jc,σ(jc)(dγ̃jc)⊳ · · ·⊳ µσ

|c|−1(jc),σ
|c|(jc)(dγ̃σ|c|−1(jc))⊳ µσ

|c|(jc),jc(dγ̃σ|c|(jc)))

and if the loop γc is a concatenation of paths γ̃jc , . . . , γ̃σ|c|−1(jc), γ̃σ|c|(jc) then

ℓx(γc) = ℓx(γ̃jc) + · · ·+ ℓx(γ̃σ|c|−1(jc)) + ℓx(γ̃σ|c|(jc))

It follows that

(4.3.4) 2nEL 1
2

[
n∏

i=1

L̂xi
1
2

F ((L̂x1
2
)x∈I)

]
=

∑

σ∈Sn

2n−♯cycles of σ

∫
EL 1

2

[
F ((L̂x1

2
+

n∑

i=1

ℓx(γ̃i))x∈I)

]
n∏

i=1

µi,σ(i)(dγ̃i)

But the right-hand side of (4.3.4) is just the same as the right-hand side of (4.3.1) in

the specific case when for all i ∈ {1, . . . , n}, xi+n = xi. This finishes the derivation

of the special case of Dynkin’s isomorphism.
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DECOMPOSING PATHS INTO POISSON ENSEMBLES

OF LOOPS

5.1. Glueing together excursions ordered by their minima

Let L be the generator of a diffusion on I of form (2.2.1). A loop of Lα,L rooted at

its minimal point is a positive excursion. For a given x0 ∈ I, we will consider the loops

γ ∈ Lα,L such that min γ ∈ (inf I, x0]. We will root these loops at their minima and

then order the obtained excursions in the decreasing sense of their minima. Then we

will glue all these excursions together and obtain a continuous paths ξ
(x0)
α,L . The law

of this path can be described as a one-dimensional projection of a two-dimensional

Markov process. Moreover this path contains all the information on the ensemble of

loops Lα,L ∩ {γ ∈ L∗|min γ < x0}. So this is a way to sample the latter ensemble of

loops. In the particular case of α = 1, ξ
(x0)
1,L is the sample paths of a one-dimensional

diffusion. This is analogue of the link between L1 and the loop-erasure procedure

already observed in [19] and in [13], chapter 8 and will de described in detail in

section 5.3 In the section 5.1 we will consider generalities about glueing together

excursions ordered by their minima and probability laws won’t be involved. In the

section 5.2 we will deal with ξ
(x0)
α,L and identify its law. In the section 5.3 we will focus

on the case α = 1 and describe other ways of slicing sample paths of diffusions into

Poisson ensembles of loops.

Let x0 ∈ R and let Q be a countable everywhere dense subset of (−∞, x0). We

consider a deterministic collection of excursions (eq)q∈Q where (eq(t))0≤t≤T (eq) is a

continuous excursion above 0, T (eq) > 0 and

eq(0) = eq(T (eq)) = 0

∀t ∈ (0, T (eq)), eq(t) > 0

We also assume that for all C > 0 and a < x0, there are only finitely many q ∈
Q ∩ (a, x0) such that max eq > C and that for all a < x0

(5.1.1)
∑

q∈Q∩(a,x0)

T (eq) < +∞
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Let T (y) be the function defined on [0,+∞) by

T (y) :=
∑

q∈Q∩(x0−y,x0)

T (eq)

T is a non-decreasing function. Since Q is everywhere dense, T is increasing. T is

right-continuous and jumps when x0−y ∈ Q. The height of the jump is then T (e−y).
Let Tmax := T (+∞) ∈ (0,+∞]. For t ∈ [0, Tmax) we define

θ(t) := x0 − sup{y ∈ [0,+∞)|T (y) > t}
θ is a non-increasing function from [0, Tmax) to (−∞, x0]. Since T is increasing, θ is

continuous. We define

b−(t) = inf{s ∈ [0, Tmax)|θ(s) = θ(t)}
b+(t) = sup{s ∈ [0, Tmax)|θ(s) = θ(t)}

b−(t) < b+(t) if and only if θ(t) ∈ Q and then b+(t)− b−(t) = T (eθ(t)). We introduce

the set

b− := {t ∈ [0, Tmax)|θ(t) ∈ Q, b−(t) = θ(t)}
b− is in one to one correspondence with Q by t 7→ θ(t).

Finally we define on [0, Tmax) the function ξ:

ξ(t) :=

{
θ(t) if θ(t) 6∈ Q
θ(t) + eθ(t)(t− b−(t)) if θ(t) ∈ Q

Intuitively ξ is the function obtained by gluing together the excursions (q + eq)q∈Q
ordered in decreasing sense of their minima. See figure 1 for an example of ξ and θ.

Proposition 5.1. — ξ is continuous. For all t ∈ [0, Tmax)

(5.1.2) θ(t) = inf
[0,t]

ξ

The set b− can be recovered from ξ as follows:

(5.1.3) b− = {t ∈ [0, Tmax)|ξ(t) = inf
[0,t]

ξ and ∃ε > 0, ∀s ∈ (0, ε), ξ(t+ s) > ξ(t)}

If t0 ∈ b− then

(5.1.4) b+(t0) = inf{t ∈ [t0, Tmax]|ξ(t) < ξ(t0)}

Proof. — Let t ∈ [0, Tmax). To prove the continuity of ξ at t we distinguish three

case: the first case is when θ(t) ∈ Q and b−(t) < t < b+(t), the second case is when

θ(t) 6∈ Q and the third case is when θ(t) ∈ Q and either b−(t) = t or b+(t) = t.

In the first case, for all s ∈ (b−(t), b+(t)),

ξ(s) = θ(t) + eθ(t)(s− b−(t))

eθ(t) being continuous, we get the continuity of ξ at t.

In the second case we consider a sequence (tn)n≥0 in [0, Tmax) converging to t. Let

C > 0. There are only finitely many q ∈ Q such that there is n ≥ 0 such that θ(tn) = q
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and max eq > C. Moreover for any q ∈ Q, there are only finitely many n ≥ 0 such

that θ(tn) = q. Thus there are only finitely many n ≥ 0 such that θ(tn) ∈ Q and

max eθ(tn) > C. So for n large enough

(5.1.5) θ(tn) ≤ ξ(tn) ≤ θ(tn) + C

But ξ(t) = θ(t) and θ(tn) converges to θ(t). Since we may take C arbitrarily small,

(5.1.5) implies that ξ(tn) converges to θ(t).

Regarding the third case, assume for instance that θ(t) ∈ Q and t = b−(t). The

right-continuity of ξ at t follows from the same argument as in the first case and

left-continuity from the same argument as in the second case.

By definition, for all t ∈ [0, Tmax), θ(t) ≤ ξ(t). θ being non-increasing, for all

t ∈ [0, Tmax)

θ(t) ≤ inf
[0,t]

ξ

For the converse inequality, we have

θ(t) = ξ(b−(t)) ≥ inf
[0,t]

ξ

Regarding (5.1.3) and (5.1.4) we have the following disjunction: if θ(t) ∈ Q and

b−(t) < t < b+(t) then ξ(t) > θ(t). If θ(t) ∈ Q and t = b−(t) then for all s ∈
(0, b+(t) − b−(t)), ξ(t + s) > ξ(t). If either θ(t) ∈ Q and t = b+(t) or θ(t) 6∈ Q
then ξ(t) = θ(t) and there is a positive sequence (sn)n≥0 decreasing to 0 such that

θ(t+ sn) 6∈ Q and ξ(t+ sn) = θ(t+ sn) < θ(t).

t0b−(t0) b+(t0) t

Tmax

x0 ξ(t)

θ(t)

Fig. 1 - Drawing of ξ (full line) and θ (dashed line).

Previous proposition shows that one can reconstructQ and the family of excursions

(eq)q∈Q only knowing ξ. (5.1.2) shows how to recover θ from ξ. (5.1.3) and (5.1.4)

show how to recover the left and the right time boundaries of the excursions of ξ above

θ. Also observe that the set defined by the right-hand side of (5.1.3) is countable

whatever the continuous function ξ is, even if it is not obtained by glueing together

excursions.

5.2. Loops represented as excursions and glued together

Let α > 0 and Lα,BM the Poisson ensemble of loops of intensity αµ∗
BM where µ∗

BM

is the measure on loops associated to the Brownian motion on R. Let x0 ∈ R. We
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consider the random countable set Q:

Q := {min γ|γ ∈ Lα,BM} ∩ (−∞, x0)

Almost surely Q is everywhere dense in (−∞, x0) and for every q ∈ Q there is only

one γ ∈ Lα,BM such that min γ = q. Almost surely γ ∈ Lα,BM reaches its minimum

at one single moment. Given q ∈ Q and γ ∈ Lα,BM such that min γ = q we consider

eq to be the excursion above 0 equal to γ − q where we root the unrooted loop γ

at argminγ. Then the random set of excursions (eq)q∈Q almost surely satisfies the

assumptions of the section 5.1. In particular the condition (5.1.1) follows from the

fact that, according to (3.5.1)
∫

L∗
1 ∧ T (γ)1minγ∈(a,x0)µ

∗
BM (dγ) = (x0 − a)

∫ +∞

0

t ∧ 1√
2πt3

dt < +∞

Thus we can consider the random continuous function (ξα,BM (t)(x0))t≥0 constructed

by glueing together the excursions (q + eq)q∈Q in the way described in section 5.1.

Let

θ
(x0)
α,BM (t) = inf

[0,t]
ξ
(x0)
α,BM

Ξ
(x0)
α,BM (t) :=

(
ξ
(x0)
α,BM (t), θ

(x0)
α,BM (t)

)

Next we will describe the law of the two-dimensional process
(
Ξ
(x0)
α,BM (t)

)
t≥0

.

Proposition 5.2. — Let (B̃t)t≥0 be a standard Brownian motion on R starting from

0.
(
Ξ
(x0)
α,BM (t)

)
t≥0

has the same law as
(
x0 + |B̃t| −

1

α
ℓ0t (B̃), x0 −

1

α
ℓ0t (B̃)

)

t≥0

In particular for α = 1, (ξ
(x0)
1,BM (t))t≤0 has the same law as a Brownian motion starting

from x0.

Proof. — For a < x0 let Ta be the first time θ
(x0)
α,BM hits a. For l > 0 let

τ̃0l := inf{t > 0|ℓ0t (B̃) > l}
According to the disintegration (3.5.1) of the measure µ∗

BM in the proposition 3.17,

for all a < x0 the family (eq)q∈Q∩(a,x0) of excursions above 0 is a Poisson point process

of intensity 2αη>0
BM . This implies the following equality in law

(
ξ
(x0)
α,BM (t)− θ

(x0)
α,BM (t)

)
0≤t≤Ta

(law)
= (|B̃t|)0≤t≤τ̃0

α(x0−a)

Since the above holds for all a < x0, we have the following equality in law

(ξ
(x0)
α,BM (t)− θ

(x0)
α,BM (t), α(x0 − θα,BM (t)))t≥0

(law)
= (|B̃t|, ℓ0t (B̃))t≥0

which is exactly the equality in law we needed. Finally for α = 1, (x0+|B̃t|−ℓ0t (B̃))t≥0

has the law of a Brownian motion starting from x0. See [24], chapter VI, §2.
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According to proposition 5.2 a Brownian sample path can be decomposed into a

Poisson process of positive excursion with decreasing minima.This decomposition id

for instance described in [16], section 6.2.D. In case α = 1, proposition 4.5 states that

the occupation field of a the Poisson ensemble of loops associated to the Brownian

motion on (0,+∞) killed at 0 is the square of a Bessel process of dimension 2 starting

from 0 at 0. This result can also be obtained using the fact that (ξ
(x0)
1,BM (t))t≤0 is a

Brownian sample path and applying the first Ray-Knight theorem which gives the

law of the occupation field of a Brownian path stopped upon hitting 0.

From proposition 5.2 follows in particular that
(
Ξ
(x0)
α,BM (t)

)
t≥0

is a sample path of

a two-dimensional Feller process. Let

T+(R2) := {(x, a) ∈ R2|x ≥ a} Diag(R2) := {(x, x)|x ∈ R}

For (x0, a0) ∈ T+(R2) we define the process

(5.2.1)
(
Ξ
(x0,a0)
α,BM (t)

)
t≥0

=
(
ξ
(x0,a0)
α,BM (t), θ

(x0,a0)
α,BM (t)

)
t≥0

:=

(
a0 + |x0 − a0 + B̃t| −

1

α
ℓa0−x0
t (B̃), a0 −

1

α
ℓa0−x0
t (B̃)

)

t≥0

where (B̃t)t≥0 is a Brownian motion starting from 0. Ξ
(x0,x0)
α,BM has the same law

as Ξ
(x0)
α,BM . The family of paths

(
Ξ
(x0,a0)
α,BM

)
x0≥a0 are the sample paths of the same

Feller semi-group on T+(R2) starting from all possible positions. Next we describe

this semi-group in terms of generator and domain. Let f be a continuous function on

T+(R2), C2 on the interior of T+(R2), such that all its second order derivatives extend

continuously to Diag(R2). This implies in particular that the first order derivatives

also extend continuously to Diag(R2). We write ∂1f , ∂2f and ∂1,1f for the first order

derivative relatively to the first variable, the second variable and the second order

derivative relatively the first variable. Applying Itô-Tanaka’s formula we get

f
(
Ξ
(x0,a0)
α,BM (t)

)
= f(x0, a0) +

∫ t

0

∂1f
(
Ξ
(x0,a0)
α,BM (s)

)
sgn(x0 − a0 + B̃s)dB̃s+

∫ t

0

((
1− 1

α

)
∂1 −

1

α
∂2

)
f
(
Ξ
(x0,a0)
α,BM (s)

)
dsℓ

a0−x0
s (B̃) +

1

2

∫ t

0

∂1,1f
(
Ξ
(x0,a0)
α,BM (s)

)
ds

Let Dα,BM be the set of continuous functions f on DR, C2 on the interior of T+(R2),

such that all the second order derivatives extend continuously to Diag(R2) and that

moreover satisfy the following constraints: f and ∂1,1f are uniformly continuous

and bounded (which also implies that ∂1f is bounded by the inequality ‖∂1f‖∞ ≤
2
√
‖f‖∞‖∂1,1f‖∞) and on Diag(R2) the following equality holds:

((
1− 1

α

)
∂1 −

1

α
∂2

)
f(x, x) = 0
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If f ∈ Dα,BM then 1
t

(
E
[
f(Ξx0,a0

α,BM (t))
]
− f(x0, a0)

)
converges as t → 0+, uniformly

for (x0, a0) ∈ T+(R2), to 1
2∂1,1f(x0, a0). Moreover Dα,BM is a core for 1

2∂1,1 in the

space of continuous bounded function on T+(R2).

Next we describe what we obtain if we glue together the loops, seen as excursion,

ordered in the decreasing sense of their minima, where instead of Lα,BM we use the

Poisson ensemble of Markov loops associated to a general diffusion. Let I be an open

interval of R and L̃ a generator on I of form

L̃ =
1

m̃(x)

d

dx

(
1

w̃(x)

d

dx

)

with zero Dirichlet boundary conditions. Let S̃ be a primitive of w̃(x). We assume

that S̃(sup I) = +∞. Let

T+(I2) := {(x, a) ∈ I2|x ≥ a} Diag(I2) := {(x, x)|x ∈ I}

Let T̂+(I2) be the closure of T+(I2) in (inf I, sup I]2.

Given any x′0 ≥ a′0 >
1
2 S̃(inf I) let ζ̃α be the first time Ξ

(x′
0,a

′
0)

α,BM hits 1
2 S̃(inf I). Let

Ĩt :=

∫ t

0

1

m̃
(S̃−1

(
2ξ

(x′
0,a

′
0)

α,BM (s))
)
ds

Let (Ĩ−1
t )0≤t<Ĩζ̃α

be the inverse function of (Ĩt)0≤t<ζ̃α . It is a family of stopping times

for Ξ
(x′

0,a
′
0)

α,BM . For x0 ≥ a0 ∈ I and t < Ĩζ̃α let

Ξ
(x0,a0)

α,L̃
(t) =

(
ξ
(x0,a0)

α,L̃
(t), θ

(x0,a0)

α,L̃
(t)
)
:= Ξ

(S̃(2x0),S̃(2a0))
α,BM (Ĩ−1

t )

If α = 1 then ξ
(x0,a0)

α,L̃
is just the sample paths starting x0 of a diffusion of generator

L̃. Let D̂α,L̃ be the space of continuous functions f on T+(I2) satisfying

– f ◦ S̃−1 is C2 on the interior of T+(I2) and all the second order derivatives

extend continuously to Diag(I2).

– f(x, a) and 1
m̃(x)∂1

(
1

w̃(x)∂1f(x, a)
)
are bounded on T+(I2) and extend contin-

uously to T̂+(I2).

– f(x, a) and 1
m̃(x)∂1

(
1

w̃(x)∂1f(x, a)
)

converge to 0 as a converges to inf I uni-

formly in x.

– On Diag(I2) the following equality holds:

(5.2.2)

((
1− 1

α

)
∂1 −

1

α
∂2

)
f(x, x) = 0

Lemma 5.3. —
(
Ξ
(x0,a0)

α,L̃

)
x0≥a0∈I is a family of sample path starting from all pos-

sible positions of the same Markovian or sub-Markovian semi-group on T+(I2). The

law of the path Ξ
(x0,a0)

α,L̃
depends weakly continuously on the starting point (x0, a0).
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The domain of the generator of this semi-group contains D̂α,L̃, and on this space the

generator equals
1

m̃(x)
∂1

(
1

w̃(x)
∂1

)

Moreover there is only one Markovian or sub-Markovian semi-group with such gener-

ator on D̂
α,L̃

.

Proof. — Since a change of scale does not alter the validity of the above statement,

we can assume that w̃ ≡ 2. Then sup I = +∞.
(
Ξ
(x0,a0)

α,L̃
(t)
)
0≤t≤Ĩζ̃α

is then ob-

tained from
(
Ξ
(x0,a0)
α,BM (t)

)
0≤t<ζ̃α by a random time change. The Markov property and

the continuous dependence on the starting point for Ξ
(x0,a0)

α,L̃
follows from analogous

properties for Ξ
(x0,a0)
α,BM . If f ∈ D̂

α,L̃
then

(
f
(
Ξ
(x0,a0)
α,BM (Ĩ−1

t ∧ ζ̃α)
)
− 1

2

∫ Ĩ−1
t ∧ζ̃α

0

∂1,1f
(
Ξ
(x0,a0)
α,BM (s)

)
ds

)

t≥0

is a local martingale. We can rewrite it as

f
(
Ξ
(x0,a0)

α,L̃
(t ∧ Ĩζ̃α)

)
−
∫ t

0

1

2m̃
(
ξ
(x0,a0)

α,L̃
(s)
)∂1,1f

(
Ξ
(x0,a0)

α,L̃
(s)
)
1
s<Ĩζ̃α

ds



t≥0

The above local martingale is bounded on all finite time intervals and thus is a true

martingale. Since 1
2m̃(x)∂1,1f(x, a) converges to 0 as a converges to inf I, uniformly

in x, it follows that

f
(
Ξ
(x0,a0)

α,L̃
(t ∧ Ĩζ̃α)

)
= 1

t<Ĩζ̃α
f
(
Ξ
(x0,a0)

α,L̃
(t)
)

Thus

lim
t→0+

1

t

(
E
[
1
t<Ĩζ̃α

f
(
Ξ
(x0,a0)

α,L̃
(t)
)]

− f(x0, a0)
)
=

1

2m̃(x0)
∂1,1f(x0, a0)

Moreover the above convergence is uniform in (x0, a0) because 1
2m̃(x)∂1,1f(x, a) ex-

tends continuously to T̂+(I2).

To prove the uniqueness of the semi-group we need to show that there is λ > 0

such that (
1

2m̃(x)
∂1,1 − λ

)
(D̂α,L̃)

is sufficiently large, for instance that it contains all functions with compact support

in T+(I2). Let g be such a function and λ > 0. Consider the equation

(5.2.3)
1

2m̃(x)
∂1,1f(x, a)− λf(x, a) = g(x, a)

Let ũλ,↓ be a positive decreasing solution to

1

2m̃(x)

d2u

dx2
(x)− λu(x) = 0
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Let

f0(x, a) := ũλ,↓(x)

∫ +∞

x

∫ +∞

y

2m̃(z)g(z, a)ũλ,↓(z) dz
dy

ũλ,↓(y)2

Then f0 is a solution to (5.2.3) and it is compactly supported in T+(I2). We look for

the solutions to (5.2.3) of form

f(x, a) = f0(x, a) + C(a)ũλ,↓(x)

f satisfies the constraint (5.2.2) if and only if C satisfies

− 1

α
ũλ,↓(a)

dC

da
(a) +

(
1− 1

α

)
dũλ,↓
dx

(a)C(a) + h(a) = 0

where

h(a) =

((
1− 1

α

)
∂1 −

1

α
∂2

)
f0(a, a)

h is compactly supported in I. We can set

C(a) = ũλ,↓(a)
α−1

∫ x

inf I

h(y)

ũλ,↓(y)α
dy

C is zero in the neighbourhood of inf I. Moreover ũλ,↓ has a limit at +∞. It follows

that f ∈ D̂α,L̃.

Let L be the generator of a diffusion on I of form (2.2.1). Let x0 ∈ I. Consider

the loops γ in Lα,L such that min γ < x0, rooted at argminγ, seen as excursions. Let

(ξ
(x0)
α,L (t))0≤t<ζα be the path on I obtained by glueing together this excursions ordered

in the decreasing sense of their minima. Let

θ
(x0)
α,L (t) := min

[0,t]
ξ
(x0)
α,L

Ξ
(x0)
α,L :=

(
ξ
(x0)
α,L , θ

(x0)
α,L

)

Proposition 5.4. — Let L̃ := Conj(u↓, L). Then
(
Ξ
(x0)
α,L (t)

)
0≤t<ζα has the same

law as
(
Ξ
(x0,x0)

α,L̃
(t)
)
0≤t<ζ̃α . So it is a sample path of a two-dimensional Feller process.

In particular for α = 1, ξ
(x0)
1,L is the sample path of a diffusion of generator L̃. For all

α > 0

lim inf
t→ζα

ξ
(x0)
α,L (t) = inf I

If L is the generator of a recurrent diffusion then

lim sup
t→ζα

ξ
(x0)
α,L (t) = sup I

Otherwise

lim sup
t→ζα

ξ
(x0)
α,L (t) = inf I



5.2. LOOPS REPRESENTED AS EXCURSIONS AND GLUED TOGETHER 75

Proof. — First notice that if L is the generator of a recurrent diffusion then L̃ = L.

Otherwise a diffusion of generator L̃ = L is, put informally, a diffusion of generator

L conditioned to converge to inf I (which may occur with zero probability). From

h-transform invariance of the measure on loops follows that Lα,L = L
α,L̃

. From

property 3.8 (iv) and corollary 3.12 follows that Ξ
(x0)
α,L is obtained from Ξα,BM by

scale and time change in the same way as Ξ
(x0,x0)

α,L̃
and thus Ξ

(x0)
α,L and Ξ

(x0,x0)

α,L̃
have

the same law. Regarding the limits of ξ
(x0)
α,L at ζα, we need just to observe that they

hold if L is the generator of the Brownian motion on an interval of form (a,+∞),

a ∈ [−∞,+∞), and by time and scale change they hold in general.

As explained in the proposition 5.1, the knowledge of the path
(
ξ
(x0)
α,L (t)

)
0≤t<ζα

alone is enough to reconstruct Lα,L ∩ {γ ∈ L∗|min γ < x0}. From this we deduce the

following

Corollary 5.5. — If L is the generator of a transient diffusion, it is possible to con-

struct on the same probability space Lα,L and a continuous version of the occupation

field (L̂xα,L)x∈I .

Proof. — By scale and time change covariance and h-transform invariance of the

Poisson ensembles of loops, it is enough to prove the proposition in case of a Brownian

motion on (0,+∞) killed at 0. Let (xn)n≥0 be an increasing sequence in (0,+∞)

converging to +∞. We consider a sequence of independent paths
(
ξ
(xn,xn)
α,BM

)
n≥0

defined

by (5.2.1). Let

Tn,xn−1 := inf
{
t ≥ 0|ξ(xn,xn)

α,BM (t) = xn−1

}

where conventionally we set x−1 := 0. By decomposing on [0, Tn,xn−1] the restricted

path
(
ξ
(xn,xn)
α,BM (t)

)
0≤t<Tn,xn−1

one can reconstruct a family of loops γ such that min γ ∈
(xn−1, xn): there is a random countable set Bn of disjoint compact subintervals

[b−, b+] of [0, Tn,xn−1] such that
{(
ξ
(xn,xn)
α,BM (b−+ t)

)
0≤t≤b+−b− |[b

−, b+] ∈ Bn

}
= Lα,BM ∩{γ ∈ L∗|min γ ∈ (xn−1, xn)}

(see (5.1.3)). The union of all previous families of loops for n ≥ 0 is a Poisson ensemble

of loops Lα,BM ∩ {γ ∈ L∗|min γ > 0}.
Each of ξ

(xn,xn)
α,BM is a semi-martingale and its quadratic variation is

〈
ξ
(xn,xn)
α,BM , ξ

(xn,xn)
α,BM

〉
t
= t

Moreover for all x ∈ R
∫ t

0

1ξxn,xn
α,BM

=xdξ
(xn,xn)
α,BM (s) =

(
1− 1

α

)∫ t

0

1
ℓ0s(B̃)=αxdsℓ

0
s(B̃) = 0

From theorems 1.1 and 1.7 in [24], chapter VI, §1, follows that we can construct on

the same probability space ξ
(xn,xn)
α,BM and a space-time continuous version of local times
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(
ℓxt
(
ξ
(xn,xn)
α,BM

))
x∈R,t≥0

of ξ
(xn,xn)
α,BM relatively to the Lebesgue measure. In particular

x 7→ ℓxTn,xn−1

(
ξ
(xn,xn)
α,BM

)
is continuous. If [b−, b+] ∈ Jn, then
(
ℓxb+
(
ξ
(xn,xn)
α,BM )

)
− ℓxb−

(
ξ
(xn,xn)
α,BM

))
x>0

is the occupation field of the loop corresponding to the time interval [b−, b+]. We

need to check that a.s

(5.2.4) ∀x > 0, ℓxTn,xn−1

(
ξ
(xn,xn)
α,BM

)
=

∑

[b−,b+]∈Bn

ℓxb+
(
ξ
(xn,xn)
α,BM

)
− ℓxb−

(
ξ
(xn,xn)
α,BM

)

For x > 0, consider the random set of times

(5.2.5)
{
t ∈ [0, Tn,xn−1]|ξ(xn,xn)

α,BM (t) = x
}
\

⋃

[b−,b+]∈Bn

[b−, b+]

If x is a minimum of a loop embedded in
(
ξ
(xn,xn)
α,BM (t)

)
0≤t<Tn,xn−1

or if x 6∈ (xn−1, xn)

then the set (5.2.5) is empty. Otherwise it is reduced to one point: the first hitting

time of the level x. Almost surely, for all x > 0, the measure dtℓ
x
t

(
ξ
(xn,xn

α,BM )
)
is

supported in
{
t ≥ 0|ξ(xn,xn)

α,BM (t) = x
}
and has no atoms, and thus does not charge the

set (5.2.5). This implies (5.2.4). Finally we can conclude that
(
ℓxTn,xn−1

(
ξ
(xn,xn)
α,BM

))
x>0

is the occupation field of Lα,BM ∩ {γ ∈ L∗|min γ ∈ (xn−1, xn)}.
The occupation field of Lα,BM ∩ {γ ∈ L∗|min γ > 0} is

(∑

n≥0

ℓxTn,xn−1

(
ξ
(xn,xn)
α,BM

))

x>0

The above sum is locally finite and thus varies continuously with x.

5.3. The case α = 1

According to proposition 5.4 in case α = 1 the Poisson ensemble of loops L1,L

can be recovered from sample paths of one-dimensional diffusions. A similar prop-

erty was observed for loops of the two-dimensional Brownian Motion and of Markov

jump processes on graphs. In [13], chapter 8, it is shown that by launching consecu-

tively symmetric Markov jump processes from different vertices of a finite graph and

applying the Wilson’s algorithm ([31]), one can simultaneously construct a uniform

spanning tree of the graph with prescribed weights on the edges and an independent

Poisson ensemble of Markov loops of parameter α = 1. If D is a simply-connected

open domain of C other than C, it was shown in [32] that one can couple a Brownian

motion on D, killed at hitting ∂D, and a simple curve (SLE2) with same extremal

points such that the latter appears as the loop-erasure of the first. It is conjectured

that given this loop-erased Brownian motion and an independent Poisson ensemble

of Brownian loops of parameter 1, by attaching to the simple curve the loops that
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cross it one reconstructs a Brownian sample path. See [19], conjecture 1, and [18],

theorem 7.3.

in case of one-dimensional diffusions one can partially recover L1,L from Marko-

vian sample paths otherwise than slicing ξ
(x0)
1,L in excursions. The next result has an

analogue for loops of Markov jump processes on graphs. See [13], remark 21.

Proposition 5.6. — Assume that L is the generator of a transient diffusion. Let

x ∈ I. Let (Xt)0≤t<ζ be the sample path of a diffusion of generator L started from x.

Let T̂x the last time X visits x. For l ≥ 0 let

τxl := {t ≥ 0|ℓxt (X) > l}
Let (qj)j∈N be a Poisson-Dirichlet partition PD(0, 1) of [0, 1], independent from X,

ordered in an arbitrary way. Let

lj := ℓxζ (X)

j∑

i=0

qi

The family of bridges ((Xt)τx
lj−1

≤t≤τx
lj
)j≥0 has, up to unrooting, the same law as the

loops in

L1,L ∩ {γ ∈ L∗|x ∈ γ([0, T (γ)])}
In particular (Xt)0≤t≤T̂x

can be obtained through sticking together all the loops in

Lα,L that visit x.

Proof. — According to corollary 3.11, (ℓx(γ))γ∈Lα,L,γ visits x is a Poisson ensemble

of intensity e−
l

G(x,x) dl
l
. Thus L̂xα,L is an exponential r.v. with mean G(x, x) and has

the same law as ℓxζ (X). Moreover the Poisson ensemble (ℓx(γ))γ∈Lα,L,γ visits x has

up to reordering the same law as (lj − lj−1)j≥0. Almost surely l 7→ τxl does not jump

at any lj . Conditionally on (lj)j≥0, ((Xt)τx
lj−1

≤t≤τx
lj
)j≥0 is an independent family of

bridges and (Xt)τx
lj−1

≤t≤τx
lj

has the same law as (Xt)0≤t≤τx
lj−lj−1

. We conclude using

identity (3.3.5) and the theory of marked Poisson ensembles.

Assume that L is the generator of a transient diffusion. Let x ∈ I and let (Xt)0≤t<ζ
be a sample path starting from x of the diffusion corresponding to L. We will describe

two different ways to slice (Xt)0≤t<ζ so as to obtain the loops

L1,L ∩ {γ ∈ L∗|γ([0, T (γ)]) ∩ [X(0), X(ζ−)](or [X(ζ−), X(0)]) 6= ∅}
The first method corresponds to the ”loop-erasure procedure” applied to (Xt)0≤t<ζ
and the second to the ”loop-erasure procedure” applied to the time-reversed path

(Xζ−t)0<t≤ζ . Let T̂x be the last time (Xt)0≤t<ζ visits x. Let T̃ be the first time

X hits Xζ− . If Xζ− ∈ ∂I then T̃ = ζ. Let (qj)j∈N be a Poisson-Dirichlet partition

PD(0, 1) of [0, 1], independent from X . The first method of decomposition is the

following:
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– The path (Xt)0≤t≤T̂x
is decomposed in bridges ((Xt)τx

lj−1
≤t≤τx

lj
)j≥0 from x to

x by applying the Poisson-Dirichlet partition (qj)j∈N to ℓxζ (X), as described in

proposition 5.6.

– Given the path (X
T̂x+t

)0≤t<ζ−T̂x
, if Xζ− < x we define

b+ :=
{
t ∈ [0, ζ − T̂x)|XT̂x+t

= sup
s∈[t,ζ−T̂x)

X
T̂x+s

and ∃ε ∈ (0, t) s.t. ∀s ∈ (t− ε, t), X
T̂x+s

< X
T̂x+t

}

b+ is countable and we define on b+ the map b−:

b−(t) := sup
{
s ∈ [0, t)|X

T̂x+s
= XT̂x+t

}

((X
T̂x+b−(t)+s)0≤s≤t−b−(t))t∈b+ is the family of negative excursions of the path

(X
T̂x+t

)0≤t<ζ−T̂x
below (sup[T̂x+t,ζ)

X)0≤t<ζ−T̂x
. If Xζ− > x then

b+ :=
{
t ∈ [0, ζ − T̂x)|XT̂x+t

= inf
s∈[t,ζ−T̂x)

X
T̂x+s

and ∃ε ∈ (0, t) s.t. ∀s ∈ (t− ε, t), X
T̂x+s

> X
T̂x+t

}

We define on b+ the map b−:

b−(t) := sup
{
s ∈ [0, t)|X

T̂x+s
= X

T̂x+t

}

((X
T̂x+b−(t)+s)0≤s≤t−b−(t))t∈b+ are the positive excursions of (X

T̂x+t
)0≤t<ζ−T̂x

above (inf [T̂x+t,ζ)
X)0≤t<ζ−T̂x

.

– We denote L 1((Xt)0≤t<ζ) the set of loops
{
(Xτx

lj−1
+s)0≤s≤τx

lj
−τx

lj−1
|j ≥ 0

}
∪
{
(X

T̂x+b−(t)+s)0≤s≤t−b−(t)|t ∈ b+
}

where the loops are considered to be unrooted.

The second method of decomposition is the following:

– If Xζ− < x we define

b− :=
{
t ∈ [0, T̃ )|Xt = inf

[0,t]
X and ∃ε > 0 s.t. ∀s ∈ (t, t+ ε), Xs > Xt

}

On b− we define the map b+:

b+(t) := inf{s ∈ (t, T̃ )|Xs = Xt}

((Xt+s)0≤s≤b+(t)−t)t∈b− are the positive excursions of the path (Xt)0≤t<T̃ above

(inf [0,t]X)0≤t≤T̃ . This is exactly the decomposition described in the previous

section 5.2. If Xζ− > x then

b− :=
{
t ∈ [0, T̃ )|Xt = sup

[0,t]

X and ∃ε > 0 s.t. ∀s ∈ (t, t+ ε), Xs < Xt

}
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The map b+ defined on b− is

b+(t) := inf{s ∈ (t, T̃ )|Xs = Xt}
((Xt+s)0≤s≤b+(t)−t)t∈b− are the negative excursions of the path (Xt)0≤t<T̃ be-

low (sup[0,t]X)0≤t≤T̃ .

– If T̃ < ζ we introduce:

l̃j := ℓ
X

ζ−
ζ (X)

j∑

i=0

qi

and

τl̃j := inf{t ∈ [T̃ , ζ)|ℓXζ−
t (X) > l̃j}

We decompose the path (Xt)T̃≤t<ζ in bridges ((Xt)τl̃j−1
≤t≤τl̃j )j≥0 from Xζ− to

Xζ− .

– We denote L 2((Xt)0≤t<ζ) the set of loops
{
(Xt+s)0≤s≤b+(t)−t|t ∈ b−

}
∪
{
(Xτl̃j−1

+s)0≤s≤τl̃j−τl̃j−1
|j ≥ 0

}

where the loops are considered to be unrooted.

The loops in L 1((Xt)0≤t<ζ) and L 2((Xt)0≤t<ζ) are not the same but follow the same

law.

Proposition 5.7. — L 1((Xt)0≤t<ζ) and L 2((Xt)0≤t<ζ), considered as collections

of unrooted loops, have the same law. Let L1,L be a Poisson ensemble of loops in-

dependent from Xζ− . Then L 1((Xt)0≤t<ζ) and L 2((Xt)0≤t<ζ) have the same law

as

(5.3.1) L1,L ∩ {γ ∈ L∗|γ([0, T (γ)]) ∩ [X(0), X(ζ−)] (or [X(ζ−), X(0)]) 6= ∅}

Proof. — First we will prove that L 2((Xt)0≤t<ζ) has the same law as (5.3.1). If

P(Xζ− = inf I) > 0, then conditionally on Xζ− = inf I, (Xt)0≤t<ζ has the law of

a sample path corresponding to the generator Conj(u↓, L). If y ∈ I ∩ (−∞, x] and

y is in the support of κ (the killing measure in L) then conditionally on Xζ− = y,

(Xt)0≤t<ζ is distributed according the measure 1
G(x,y)µ

x,y
L (property 3.3 (i)). Accord-

ing to the lemma 3.4, (Xt)0≤t≤T̃ and (X
T̃+t)0≤t≤ζ−T̃ are independent conditionally

Xζ− = y, (Xt)0≤t≤T̃ having the law of a sample path corresponding to the generator

Conj(u↓, L), run until hitting y, and (X
T̃+t)0≤t≤ζ−T̃ following the law 1

G(y,y)µ
y,y
L .

From proposition 5.4 and 5.6 follows that L 2((Xt)0≤t<ζ) and (5.3.1) have the same

law on the event Xζ− ≤ x. Symmetrically this also true on the event Xζ− ≥ x.

The decomposition L 1((Xt)0≤t<ζ) is obtained by first applying the decomposition

L 2 to the time-reversed path (Xζ−t)0<t≤ζ and then applying again the time-reversal

to the obtained loops. The law of the loops in (5.3.1) is invariant by time-reversal.

Let y ∈ I, y in the support of κ. Conditionally on Xζ− = y, the law of (Xζ−t)0<t≤ζ is



80 CHAPTER 5. DECOMPOSING PATHS INTO POISSON ENSEMBLES OF LOOPS

1
G(x,y)µ

y,x. So applying the decomposition L 2 to the path (Xζ−t)0<t≤ζ conditioned

by Xζ− = y gives

L1,L ∩ {γ ∈ L∗|γ([0, T (γ)]) ∩ [y, x] (or [x, y]) 6= ∅}
If P(Xζ− = inf I) > 0 then conditionally on Xζ− = inf I, the path (Xt)0≤t<ζ is a

limit as y → inf I of paths following the law 1
G(x,y)µ

x,y (i.e. the latter are restrictions

of the former). Thus conditionally on Xζ− = inf I L 1((Xt)0≤t<ζ) is an increasing

limit as y → inf I of

L1,L ∩ {γ ∈ L∗|γ([0, T (γ)]) ∩ [y, x] 6= ∅}
which is

L1,L ∩ {γ ∈ L∗|γ([0, T (γ)]) ∩ [inf I, x] 6= ∅}
Similar is true conditionally on Xζ− = sup I.



CHAPTER 6

WILSON’S ALGORITHM IN DIMENSION ONE

6.1. Description of the algorithm

Given a finite undirected connected graph G = (V,E) and C a positive weight

function on its edges, a Uniform Spanning Tree of the weighted graph G is a random

spanning tree with the occurrence probability of a spanning tree T proportional to
∏

e edge of T
C(e)

The edges belonging to the Uniform Spanning Tree are a determinantal point process

(transfer current theorem). In [31] Wilson showed how to sample a Uniform Spanning

Tree using successive random walks to nearest neighbours, with transition probabili-

ties proportional to C, starting from different vertices, and erasing the loops created

by these random walks. The edges left after loop-erasure form a Uniform Spanning

Tree. This is known as Wilson’s algorithm. See [1] for a review. In [13], chapter 8,

Le Jan shows that the loops erased during the execution of Wilson’s algorithm are

related to the Poisson ensemble of Markov loops of parameter 1.

In [13], chapter 10, Le Jan suggests that Wilson’s algorithm can be adapted to the

situation where the random walk on a graph is replaced by a transient diffusion on a

subinterval I of R. In this section we will describe the algorithm in the latter setting.

The algorithm returns on one hand a sequence of one-dimensional paths which can

be decomposed into a Poisson ensemble of Markov loops of parameter 1 (section 6.2),

and on the other hand a pair of interwoven determinantal point processes on I, which

may be interpreted as some kind of Uniform Spanning Tree. In section 6.3 we will

derive the law of this pair of determinantal point processes in the setting where the

underlying is a Brownian motion on R with a killing measure. In section 6.4 we will

give without proof the law in general case as it follows directly from the Brownian

case.

Let I be a subinterval of R and L a generator of a transient diffusion on I of form

2.2.1. Let κ be the killing measure in L, which may be zero. Let (xn)n≥1 be a sequence
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of pairwise distinct points in I which is dense in I. Let
((
X

(xn)
t

)
0≤t<ζn

)
n≥1

be a

sequence of independent sample paths of the diffusion of generator L, with starting

points X
(xn)
0 = xn. In the first step of Wilson’s algorithm we will recursively define

sequences (Tn)n≥1, (Yn)n≥1 and (J )n≥1 where Tn is a killing time for X(xn), Yn is a

finite subset of Supp(κ)∪ ∂I and Jn is a finite set of disjoint compact subintervals of

Ī, some of which may be reduced to one point:

– T1 := ζ1, Y1 :=
{
X

(x1)

T−
1

}
, J1 :=

{[
x1, X

(x1)

T−
1

]} (
or
{[
B

(x1)

T−
1

, x1
]})

.

– Assume that Yn and Jn are constructed. If xn+1 ∈ ⋃
J⊆Jn

J then we set

Tn+1 := 0, Yn+1 := Yn and Jn+1 := Jn. If xn+1 6∈ ⋃J⊆Jn
J then we define

Tn+1 := min
(
ζn, inf

{
t ≥ 0|X(xn+1)

t ∈
⋃

J⊆Jn

J
})

If X
(xn+1)

T−
n+1

∈ ⋃J⊆Jn
J then there is a unique J ∈ Jn such that X

(xn+1)

T−
n+1

∈ J . In

this case we set Yn+1 := Yn and

Jn+1 := (Jn \ {J}) ∪
{
J ∪

[
xn+1, X

(xn+1)

T−
n+1

]}

(
or (Jn \ {J}) ∪

{
J ∪

[
X

(xn+1)

T−
n+1

, xn+1

]})

If X
(xn+1)

T−
n+1

6∈ ⋃J⊆Jn
J then we set Yn+1 := Yn ∪

{
X

(xn+1)

T−
n+1

}
and

Jn+1 := Jn ∪
{[
xn+1, X

(xn+1)

T−
n+1

]} (
or Jn ∪

{[
X

(xn+1)

T−
n+1

, xn+1

]})

It is immediate to check by induction the following facts:

– Yn ⊆ Supp(κ)∪∂I. More precisely Yn ⊆ Supp(κ)∪
{
y ∈ ∂I|P

(
X

(xn)

ζ−n
= y
)
> 0
}
.

– The intervals in Jn are pairwise disjoint.

– ♯Yn = ♯Jn ≤ n

– For every y ∈ Yn there is one single J ∈ Jn such that y ∈ J .

– Yn ⊆ Yn+1

– If n ≤ n′, then for every J ∈ Jn there is one single J ′ ∈ Jn′ such that J ⊆ J ′.
We denote ın,n′ the corresponding application from Jn to Jn′ . The application

ın,n′ is injective. Trivially for n ≤ n′ ≤ n′′, ın,n′′ = ın′,n′′ ◦ ın,n′

– For any J ∈ Jn, ∂J ⊆ Yn ∪ {x1, . . . , xn}.
In the second step of Wilson’s algorithm we will take the limit of the sequence

((Yn,Jn))n≥1 and define (Y∞,J∞) as follows:

Y∞ :=
⋃

n≥1

Yn J∞ :=
⋃

n≥1

⋃

J∈Jn

{ ⋃

n′≥n
ın,n′(J)

}

Y∞ is a finite or countable subset of Supp(κ) ∪ ∂I. J∞ is a finite of countable set of

disjoint subintervals of Ī, but these subintervals are not necessarily closed or bounded.

For any y ∈ Y∞, there is a single J ∈ J∞ such that y ∈ J , and this induces a bijection
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between Y∞ and J∞. For any J ∈ Jn, there is a single J ′ ∈ J∞ such that J ⊆ J ′. We

define ın,∞(J) = J ′. ın,∞ is injective. Trivially, for n ≤ n′, ın,∞ = ın′,∞ ◦ ın,n′ . We

will sometimes write Yn(x1, . . . , xn), Jn(x1, . . . , xn), Y∞((xn)n≥1) and J∞((xn)n≥1)

in order to emphasize the dependence on the starting points (xn)n≥1. In the sections

6.3 and 6.4 we will see that

– The set Y∞ is a.s. discrete.

– A.s. for any intervals J ∈ J∞, J \ ∂I is open

– The subset I \⋃J∈J∞
J is a.s. discrete.

– The law of (Y∞,J∞) does not depend on the choice of starting points (xn)n≥1.

We introduce Z∞ := I \
(⋃

J∈J∞
J
)
. We will further see that Y∞ and Z∞ are

determinantal point processes.

The couple (Y∞,J∞) may be interpreted as a spanning tree. Consider the following

undirected ”graph”: Its set of ”vertices” is Ī∪{†} where † is a cemetery point outside

of Ī. Ever point x ∈ I is connected by an ”edge” to its two infinitesimal neighbours

x−dx and x+dx. Every point in Supp(κ) is connected by an ”edge” to †. Finally any

point in y ∈ ∂I such that P
(
X

(xn)

ζ−n
= y

)
> 0 is connected by an ”edge” to †. On this

”graph” (Y∞,J∞) induces the following ”spanning tree”: Each point in
⋃
J∈J∞

J is

connected to its infinitesimal neighbours in I and Z∞ represents ”edges” on I that

are missing. Moreover every point in Y∞ is connected to †.
There are two trivial cases in which (Y∞,J∞) is deterministic. In the first one κ = 0

and I has one single regular or exit boundary point y characterized by P
(
X

(xn)

ζ−n
=

y
)
> 0 (see [5], chapter 16, for the characterization of boundaries). Then Y∞ is made

of this boundary point and J∞ contains one single interval I ∪ Y∞. Z∞ is empty.

In the second case I does not have regular or exit boundaries and κ is proportional

to a Dirac measure cδy0 . Then Y∞ = {y0} and J∞ = {I}. Z∞ is again empty. In

all other situation Z∞ is non-empty and random. See figure 2.a for an illustration of

(Yn,Jn) for 1 ≤ n ≤ 5 and figure 2.b for an illustration of (Y∞,Z∞).
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b b b b b×
x4 x2 x3 x1 x5

b b b b b× ×
x4 x2 x3 x1 x5

b b b b b× ×
x4 x2 x3 x1 x5

b b b b b× × ×
x4 x2 x3 x1 x5

b b b b b× × ×
x4 x2 x3 x1 x5

Fig. 2.a - Illustration of ((Yn,Jn))1≤n≤5: x-dots represent the points of Yn

and thick lines the intervals in Jn.

× × × × ×ld ld ld ld

Fig. 2.b - Illustration of (Y∞,J∞): x-dots represent the points of Y∞

and diamonds the points of Z∞.

6.2. The erased paths

During the execution ofWilson’s algorithmwe used the paths
((
X

(xn)
t

)
0≤t<Tn

)
n≥1

.

These paths can be further decomposed using the procedure described in the section

5.3.

Proposition 6.1. — The family of unrooted loops
⋃

n≥1

L
1
((
X

(xn)
t

)
0≤t<Tn

)

has the same law as the Poisson ensemble L1,L. Moreover it is independent from

(Y∞,J∞).

Proof. — Let L1,L be a Poisson ensemble of loops independent from the family of

paths
((
X

(xn)
t

)
0≤t<ζn

)
n≥1

. Using proposition 5.7 and induction is it immediate to

show that the triple

Yn,Jn,

n⋃

j=1

L
1
((
X

(xj)
t

)
0≤t<Tj

)



has the same law as(
Yn,Jn,

{
(γ(t))0≤t≤T (γ) ∈ L1,L|γ([0, T (γ)]) ∩

⋃

J∈Jn

J 6= ∅
})
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Since (Y∞,J∞) is by construction independent from
((
X

(xj)
t

)
0≤t<Tj

)
1≤j≤n

condi-

tionally on (Yn,Jn), we further get that the triple

Y∞,J∞,

n⋃

j=1

L
1
((
X

(xj)
t

)
0≤t<Tj

)



has the same law as(
Y∞,J∞,

{
(γ(t))0≤t≤T (γ) ∈ L1,L|γ([0, T (γ)]) ∩

⋃

J∈Jn

J 6= ∅
})

Taking the limit of the third component as n tends to infinity we get that

Y∞,J∞,

⋃

j≥1

L
1
((
X

(xj)
t

)
0≤t<Tj

)



has the same law as(
Y∞,J∞,

{
(γ(t))0≤t≤T (γ) ∈ L1,L|γ([0, T (γ)]) ∩

⋃

J∈J∞

J 6= ∅
})

To conclude we need only to show that almost surely
{
(γ(t))0≤t≤T (γ) ∈ L1,L|γ([0, T (γ)]) ∩

⋃

J∈J∞

J 6= ∅
}
= L1,L

The latter is equivalent to
⋃
J∈J∞

J being dense in I, which will be proved in the

next section.

6.3. Determinantal point processes (Y∞,Z∞): Brownian case

In this section we will describe (Y∞,J∞) in the Brownian case by giving the joint

law of the point processes Y∞ and Z∞. First we will study the case of a Brownian

motion on a bounded interval (a, b), killed upon hitting a or b, and without killing

measure. Then we will study the case of the Brownian motion on R with a non-zero

Radon killing measure κ. We will write
(
B

(xn)
t

)
0≤t<ζn instead of

(
X

(xn)
t

)
0≤t<ζn .

Proposition 6.2. — In the case of a Brownian motion on a bounded interval (a, b),

killed upon hitting a or b, and without killing measure, Y∞ is deterministic and equals

{a, b} and Z∞ is made of a single point distributed uniformly on (a, b).

Proof. — For n ≥ 1 we define x̃n,0 < x̃n,1 < · · · < x̃n,n+1 as the family x1, . . . , xn, a, b

ordered increasingly. According to this definition x̃n,0 = a and x̃n,n+1 = b. As a

convention we denote x̃0,0 := a and x̃0,1 := b. For n ≥ 2, one of the following

situations may occur:

– Yn = {b} and Jn = {[x̃n,1, b]}
– Yn = {a} and Jn = {[a, x̃n,n]}
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– Yn = {a, b} and for some j ∈ {2, . . . , n}, Jn = {[a, x̃n,j−1], [x̃n,j , b]}
In any case (a, b) \

(⋃
J∈Jn

J
)
is an interval of form (x̃n,j−1, x̃n,j).

We set {J}0 = ∅. Let n ≥ 1. There is a j ∈ {1, . . . , n} such that xn ∈
(x̃n−1,j−1, x̃n−1,j). Conditionally on (a, b) \

(⋃
J∈Jn−1

J
)
= (x̃n−1,j−1, x̃n−1,j), the

point B
(xn)

T−
n

equals x̃n−1,j−1 with probability
x̃n−1,j−xn

x̃n−1,j)−x̃n−1,j−1
and x̃n−1,j with proba-

bility
xn−x̃n−1,j−1

x̃n−1,j)−x̃n−1,j−1
. By induction we get that

P

(
(a, b) \

( ⋃

J∈Jn

J
)
= (x̃n,j−1, x̃n,j)

)
=
x̃n,j − x̃n,j−1

b− a

Hence

P(Y∞ = {a}) ≤ lim
n→+∞

P

(
(a, b) \

( ⋃

J∈Jn

J
)
= (x̃n,0, x̃n,1)

)
= lim
n→+∞

x̃n,1 − x̃n,0

b− a
= 0

and similarly P(Y∞ = {b}) = 0. Thus Y∞ = {a, b}. Almost surely for n large enough

Jn will be of form {[a, x̃n,j−1], [x̃n,j , b]} for a random j ∈ {2, . . . , n}. We denote by

p+n,1 respectively p−n,2 the random values of x̃n,j−1 respectively x̃n,j . Almost surely,

neither of the non-decreasing sequence (p+n,1)n or non-increasing sequence of (p−n,2)n
is stationary. This fact follows from the same argument according to which Y∞ is

not reduced to one point. Moreover p−n,2− p+n,1, bounded by sup2≤j≤n(x̃n,j − x̃n,j−1),

converges to 0. It follows that a.s. Z∞ is reduced to one point, the common limit of

p+n,1 and p−n,2. Finally if ã < b̃ are two values taken by the sequence (xn)n≥1 then

P(Z∞ ⊆ (ã, b̃)) =
b̃− ã

b− a

It follows that the unique point in Z∞ is distributed uniformly on (a, b).

We consider now the case of the Brownian motion on R with a non-zero Radon

killing measure κ. G(x, y) = u↑(x∧y)u↓(x∨y) will be the Green’s function of 1
2
d2

dx2 −κ.
The law of (Yn,Jn) may be expressed explicitly. Let Qn be the cardinal of Yn. Let

Yn,1, Yn,2, . . . ,Yn,Q(n) be the points in Yn ordered in the increasing sense. Denote by

[p−n,1, p
+
n,1], [p

−
n,2, p

+
n,2], . . . , [p

−
n,Qn

, p+n,Qn
] the intervals in Jn ordered in the increasing

sense. For all q ∈ {1, . . . , Qn}, Yn,q ∈ [p−n,q, p
+
n,q]. It happens with positive probability

that for some q, p−n,q = p+n,q if one of the starting points x1, . . . , xn is an atom of κ.

To compute recursively the joint law of above random variables we use the following

facts: Given a killed Brownian path
(
B

(x)
t

)
0≤t<ζ starting from x, the distribution of

B
(x)
ζ− is G(x, y)κ(dy) (see section 2.2). Given a < x, let Ta be the first time B(x) hits

a. Then

Px(Ta ≤ ζ) =
u↓(x)

u↓(a)
=
G(x, a)

G(a, a)
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On the event Ta > ζ, the distribution of B
(x)
ζ− is:

(G(x, y)− Px(Ta ≤ ζ)G(a, y))1y>aκ(dy) =

(
G(x, y) − G(x, a)G(a, y)

G(a, a)

)
1y>aκ(dy)

More generally, if a < x < b and ζ̃ is the first time B(x) gets either killed by the

killing measure κ or hits a or b then

– The probability that B
(x)

ζ̃−
= a is:

u↓(a)u↑(x) − u↓(x)u↑(a)

u↓(a)u↑(b)− u↓(b)u↑(a)
=

det

(
G(x, b) G(a, b)

G(a, x) G(a, a)

)

det

(
G(b, b) G(a, b)

G(a, b) G(a, a)

)

– The probability that B
(x)

ζ̃−
= b is:

u↓(x)u↑(b)− u↓(b)u↑(x)

u↓(a)u↑(b)− u↓(b)u↑(a)
=

det

(
G(a, x) G(a, b)

G(x, b) G(b, b)

)

det

(
G(a, a) G(a, b)

G(a, b) G(b, b)

)

– The distribution of B
(x)

ζ̃−
on (a, b) is:

det




G(x, y) G(a, y) G(y, b)

G(a, x) G(a, a) G(a, b)

G(x, b) G(a, b) G(b, b)




det

(
G(a, a) G(a, b)

G(a, b) G(b, b)

) 1a<y<bκ(dy)

Above expressions give the law of (Y1,J1) and the law of (Yn+1,Jn+1) conditionally

on (Yn,Jn). By induction one can derive the law of (Yn,Jn). We will express it

using a single identity involving a determinant. However this single identity may

correspond to different configurations: We will divide the set of indices {1, . . . , Qn}
in three categories E−

n , E
+
n and E−,+

n where for q ∈ E−
n , Yn,q = p−n,q, for q ∈ E+

n ,

Yn,q = p+n,q and for q ∈ E−,+
n , p−n,q < Yn,q < p+n,q. For instance on the figure 2.a,

Q5 = 3, E−
5 = {3}, E+

5 = {1} and E−,+
5 = {2}.

Proposition 6.3. — Let q ∈ {1, . . . , n}. Let (E−
n , E

+
n , E

−,+
n ) be a partition of

{1, . . . , q}:
{1, . . . , q} = E−

n ∐E+
n ∐ E−,+

n

Let x− be an increasing function from E−
n ∐E−,+

n to {x1, . . . , xn} and x+ an increasing

function from E+
n ∐ E−,+

n to {x1, . . . , xn}. We assume that the sets x−(E−
n ∐ E−,+

n )

and x+(E+
n ∐E−,+

n ) are disjoint, that for every i ∈ E−,+
n x−(i) < x+(i) and that for

every i ∈ E−
n ∐ E−,+

n and j ∈ E+
q ∐ E−,+

q such that i 6= j, (x+(j) − x−(i)) has the
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same sign as (j − i). Let (∆i)1≤i≤n be a family of disjoint bounded intervals each of

which may be open, closed or semi-open such that for every i < j, max∆i < min∆j,

that for every i, min∆i ≥ x−(i) if i ∈ E−
n ∐E−,+

n , max∆i ≤ x+(i) if i ∈ E+
n ∐E−,+

n ,

and that for all i

x−(i − 1), x+(i− 1) < min∆i, max∆i < x−(i+ 1), x+(i+ 1)

where in the previous inequalities one should only consider the terms that are defined.

Let p−i (yi) and p+i (yi) be the functions defined by: p−i (yi) = x−(i) if i ∈ E−
n ∐ E−,+

n

and yi otherwise. p
+
i (yi) = x+(i) if i ∈ E+

n ∐E−,+
n and yi otherwise. Then

(6.3.1)

P
(
Qn = q, ∀i ∈ E−

n , p
−
n,i = x−(i), p+n,i = Yn,i∀i ∈ E+

n , p
+
n,i = x+(i), p−n,i = Yn,i,

∀i ∈ E−,+
n , p−n,i = x−(i), p+n,i = x+(i), ∀r ∈ {1, . . . , q}, Yn,r ∈ ∆r

)
=

∫

y1∈∆1

. . .

∫

yq∈∆q

det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q

∏

1≤r≤q
κ(dyi)

det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q may be rewritten as a simpler product:

(6.3.2) G(p−1 (y1), p
+
1 (y1))

∏

1≤r≤q−1

(
G(p−r+1(yr+1), p

+
r+1(yr+1))

− G(p−r (yr), p
+
r+1(yr+1))G(p

+
r (yr), p

−
r+1(yr+1))

G(p−r (yr), p
+
r (yr))

)

If σ is a permutation of {1, . . . , n}, then (Yn(xσ(1), . . . , xσ(n)), Jn(xσ(1), . . . , xσ(n)))
has the same law as (Yn(x1, . . . , xn),Jn(x1, . . . , xn)) Moreover, for any n′ > n and

any permutation σ of {n+ 1, . . . , n′}, the law of (Yn′(x1, . . . , xn, xσ(n+1), . . . , xσ(n′)),

Jn′(x1, . . . , xn, xσ(n+1), . . . , xσ(n′))) conditionally on (Yn(x1, . . . , xn),Jn(x1, . . . , xn))
is the same as the law of (Yn′(x1, . . . , xn, xn+1, . . . , xn′), Jn′(x1, . . . , xn, xn+1, . . . , xn′))

conditionally on (Yn(x1, . . . , xn),Jn(x1, . . . , xn)).

Proof. — We will only give the sketch of a short proof. First let’s check that the

determinant det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q may be indeed expressed as a product

(6.3.2). We use the fact that for any a < b < ã < b̃ ∈ R:

G(a, b̃)G(b, ã) = G(a, ã)G(b, b̃) = u↑(a)u↑(b)u↓(ã)u↓(b̃)

By subtracting from the last line in the matrix
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q, which is

(G(p−q (yq), p
+
j (yj)))1≤j≤q , the second to last line (G(p−q−1(yq−1), p

+
j (yj)))1≤j≤q mul-

tiplied by
G(p−q−1(yq−1), p

+
q (yq))

G(p−q−1(yq−1), p
+
q−1(yq−1))

we get zero for all coefficient on the last line,
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except the diagonal one. Thus det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q equals

det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q−1

×
(
G(p−q (yq), p

+
q (yq))−

G(p−q−1(yq−1), p
+
q (yq))G(p

+
q−1(yq−1), p

−
q (yq))

G(p−q−1(yq−1), p
+
q−1(yq−1))

)

By induction we get (6.3.2).

Next step is to check that (Yn(x1, . . . , xn−2, xn−1, xn), Jn(x1, . . . , xn−2, xn−1, xn))

and (Yn(x1, . . . , xn−2, xn, xn−1),Jn(x1, . . . , xn−2, xn, xn−1)) have the same law condi-

tionally on (Yn−2(x1, . . . , xn−2),Jn−2(x1, . . . , xn−2)). This can be done using the ex-

plicit expressions for the conditional destitution of B
(xn−1)

T−
n−1

, B
(xn)

T−
n

, B
(xn)

T−
n−1

and B
(xn−1)

T−
n

.

This invariance by transposition of the two last starting points implies in turn all the

invariances by permutation stated in the proposition.

From the invariance by permutation follows that one only needs to prove (6.3.1) in

case x1 < x2 < · · · < xn. In this case one can prove (6.3.1) by induction on n using

the expression (6.3.2) for det
(
G(p−i (yi), p

+
j (yj))

)
1≤i,j≤q.

The fact that the law of the tree obtained after n steps of Wilson’s algorithm is

invariant under permutations of the starting points (x1, . . . , xn) is something that is

also satisfied in case of random walks on a true finite graph. The product (6.3.2) can

be further rewritten as

(6.3.3)

u↑(p
−
1 (y1))u↓(p

+
q (yq))

∏

1≤r≤q−1

(u↓(p
+
r (yr))u↑(p

−
r+1(yr+1))−u↑(p+r (yr))u↓(p−r+1(yr+1)))

Next we will show that Y∞ and Z∞ are a.s. discrete.

Lemma 6.4. — For all n ≥ 2 and q ∈ {2, . . . , n}:

P
(
Y∞ ∩ (p−n,q−1, p

+
n,q) = ∅|p−n,q−1, p

+
n,q, Qn ≥ q

)
=

2(p+n,q − p−n,q−1)

u↓(p
−
n,q−1)u↑(p

+
n,q)− u↑(p

−
n,q−1)u↓(p

+
n,q)

Proof. — Let n and q be fixed. For n′ > n, let

N(n′) := ♯({xn+1, . . . , xn′} ∩ (p−n,q−1, p
+
n,q)

and x̃n′,1 < x̃n′,2 < · · · < x̃n′,N(n′) the points of {xn+1, . . . , xn′} ∩ (p−n,q−1, p
+
n,q)

ordered increasingly. Conventionally we define x̃n′,0 := p−n,q−1 and x̃n′,N(n′)+1 :=

p+n,q. The condition Yn′ ∩ (p−n,q−1, p
+
n,q) = ∅ is satisfied if and only if for some i ∈

{1, 2, . . . , N(n′) + 1}, necessarily unique, the following holds:

[p−n,q−1, x̃n′,i−1] ⊆
⋃

J∈Jm

J and [x̃n′,i, p
+
n,q] ⊆

⋃

J∈Jn′

J
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Thus

P
(
Yn′ ∩ (p−n,q−1, p

+
n,q) = ∅|p−n,q−1, p

+
n,q, Qn ≥ q

)
=

N(n′)+1∑

i=1

P
(
[p−n,q−1, x̃n′,i−1] ⊆

⋃

J∈Jm

J, [x̃n′,i, p
+
n,q] ⊆

⋃

J∈Jn′

J
∣∣∣p−n,q−1, p

+
n,q, Qn ≥ q

)

Let Tn′,i be the first time B(x̃n′,i) hits either p−n,q−1 or p+n,q or gets killed by the killing

measure κ. For i ∈ {1, 2, . . . , N(n′) + 1} let Tn′,i,x̃n′,i−1
be the first time B(x̃n′,i)

hits x̃n′,i−1. Since the law of (Yn′ ,Jn′) conditionally on (Yn,Jn) is invariant by

permutation of points in (xn+1, . . . , xn′), we get that

P
(
[p−n,q−1, x̃n′,i−1] ⊆

⋃

J∈Jm

J, [x̃n′,i, p
+
n,q] ⊆

⋃

J∈Jn′

J
∣∣∣p−n,q−1, p

+
n,q, Qn ≥ q

)
=

P

(
B

(x̃n′,i−1)

T−
n′,i−1

= p−n,q−1, B
(x̃n′,i)

T−
n′,i

= p+n,q, Tn′,i < Tn′,i,x̃n′,i−1

∣∣∣p−n,q−1, p
+
n,q, Qn ≥ q

)
=

u↓(x̃n′,i−1)u↑(x̃n′,i)− u↑(x̃n′,i−1)u↓(x̃n′,i)

u↓(p
−
n,q−1)u↑(p

+
n,q)− u↑(p

−
n,q−1)u↓(p

+
n,q)

It follows that

P
(
Yn′ ∩ (p−n,q−1, p

+
n,q) = ∅|p−n,q−1, p

+
n,q, Qn ≥ q

)
=

N(n′)+1∑

i=1

u↓(x̃n′,i−1)u↑(x̃n′,i)− u↑(x̃n′,i−1)u↓(x̃n′,i)

u↓(p
−
n,q−1)u↑(p

+
n,q)− u↑(p

−
n,q−1)u↓(p

+
n,q)

If x̃n′,i−1 is close to x̃n′,i then

u↓(x̃n′,i−1)u↑(x̃n′,i)− u↑(x̃n′,i−1)u↓(x̃n′,i)

=W (u↓, u↑)(x̃n′,i−1)(x̃n′,i − x̃n′,i−1) + o(x̃n′,i − x̃n′,i−1)

=2(x̃n′,i − x̃n′,i−1) + o(x̃n′,i − x̃n′,i−1)

The sequence (xn′)n′≥n+1 is dense in (p−n,q−1, p
+
n,q). Thus

lim
n′→+∞

P
(
Yn′ ∩ (p−n,q−1, p

+
n,q) = ∅|p−n,q−1, p

+
n,q, Qn ≥ q

)
=

2(p+n,q − p−n,q−1)

u↓(p
−
n,q−1)u↑(p

+
n,q)− u↑(p

−
n,q−1)u↓(p

+
n,q)

Proposition 6.5. — Let a < b ∈ R. Then for all n ≥ 1

(6.3.4) E [♯(Yn ∩ [a, b))] ≤
∫

[a,b)

G(x, x)κ(dx)

It follows that a.s. for all a < b ∈ R, Y∞ ∩ [a, b) is finite.
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Proof. — Let ã < b̃ ∈ [a, b] where ã is close to b̃. We will first show that for all n ≥ 1

(6.3.5) P
(
Yn ∩ [ã, b̃) 6= ∅

)
≤
∫

[ã,b̃)

G(x, x)κ(dx) + o(b̃ − ã)

where o(b̃− ã) is uniform over ã and b̃ close to each other in [a, b]. Then we will deduce

(6.3.4) by partitioning the interval [a, b) in small subintervals [ã, b̃) and approximating

the expected number of points in [ã, b̃) by the probability of presence of one point.

Let n ≥ 1. Then

P
(
Yn(x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)
≤ P

(
Yn+2(x1, . . . , xn, ã, b̃) ∩ [ã, b̃) 6= ∅

)

Since the law of Yn+2 is invariant by permutation of the starting points:

P
(
Yn+2(x1, . . . , xn, ã, b̃) ∩ [ã, b̃) 6= ∅

)
= P

(
Yn+2(ã, b̃, x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)

But

(6.3.6) P
(
Yn+2(ã, b̃, x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)
= P

(
Y2(ã, b̃) ∩ [ã, b̃) 6= ∅

)

+ P
(
Y2(ã, b̃) ∩ [ã, b̃) = ∅,Yn+2(ã, b̃, x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)

We start Wilson’s algorithm by launching first B(ã) starting from ã followed by B(b̃)

starting b̃. Then

P
(
Y2(ã, b̃) ∩ [ã, b̃) 6= ∅

)
= P

(
B

(ã)

T−
1

∈ [ã, b̃)
)
+P

(
B

(ã)

T−
1

6∈ [ã, b̃), B
(ã)

T−
1

≤ ã, B
(b̃)

T−
2

∈ [ã, b̃)
)

Applying proposition 6.3 we get that

P
(
Y2(ã, b̃) ∩ [ã, b̃) 6= ∅

)
=

∫

x∈[ã,b̃)

(
G(ã, x) +

∫

y≤ã
(G(y, ã)G(x, b̃)−G(y, b̃)G(ã, x))κ(dy)

)
κ(dx)

For x ∈ R, let T1,x be the first time B(ã) hits x. Then

G(ã, x) +

∫

y≤ã
(G(y, ã)G(x, b̃)−G(y, b̃)G(ã, x))κ(dy) =

G(x, x)

(
P(T1 ≥ T1,x) +

G(x, b)

G(x, x)
P(T1 < T1,x, B

(ã)

T−
1

≤ ã)

)
≤ G(x, x)

Thus

(6.3.7) P
(
Y2(ã, b̃) ∩ [ã, b̃) 6= ∅

)
≤
∫

[ã,b̃)

G(x, x)κ(dx)

Further

P
(
Y2(ã, b̃) ∩ [ã, b̃) = ∅,Yn+2(ã, b̃, x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)
≤

P
(
Y2(ã, b̃) ∩ [ã, b̃) = ∅,Y∞(ã, b̃, (xj)j≥1) ∩ [ã, b̃) 6= ∅

)
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Applying lemma 6.4 and proposition 6.3 we get that

P
(
Y2(ã, b̃) ∩ [ã, b̃) = ∅,Y∞(ã, b̃, (xj)j≥1) ∩ [ã, b̃) 6= ∅

)
=

P
(
Y∞(ã, b̃, (xj)j≥1) ∩ [ã, b̃) 6= ∅|Y2(ã, b̃) ∩ [ã, b̃) = ∅

)
× P

(
Y2(ã, b̃) ∩ [ã, b̃) = ∅

)

=

(
1− 2(b̃− ã)

u↓(ã)u↑(b̃)− u↑(ã)u ↓ (b̃)

)

×
∫

y≤a

∫

z≥b
1y,z 6∈[ã,b̃) det

(
G(y, a) G(y, z)

G(a, b) G(b, z)

)
κ(dy)κ(dz)

≤ (u↓(ã)u↑(b̃)− u↑(ã)u ↓ (b̃)− 2(b̃− ã))

∫

y≤b
u↑(y)κ(dy)

∫

z≥a
u↓(z)κ(dz)

But

u↓(ã)u↑(b̃)− u↑(ã)u ↓ (b̃)− 2(b̃− ã) = o(b̃− ã)

Thus

(6.3.8) P
(
Y2(ã, b̃) ∩ [ã, b̃) = ∅,Yn+2(ã, b̃, x1, . . . , xn) ∩ [ã, b̃) 6= ∅

)
= o(b̃ − ã)

Combining (6.3.6), (6.3.7) and (6.3.8) we get (6.3.5).

Now for j ∈ N∗ and i ∈ {1, . . . , 2j} consider the intervals ∆i,j defined by

∆i,j =

{ [
a+ (i − 1)2−j(b− a), a+ i2−j(b− a)

)
if i ≤ 2j − 1[

a+ (1− 2−j)(b− a), b
]

if i = 2j

Then E [♯(Yn ∩ [a, b))] is the increasing limit of
∑2j

i=1 P (Yn ∩∆i,j 6= ∅). But
2j∑

i=1

P (Yn ∩∆i,j 6= ∅) ≤
2j∑

i=1

∫

∆i,j

G(x, x)κ(dx) + 2jo(2−j)

(6.3.4) follows. Since (6.3.4) holds for all n, it also holds at the limit when n tends to

+∞. This implies that Y∞ ∩ [a, b) is a.s. finite.

Proposition 6.6. — Almost surely all the intervals in J∞ are open.

Proof. — We need only to show that for any n ≥ 1 and q ∈ {1, . . . , n}
(6.3.9) P

(
Qn ≥ q, ∀n′ ≥ n,min(ın,n′([p−n,q, p

+
n,q])) = p−n,q

)
= 0

and

P
(
Qn ≥ q, ∀n′ ≥ n,max(ın,n′([p−n,q, p

+
n,q])) = p+q,n

)
= 0

Let n and q be fixed. We will show (6.3.9). We will also assume that q ≥ 2. The proof

is similar if q = 1. We need to show that a.s. the following conditional probability

converges to 0:

lim
n′→+∞

P
(
min(ın,n′([p−n,q, p

+
n,q])) = p−n,q|(Yn,Jn), Qn ≥ q

)
= 0
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We recall that for n′′ ≥ n + 1, B(xn′′ ) is a Brownian motion starting from xn′′ and

it is independent from (Yn,Jn). Let Tn′′,p−q,n
be the first time it hits p−q,n and T̃n′′

the first time it either hits
⋃
J∈Jn

J or gets killed by the killing measure κ. Since the

law of (Yn′ ,Jn′) conditionally on (Yn,Jn) is invariant by permutation of points in

(xn+1, . . . , xn′), we get that

P
(
min(ın,n′([p−n,q, p

+
n,q])) = p−n,q|(Yn,Jn), Qn ≥ q

)

≤ inf
n+1≤n′′≤n′

1− 1p+n,q−1<xn′′<p−n,q
P
(
T̃n′′ = Tn′′,p−q,n

|p+n,q−1, p
−
n,q, Qn ≥ q

)

But P
(
T̃n′′ = Tn′′,p−q,n

|p+n,q−1, p
−
n,q

)
is close to 1 if xn′′ is close enough to p−n,q. There is

always a subsequence of (xn′′ )n′′≥n+1 made of points in (p+n,q−1, p
−
n,q) which converges

to p−n,q. It follows that

inf
n′′≥n+1

1− 1p+n,q−1<xn′′<p−n,q
P
(
T̃n′′ = Tn′′,p−q,n

|p+n,q−1, p
−
n,q, Qn ≥ q

)
= 0

which concludes the proof.

From proposition 6.6 follows that Z∞ is closed. Moreover it does not contain any of

the points of the sequence (xn)n≥1. Since the sequence (xn)n≥1 is everywhere dense,

the connected components of Z∞ are single points. One can see that

– If y < ỹ are two consecutive points in Y∞ then ♯(Z∞ ∩ (y, ỹ)) = 1.

– If Y∞ is bounded from below and y = minY∞ then Z∞ ∩ (−∞, y] = ∅.
– If Y∞ is bounded from above and y = maxY∞ then Z∞ ∩ [y,+∞) = ∅.

See figure 2.b. The set Z∞ may be empty, which for instance happens almost surely

if κ is a Dirac measure. For n ≥ 1 we define

Zn :=

{
p−n,q−1 + p+n,q

2

∣∣∣2 ≤ q ≤ Qn

}

We will write Zn(x1, . . . , xn) and Z∞((xn)n≥1) whenever we need to emphasize the

dependence on the starting points.

Proposition 6.7. — The law of (Y∞,Z∞) does not depend on the starting points

(xn)n≥1.

Proof. — Let (x̃n)n≥1 be another sequence of pairwise disjoint points in R. We will

show that the sequence (Y2n(x1, . . . , xn, x̃1, . . . , x̃n),Z2n(x1, . . . , xn, x̃1, . . . , x̃n)) con-

verges in law to (Y∞((xn)n≥1),Z∞((xn)n≥1)) and that (Y2n(x̃1, . . . , x̃n, x1, . . . , xn),

Z2n(x̃1, . . . , x̃n, x1, . . . , xn)) converges to (Y∞((x̃n)n≥1),Z∞((x̃n)n≥1)). Since the two

couples of point processes (Y2n(x1, . . . , xn, x̃1, . . . , x̃n),Z2n(x1, . . . , xn, x̃1, . . . , x̃n))

and (Y2n(x̃1, . . . , x̃n, x1, . . . , xn),Z2n(x̃1, . . . , x̃n, x1, . . . , xn)) have the same law, this

will finish the proof.

For the convergence in law we will use the topology of uniform convergence on

compact sets of collections of points in R. It can be defined using the following
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metric: Let dH be the Hausdorff metric on compact subsets of R. One may use the

metric dPP on point processes:

dPP (X , X̃ ) := dH(tan−1(X ) ∪ {−1, 1}, tan−1(X̃ ) ∪ {−1, 1})
In order to simplify the notations we will write:

(Yn,Zn) := (Yn(x1, . . . , xn),Zn(x1, . . . , xn))
(Y∞,Z∞) := (Y∞((xn)n≥1),Z∞((xn)n≥1))

(Ỹ2n, Z̃2n) := (Y2n(x1, . . . , xn, x̃1, . . . , x̃n),Z2n(x1, . . . , xn, x̃1, . . . , x̃n))

We can construct ((Yn,Zn))n≥1, (Y∞,Z∞) and ((Ỹ2n, Z̃2n))n≥1 on the same proba-

bility space using independent Brownian motions starting from the points in (xn)n≥1

and (x̃n)n≥1 and killed by the measure κ. We construct the sequence ((Yn,Zn))n≥1

using the Wilson’s algorithm described in introduction. This way Yn ⊆ Yn+1 and

Y∞ =
⋃
n≥1 Yn. In order to construct Ỹ2n, we first construct Yn and then continue

the Wilson’s algorithm using the Brownian motions starting from x̃1, . . . , x̃n. This

way Yn ⊆ Ỹ2n but not necessarily Ỹ2n ⊆ Ỹ2(n+1).

Let C > 0 and ε ∈ (0, C2 ). Let δ ∈ (0, 1), δ small. There is N ∈ N∗ such that

P (YN ∩ [−C,C] = Y∞ ∩ [−C,C]) ≥ 1− δ

There is ε′ ∈ (0, ε) such that for all a < b ∈ [−C,C] satisfying b−a ≤ ε′ the following
holds:

1− 2(b− a)

u↓(a)u↑(b)− u↑(a)u↓(b)
≤ δ

N

There is N ′ ≥ N such that with probability 1− 2δ the following two conditions hold:

(6.3.10) YN ∩ [−C,C] = Y∞ ∩ [−C,C]

(6.3.11) Leb
(
[−C,C] \

⋃

J∈JN′

J
)
≤ ε′

We define the following two random variables:

K− := min
J∈JN′ ,J⊆[−C,C]

(min J) K+ := max
J∈JN′ ,J⊆[−C,C]

(max J)

If (6.3.11) holds, then [−C
2 ,

C
2 ] ⊆ [K−,K+]. If (6.3.10) and (6.3.11) hold than for

n ≥ N ′, [K−,K+] \⋃J∈Jn
J is made of at most N intervals, each of length at most

ε′. Consider the following condition on Ỹ2n:

(6.3.12) Ỹ2n ∩ [K−,K+] = Yn ∩ [K−,K+]

Applying lemma 6.4 we get that for all n ≥ N ′

P
(
Ỹ2n satisfies (6.3.12) | (6.3.10) and (6.3.11) hold

)
≥ 1− δ

This implies that for all n ≥ N ′

P
(
Ỹ2n satisfies (6.3.12), and (6.3.10) and (6.3.11) hold.

)
≥ 1− 3δ
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Let n ≥ N ′. On the event when (6.3.10) and (6.3.11) hold and Ỹ2n satisfies (6.3.12),

which happens with probability at least 1− 3δ, the following is true:

– Ỹ2n ∩ [K−,K+] = Y∞ ∩ [K−,K+]

– dH(Z̃2n ∩ [K−,K+],Z∞ ∩ [K−,K+]) ≤ ε

In particular with probability at least 1− 3δ

– dPP (Ỹ2n,Y∞) ≤ 1− tan−1(C2 )

– dH(Z̃2n,Z∞) ≤ ε+ (1− tan−1(C2 ))

Since C is arbitrary large and ε and δ are arbitrary small, this implies that (Ỹ2n, Z̃2n)

converges in law as n→ +∞ to (Y∞,Z∞).

Next we identify the law of Y∞ as a determinantal fermionic point process. For

generalities on this processes see [11], chapter 4, and [28].

Proposition 6.8. — Let n ≥ 1 and a1 < b1 < a2 < b2 < · · · < an < bn ∈ R. Then

(6.3.13)

E

[
n∏

r=1

♯(Y∞ ∩ [ar, br))

]
=

∫

[a1,b1)

. . .

∫

[an,bn)

det (G(yi, yj))1≤i,j≤n

n∏

r=1

κ(dyr)

In other words Y∞ is a determinantal point process on R with reference measure κ

and determinantal kernel G.

Proof. — Consider points ãr < b̃r ∈ [ar, br] for r ∈ {1, . . . , n}. We will show that

(6.3.14) P
(
∀r ∈ {1, . . . , n},Y∞ ∩ [ãr, b̃r) 6= ∅

)
=

∫

[ã1,b̃1)

. . .

∫

[ãn,b̃n)

det (G(yi, yj))1≤i,j≤n

n∏

r=1

κ(dyr)

+
( n∑

r=1

O(b̃r − ãr)
)
×

n∏

r=1

κ([ãr, b̃r)) +
∑

E ⊆ {1, . . . , n}
E 6= ∅

∏

r∈E
o(b̃r − ãr)

∏

r 6∈E
κ([ãr, b̃r))

where the quantities O(b̃r − ãr) and o(b̃r − ãr) are uniform over ãr < b̃r ∈ [ar, br],

ãr close to b̃r. From (6.3.14) one deduces (6.3.13) by splitting the intervals [ar, br]

in small subintervals and approximating the number of points in Y∞ ∩ [ar, br) by the

number of subintervals of [ar, br) that contain a point in Y∞.

As the law of Y∞ does not depend on the choice of everywhere dense sequence of

starting points, we will assume that the first 2n starting points in Wilson’s algorithm

are in order ã1, b̃1, . . . , ãn, b̃n. We will show that for all non-empty subsets E of
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{1, . . . , n}

(6.3.15) P
(
∀r ∈ E,Y2n ∩ [ãr, b̃r) = ∅,Y∞ ∩ [ãr, b̃r) 6= ∅, ∀r 6∈ E,Y2n ∩ [ãr, b̃r) 6= ∅

)

=
∏

r∈E
o(b̃r − ãr)

∏

r 6∈E
κ([ãr, b̃r))

Further we will show that for any r0 ∈ {1, . . . , n}
(6.3.16)

P
(
∀r ∈ {1, . . . , n},Y2n∩ [ãr, b̃r) 6= ∅, [ãr0 , b̃r0 ] *

⋃

J∈J2n

J
)
= O(b̃r0 − ãr0)

n∏

r=1

κ([ãr, b̃r))

If for all r ∈ {1, . . . , n}, Y2n ∩ [ãr, b̃r) 6= ∅ and [ãr, b̃r] ⊆
⋃
J∈J2n

J then necessarily

Q2n = n and J2n = {[ãr, b̃r]|1 ≤ r ≤ n}. We will use the fact that according to

(6.3.1)

(6.3.17) P
(
Q2n = n,J2n = {[ãr, b̃r]|1 ≤ r ≤ n}

)

=

∫

[ã1,b̃1)

. . .

∫

[ãn,b̃n)

det
(
Gãi,b̃j

)
1≤i,j≤n

n∏

r=1

κ(dyr)

=

∫

[ã1,b̃1)

. . .

∫

[ãn,b̃n)

det (G(yi, yj))1≤i,j≤n

n∏

r=1

κ(dyr)+
( n∑

r=1

O(b̃r−ãr)
)
×

n∏

r=1

κ([ãr, b̃r))

Let’s show (6.3.15). A closed expression of the probability in (6.3.15) can be

computed using (6.3.1) and lemma 6.4. Since many different configurations (different

values of Q2n and configurations of J2n) contribute to the probability in (6.3.15), we

won’t give the closed expression and only give the estimates. Let E be a non-empty

subset of {1, . . . , n}. If r 6∈ E, then the condition Y2n ∩ [ãr, b̃r) 6= ∅ contributes

by a factor O(κ([ãr , b̃r))) to the probability in (6.3.15). If r ∈ E, then the two

conditions Y2n∩ [ãr, b̃r) = ∅ and Y∞∩ [ãr, b̃r) 6= ∅ imply that (ãr, b̃r)∩
⋃
J∈J2n

J = ∅.
According to the identity (6.3.3), the condition (ãr, b̃r) ∩

⋃
J∈J2n

J = ∅ contributes

to the probability in (6.3.15) by a factor

O(u↓(ãr)u↑(b̃r)− u↑(ãr)u↓(b̃r)) = O(b̃r − ãr)

According to the lemma 6.4, the additional condition Y∞ ∩ [ãr, b̃r) 6= ∅ contributes

to the probability in (6.3.15) by a factor

1− 2(b̃r − ãr)

u↓(ãr)u↑(b̃r)− u↑(ãr)u↓(b̃r)
= o(1)

(6.3.15) follows.

We deal now with (6.3.16). As in the previous case, the condition that for all

r ∈ {1, . . . , n}, Y2n ∩ [ãr, b̃r) 6= ∅ contributes by a factor O
(∏n

r=1 κ([ãr, b̃r))
)

to

the probability in (6.3.16). The condition [ãr0 , b̃r0 ] *
⋃
J∈J2n

J implies that there is
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i ∈ {2, . . . , Q2n} such that ãr0 < p+2n,i−1 < p−2n,i < b̃r0 . As previously, this contributes

by a factor O(b̃r0 − ãr0) to the probability. Combining (6.3.15), (6.3.16) and (6.3.17)

yields (6.3.14).

Let Gκ be the following operator defined for functions in L2(dk) with compact

support:

(Gkf)(x) :=

∫

R

G(x, y)f(y)κ(dy)

A standard condition for a determinantal point process with kernel G relative to

the measure κ to be well defined is Gκ to be positive semi-definite, contracting and

locally trace class. We explain why this is true. Let f be a compactly supported

L2(dκ) function. Then the weak second derivative of Gκf is

d
(d(Gκf)

dx

)
= 2(Gκf − f)dκ

Gκf and
d(Gκf)

dx
are square-integrable and

∫

R

(Gκf)fdκ =

∫

R

(Gκf)
2dκ+

1

2

∫

R

(Gκf)d
(d(Gκf)

dx

)

=

∫

R

(Gκf)
2dκ+

1

2

∫

R

(d(Gκf)
dx

)2
dx

(6.3.18)

Identity (6.3.18) shows that Gκ is positive semi-definite. It also shows that∫
R
(Gκf)

2dκ ≤
∫
R
(Gκf)fdκ, which implies that Gκ is contracting and hence can be

continuously extended to a contraction of the whole space L2(dκ). Gκ is locally trace

class because it is positive semi-definite and its functional kernel is continuous (see

theorem 2.12 in [27], chapter 2).

Next we give a criterion for Y∞ to be finite or just to be finite in the neighbourhood

of either +∞ or −∞.

Proposition 6.9. — If
∫
(0,+∞) xκ(dx) < +∞ then almost surely ♯(Y∞ ∩ (0,+∞))

is finite. Moreover

(6.3.19) E [♯(Y∞ ∩ (0,+∞))] =

∫

(0,+∞)

G(x, x)κ(dx) < +∞

If
∫
(0,+∞) xκ(dx) = +∞ then almost surely ♯(Y∞ ∩ (0,+∞)) = +∞. In general, for

all a ∈ R

(6.3.20) P(Y∞ ∩ (a,+∞) = ∅) = u↓(+∞)

∫

(−∞,a]

u↑(x)κ(dx)

Similarly, if
∫
R
|x|κ(dx) < +∞ then a.s. ♯Y∞ is finite and

E [♯Y∞] =

∫

R

G(x, x)κ(dx) < +∞

If
∫
R
|x|κ(dx) = +∞ then a.s. ♯Y∞ = +∞.
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Proof. — We need only to deal with the finiteness of ♯(Y∞ ∩ (0,+∞)). If∫
(0,+∞) x k(dx) < +∞ then (6.3.19) holds according to 2.3 and hence ♯(Y∞∩(0,+∞))

is finite is finite a.s.

We will prove (6.3.20). If
∫
(0,+∞)

xκ(dx) = +∞ then according 2.3 u↓(+∞) > 0

and thus ♯(Y∞ ∩ (0,+∞)) = +∞ a.s. Let a < b ∈ R. We assume that the two first

starting points in Wilson’s algorithm are a and b. Then

P(Y∞ ∩ (a, b] = ∅) =P
(
B

(a)

T−
1

> b
)
+ P

(
B

(a)

T−
1

≤ a,B
(b)

T−
2

= a
)

=P
(
B

(a)

ζ−1
> b
)
+ P

(
B

(a)

ζ−1
≤ a

)
× P

(
B(b) hits a before time ζ2

)

=

∫

(b,+∞)

G(a, x)κ(dx) +
(∫

(−∞,a]

G(a, x)κ(dx)
)
× u↓(b)

u↓(a)

=

∫

(b,+∞)

G(a, x)κ(dx) + u↓(b)

∫

(−∞,a]

u↑(x)κ(dx)

(6.3.21)

Letting b go to +∞ in (6.3.21) gives (6.3.20).

Next we will show that Z∞ is a determinantal point process with kernel K relatively

to the Lebesgue measure where

K(y, z) :=− 1

2

du↑
dx

((y ∧ z)+)u↓
dz

((y ∨ z)−)

=2

∫

(−∞,y∧z]
u↑(x)κ(dx) ×

∫

[y∨z,+∞)

u↓(x)κ(dx)

Proposition 6.10. — Let n ≥ 1 and a1 < b1 < a2 < b2 < · · · < an < bn ∈ R. Then

(6.3.22) E

[
n∏

r=1

♯(Z∞ ∩ (ar, br))

]
=

∫

(a1,b1)

. . .

∫

(an,bn)

det(K(zi, zj))1≤i,j≤n

n∏

r=1

dzr

If for r ∈ {1, 2, . . . , n}, κ({ar}) = κ({br}) = 0 then

(6.3.23)

P (∀r ∈ {1, 2, . . . , n}, ♯(Z∞ ∩ (ar, br)) = 1) = det(K(ai, bj))1≤i,j≤n ×
n∏

r=1

(br − ar)

Proof. — We will only prove (6.3.23). (6.3.22) can be deduced from (6.3.23) by diving

the intervals (ar, br) in small subintervals and approximating the expected number of

points in these subintervals by the probability to have one single point per subinterval.

Observe that if the measure κ has atoms then K is not continuous. Yet z 7→ du↑
dx

(z+)

is right-continuous and z 7→ du↓
dx

(z−) is left-continuous. So the approximation can

still be done.
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Consider the Wilson’s algorithm where the 2n first starting points are in order

a1, b1, a2, b2, . . . , an, bn. Then

(6.3.24) P (∀r ∈ {1, 2, . . . , n}, ♯(Z∞ ∩ (ar, br)) = 1) =

P

(
∀r ∈ {1, 2, . . . , n}, (ar, br) ⊆ R \

⋃

J∈J2n

J, (ar, br) ∩ Y∞ = ∅
)

Applying lemma 6.4 we get that (6.3.24) equals

(6.3.25)

P

(
∀r ∈ {1, 2, . . . , n}, (ar, br) ⊆ R \

⋃

J∈J2n

J

)
×

n∏

r=1

2(br − ar)

u↓(ar)u↑(br)− u↑(ar)u↓(br)

Further

(6.3.26) P

(
∀r ∈ {1, 2, . . . , n}, (ar, br) ⊆ R \

⋃

J∈J2n

J

)
=

P

(
B

(a1)

T−
1

≤ a1, B
(bn)

T−
2n

≥ bn, ∀r ∈ {1, . . . , n− 1}, br ≤ B
(br)

T−
2r

≤ B
(ar+1)

T−
2r+1

≤ ar+1

)

Applying (6.3.1) and (6.3.3) we get that (6.3.26) equals

(6.3.27)
n∏

r=1

(u↓(ar)u↑(br)− u↑(ar)u↓(br))×
∫

(−∞,a1]

u↑(y1)κ(dy1)×
∫

[bn,+∞)

u↓(zn)κ(dyn)

×
n−1∏

r=1

(
κ([br, ar+1]) +

∫

br≤yr<ỹr≤ar+1

(u↓(yr)u↑(ỹr)− u↑(yr)u↓(ỹr))κ(dyr)κ(dỹr)

)

But

(6.3.28)

∫

br≤yr<ỹr≤ar+1

u↓(yr)u↑(ỹr)κ(dyr)κ(dỹr)

=
1

2

∫

br≤yr≤ar+1

u↓(yr)
(du↑
dx

(ar+1)−
du↑
dx

(y+r )
)
κ(dyr)

=
1

4

(du↓
dx

(ar+1)−
du↓
dx

(br)
)du↑
dx

(ar+1)−
1

2

∫

br≤yr≤ar+1

u↓(yr)
du↑
dx

(y+r )κ(dyr)

and

(6.3.29) −
∫

br≤yr<ỹr≤ar+1

u↑(yr)u↓(ỹr)κ(dyr)κ(dỹr)

= −1

2

∫

br≤yr≤ar+1

u↑(yr)
(du↓
dx

(ar+1)−
du↓
dx

(y+r )
)
κ(dyr)

= −1

4

(du↑
dx

(ar+1)−
du↑
dx

(br)
)du↓
dx

(ar+1) +
1

2

∫

br≤yr≤ar+1

u↑(yr)
du↓
dx

(yr)κ(dyr)
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Combining (6.3.28) and (6.3.29) we get that
∫

br≤yr<ỹr≤ar+1

(u↓(yr)u↑(ỹr)−u↑(yr)u↓(ỹr))κ(dyr)κ(dỹr)

=
1

4

(du↑
dx

(br)
du↓
dx

(ar+1)−
du↓
dx

(br)
du↑
dx

(ar+1)
)

−1

2

∫

br≤yr≤ar+1

(
u↓(yr)

du↑
dx

(y+r )− u↑(yr)
du↓
dx

(y+r )
)
κ(dyr)

=
1

4

(du↑
dx

(br)
du↓
dx

(ar+1)−
du↓
dx

(br)
du↑
dx

(ar+1)
)
− κ([br, ar+1])

It follows that (6.3.27) equals

(6.3.30)

n∏

r=1

(u↓(ar)u↑(br)− u↑(ar)u↓(br))×
(
− 1

4

du↑
dx

(a1)
du↓
dx

(bn)
)

×
n−1∏

r=1

(1
4

(du↑
dx

(br)
du↓
dx

(ar+1)−
du↓
dx

(br)
du↑
dx

(ar+1)
))

=
1

2n

n∏

r=1

(u↓(ar)u↑(br)− u↑(ar)u↓(br))× det(K(ai, bj))1≤i,j≤n

(6.3.25) together with (6.3.30) gives (6.3.23).

To see that the operator induced by the kernel K on L2(Leb) is positive semi-

definite, one can check that for any L2 function f with compact support

∫

R2

f(y)K(y, z)f(z)dydz =

∫

R2

G(ỹ, z̃)

(∫ z̃

ỹ

f(x)dx

)2

κ(dỹ)κ(dz̃)

Too see that K induces a contraction one can check that for any C1 function f with

compact support
∫

R2

f(y)K(y, z)f(z)dydz =

∫

R

f(x)2dx− 1

2

∫

R2

df

dx
(ỹ)G(ỹ, z̃)

df

dx
(z̃)dỹdz̃

and that
∫
R2

df
dx
(ỹ)G(ỹ, z̃) df

dx
(z̃)dỹdz̃ ≥ 0.

The determinantal kernels G and K both satisfy the following relation: for any

x ≤ y ≤ z ∈ R

(6.3.31) G(x, y)G(y, z) = G(x, z)G(y, y) K(x, y)K(y, z) = K(x, z)K(y, y)

For x ∈ R and y, z > x, we define

(6.3.32)

G(x×)(y, z) := G(y, z)− G(x, y)G(x, z)

G(x, x)
K(x⊲)(y, z) := K(y, z)− K(x, y)K(x, z)

K(x, x)
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Relation (6.3.31) ensures that det(G(yi, yj))1≤i,j≤n and det(K(zi, zj))1≤i,j≤n can be

factorised as follows: If y1 < y2 < · · · < yn then

(6.3.33) det(G(yi, yj))1≤i,j≤n = G(y1, y1)

n∏

r=2

G(yr−1×)(yr, yr)

If z1 < z2 < · · · < zn then

(6.3.34) det(K(zi, zj))1≤i,j≤n = K(z1, z1)

n∏

r=2

K(zr−1⊲)(zr, zr)

The relations (6.3.31) or equivalently the factorisations (6.3.33) and (6.3.34) imply

that the spacings between consecutive points of Y∞ respectively Z∞ are independent,

that is to say conditionally on Y∞ having a point at y0, the position of the next

higher point y is independent on Y∞ ∩ (−∞, y0), and similarly for Z∞ ([28], section

2.4). Conditionally on y0 ∈ Y∞ the distribution of its higher neighbour in Y∞ is of

the form fG(y0, y)κ(dy). Similarly denote fK(z0, z)dz the distribution between two

consecutive points in Z∞ conditionally on z0 be the lowest one. Following relations

relate G(y0×)(y, y) respectively K(z0⊲)(z, z) to fG respectively fK:

G(y0×)(y, y) = fG(y0, y)

+
∑

j≥2

∫

y0<y1<···<yj−1<y

fG(y0, y1)fG(y1, y2) . . . fG(yj−1, y)κ(dy1) . . . κ(dyj−1)

K(z0⊲)(z, z) = fK(z0, z)

+
∑

j≥2

∫

z0<z1<···<zj−1<z

fK(z0, z1)fK(z1, z2) . . . fK(zj−1, z)dz1 . . . dzj−1

If
∫
(0,+∞) x k(dx) < +∞, i.e. Y∞∩(0,+∞) a.s. finite, then

∫
(y0,+∞) fG(y0, y)κ(dy) <

1 and
∫ +∞
z0

fK(z0, z)dz < 1.

Given a couple of interwoven point processes (Y,Z) on R such that between any

two consecutive point in Y lies one single point of Z and such that for any J bounded

subinterval of R Y satisfies the constraint

E
[
♯(Y ∩ J)

]
< +∞

the joint distribution of (Y,Z) can be fully described using the family of measures

(Mn(Y,Z))n≥0 defined by

∫

R

f(y0)M0(Y,Z)(dy0) = E
[ ∑

y0∈Y
f(y0)

]
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∫

y0<z1<y1<...zn<yn

f(y0, z1, y1, . . . zn, yn)Mn(Y,Z)(dy0, dz1, dy1, . . . dzn, dyn)

= E

[
∑

y0, . . . , yn
n+ 1 consecutive points in Y

z1, . . . , zn ∈ Z
y0 < z1 < y1 < . . . zn < yn

f(y0, z1, y1, . . . zn, yn)

]

Mn(Y,Z)(dy0, dz1, dy1, . . . dzn, dyn) is the infinitesimal probability for y0, y1, . . . yn
being n+ 1 consecutive points in Y and z1, . . . zn being the n points in Z separating

them. In case of (Y∞,Z∞), M0(Y∞,Z∞)(dy0) = G(y0, y0)κ(dy0).

Proposition 6.11. — For n ≥ 1

Mn(Y∞,Z∞)(dy0, dz1, . . . dzn, dyn) =2nu↑(y0)u↓(yn)κ(dy0)dz1 . . . dznκ(dyn)

=2nG(y0, yn)κ(dy0)dz1 . . . dznκ(dyn)

(6.3.35)

Moreover

fG(y0, y) = 2(y − y0)
u↓(y)

u↓(y0)
κ(dy)− almost everywhere

fK(z0, z) = 2κ((z0, z))
(du↓
dx

(z0)
)−1 du↓

dx
(z) dz − almost everywhere

The distribution on Z∞ conditionally on Y∞ is the following: given two consecutive

points y1 < y2 in Y∞, then the point of Z∞ lying between them is distributed uni-

formly on (y1, y2) and independently on the behaviour of Z∞ on (−∞, y1)∪ (y2,+∞).

The distribution on Y∞ conditionally on Z∞ is the following: given two consecutive

points z1 < z2 in Z∞, then the point of Y∞ lying between them is distributed on

(z1, z2) according the measure 1z1<y<z2
κ(dy)

κ((z1,z2))
and independently on the behaviour

of Y∞ on (−∞, z1)∪ (z2,+∞). If
∫
(−∞,0) |x|κ(dx) < +∞, then minY∞ is distributed

conditionally on Z∞ according to the measure 1y<minZ∞
κ(dy)

k((−∞,minZ∞)) and it is in-

dependent on the behaviour of Y∞ on (−∞,minZ∞). Similarly for the distribution

of maxY∞ conditionally on maxZ∞ if
∫
(0,+∞)

xκ(dx) < +∞.

Proof. — Let a0 < b0 < ã1 < b̃1 < a1 < b1 < · · · < ãn < b̃n < an < bn ∈ R. Let

Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn) corresponding to the following conditions:

– Y∞ ∩ [a0, b0] 6= ∅, Y∞ ∩ [an, bn] 6= ∅
– ∀r ∈ {1, . . . , n}, ♯(Y∞ ∩ [ar, br]) = 1

– ∀r ∈ {1, . . . , n}, ♯(Z∞ ∩ (ãr, b̃r)) = 1

– ∀r ∈ {0, . . . , n− 1}, (Y∞ ∪ Z∞) ∩ (br, ãr] = ∅, (Y∞ ∪ Z∞) ∩ [b̃r, ar+1) = ∅
We will compute the probability of Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn). Con-

sider that we execute the Wilson’s algorithm where the 2n first starting points are

ã1, b̃1, . . . , ãn, b̃n. The only configurations that contribute to the studied event are
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those where B
(ã1)

T−
1

∈ [a0, b0], B
(b̃n)

T−
2n

∈ [an, bn] and for r ∈ {1, . . . , n − 1}, B(b̃r)

T−
2r

=

B
(ãr+1)

T−
2r+1

∈ [ar+1, br+1]. We further need that for r ∈ {1, . . . , n}, Y∞ ∩ (ãr, b̃r) = ∅.
Thus applying (6.3.1), (6.3.3) and lemma 6.4 we get the probability of the event

Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn) equals

∫

[a0,b0]

u↑(y0)κ(dy0)×
∫

[an,bn]

u↓(yn)κ(dyn)×
n−1∏

r=1

κ([ar, br])×
n∏

r=1

2(b̃r − ãr)

The above probability also equals Mn(Y∞,Z∞)([a0, b0] × [ã1, b̃1] × [a1, b1] × · · · ×
[ãn, b̃n] × [an, bn]) and gives the expression of (6.3.35). To get the expressions of fG
and fK just observe that

G(y0, y0)fG(y0, y)κ(dy0)κ(dy) =M1([y0, y0 + dy0]× (y0, y)× [y, y + dy])

K(z0, z0)fK(z0, z)dz0dz =M3((−∞, z0)× [z0, z0+dz0]×(z0, z)× [z, z+dz]×(z,+∞))

Expression (6.3.35) gives also the law of Z∞ conditionally on Y∞ and the law of

Y∞ conditionally on Z∞, except for the possible extremal points of Y∞. Let’s deal

with the distribution of maxY∞ conditionally on maxZ∞ in case
∫
(0,+∞)

xκ(dx) <

+∞. Again according to (6.3.35), conditionally on z0 ∈ Z∞, the distribution of

minY∞ ∩ (z0,+∞) is proportional to 1y>z0u↓(y)κ(dy). To obtain the distribution

maxY∞ conditionally on maxZ∞, one must weight u↓(y) by 1−
∫
ỹ>y

fG(y, ỹ)κ(dỹ),

i.e. the probability of not having any point in Y∞ consecutive to y. But
∫

ỹ>y

fG(y, ỹ)κ(dỹ) =2

∫

ỹ>y

(ỹ − y)
u↓(ỹ)

u↓(y)
κ(dỹ)

= lim
ỹ→+∞

ỹ − y

u↓(y)

du↓
dx

(ỹ+)− 1

u↓(y)

∫

ỹ>y

du↓
dx

(ỹ+)dỹ

But

(ỹ − y)
du↓
dx

(ỹ+) = (ỹ − y)

∫

(ỹ,+∞)

2u↓(x)κ(dx) ≤ 2

∫

(ỹ,+∞)

(x− y)u↓(x)κ(dx) → 0

It follows that:
∫

ỹ>y

fG(y, ỹ)κ(dỹ) = − 1

u↓(y)

∫

ỹ>y

du↓
dx

(ỹ+)dỹ = 1− u↓(+∞)

u↓(y)

Thus 1y>z0u↓(y)
(
1 −

∫
ỹ>y

fG(y, ỹ)κ(dỹ)
)
κ(dy) is simply proportional to 1y>z0κ(dy).

Proposition 6.12. — In case
∫
R
|x|κ(dx) < +∞

P(♯Y∞ = 1) = u↑(−∞)u↓(+∞)κ(R)

Conditionally on ♯Y∞ = 1 the unique point in Y∞ is distributed according κ(dy)
κ(R) .
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Proof. — The distribution of the unique point y0 of Y∞ on the event ♯Y∞ = 1 is

given by the following sieve identity:
(
G(y0, y0)−

∫

y−1<y0

G(y−1, y−1)fG(y−1, y0)κ(dy−1)

−
∫

y1>y0

G(y0, y0)fG(y0, y1)κ(dy1)

+

∫

y−1<y0

∫

y1>y0

G(y−1, y−1)fG(y−1, y0)fG(y0, y1)κ(dy−1)κ(dy1)

)
κ(dy0)

It is the infinitesimal probability of Y∞ having a point at y0 minus the probability of

having a point at y0 and an other lower, minus the probability of having a point at

y0 and an other higher, plus the probability of having a point at y0 surrounded by

two neighbours on both sides. The identity can be further factorized as
(
u↑(y0)− 2

∫

y−1<y0

(y0 − y−1)u↑(y−1)κ(dy−1)

)

×
(
u↓(y0)− 2

∫

y1>y0

(y1 − y0)u↓(y1)κ(dy1)

)
× κ(dy0)

According to the calculation done in the proof of proposition 6.11 this the above

equals u↑(−∞)u↓(+∞)κ(dy0).

Now let’s describe (Y∞,Z∞) in two particular cases. If the killing rate is uniform,

that is κ(dy) = cdy where c is constant, then

cfG(x0, x) = fK(x0, x) = 2c(x− x0)e
−
√
2c(x−x0)

Both the spacings of Y∞ and Z∞ are i.i.d. gamma-2 variables with mean
√

2
c
. Ac-

tually the union Y∞ ∪ Z∞ is a Poisson point process with intensity
√
2cdx. If the

killing measure is of form κ = c
∑
j∈Z

δj where c is constant, then again the spacings

between consecutive points in Y∞ are i.i.d random variables, this time integer valued.

Let N2 be a random variable with same distribution as this spacings. For any j ∈ N

P(N2 = j) = 2cj(1 +
√
2c)−j

N2 can be written as N2 = N1 + Ñ1 − 1 where N1 and Ñ1 are two independent

geometric variables of parameter (1+
√
2c)−1. Actually, if y0 < y are two consecutive

points in Y∞ and z the point of Z∞ lying between them, then conditionally on y0,

(⌊z⌋ − y0, y − ⌊z⌋) has the same law as (N1 − 1, Ñ). Moreover {⌊z⌋|z ∈ Z∞} has the

same law as Y∞.

6.4. Determinantal point processes (Y∞,Z∞): general case

Let I be an open subinterval of R and L be the generator of a transient diffusion

on I of form L = 1
m(x)

d
dx

(
1

w(x)
d
dx

)
− κ with zero Dirichlet boundary conditions on
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∂I with sample path denoted (Xt)0≤t<ζ We will describe, without proof, the law of

(Y∞,Z∞) in this generic case. It can be derived in the same way as it was done in

the previous section. Let G be the Green’s function of L relatively to the measure

m(y)dy, factorisable as G(x, y) = u↑(x ∧ y)u↓(x ∨ y).
Proposition 6.13. — Y∞ and Z∞ are a.s. discrete point processes. Let ∂I be the

boundary of I in R ∪ {−∞,+∞}. Almost surely

Y∞ ∩ ∂I =
{
y ∈ ∂I|P(Xζ− = y) > 0

}

If κ 6= 0, the points in Y∞ ∩ I are a determinantal point process with determinantal

kernel G(x, y) relatively the reference measure m(y)κ(dy). Z∞ is a determinantal

point process on I with determinantal kernel

du↑
dx

((y ∧ z)+)du↓
dx

((y ∨ z)−)

relatively to the reference measure dz
w(z) . Given two consecutive points y1 < y2 in

Y∞, then the point of Z∞ lying between them is distributed according to the mea-

sure 1y1<z<y2
w(z)dz∫

(y1 ,y2)
w(a)da

and independently on the behaviour of Z∞ on (−∞, y1) ∪
(y2,+∞). Given two consecutive points z1 < z2 in Z∞, then the point of Y∞ lying

between them is distributed on (z1, z2) according the measure 1z1<y<z2
m(y)κ(dy)∫

(z1,z2)
m(q)κ(dq)

and independently on the behaviour of Y∞ on (−∞, z1) ∪ (z2,+∞).





CHAPTER 7

MONOTONE COUPLINGS FOR THE POINT

PROCESSES (Y∞,Z∞)

7.1. Conditioning

In this chapter we will deal with monotone coupling for the determinantal point

processes Y∞ and Z∞ intruded in chapter 6. We will restrict to the Brownian case.

Consider two different killing measures κ and κ̃ on R, with κ ≤ κ̃, and the couples

of determinantal point processes (Y∞,Z∞) respectively (Ỹ∞, Z̃∞) corresponding to

the Brownian motion on R with killing measure κ respectively κ̃. We will show

that one can couple (Y∞,Z∞) and (Ỹ∞, Z̃∞) on the same probability space such

that Z∞ ⊆ Z̃∞ and Ỹ∞ ⊆ Y∞ ∪ Supp(κ̃− κ). Moreover if κ and κ̃ are proportional

we may also have Y∞ ⊆ Ỹ∞. We will provide an explicit construction for the this

couplings in the section 7.2.

In the section 7.1 we will prove conditionning results for (Y∞,Z∞): what is ob-

tained if Y∞ or Z∞ is conditioned by either containing a point at a given location or

not containing any points in a given interval. These results will be used in the next

section. The conditional law we will obtain are analogous to those of the Uniform

Spanning Tree on a finite undirected connected graph: Let G be such a graph, E the

set of its edges, C a weight function on E and Υ the corresponding Uniform Spanning

Tree on G. Let E1 and E2 be two disjoint subsets of E such that E1 contains no cycles

and such that erasing the edges in E2 does not disconnect G. The law of Υ condi-

tioned by E1 ⊆ Υ and Υ ∩ E2 = ∅ can be described as follows: Let G′ be the graph

obtained from G trough erasing the edges in E2 and contracting (i.e. identifying the

two end vertices) the edges in E1. The edges of G′ are in one to one correspondence

with E \ E2. If we keep the same weight function C on these edges and take Υ′ an
Uniform Spanning Tree on G′, then Υ′ ∪ E1 has the same law as Υ conditioned by

E1 ⊆ Υ and Υ ∩ E2 = ∅ (see proposition 4.2 in [1]).

Let κ be a Radon measure on R and G(x, y) = u↑(x ∧ y)u↓(x ∨ y) the Green’s

function of 1
2
d2

dx2 −κ. First we will restrict the Brownian motion with killing measure

κ to a half-line by adding either a killing or a reflecting boundary point and describe
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what is obtained if we apply the Wilson’s algorithm to it. This is related to some of

the conditional laws we are interested in. Diffusions with reflection were not discussed

so far.

For x0 < y let

u
(x0×)
↑ (y) := u↑(y)−

u↑(x0)

u↓(x0)
u↑(y)

and for x0 < y, z let

G(x0×)(y, z) := u
(x0×)
↑ (y ∧ z)u↓(y ∨ z)

K(x0×)(y, z) := −1

2

du
(x0×)
↑
dx

((y ∧ z)+)du↓
dx

((y ∨ z)−)

G(x0×) was already introduced in (6.3.32). For y < x0 let

u
(×x0)
↓ (y) := u↓(y)−

u↓(x0)

u↑(x0)
u↑(y)

and for y, z < x0 let

G(×x0)(y, z) := u↑(y ∧ z)u(×x0)
↓ (y ∨ z)

K(×x0)(y, z) := −1

2

du↑
dx

((y ∧ z)+)
du

(×x0)
↓
dx

((y ∨ z)−)

G(x0×) respectivelyG(×x0) is the Green’s function of 1
2
d2

dx2 −κ restricted to the interval

(x0,+∞) respectively (−∞, x0) with zero Dirichlet boundary condition at x0.

Let x0 ∈ R such that κ({x0}) = 0. For x0 < y let

u
(x0⊲)
↑ (y) := u↑(y) +

(du↓
dx

(x0)
)−1 du↑

dx
(x0)u↓(y)

and for y, z < x0 let

G(x0⊲)(y, z) := u
(x0⊲)
↑ (y ∧ z)u↓(y ∨ z)

K(x0⊲)(y, z) := −1

2

du
(x0⊲)
↑
dx

((y ∧ z)+)du↓
dx

((y ∨ z)−)

K(x0⊲) was already introduced in (6.3.32). For y < x0 let

u
(⊳x0)
↓ (y) := u↓(y) +

(du↑
dx

(x0)
)−1 du↓

dx
(x0)u↑(y)

and for y, z < x0 let

G(⊳x0)(y, z) := u↑(y ∧ z)u(⊳x0)
↓ (y ∨ z)

K(⊳x0)(y, z) := −1

2

du↑
dx

((y ∧ z)+)
du

(⊳x0)
↓
dx

((y ∨ z)−)
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G(x0⊲) respectively G(⊳x0) is the Green’s function of 1
2
d2

dx2 −κ restricted to the interval

[x0,+∞) respectively (−∞, x0] with zero Neumann boundary condition at x0. Equiv-

alently G(x0⊲) respectively G(⊳x0) is the restriction to [x0,+∞) respectively (−∞, x0]

of the Green’s function on R of 1
2
d2

dx2 − 1[x0,+∞)κ respectively 1
2
d2

dx2 − 1(−∞,x0]κ.

Consider now x0 ∈ R and (xn)n≥1 a dense sequence of pairwise disjoint points

in (x0,+∞). We consider the Wilson’s algorithm applied to the Brownian motion

on (x0,+∞) with killing measure κ and killing boundary x0, where (xn)n≥0 is the

sequence of starting points. Let Y(x0×)
∞ and Z(x0×)

∞ be the interwoven point processes

in [x0,+∞) obtained as result. See figure 3.a for an illustration of the first four steps

of Wilson’s algorithm and of (Y(x0×)
∞ ,Z(x0×)

∞ ). According to proposition 6.13, x0 ∈
Y(x0×)
∞ a.s., Y(x0×)

∞ ∩ (x0,+∞) is a determinantal point process with determinantal

kernel G(x0×) relatively to the measure 1(x0,+∞)κ and Z(x0×)
∞ is a determinantal point

process with kernel K(x0×) relatively to the measure 1z>x0dz. The distribution of the

2n closest to x0 points in (Y(x0×)
∞ ∩ (x0,+∞))∪Z(x0×)

∞ , the odd-numbered belonging

to Y(x0×)
∞ ∩ (x0,+∞) and the even-numbered to Z(x0×)

∞ , is given by the measure

M (x0×)
n (Y(x0×)

∞ ,Z(x0×)
∞ )(dz1, dy1, . . . , dzn, dyn) := 2n

u↓(yn)

u↓(x0)
dz1κ(dy1) . . . dznκ(dyn)

Its total mass equals P(♯Y(x0×)
∞ ≥ n + 1). If the Wilson’s algorithm is applied to

the Brownian motion on (−∞, x0), killed at x0 and with killing measure κ, and

(Y(×x0)
∞ ,Z(×x0)

∞ ) are the point processes returned by the algorithm, then the distri-

bution of the 2n closest to x0 points in (Y(×x0)
∞ ∩ (−∞, x0)) ∪ Z(×x0)

∞ is given by the

measure

M (×x0)
n (Y(×x0)

∞ ,Z(×x0)
∞ )(dz−1, dy−1, . . . , dz−n, dy−n) :=

2n
u↑(y−n)

u↑(x0)
dz−1κ(dy−1) . . . dz−nκ(dy−n)

Let now x0 ∈ R such that κ({x0}) = 0. If we replace the Brownian motion

on (x0,+∞) killed in x0 by a Brownian motion on [x0,+∞) reflected in x0, and

keep the killing measure κ, we get another pair (Y(x0⊲)∞ ,Z(x0⊲)∞ ) of interwoven point

processes on [x0,+∞). The pair (Y(x0⊲)
∞ ,Z(x0⊲)

∞ ) can be also obtain through applying

Wilson’s algorithm to a Brownian motion on R with the killing measure 1(x0,+∞)κ.

See figure 3.b for an illustration of (Y(x0⊲)∞ ,Z(x0⊲)∞ ). Observe the difference with figure

3.a at the third step of Wilson’s algorithm. Y(x0⊲)
∞ is a determinantal point process

with determinantal kernel G(x0⊲) relatively to the measure 1(x0,+∞)κ. Z(x0⊲)
∞ is a

determinantal point process with kernel K(x0⊲) relatively to the measure 1z>x0dz. The

distribution of the 2n − 1 closest to x0 points in Y(x0⊲)
∞ ∪ Z(x0⊲)

∞ , the odd-numbered
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belonging to Z(x0⊲)
∞ and the even-numbered to Y(x0⊲)

∞ , is given by the measure

M (x0⊲)
n (Y(x0⊲)

∞ ,Z(x0⊲)
∞ )(dy1, dz1, . . . dzn−1, dyn) :=

− 2n
(du↓
dx

(x0)
)−1

u↓(yn)κ(dy1)dz1 . . . dzn−1κ(dyn)

If the Wilson’s algorithm is applied to the Brownian motion on (−∞, x0], reflected at

x0 and with killing measure κ, and (Y(⊳x0)
∞ ,Z(⊳x0)

∞ ) are the point processes returned by

the algorithm, then the distribution of the 2n−1 closest to x0 points in Y(⊳x0)
∞ ∪Z(⊳x0)

∞
is given by the measure

M (⊳x0)
n (Y(⊳x0)

∞ ,Z(⊳x0)
∞ )(dy−1, dz−1, . . . dz−n+1, dy−n) :=

2n
(du↑
dx

(x0)
)−1

u↑(y−n)κ(dy−1)dz−1 . . . dz−n+1κ(dy−n)

b b b bb ×
x0 x3 x2 x1x4

b b b bb× ×
x0 x3 x2 x1x4

× b b bb× ×
x0 x3 x2 x1x4

× b b bb× ×
x0 x3 x2 x1x4

× × × × × ×ld ld ld ld ld
x0

Fig. 3.a - Illustration of the first four steps of Wilson’s algorithm in case of killing at x0

and of (Y
(x0×)
∞ ,Z

(x0×)
∞ ): x-dots represent the points of Y

(x0×)
n ,

diamonds the points of Z
(x0×)
n and thick lines the intervals in J

(x0×)
n .

b b b bb ×
x0 x3 x2 x1x4

b b b bb× ×
x0 x3 x2 x1x4

b b b bb× ×
x0 x3 x2 x1x4

b b b bb× ×
x0 x3 x2 x1x4

b × × × × × ×ld ld ld ld ld
x0

Fig. 3.b - Illustration of the first four steps of Wilson’s algorithm in case of reflection at x0

and of (Y
(x0⊲)
∞ ,Z

(x0⊲)
∞ ): x-dots represent the points of Y

(x0⊲)
n ,

diamonds the points of Z
(x0⊲)
n and thick lines the intervals in J

(x0⊲)
n .
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Let Y∞ and Z∞ be the determinantal point processes associated to the Brownian

motion on R with killing measure κ. Let n, n′ ∈ N∗. The following two factorizations

hold:

Mn+n′(Y∞,Z∞)(dy−n′ , dz−n′ , . . . dy−1, dz−1, dy0, dz1, dy1, . . . , dzn, dyn) =

M
(×y0)
n′ (Y(×y0)

∞ ,Z(×y0)
∞ )(dz−1, dy−1, . . . , dz−n′ , dy−n′)×G(y0, y0)κ(dy0)

×M (y0×)
n (Y(y0×)

∞ ,Z(y0×)
∞ )(dz1, dy1, . . . , dzn, dyn)

Mn+n′−1(Y∞,Z∞)(dy−n′ , dz−n′+1, . . . dz−1, dy−1, dz0, dy1, dz1, . . . , dzn−1, dyn) =

M
(⊳z0)
n′ (Y(⊳z0)

∞ ,Z(⊳z0)
∞ )(dy−1, dz−1, . . . dz−n′+1, dy−n′)×K(z0, z0)dz0

×M (z0⊲)
n (Y(z0⊲)

∞ ,Z(z0⊲)
∞ )(dy1, dz1, . . . dzn−1, dyn)

The above factorisations imply the following:

Property 7.1. — Let ε > 0 and let F1 and F2 be two measurable non-negative func-

tionals on couples of point processes on R and f a measurable non-negative function

on R. Then

E

[ ∑

y0∈Y∞

f(y0)F1(Y∞∩(−∞, y0],Z∞∩(−∞, y0])F2(Y∞∩[y0,+∞),Z∞∩[y0,+∞))

]

=

∫

R

f(y0)G(y0, y0)E[F1(Y(×y0)
∞ ,Z(×y0)

∞ )]E[F2(Y(y0×)
∞ ,Z(y0×)

∞ )]κ(dy0)

and

E

[ ∑

z0∈Z∞

f(z0)F1(Y∞∩(−∞, z0],Z∞∩(−∞, z0])F2(Y∞∩[z0,+∞),Z∞∩[z0,+∞))

]

=

∫

R

f(z0)K(z0, z0)E[F1(Y(⊳z0)
∞ ,Z(⊳z0)

∞ )]E[F2(Y(z0⊲)
∞ ,Z(z0⊲)

∞ )]dz0

If y0 ∈ Supp(κ), then conditionally on y0 ∈ Y∞, (Y∞ ∩ (−∞, y0],Z∞ ∩ (−∞, y0])

and (Y∞ ∩ [y0,+∞),Z∞ ∩ [y0,+∞)) are independent, (Y∞∩(−∞, y0],Z∞∩(−∞, y0])

has the same law as (Y(×y0)
∞ ,Z(×y0)

∞ ) and (Y∞ ∩ [y0,+∞),Z∞ ∩ [y0,+∞)) has the

same law as (Y(y0×)
∞ ,Z(y0×)

∞ ).

If κ((−∞, z0)) > 0, κ((z0,+∞)) > 0 and κ({z0}) = 0, then conditionally on

z0 ∈ Z∞, (Y∞ ∩ (−∞, z0],Z∞ ∩ (−∞, z0]) and (Y∞ ∩ [z0,+∞),Z∞ ∩ [z0,+∞)) are

independent, (Y∞∩(−∞, z0],Z∞∩(−∞, z0]) has the same law as (Y(⊳z0)
∞ ,Z(⊳z0)

∞ ) and

(Y∞ ∩ [z0,+∞)Z∞ ∩ [z0,+∞)) has the same law as (Y(z0⊲)∞ ,Z(z0⊲)∞ ).

Let y0 ∈ R and c > 0. We will denote by (Y(y0)∞ ,Z(y0)∞ ) the pair of interwoven

determinantal point processes corresponding to the killing measure κ + cδy0 , con-

ditioned on Y(y0)
∞ containing y0. The law of (Y(y0)

∞ ,Z(y0)
∞ ) does not depend on the

value of c according to the property 7.1. (Y(y0)
∞ ∩ (y0,+∞),Z(y0)

∞ ∩ (y0,+∞)) and
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(Y(y0)
∞ ∩ (−∞, y0),Z(y0)

∞ ∩ (−∞, y0)) are independent. The distribution of the 2n clos-

est to y0 points in (Y(y0)∞ ∪ Z(y0)∞ ) ∩ (y0,+∞), on the event ♯(Y(y0)∞ ∩ (y0,+∞)) ≥ n,

is

(7.1.1) 1y0<z1<y1<···<zn<yn2
nu↓(yn)

u↓(y0)
dz1κ(dy1) . . . dznκ(dyn)

The distribution of the 2n closest to y0 points in (Y(y0)
∞ ∪ Z(y0)

∞ ) ∩ (−∞, y0) is

(7.1.2) 1y0>z−1>y−1>···>z−n>y−n
2n
u↑(y−n)

u↑(y0)
dz−1κ(dy−1) . . . dz−nκ(dy−n)

Let a < b ∈ R. Next we will describe what happens if we condition by Z∞ ∩
[a, b] = ∅. This condition implies in particular that ♯(Y∞ ∩ [a, b]) ≤ 1. Let R̂ be the

quotient space where in R we identify to one point all the points lying in [a, b]. R̂ is

homeomorphic to R. Let π̂ be the projection from R to R̂. Let θ be the class of [a, b]

in R̂. We define on R̂ the metric d
R̂
:

– If x < y < a or b < x < y then d
R̂
(π̂(x), π̂(y)) = y − x.

– If x < a and y > b then d
R̂
(π̂(x), π̂(y)) = (y − x) − (b− a).

– If x < a then d
R̂
(π̂(x), θ) = a− x.

– If x > b then d
R̂
(π̂(x), θ) = x− b.

R̂ endowed with d
R̂
is isometric to R. So we can define a standard Brownian motion on

R̂. Let κ̂ be the measure κ pushed forward by π̂ on R̂. In particular κ̂({θ}) = κ([a, b]).

Let (Ŷ∞, Ẑ∞) be the pair of interwoven determinantal point processes on R̂ obtained

by applying the Wilson’s algorithm to the Brownian motion on R̂ with killing measure

κ̂.

Proposition 7.2. — Conditionally on Z∞∩[a, b] = ∅, (π̂(Y∞), π̂(Z∞)) has the same

distribution as (Ŷ∞, Ẑ∞). Moreover on the event Y∞ ∩ [a, b] 6= ∅, the unique point in

Y∞ ∩ [a, b] is distributed according the probability measure
1a≤y≤bκ(dy)

κ([a,b]) .

Proof. — First we compute P(Z∞ ∩ [a, b] = ∅). We consider that a and b are the first

two starting points in the Wilson’s algorithm. Then

P(Z∞ ∩ [a, b] = ∅) =P
(
B

(a)

T−
1

> b
)
+ P

(
B

(a)

T−
1

< a,B
(b)

T−
2

= a
)
+ P

(
B

(a)

T−
1

= B
(b)

T−
2

∈ [a, b]
)

=
1

2

du↑
dx

(a−)u↓(b)−
1

2
u↑(a)

du↓
dx

(b+) + u↑(a)u↓(b)κ([a, b])

Next we determine the Green’s function Ĝ of 1
2
d2

dx̃2 − κ̂ on R̂. Let û↑ and û↓ be

two solutions on R̂ to
1

2

dû

dx
− ûκ̂ = 0

with the initial conditions û↑(θ) = u↑(a),
dû↑
dx

(θ−) =
du↑
dx

(a−), û↓(θ) = u↓(b) and
dû↓
dx

(θ+) =
du↓
dx

(b+). Then for x ≤ a, û↑(π̂(x)) = u↑(x) and for x ≥ b, û↓(π̂(x)) =
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u↓(x). û↑ and û↓ are positive, û↑ is non-decreasing and û↓ non-increasing. Moreover:

dû↑
dx

(θ+) =
dû↑
dx

(θ−) + 2û↑(θ)κ̂({θ}) =
du↑
dx

(a−) + 2u↑(a)κ([a, b])

The Wronskian of û↓ and û↑ equals

W (û↓, û↑) =û↓(θ)
dû↑
dx

(θ+)− û↑(θ)
dû↓
dx

(θ+)

=
du↑
dx

(a−)u↓(b)− u↑(a)
du↓
dx

(b+) + 2u↑(a)u↓(b)κ([a, b])

=2P(Z∞ ∩ [a, b] = ∅)

Thus Ĝ equals

Ĝ(x̃, ỹ) =
û↑(x̃ ∧ ỹ)û↓(x̃ ∨ ỹ)
P(Z∞ ∩ [a, b] = ∅)

In particular if x ≤ a and y ≥ b then

(7.1.3) Ĝ(π̂(x), π̂(y)) =
u↑(x)u↓(y)

P(Z∞ ∩ [a, b] = ∅) =
G(x, y)

P(Z∞ ∩ [a, b] = ∅)
To prove the equality in law, we need to consider the probabilities of the events

Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn) where n ≥ 1 and a0 < b0 < ã1 < b̃1 < a1 <

b1 < · · · < ãn < b̃n < an < bn ∈ R, corresponding to following conditions:

– Y∞ ∩ [a0, b0] 6= ∅, Y∞ ∩ [an, bn] 6= ∅
– ∀r ∈ {1, . . . , n}, ♯(Y∞ ∩ [ar, br]) = 1

– ∀r ∈ {1, . . . , n}, ♯(Z∞ ∩ (ãr, b̃r)) = 1

– ∀r ∈ {0, . . . , n− 1}, (Y∞ ∪ Z∞) ∩ (br, ãr] = ∅, (Y∞ ∪ Z∞) ∩ [b̃r, ar+1) = ∅
We will also assume that either all of the [ar, br] do not intersect [a, b] or one of the

[ar, br] is contained in [a, b] and the other do not intersect [a, b]. The probabilities of

such events determine the joint law of (Y∞,Z∞) on the event ♯Y∞ ≥ 2,Z∞∩[a, b] = ∅.
We will denote Ĉn(·) the analogously defined events where we replace (Y∞,Z∞) by

(Ŷ∞, Ẑ∞). We do not need to deal with the event ♯Y∞ = 1 because then Z∞ = ∅.
We first consider the case of [a, b] ∩

(⋃n
r=0[ar, br]

)
= ∅. If there is r0 ∈ {0, n− 1}

such that br0 < a and b < ar0+1 then

P
(
Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn),Z∞ ∩ [a, b] = ∅

)

=

∫

[a0,b0]

u↑(y0)κ(dy0)×
∫

[an,bn]

u↓(yn)κ(dyn)×
n−1∏

r=1

κ([ar, br])

×
∏

r 6=r0
2(b̃r − ãr)× 2Leb([ãr0, b̃r0] \ [a, b])

Using (7.1.3) we get that the above equals

P(Z∞ ∩ [a, b] = ∅)× P
(
Ĉn(π̂(a0), π̂(b0), π̂(ã1), π̂(b̃1), . . . , π̂(an), π̂(bn))

)
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If b < a0, then we consider a Wilson’s algorithm where the 2(n+1) first starting points

are ã1, b̃1, . . . , ãn, b̃n, a, b. The conditions Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn) and

Z∞ ∩ [a, b] = ∅ are satisfied if and only if the following is true:

– B
(ã1)

T−
1

∈ [a0, b0], B
(b̃n)

T−
2n

∈ [an, bn], for all r ∈ {1, . . . , n − 1}, B(b̃r)

T−
2r

= B
(ãr+1)

T−
2r+1

∈
[ar, br] and for all r ∈ {1, . . . , n}, Y∞ ∩ (ãr, b̃r) = ∅.

– Either B
(a)

T−
2n+1

∈ (b, B
(ã1)

T−
1

] or B
(b)

T−
2n+2

< a or B
(a)

T−
2n+1

= B
(b)

T−
2n+2

∈ [a, b].

Then

P
(
Cn(a0, b0, ã1, b̃1, a1, b1, . . . , ãn, b̃n, an, bn),Z∞ ∩ [a, b] = ∅

)

=

∫

[an,bn]

u↓(yn)κ(dyn)×
n−1∏

r=1

κ([ar, br])×
n∏

r=1

2(b̃r − ãr)

×
(
u↑(a)

∫

b<y<y0,y0∈[a0,b0]

(u↓(y)u↑(y0)− u↑(y)u↓(y0))κ(dy)κ(dy0) + u↑(a)κ([a0, b0])

+
(∫

y−1<a

u↑(y−1)κ(dy−1) + u↑(a)κ([a0, b0])
)

×
∫

[a0,b0]

(u↓(b)u↑(y0)− u↑(b)u↓(y0))κ(dy0)

)

=

∫

[an,bn]

u↓(yn)κ(dyn)×
n−1∏

r=1

κ([ar, br])×
n∏

r=1

2(b̃r − ãr)

×
(1
2
u↑(a)

∫

[a0,b0]

(du↓
dx

(b+)u↑(y0)−
du↑
dx

(b+)u↓(y0)
)
κ(dy0)

+
(1
2

du↑
dx

(a−) + u↑(a)κ([a0, b01])
) ∫

[a0,b0]

(u↓(b)u↑(y0)− u↑(b)u↓(y0))κ(dy0)
)

But for y0 ≥ b

û↑(π̂(y0)) =
1

2
u↑(a)

(du↓
dx

(b+)u↑(y0)−
du↑
dx

(b+)u↓(y0)
)

+
(1
2

du↑
dx

(a−) + u↑(a)κ([a0, b0])
)
(u↓(b)u↑(y0)− u↑(b)u↓(y0))

Indeed one can check the initial conditions û↑(π̂(b)) = u↑(a) and
dû↑
dx

(π̂(b)+) =
du↑
dx

(a−) + 2u↑(a)κ([a0, b0]). It follows that

P
(
Cn(a0, b0, ã1, b̃1, . . . , an, bn),Z∞ ∩ [a, b] = ∅

)

=

∫

[π̂(a0),π̂(b0)]

û↑(ỹ0)κ(dỹ0)×
∫

[π̂(an),π̂(bn)]

û↓(ỹn)κ(dỹn)×
n−1∏

r=1

κ([ar, br])×
n∏

r=1

2(b̃r − ãr)

=P(Z∞ ∩ [a, b] = ∅)× P
(
Ĉn(π̂(a0), π̂(b0), π̂(ã1), π̂(b̃1), . . . , π̂(an), π̂(bn))

)

Similar holds if bn < a.
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Now we consider the case when there is r0 ∈ {0, . . . , n} such that [ar0 , br0 ] ⊆ [a, b]

and [a, b] ∩
(⋃

r 6=r0 [ar, br]
)
= ∅. If 1 ≤ r0 ≤ n− 1 then

P
(
Cn(a0, b0, ã1, b̃1, . . . , an, bn),Z∞ ∩ [a, b] = ∅

)

=

∫

[a0,b0]

u↑(y0)κ(dy0)×
∫

[an,bn]

u↓(yn)κ(dyn)×
n−1∏

r=1

κ([ar, br])

×
∏

r 6=r0,r0+1

2(b̃r − ãr)× 2Leb([ãr0, b̃r0] \ [a, b])× 2Leb([ãr0+1, b̃r0+1] \ [a, b])

=
κ([ar0 , br0 ])

κ([a, b])
× P(Z∞ ∩ [a, b] = ∅)× P

(
Ĉn(π̂(a0), π̂(b0), π̂(ã1), π̂(b̃1), . . . , π̂(an), π̂(bn))

)

Moreover π̂(ar0) = π̂(br0) = θ. If r0 = 0 then

P
(
Cn(a0, b0, ã1, b̃1, . . . , an, bn),Z∞ ∩ [a, b] = ∅

)

=u↑(a)κ([a0, b0])×
∫

[an,bn]

u↓(yn)κ(dyn)

×
n−1∏

r=1

κ([ar, br])×
n∏

r=2

2(b̃r − ãr)× 2Leb([ã1, b̃1] \ [a, b])

=
κ([a0, b0])

κ([a, b])
× P(Z∞ ∩ [a, b] = ∅)× P

(
Ĉn(π̂(a0), π̂(b0), π̂(ã1), π̂(b̃1), . . . , π̂(an), π̂(bn))

)

and π̂(a0) = π̂(b0) = θ. We have a similar expression if r0 = n.

Next we deal with the condition of the determinantal point process Y∞ not charging

a given subinterval of R. We will consider the following more general situation: Let

κ and κ̃ be two different killing measures on R, with κ ≤ κ̃, and the couples of

determinantal point processes (Y∞,Z∞) respectively (Ỹ∞, Z̃∞) corresponding to the

Brownian motion on R with killing measure κ respectively κ̃. Let G̃ be the Green’s

function of 1
2
d2

dx2 − κ̃, factorized as

G̃(x, y) = ũ↑(x ∧ y)ũ↓(x ∨ y)
Let

K̃(y, z) := −1

2

dũ↑
dx

((y ∧ z)+)dũ↓
dx

((y ∨ z)−)
We will assume that κ̃− κ has a first moment, that is to say

∫

R

|x|(κ̃(dx) − κ(dx)) < +∞

Let χ be the Radon-Nikodym derivative

χ :=
dκ

dκ̃

By definition 0 ≤ χ ≤ 1. Let ∆Ỹ be the point process obtained from Ỹ∞ as follows:

Given a point y in Ỹ∞ we chose to erase it with probability χ(y) and keep it with
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probability 1 − χ(y), each choice being independent from the other choices and the

position of other points. It is immediate to check that ∆Ỹ is a determinantal point

process with determinantal kernel (G̃(x, y))x,y∈R relatively to the measure (1 − χ)κ̃,

that is to say the measure κ̃ − κ. We will show that conditionally on ∆Ỹ = ∅,
(Ỹ∞, Z̃∞) has the same law as (Y∞,Z∞). In case 1− χ being the indicator function

of a bounded subinterval of R, this gives the law of (Ỹ∞, Z̃∞) conditioned on Ỹ∞ not

charging this subinterval.

Lemma 7.3. — ∆Ỹ is a.s. finite. Let

vκ,κ̃(y) :=

(
ũ↑(y)−

∫

y−1<y

ũ↑(y−1)(u↓(y−1)u↑(y)− u↑(y−1)u↓(y))(κ̃− κ)(dy−1)

)

×
(
ũ↓(y)−

∫

y1>y

ũ↓(y1)(u↑(y1)u↓(y)− u↓(y1)u↑(y))(κ̃− κ)(dy1)

)

Then

P
(
♯∆Ỹ = 1

)
=

∫

R

vκ,κ̃(y)(κ̃− κ)(dy)

The distribution of the unique point in ∆Ỹ conditionally on ♯∆Ỹ = 1 is

vκ,κ̃(y)(κ̃− κ)(dy)

P
(
♯∆Ỹ = 1

)

Furthermore

P
(
♯∆Ỹ ≥ 2

)
≤ 1

2

( ∫

R

G̃(y, y)(κ̃(dy)− κ(dy))
)2

and P(∆Ỹ = ∅) > 0.

Proof. — First let us check that
∫
R
G̃(y, y)(κ̃(dy) − κ(dy)) < +∞. Since κ̃ − κ has

a first moment, we need only to show that G̃(y, y) grows sub-linearly in the neigh-

bourhood of −∞ and +∞. Let a < b ∈ R such that κ̃((a, b)) > 0. Let G̃a,b be

the Green’s function of 1
2
d2

dx2 − 1(a,b)κ̃. Then G̃a,b(y, y) is affine on (−∞, a) and on

(b,+∞). Moreover G̃(y, y) ≤ G̃a,b(y, y). Thus we get

E
[
♯∆Ỹ

]
=

∫

R

G̃(y, y)(κ̃(dy)− κ(dy)) < +∞

In particular ∆Ỹ is a.s. finite.

To bound P
(
♯∆Ỹ ≥ 2

)
we use the following:

P
(
♯∆Ỹ ≥ 2

)
≤ 1

2
E
[
♯∆Ỹ(♯∆Ỹ − 1)

]

=
1

2

∫

R2

(G̃(x, x)G̃(y, y)− G̃(x, y)2)(κ̃(dx) − κ(dx))(κ̃(dy)− κ(dy))

≤ 1

2

(∫

R

G̃(y, y)(κ̃(dy)− κ(dy))
)2
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The expression of E
[
♯∆Ỹ(♯∆Ỹ − 1)

]
that we used is general for determinantal point

processes.

Let’s prove now that P(∆Ỹ = ∅) > 0. ∆Ỹ is determinantal point process associated

to a trace-class self-adjoint positive semi-definite contraction operator on L2(dκ̃−dκ).
P(∆Ỹ = ∅) > 0 if and only if all the eigenvalues of the operator are strictly less then

1 (see theorem 4.5.3 in [11]). Let f ∈ L2(κ̃− κ). Let

F (x) :=

∫

R

G̃(x, y)f(y)(κ̃(dy)− κ(dy))

F is continuous, dominated by

G̃(x, x)
1
2

(∫

R

G̃(y, y)(κ̃(dy)− κ(dy))
) 1

2
(∫

R

f(y)2(κ̃(dy)− κ(dy))
) 1

2

and has left-side and right-side derivatives at every point. F satisfies the equation

−1

2

d2F

dx2
+ F κ̃ = f(κ̃− κ)

Assume by absurd that f = F (κ̃− κ)-almost everywhere. Then

∫

R

F (x)2(κ̃(dx) − κ(dx)) =

∫

R

f(x)F (x)(κ̃(dx)− κ(dx))

=

∫

R

F (x)2κ̃(dx) +
1

2

∫

R

dF

dx
(x)2dx

Thus F is necessarily constant. But then this means that (κ̃−κ)(R) = κ̃(R), which is

impossible because κ is non zero. Thus 1 is not an eigenvalue of the operator defining

the determinantal process ∆Ỹ and thus P(∆Ỹ = ∅) > 0.

As for Ỹ∞, the spacing between consecutive points of ∆Ỹ are independent. By

construction ∆Ỹ ⊆ Supp(κ̃− κ). Given y0 ∈ Supp(κ̃− κ), let

1y>y0f∆Ỹ(y0, y)(κ̃(dy)− κ(dy))

be the distribution of the lowest point in ∆Ỹ ∩ (y0,+∞) conditionally on y0 ∈ ∆Ỹ .

Since y0 may be the maximum of ∆Ỹ , f∆Ỹ(y0, y)(κ̃(dy) − κ(dy)) < 1. For y to be

min∆Ỹ ∩ (y0,+∞), y must belong to Ỹ∞, all points in y′ ∈ Ỹ∞ ∩ (y0, y) must be

erased (probability χ(y′) for each), and y must be kept (probability 1 − χ(y)). For

y′ > y0, let fG̃(y0, y
′) be

f
G̃
(y0, y

′) = 2(y′ − y0)
ũ↓(y′)

ũ↓(y0)
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1y′>y0fG̃(y0, y
′)κ̃(dy′) is the distribution of min Ỹ∞ ∩ (y0,+∞) conditionally on y0 ∈

Ỹ∞ (proposition 6.11). f∆Ỹ and f
G̃
are related as follows:

f∆Ỹ(y0, y)

= f
G̃
(y0, y) +

∑

j≥2

∫

y0<···<yj−1<y

f
G̃
(y0, y1) . . . fG̃(yj−1, y)

j−1∏

i=1

χ(yi)κ(dyi)

=
ũ↓(y)

ũ↓(y0)

(
2(y − y0) +

∑

j≥2

2j
∫

y0<···<yj−1<y

(y1 − y0) . . . (y − yj−1)

j−1∏

i=1

κ(dyi)

)

But

2(y−y0) +
∑

j≥2

2j
∫

y0<···<yj−1<y

(y1 − y0) . . . (y − yj−1)

j−1∏

i=1

κ(dyi)

=
u↓(y0)

u↓(y)

(
fG(y0, y) +

∑

j≥2

∫

y0<···<yj−1<y

fG(y0, y1) . . . fG(yj−1, y)

j−1∏

i=1

κ(dyi)

)

=
u↓(y0)

u↓(y)

(
G(y, y)− G(y0, y)

2

G(y0, y0)

)
= u↓(y0)u↑(y)− u↑(y0)u↓(y)

(see section 6.3). It follows that

f∆Ỹ(y0, y) =
ũ↓(y)

ũ↓(y0)
(u↓(y0)u↑(y)− u↑(y0)u↓(y))

In particular, if y0 < y1 < · · · < yn ∈ R, the infinitesimal probability that ∆Ỹ has a

point at each of the locations yi and no points in-between is

G̃(y0, y0)f∆Ỹ(y0, y1) . . . f∆Ỹ(yn−1, yn)

n∏

i=0

(κ̃(dyi)− κ(dyi))

= ũ↑(y0)ũ↓(yn)
n∏

i=1

(u↓(yi)u↑(yi−1)− u↑(yi)u↓(yi−1))
n∏

i=0

(k̃(dyi)− k(dyi))

Thus the expression of vκ,κ̃(y) is a sieve identity obtained as follows: vκ,κ̃(y)(κ̃−κ)(dy)
is the infinitesimal probability that ∆Ỹ contains a point at y, from which we subtract

the infinitesimal probabilities to have a point at y at another below respectively above,

and to which we add the infinitesimal probability to have a point at y and points both

below and above y.

Next we deal with the law of (Ỹ∞, Z̃∞) conditionally on ∆Ỹ = 0. Let y0 ∈
Supp(κ̃− κ). First we will compute the probability that ∆Ỹ ∩ (y0,+∞) 6= ∅ condi-

tionally on y0 ∈ Ỹ∞.
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Lemma 7.4. — There are positive constants c1 and c2 such that for all x ∈ R

(7.1.4)

∫

y<x

(u↓(y)u↑(x) − u↑(y)u↓(x))ũ↑(y)(κ̃(dy)− κ(dy)) = ũ↑(x)− c1u↑(x)

(7.1.5)

∫

y>x

(u↑(y)u↓(x) − u↓(y)u↑(x))ũ↓(y)(κ̃(dy)− κ(dy)) = ũ↓(x)− c2u↓(x)

In particular

vκ,κ̃(y) = c1c2u↑(y)u↓(y)

Proof. — We will prove (7.1.5). The proof of (7.1.4) is similar. Let f be the function

f(x) := ũ↓(x) −
∫

y>x

(u↑(y)u↓(x) − u↓(y)u↑(x))ũ↓(y)(κ̃(dy)− κ(dy))

The derivative of f , defined everywhere except at most countably many points, is

df

dx
(x) =

dũ↓
dx

(x)−
∫

y>x

(
u↑(y)

du↓
dx

(x)− u↓(y)
du↑
dx

(x)
)
ũ↓(y)(κ̃(dy)− κ(dy))

The weak second derivative of f is:

d2f

dx2
(x) =

d2ũ↓
dx2

(x) −
∫

y>x

(
u↑(y)

d2u↓
dx2

(x)− u↓(y)
d2u↑
dx2

(x)
)
ũ↓(y)(κ̃(dy)− κ(dy))

+
(
u↑(x)

du↓
dx

(x)− u↓(x)
du↑
dx

(x)
)
ũ↓(x)(κ̃(dx) − κ(dx))

=2ũ↓(x)κ̃(dx)

−
∫

y>x

(u↑(y)u↓(x)− u↓(y)u↑(x))ũ↓(y)(κ̃(dy)− κ(dy))× κ(dx)

+ 2ũ↓(x)(k̃(dx)− k(dx))

=2ũ↓(x)κ(dx)

−
∫

y>x

(u↑(y)u↓(x)− u↓(y)u↑(x))ũ↓(y)(κ̃(dy)− κ(dy))× κ(dx)

=2f(x)κ(dx)

Thus f satisfies the same differential equation as u↓. Moreover |f | is dominated by

ũ↓(x) + u↓(x)

∫

y>x

G(y, y)(κ̃(dy)− κ(dy))

Thus f is bounded on the intervals of the type (a,+∞). It follows that there is a

constant c2 ∈ R such that f ≡ c2u↓. Thus we get the identity (7.1.5). Let’s show

that c2 > 0. Let x ∈ Supp(κ̃). Then

1− 1

ũ↓(x)

∫

y>x

(u↑(y)u↓(x)− u↓(y)u↑(x))ũ↓(y)(κ̃(dy)− κ(dy))

= 1−
∫

y>x

f∆Ỹ(x, y)(κ̃(dy)− κ(dy)) = P
(
∆Ỹ ∩ (x,+∞) = ∅|x ∈ Ỹ∞

)
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The above conditional probability is positive because according to the lemma 7.3,

P
(
∆Ỹ = ∅

)
> 0. Thus f is positive and c2 > 0.

Lemma 7.5. — Conditionally on the event ∆Ỹ = ∅, (Ỹ∞, Z̃∞) has the same law as

(Y∞,Z∞).

Proof. — It is enough to show that conditionally on ∆Ỹ = ∅, Ỹ∞ has the same

law as Y∞. Indeed in both cases the points of Z̃∞ respectively Z∞ are distributed

independently and uniformly between any two consecutive points of Ỹ∞ respectively

Y∞. For n ≥ 1 and y1 < · · · < yn, let ρn(dy1, . . . dyn) be the infinitesimal probability

for Ỹ∞ having a point at each of the locations yi and none in-between, conditionally

on ∆Ỹ = ∅. We need only to show that

(7.1.6) ρn(dy1, . . . dyn) = 2n−1u↑(y1)u↓(yn)
n∏

i=2

(yi − yi−1)
n∏

i=1

κ(dyi)

For y1 < · · · < yn to be n consecutive points in Ỹ∞ and for ∆Ỹ = ∅, we need y1 <

· · · < yn to be n consecutive points in Ỹ∞, to choose not to erase any of yi (probability

χ(yi)) and finally we need that ∆Ỹ ∩ (−∞, y1) = ∅ and ∆Ỹ ∩ (yn,+∞) = ∅. Thus

ρn(dy1, . . ., dyn) =
1

P(∆Ỹ = ∅)
2n−1ũ↑(y1)ũ↓(yn)

×
(
1− 1

ũ↑(y1)

∫

y<y1

(u↓(y)u↑(y1)− u↑(y)u↓(y1))ũ↑(y)(κ̃(dy)− κ(dy))
)

×
(
1− 1

ũ↓(yn)

∫

y>yn

(u↑(y)u↓(yn)− u↓(y)u↑(yn))ũ↓(y)(κ̃(dy)− κ(dy))
)

×
n∏

i=2

(yi − yi−1)
n∏

i=1

χ(yi)κ̃(dyi)

Applying lemma 7.4 we get that

ρn(dy1, . . . , dyn) =
c1c2

P(∆Ỹ = ∅)
2n−1u↑(y1)u↓(yn)

n∏

i=2

(yi − yi−1)

n∏

i=1

κ(dyi)

Since the constant c1c2
P(∆Ỹ=∅) does not depend on n, the previous equations implies that

P(Ỹ∞ 6= ∅|∆Ỹ = ∅) = c1c2

P(∆Ỹ = ∅)
P(Y∞ 6= ∅)

But P(Ỹ∞ 6= ∅|∆Ỹ = ∅) = P(Y∞ 6= ∅) = 1. Thus

c1c2

P(∆Ỹ = ∅)
= 1

and 7.1.6 holds.

Corollary 7.6. — Let a < b ∈ R such that κ̃(R \ [a, b]) > 0. Conditionally on

Ỹ∞ ∩ [a, b] = ∅, (Ỹ∞, Z̃∞) has the same law as the pair of interwoven determinantal
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point processes obtained from the Wilson’s algorithm applied to the Brownian motion

with killing measure 1R\[a,b]κ.

Lemma 7.7. — Conditionally on ♯∆Ỹ = 1 and on the position of the unique point

Y in ∆Ỹ, (Ỹ∞, Z̃∞) has the same law as (Y(Y )
∞ ,Z(Y )

∞ ).

Proof. — It is enough to show that conditionally on ♯∆Ỹ = 1 and on the position

of the unique point Y in ∆Ỹ, Ỹ∞ has the same law as Y(Y )
∞ . Indeed the points of

Z̃∞ respectively Z(Y )
∞ are independently and uniformly distributed between any two

consecutive points in Ỹ∞ respectively Z(Y )
∞ .

Let n ≥ 1 and i0 ∈ {1, . . . , n}. Let y1 < · · · < yn ∈ R. The infinitesimal probability

for y1, . . . , yn being n consecutive points in Ỹ∞ and ∆Ỹ = {yi0} is

2n−1ũ↑(y1)ũ↓(yn)

×
(
1− 1

ũ↑(y1)

∫

y<y1

(u↓(y)u↑(y1)− u↑(y)u↓(y1))ũ↑(y)(κ̃(dy)− κ(dy))
)

×
(
1− 1

ũ↓(yn)

∫

y>yn

(u↑(y)u↓(yn)− u↓(y)u↑(yn))ũ↓(y)(κ̃(dy)− κ(dy))
)

×
n∏

i=2

(yi − yi−1)
∏

i6=i0
κ(dyi)× (κ̃− κ)(dyi0)

= c1c22
n−1u↑(y1)u↓(yn)

n∏

i=2

(yi − yi−1)
∏

i6=i0
κ(dyi)× (κ̃− κ)(dyi0)

= vκ,κ̃(yi0 )(κ̃− κ)(dyi0 )× 2i0−1 u↑(y1)

u↑(yi0)

i0−1∏

i=1

(yi+1 − yi)κ(dyi)

× 2n−i0
u↓(yn)

u↓(yi0)

n∏

i=i0+1

(yi − yi−1)κ(dyi)

(7.1.7)

In 7.1.7 appears the infinitesimal probability for ∆Ỹ = {yi0} times the infinitesimal

probability for y1, . . . , yn being n consecutive points in Y(y0)
∞ (compare with expres-

sions 7.1.1 and 7.1.2).

7.2. Couplings

In this section we will prove the monotone coupling results for (Y∞,Z∞) stated

at the begining of section 7.1. The construction of the coupling will be explicit.

However it will not appeal to Wilson’s algorithm used to define (Y∞,Z∞). First we

will describe analogous monotone coupling results for Uniform Spanning Trees on

finite graphs. In this case no explicit construction is known in general and the proof

relies on Strassen’s theorem and the conditions for stochastic domination between

determinantal processes shown in [20].
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Proposition 7.8. — Let G be a finite connected undirected graph with E its set of

edges, and (C(e))e∈E a positive weight function on E. Let F be a subset of E. Let

(C̃(e))e∈E be an other weight function such C̃ ≥ C and C̃ = C on E \ F . Let Υ be

the Uniform Spanning Tree of G corresponding to the weights C and Υ̃ the Uniform

Spanning Tree of G corresponding to the weights C̃. There is a coupling of Υ and Υ̃

such that

(7.2.1) Υ̃ ∩ (E \ F ) ⊆ Υ ∩ (E \ F )

In case F is made of all edges adjacent to a particular vertex x0, and C̃ is proportional

to C on F , then there is a coupling satisfying the additional condition

(7.2.2) Υ ∩ F ⊆ Υ̃ ∩ F

Proof. — It is enough to prove the first coupling ((7.2.1)) in case F is a single edge

(F = {e}). Then by induction on ♯F the general result will follow. From definition of

Uniform Spanning Trees is clear that P(e ∈ Υ) ≤ P(e ∈ Υ̃). Moreover, Υ conditionally

on e ∈ Υ respectively e 6∈ Υ has the same law as Υ̃ conditionally on e ∈ Υ̃ respectively

e 6∈ Υ̃. A possible coupling is the following: first we couple 1e∈Υ with 1
e∈Υ̃ in a way

such that 1e∈Υ ≤ 1
e∈Υ̃. In case 1e∈Υ = 1

e∈Υ̃ = 0 respectively 1e∈Υ = 1
e∈Υ̃ = 1 we

sample for both Υ and Υ̃ the same tree having the law of Υ conditioned by e 6∈ Υ

respectively e ∈ Υ. In case 1e∈Υ = 0 and 1
e∈Υ̃ = 1, we use the fact that on the edges

in E \ {e}, the law of Υ conditioned by e ∈ Υ is stochastically dominated by the law

of Υ conditioned by e 6∈ Υ, which implies the existence of a monotone coupling by

Strassen’s theorem. See theorems 5.2, 5.3 and 5.5 in [20].

Now we consider the case of F made of all edges adjacent to a particular vertex

x0, and C̃ is proportional to C on F . Let (Υ, Υ̃) be a coupling satisfying (7.2.1). In

general it does not satisfy (7.2.2). To deal with this issue we will re-sample the edges of

Υ and Υ̃ contained in F , that is to say sample Υ′ having the same law as Υ, Υ̃′ having
the same law as Υ̃, such that Υ′∩(E \F ) = Υ∩(E \F ), Υ̃′∩(E \F ) = Υ̃∩(E \F ) and
such that Υ′∩F ⊆ Υ̃′∩F . Let T1, . . . , TN be the connected components of Υ∩(E\F ).
(7.2.1) ensures that each connected component of Υ̃′∩(E\F ) is contained in one of the

Ti. Let T1,1, . . . , T1,q1 , . . . , TN,1, . . . , TN,qN be the connected components of Υ̃′∩(E\F ),
where Ti,j ⊆ Ti. Conditionally on T1, . . . , TN , Υ ∩ F has the following law: for each

Ti one chooses an edge connecting x0 to Ti with probability proportional to C, and

independently from the edges of Υ that will connect x0 to other (Ti′ )i′ 6=i. Similarly

for the law of Υ̃ conditionally on T1,1, . . . , T1,q1 , . . . , TN,1, . . . , TN,qN . To construct Υ′

and Υ̃′ we use the fact that C̃ is proportional to C on F :

– We start with Υ and Υ̃ satisfying (7.2.1).

– Then we remove from Υ and Υ̃ the edges contained in F .

– For each Ti,j , we add to Υ̃′ an edge connecting x0 to Ti,j , chosen proportionally

to its weight under C, each choice being independent from the others.
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– For each i ∈ {1, . . . , N}, there are qi edges in Υ̃′ connecting x0 to Ti, one for

each (Ti,j)1≤j≤qi . In order to construct Υ′, we need to chose one out of qi to

keep and remove the others. We chose to keep the edge corresponding to Ti,j
with probability proportional to:

∑

e connecting

x0 to Ti,j

C(e)

The choice is done independently for each i ∈ {1, . . . , N}.
By construction Υ′ ∩ F ⊆ Υ̃′ ∩ F .

Consider now two different killing measures κ and κ̃ on R, with κ ≤ κ̃, and the cou-

ples of determinantal point processes (Y∞,Z∞) respectively (Ỹ∞, Z̃∞) corresponding

to the Brownian motion on R with killing measure κ respectively κ̃. We want to show

that one can couple (Y∞,Z∞) and (Ỹ∞, Z̃∞) on the same probability space such that

Z∞ ⊆ Z̃∞ and Ỹ∞ ⊆ Y∞ ∪ Supp(κ̃− κ), and if κ and κ̃ are proportional also have

Y∞ ⊆ Ỹ∞. The condition Z∞ ⊆ Z̃∞ and Ỹ∞ ⊆ Y∞ ∪ Supp(κ̃− κ) is analogous to

(7.2.1). The condition Y∞ ⊆ Ỹ∞ is analogous to (7.2.2), where the cemetery † plays

the role of the distinguished vertex x0. We used the stochastic domination principle

([20]) for determinantal point process with determinantal kernel a projection opera-

tor. It ensures the existence of a monotone coupling but does not give one explicitly

(see open questions [20]). However for (Y∞,Z∞) and (Ỹ∞, Z̃∞) we will construct a

whole family of rather explicit monotone couplings.

Let G̃ be the Green’s function of 1
2
d2

dx2 − κ̃, factorized as

G̃(x, y) = ũ↑(x ∧ y)ũ↓(x ∨ y)
Let

K̃(y, z) := −1

2

dũ↑
dx

((y ∧ z)+)dũ↓
dx

((y ∨ z)−)
Let Gκ̃ be the operator on L2(dκ̃) defined on functions with compact support as

follows:

(Gκ̃f)(x) :=

∫

R

G̃(x, y)f(y)κ̃(dy)

In case κ̃ = cκ where c is a constant, c > 1, we have the following resolvent identity,

which follows from lemma 2.8:

(7.2.3)
1

c
GckGκ =

1

c
GκGcκ =

1

c− 1

(
Gκ −

1

c
Gcκ

)

Next we prove that a simple necessary but not sufficient condition for monotone

couplings to exist is satisfied. It won’t be used in the sequel but we prefer to give a

direct proof for it.

Proposition 7.9. — For any z1, . . . , zn ∈ R such that κ̃({zi}) = 0

(7.2.4) det(K̃(zi, zj))1≤i,j≤n ≥ det(K(zi, zj))1≤i,j≤n
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If κ̃ = cκ, c > 1, then for any y1, . . . , yn ∈ Supp(κ)

(7.2.5) cn det(G̃(yi, yj))1≤i,j≤n ≥ det(G(yi, yj))1≤i,j≤n

Proof. — We will first show (7.2.4). To begin with we will show that for any z1 ∈ R,
K̃(z1, z1) ≥ K(z1, z1). The Wronskian

W (u↑, ũ↑)(z) := u↑(z)
dũ↑
dx

(z+)− ũ↑(z)
du↑
dx

(z+)

is non-negative. Indeed W (u↑, ũ↑)(−∞) = 0 and

dW (u↑, ũ↑) = 2u↑ũ↑(dκ̃− dκ) ≥ 0

Similarly the Wronskian

W (u↓, ũ↓)(z) := u↓(z)
dũ↓
dx

(z+)− ũ↓(z)
du↓
dx

(z+)

is non-positive. Using the fact that

W (u↓, u↑) =W (ũ↓, ũ↑) ≡ 2

we get

K̃(z1, z1)−K(z1, z1) =
1

2

(du↑
dx

(z+1 )
du↓
dx

(z+1 )−
dũ↑
dx

(z+1 )
dũ↓
dx

(z+1 )
)

=
1

4

(du↑
dx

(z+1 )
du↓
dx

(z+1 )W (ũ↓, ũ↑)−
dũ↑
dx

(z+1 )
dũ↓
dx

(z+1 )W (u↓, u↑)
)

=
1

4

(du↓
dx

(z+1 )
dũ↓
dx

(z+1 )W (u↑, ũ↑)(z1)

− du↑
dx

(z+1 )
dũ↑
dx

(z+1 )W (u↓, ũ↓)(z1)
)
≥ 0

To prove (7.2.4) in general, we will use the factorization (6.3.34). For x0 < z, let

ũ
(x0⊲)
↑ (z) := ũ↑(z) +

(dũ↓
dx

(x−0 )
)−1 dũ↑

dx
(x−0 )ũ↓(z)

Factorization (6.3.34) ensures that we only need to prove that for x0 < z with

κ({x0}) = 0:

−
dũ

(x0⊲)
↑
dx

(z+)
dũ↓
dx

(z) ≥ −
du

(x0⊲)
↑
dx

(z+)
du↓
dx

(z)

First observe that the Wronskian

W (u
(x0⊲)
↑ , ũ

(x0⊲)
↑ )(z) := u

(x0⊲)
↑ (z)

dũ
(x0⊲)
↑
dx

(z+)− ũ
(x0⊲)
↑ (z)

du
(x0⊲)
↑
dx

(z+)

is non-negative on [x0,+∞). Indeed W (u
(x0⊲)
↑ , ũ

(x0⊲)
↑ )(x) = 0 and

dW (u
(x0⊲)
↑ , ũ

(x0⊲)
↑ ) = 2u

(x0⊲)
↑ (z)ũ

(x0⊲)
↑ (z)(dκ̃− dκ) ≥ 0

The sequel of the proof works as in the previous case.
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Let’s prove now (7.2.5). First we consider the case n = 1. From the resolvent

identity (7.2.3) follows that

Gcκ −Gκ = (c− 1)(Gκ −GcκGκ)

Since Gcκ is contracting, this implies that Gκ ≤ Gcκ, where the inequality stands for

positive semi-definite operators on L2(dκ). Let y1 ∈ Supp(κ). Then for any ε > 0

(7.2.6) c

∫

(y1−ε,y1+ε)2
G̃(x, y)κ(dx)κ(dy) ≥

∫

(y1−ε,y1+ε)2
G(x, y)κ(dx)κ(dy)

Since y1 ∈ Supp(κ), both sides of (7.2.6) are positive. The continuity of G and G̃

ensures that cG̃(y1, y1) ≥ G(y1, y1). In case of general n, we use the factorization

(6.3.33). It is enough to prove that for any x0 < y, y ∈ Supp(κ)

(7.2.7) cG̃(x0×)(y, y) ≥ G(x0×)(y, y)

where

G̃(x0×)(y, y) := G̃(y, y)− G̃(x0, y)
2

G̃(x0, x0)

G̃ is the restriction to (x0,+∞)2 of the Green’s function of 1
2
d2

dx2 − 1(x0,+∞)κ̃. Let

G
(x0×)
κ and G

(x0×)
cκ be the operators on L2(1(x0,+∞)dκ) defined for functions f with

compact support as

(G(x0×)
κ f)(x) :=

∫

(x0,+∞)

G(x0×)(x, y)f(y)κ(dy)

(G(x0×)
cκ f)(x) := c

∫

(x0,+∞)

G̃(x0×)(x, y)f(y)κ(dy)

G
(x0×)
κ and G

(x0×)
cκ are contractions and satisfy a resolvent identity similar to (7.2.3),

which similarly implies (7.2.7).

The resolvent identity (7.2.3) implies that Gκ and Gcκ commute and that Gκ ≤
Gcκ. It was shown in case of determianatal point processes on discrete space that this

a sufficient condition for a monotone coupling to exist. See theorem 7.1 in [20].

To construct the couplings we will give several procedures that take determinis-

tic arguments, among which pairs of interwoven sets of points, and return pairs of

interwoven random point processes. The first procedure we describe will be used as

sub-procedure in subsequent procedures.

Procedure 7.10. — Arguments:

– a pair (Y,Z) of disjoint discrete sets of points in R such that between any two

points in Y lies a single point in Z and vice-versa, and such that inf Y ∪ Z ∈
Y ∪ {−∞}, supY ∪ Z ∈ Y ∪ {+∞}

– a positive Radon measure κ

– a point y0 ∈ R such that y0 6∈ Z
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Procedure:

– (i) If y0 6∈ Y, we define a random variable Z distributed as follows:

• (i a) If there are y′ ∈ Y, z′ ∈ Z ∪ {+∞}, such that y′ < z′, y0 ∈ (y′, z′)
and Y ∩ (y′, z′) = Z∞ ∩ (y′, z′) = ∅ then Z is distributed according to

1z∈(y′,y0)

u↑(y0)− u↑(y′)

du↑
dx

(z)dz

• (i b) If there are y′ ∈ Y, z′ ∈ Z ∪ {−∞}, such that z′ < y′, y0 ∈ (z′, y′)
and Y ∩ (z′, y′) = Z ∩ (z′, y′) = ∅ then Z is distributed according to

−1z∈(y0,y′)

u↓(y′)− u↓(y0)

du↓
dx

(z)dz

– (ii) If there are y′ ∈ Y, z′ ∈ Z ∪ {+∞}, such that y′ < z′, y0 ∈ (y′, z′) and

Y ∩ (y′, z′) = Z ∩ (y′, z′) = ∅, then
• (ii a) with probability

u↑(y′)

u↑(y0)
we set

(Ỹ, Z̃) = (Y ∪ {y0} \ {y′},Z)

• (ii b) and with probability 1− u↑(y′)

u↑(y0)
we set

(Ỹ, Z̃) = (Y ∪ {y0},Z ∪ {Z})
– (iii) If there are y′ ∈ Y, z′ ∈ Z ∪ {−∞}, such that z′ < y′, y0 ∈ (z′, y′) and

Y ∩ (z′, y′) = Z ∩ (z′, y′) = ∅, then
• (iii a) with probability

u↓(y′)

u↓(y0)
we set

(Ỹ, Z̃) = (Y ∪ {y0} \ {y′},Z)

• (iii b) and with probability 1− u↓(y′)

u↓(y0)
we set

(Ỹ, Z̃) = (Y ∪ {y0},Z ∪ {Z})
– (iv) If y0 ∈ Y, we set (Ỹ , Z̃) = (Y,Z).

Return: (Ỹ, Z̃).

Lemma 7.11. — If procedure 7.10 is applied to the pair of interwoven determinantal

point processes (Y∞,Z∞) corresponding to the killing measure κ, then its result (Ỹ , Z̃)

has the same law as (Y(y0)
∞ ,Z(y0)

∞ ).

Proof. — By construction y0 ∈ Ỹ. Let Z̃1 < Ỹ1 < · · · < Z̃n < Ỹn be the 2n closest

points to y0 in (Ỹ ∪ Z̃) ∩ (y0,+∞). On the event min(Y∞ ∪ Z∞) ∩ (y0,+∞) ∈ Z∞
(point (ii) in procedure 7.10) their distribution is given by

(7.2.8) 1y0<z1<y1<···<zn<yn2
n
(∫

(−∞,y0)

u↑(y
′)κ(dy′)

)
u↓(yn)dz1κ(dy1) . . . dznκ(dyn)
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On the event min(Y∞ ∪ Z∞) ∩ (y0,+∞) ∈ Y∞ (point (iii) in procedure 7.10), the

distribution of min(Y∞ ∪ Z∞) ∩ (y0,+∞) is (see proposition 6.11)

1y′>y02
(∫

(−∞,y0)

u↑(y−1)(y0 − y−1)κ(dy−1)
)
u↓(y

′)κ(dy′)

+ 1y′>y0
u↑(+∞)

u↑(y′)
G(y0, y0)κ(dy

′)

=1y′>y0(u↑(y0)− u↑(+∞))u↓(y
′)κ(dy′) + 1y′>y0u↑(+∞)u↓(y

′)κ(dy′)

=1y′>y0u↑(y0)u↓(y
′)κ(dy′)

Thus on the event min(Y∞ ∪ Z∞) ∩ (y0,+∞) ∈ Y∞ (point (iii) in procedure 7.10),

the distribution of (Z1, Y1, . . . , Zn, Yn) is

(7.2.9)

1y0<z1<···<yn

(∫

y0<y′<z1

u↓(y′)

u↓(y0)
u↑(y0)u↓(y

′)2n
u↓(yn)

u↓(y′)
κ(dy′)

)
dz1κ(dy1) . . . dznκ(dyn)

(7.2.10)

+1y0<z1<···<yn
−1

u↓(y0)

du↓
dx

(z1)u↑(y0)u↓(y1)2
n−1u↓(yn)

u↓(y1)
dz1κ(dy1) . . . dznκ(dyn)

The term (7.2.9) corresponds to the case when a point is removed from Y∞ (case (iii

a) in procedure 7.10) and (7.2.10) to the case when Z is added to Z∞ (case (iii b) in

procedure 7.10). The sum of the densities that appear in (7.2.8), (7.2.9) and (7.2.10)

is

2n
(∫

(−∞,y0)

u↑(y
′)κ(dy′)

)
u↓(yn) +

( ∫

y0<y′<z1

u↓(y′)

u↓(y0)
u↑(y0)u↓(y

′)2n
u↓(yn)

u↓(y′)
κ(dy′)

)

+
−1

u↓(y0)

du↓
dx

(z1)u↑(y0)u↓(y1)2
n−1u↓(yn)

u↓(y1)

=2n−1 du↑
dx

(y0)u↓(yn) +
2n−1

u↓(y0)

(du↓
dx

(z1)−
du↓
dx

(y+0 )
)
u↑(y0)u↓(yn)

+
−2n−1

u↓(y0)

du↓
dx

(z1)u↑(y0)u↓(yn)

=2n−1u↓(yn)
(du↑
dx

(y0) +
−1

u↓(y0)

du↓
dx

(y+0 )u↑(y0)
)
= 2n

u↓(yn)

u↓(y0)

So we obtain the density which appears in (7.1.1).

It remains to prove that (Ỹ ∩ (y0,+∞), Z̃ ∩ (y0,+∞)) and (Ỹ ∩ (−∞, y0), Z̃ ∩
(−∞, y0)) are independent. Let Z−1 > Y−1 > · · · > Z−n′ > Y−n′ be the n′ clos-
est points to y0 in (Ỹ ∪ Z̃) ∩ (−∞, y0). The distribution of the family of points

(Z−1, Y−1 . . . , Z−n′ , Y−n′ , Z1, Y1, . . . , Zn, Yn) on the event ♯(Ỹ ∩ (−∞, y0)) ≥ n, ♯(Ỹ ∩
(y0,+∞)) ≥ n′ is
(7.2.11)(∫

y0<y′<z1

2n+n
′
u↑(y−n′)u↓(yn)

u↓(y′)

u↓(y0)
κ(dy′)− 2n+n

′−1u↑(y−n′)u↓(yn)

u↓(y0)

du↓
dx

(z1)
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(7.2.12)

+

∫

z−1<y′<y0

2n+n
′
u↑(y−n′)u↓(yn)

u↑(y′)

u↑(y0)
κ(dy′) +

2n+n
′−1u↑(y−n′)u↓(yn)

u↑(y0)

du↑
dx

(z−1)

)

×1y−n′<z−n′<···<z−1<y0<z1<···<zn<ynκ(dy−n′)dz−n′ . . . dz−1dz1 . . . dznκ(dyn)

The term (7.2.11) corresponds to point (iii) in procedure 7.10 and (7.2.12) to point

(ii) in procedure 7.10. One can check that the sum of the densities equals

2n+n
′ u↑(y−n′)

u↑(y0)

u↓(yn)

u↓(y0)

Thus (Ỹ∩(y0,+∞), Z̃∩(y0,+∞)) and (Ỹ ∩ (−∞, y0), Z̃ ∩ (−∞, y0)) are independent.

Lemma 7.12. — We consider the subspace of triples ((Y,Z), κ, y0) consisting of a

pair of discrete sets of points (Y,Z), a Radon measure κ and a point y0 ∈ R, and
which satisfies the restrictions on the arguments of procedure 7.10. We assume this

subspace endowed with the product topology obtained from the topology of uniform con-

vergence on compact subsets for the pairs (Y,Z), the vague topology for the measures

κ and standard order topology on R. If (Ỹ, Z̃) is the pair of point processes obtained

by applying procedure 7.10 to the arguments ((Y,Z), κ, y0), then its law depends con-

tinuously on ((Y,Z), κ, y0).

Proof. — From lemma 2.4 it follows that the cumulative distribution function of Z

(point (i) in procedure 7.10) depends uniformly continuously on ((Y,Z), κ, y0) in the

neighbourhood of triples where y0 6∈ Y. Moreover the probabilities to make either

the choice (ii a) or the choice (ii b), as well as to make either the choice (iii a) or the

choice (iii b), depend continuously on ((Y,Z), κ, y0). Thus the law of (Ỹ , Z̃) depends

continuously on ((Y,Z), κ, y0) in the neighbourhood of triples where y0 6∈ Y. Moreover

in the neighbourhood of triples where y0 ∈ Y, with high probability, converging to 1,

(Ỹ, Z̃) = (Y,Z). Thus the law of (Ỹ , Z̃) is continuous also at these triples.

First we will describe a coupling in case when κ̃ and κ differ by an atom: κ̃ =

κ+ cδy0 . We construct the coupling as follows:

Procedure 7.13. — Arguments:

– a pair (Y,Z) of disjoint discrete sets of points in R such that between any two

points in Y lies a single point in Z and vice-versa, and such that inf Y ∪ Z ∈
Y ∪ {−∞}, supY ∪ Z ∈ Y ∪ {+∞}

– two positive Radon measures κ and κ̃ where κ̃ is of form κ̃ = κ + cδy0 and

y0 6∈ Z.

Procedure:

– (i) Let β be a Bernoulli r.v. of parameter cG̃(y0, y0).

– (ii) If β = 0 we set (Ỹ , Z̃) = (Y,Z).
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– (iii) If β = 1, we apply the procedure 7.10 to the arguments (Y,Z), κ and y0
and set (Ỹ , Z̃) to be its result.

Return: (Ỹ, Z̃).

(Ỹ, Z̃) constructed this way satisfies the following: between any two consecutive

points in Ỹ lies a single point in Z̃ and between any two consecutive points in Z̃ lies

a point in Ỹ. By construction Z ⊆ Z̃ and Ỹ ⊆ Y ∪ {y0}.

Proposition 7.14. — If procedure 7.13 is applied to to the pair of interwoven deter-

minantal point processes (Y∞,Z∞) corresponding to the measure κ, then the returned

pair of point processes (Ỹ , Z̃) has the law of the interwoven determinantal point pro-

cesses (Ỹ∞, Z̃∞) corresponding to κ̃ = κ+ cδy0 .

Proof. — Observe that a.s. y0 6∈ Z∞. First we deal with the case κ({y0}) = 0. Then

almost surely y0 6∈ Y∞ and y0 ∈ Ỹ if and only if β = 1. But

P(β = 1) = P(y0 ∈ Ỹ) = cG̃(y0, y0)

According to corollary 7.6, conditionally on y0 6∈ Ỹ, (Ỹ∞, Z̃∞) has the same law

as (Y∞,Z∞), that is to say the same law as (Ỹ, Z̃) conditionally on β = 0. Ac-

cording to lemma 7.11, conditionally on β = 1, (Ỹ , Z̃) follows the same law as

(Ỹ ∩ (−∞, y0), Z̃ ∩ (−∞, y0)), which is also the law of (Ỹ∞, Z̃∞) conditioned on

y0 ∈ Ỹ∞.

We deal now with the case κ({y0}) > 0.

P(y0 ∈ Ỹ∞) = κ̃({y0})G̃(y0, y0)
P(y0 ∈ Ỹ) = P(β = 1) + P(β = 0, y0 ∈ Y∞)

= cG̃(y0, y0) + (1− cG̃(y0, y0))κ({y0})G(y0, y0)
But G and G̃ satisfy the resolvent identity (see lemma 2.8):

G̃(y0, y0)κ({y0})G(y0, y0) =
κ({y0})

κ̃({y0})− κ({y0})
(G(y0, y0)− G̃(y0, y0))

It follows that P(y0 ∈ Ỹ) = P(y0 ∈ Ỹ∞). Let κ̌ := κ − κ({y0})δy0 and (Y

̂

∞,Z

̂

∞)

be the interwoven determinantal point processes corresponding to κ̌.et κ̃′ := κ̃ −
κ({y0})δy0 and (Ỹ ′

∞, Z̃ ′
∞) be the interwoven determinantal processes corresponding

to κ̃′. According to corollary 7.6, (Ỹ , Z̃) conditioned by y0 6∈ Ỹ has the same law as

(Y∞,Z∞) conditioned by y0 6∈ Y∞, which is the same law as (Ỹ∞, Z̃∞) conditioned

by y0 6∈ Ỹ∞, and it is the law of (Y

̂

∞,Z

̂

∞). For y0 ∈ Ỹ there are two possibilities:

either y0 ∈ Y∞ or y0 6∈ Y∞ and β = 1. In the first case, it follows from proposition 7.1

that (Y∞,Z∞) conditioned on y0 ∈ Y∞ has the same law as (Ỹ∞, Z̃∞) conditioned

on y0 ∈ Ỹ∞. In the second case (Y∞,Z∞) conditioned on y0 6∈ Y∞ has the same

law as (Y

̂

∞,Z

̂

∞). This bring us back to the situation κ({y0}) = 0. According to

what was proved earlier, conditionally on y0 6∈ Y∞ and β = 1, (Ỹ, Z̃) has the same
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law as (Ỹ ′
∞, Z̃ ′

∞) conditioned on y0 ∈ Ỹ ′
∞. But this is the same law as for (Ỹ∞, Z̃∞)

conditioned on y0 ∈ Ỹ∞. So again, (Ỹ, Z̃) has the same law as (Ỹ∞, Z̃∞).

Next we consider the more general case where the measure κ̃−κ has a first moment:
∫

R

|x|(κ̃(dx) − κ(dx)) < +∞

First we describe a procedure that does not give a coupling between (Y∞,Z∞) and

(Ỹ∞, Z̃∞) but allows to approach it.

Procedure 7.15. — Arguments:

– a pair (Y,Z) of disjoint discrete sets of points in R such that between any two

points in Y lies a single point in Z and vice-versa, and such that inf Y ∪ Z ∈
Y ∪ {−∞}, supY ∪ Z ∈ Y ∪ {+∞}

– two positive Radon measures κ, κ̃ such that κ ≤ κ̃ and
∫
R
|x| (κ̃(dx)− κ(dx)) <

+∞ and (κ̃− κ)(Z) = 0.

Procedure:

– (i) Let β be a Bernoulli r.v. of parameter
∫

R

vκ,κ̃(y)(κ̃− κ)(dy)

(see notations of proposition 7.3)

– (ii) Let Y be a real r.v. independent from β distributed according to

vκ,κ̃(y)(κ̃− κ)(dy)

P(β = 1)

– (iii) If β = 0 we set (Ỹ , Z̃) = (Y,Z).

– (iv) If β = 1, we apply the procedure 7.10 to the arguments (Y,Z), κ and Y

and set (Ỹ , Z̃) to be its result.

Return: (Ỹ, Z̃).

Observe that in case κ̃ and κ differ only by an atom, procedure 7.15 is the same as

procedure 7.13.

Lemma 7.16. — Let (Y∞,Z∞) respectively (Ỹ∞, Z̃∞) be the pair of interwoven de-

terminantal point processes corresponding to the killing measure κ respectively κ̃. We

assume that the procedure 7.15 is applied to (Y∞,Z∞) and that (Ỹ, Z̃) is the returned

pair of point processes. Then the total variation distance between the law of (Ỹ , Z̃)

and the law of (Ỹ∞, Z̃∞) is less or equal to
( ∫

R
G̃(y, y)(κ̃(dy)− κ(dy))

)2
.

Proof. — Let ∆Ỹ be the determinantal point process defined in section 7.1 (see lemma

7.3). According to lemma 7.5, the law of (Ỹ , Z̃) conditionally on β = 0 is the same

as the law of (Ỹ∞, Z̃∞) conditionally on ∆Ỹ = ∅. From lemmas 7.11 and 7.7 follows
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that the law of (Ỹ, Z̃) conditionally on β = 1 is the same as the law of (Ỹ∞, Z̃∞)

conditionally on ♯∆Ỹ = 1. Moreover P(β = 1) = P(♯∆Ỹ = 1). However

P(β = 0) = P(∆Ỹ = ∅) + P(♯∆Ỹ ≥ 2) ≥ P(∆Ỹ = ∅)
It follows that the total variation distance between the law of (Ỹ, Z̃) and the law of

(Ỹ∞, Z̃∞) is less or equal to 2P(♯∆Ỹ ≥ 2), which according lemma 7.3 is less or equal

to
( ∫

R
G̃(y, y)(κ̃(dy)− κ(dy))

)2
.

Corollary 7.17. — Let κ0 ≤ κ1 ≤ · · · ≤ κj be positive Radon measures such that∫
R
|x|(κj(dx) − κ0(dx)) < +∞. Let Gi be the Green’s function of 1

2
d2

dx2 − κi and

(Y(i)
∞ ,Z(i)

∞ ) the pair of interwoven determinantal point processes corresponding to κi.

Let ((Y(i),Z(i)))0≤i≤j be the sequence of pairs of interwoven point processes defined

as follows: (Y(0),Z(0)) := (Y(0)
∞ ,Z(0)

∞ ); given (Y(i−1),Z(i−1)), (Y(i),Z(i)) is obtained

by applying procedure 7.15 to the arguments (Y(i−1),Z(i−1)), κi−1 and κi. Then the

total variation distance between the law of (Y(j),Z(j)) and the law of (Y(j)
∞ ,Z(j)

∞ ) is

less or equal to
j∑

i=1

( ∫

R

Gi−1(y, y)(κi(dy)− κi−1(dy))
)2

Proof. — Let (Y ′(i),Z ′(i)) be the pair of point processes obtained by applying proce-

dure 7.15 to the arguments (Y(i−1)
∞ ,Z(i−1)

∞ ), κi−1 and κi. According to lemma 7.16,

the total variation distance between the law of (Y ′(i),Z ′(i)) and the law of (Y(i)
∞ ,Z(i)

∞ )

is less or equal to
( ∫

R
Gi−1(y, y)(κi(dy) − κi−1(dy))

)2
. We denote by dq the total

variation distance between the law of (Y(q),Z(q)) and the law of (Y(q)
∞ ,Z(q)

∞ ). The

total variation distance between the law of (Y ′(i),Z ′(i)) and the law of (Y(i),Z(i)) is

less or equal to di−1. It follows that

di ≤ di−1 +
(∫

R

Gi−1(y, y)(κi(dy)− κi−1(dy))
)2

and thus

dj ≤
j∑

i=1

(∫

R

Gi−1(y, y)(κi(dy)− κi−1(dy))
)2

Next we give a true monotone coupling between (Y∞,Z∞) and (Ỹ∞, Z̃∞). We

still consider that κ ≤ κ̃ and that
∫
R
|x|(κ̃(dx) − κ(dx)) < +∞. To construct the

coupling we will use a continuous monotonic increasing path in the space of measures,

(κq)0≤q≤1, joining κ to κ̃ (κ0 = κ, κ1 = κ̃). Such a path is defined as follows: Let Λ

be a positive Radon measure on R× [0, 1] satisfying the following constraints:

– For any q ∈ [0, 1], Λ(R× {q}) = 0

– For any A Borel subset of R,Λ(A× [0, 1]) = κ̃(A)
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For q ∈ [0, 1], we define κq as the measure on R satisfying, for any A Borel subset of

R

κq(A) = κ0(A) + Λ(A× [0, q])

For any q ≤ q′ ∈ [0, 1], κq ≤ κq′ . Moreover the map q 7→ κq is continuous for the

vague topology. In the sequel we will denote Gq the Green’s function of 1
2
d2

dx2 − κq

(for x ≤ y, Gq(x, y) = uq,↑(x)uq,↓(y)) and use the measure Gq(y, y)Λ(dy, dq), which

is finite.

Procedure 7.18. — Arguments:

– a pair (Y,Z) of disjoint discrete sets of points in R such that between any two

points in Y lies a single point in Z and vice-versa, and such that inf Y ∪ Z ∈
Y ∪ {−∞}, supY ∪ Z ∈ Y ∪ {+∞}

– two positive Radon measures κ, κ̃ such that κ ≤ κ̃ and
∫
R
|x|(κ̃(dx) − κ(dx)) <

+∞ and (κ̃− κ)(Z) = 0.

– a continuous monotonic increasing path in the space of measures, (κq)0≤q≤1,

joining κ to κ̃, obtained by integrating the Radon measure Λ on R× [0, 1].

Procedure:

– (i) First sample a Poisson point process of intensity Gq(y, y)Λ(dy, dq) on R ×
[0, 1]: ((Yj , qj))1≤j≤N , the points being ordered in the increasing sense of qj.

– (ii) Then construct recursively the sequence ((Y(j),Z(j)))0≤j≤N of pairs of in-

terwoven point processes as follows: (Y(0),Z(0)) is set to be (Y,Z). (Y(j),Z(j))

is obtained by applying procedure 7.10 to the arguments (Y(j−1),Z(j−1)), κqj
and Yj.

– (iii) (Ỹ, Z̃) is set to be (Y(N),Z(N))

Return: (Ỹ, Z̃).

The condition (κ̃ − κ)(Z) = 0 ensures that a.s., none of Y(j) lies in Z. By con-

struction Z ⊆ Z̃ and Ỹ ⊆ Y ∪ Supp(κ̃ − κ). (Ỹ , Z̃) differs from (Y,Z) only by a

finite number of points. The law of (Ỹ, Z̃) depends only on the ”geometrical path”

(κq)0≤q≤1 and not on its parametrization: if θ is an increasing homomorphism from

[0, 1] to itself, then procedure 7.18 applied the path (κθ(q))0≤q≤1 returns the same

result (in law). Below an illustration of procedure 7.18:
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0

1
q

Fig. 4 - Illustration of procedure 7.18: On the left are represented (Y ,Z) and

the Poisson process ((Yj , qj))1≤j≤N . On the right are represented the successive

((Y(j),Z(j)))0≤j≤N . x-dots represent the points of Y(j) and diamonds the points of Z(j).

Proposition 7.19. — Let (Y∞,Z∞) respectively (Ỹ∞, Z̃∞) be the couple of interwo-

ven determinantal point processes corresponding to the killing measure κ respectively

κ̃. We assume that the procedure 7.18 is applied to (Y∞,Z∞) and that (Ỹ , Z̃) is the

returned couple of point processes. Then (Ỹ , Z̃) has the same law as (Ỹ∞, Z̃∞).

Proof. — Observe that a.s. (κ̃ − κ)(Z∞) = 0. Let n ∈ N∗. We define the family

((Y(j,n),Z(j,n)))0≤j≤n of interwoven point processes as follows: (Y(0,n),Z(0,n)) equals

(Y∞,Z∞). Given (Y(j−1,n),Z(j−1,n)), (Y(j,n),Z(j,n)) is obtained by applying proce-

dure 7.15 to the arguments (Y(j−1,n),Z(j−1,n)), κ j−1
n

and κ j
n
. We will show that as

n tends to infinity, the law of (Y(n,n),Z(n,n)) converges in total variation to the law

of (Ỹ∞, Z̃∞) and converges weakly to the law of (Ỹ , Z̃), which will imply that (Ỹ , Z̃)

and (Ỹ∞, Z̃∞) have the same law.
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Applying corollary 7.17, we get that the total variation distance between the law

of (Y(n,n),Z(n,n)) and the law of (Ỹ∞, Z̃∞) is bounded by

n∑

j=1

(∫

R

G j−1
n
(y, y)(κ j

n
(dy)− κ j−1

n
(dy))

)2

≤ sup
x∈R

(
G0(x, x)

1 + |x|

)2 n∑

j=1

( ∫

R

(1 + |y|)(κ j
n
(dy)− κ j−1

n
(dy))

)2

≤ sup
x∈R

(
G0(x, x)

1 + |x|

)2 ∫

R

(1 + |y|)(κ̃(dy)− κ(dy))

× sup
1≤j≤n

∫

R

(1 + |y|)(κ j
n
(dy)− κ j−1

n
(dy))

The continuity of the path (κq)0≤q≤1 ensures that

lim
n→+∞

sup
1≤j≤n

∫

R

(1 + |y|)(κ j
n
(dy)− κ j−1

n
(dy)) = 0

and hence the total variation distance between the law of (Y(n,n),Z(n,n)) and the law

of (Ỹ∞, Z̃∞) converges to 0 as n tends to infinity.

We define a random finite set En of points in R ×
{

1
n
, 2
n
, . . . , n

n

}
as follows: Let

(β1,n, β2,n, . . . , βn,n) be a family of independent Bernoulli variables, βi,n being of

parameter

∫

R

vκ i−1
n

,κ i
n

(y)(κ i
n
− κ i−1

n
)(dy)

Whenever βi,n = 1, we add to En a point (Yi,n,
i−1
n

) to En where Yi,n is a r.v.

distributed according the measure

1

P(βi,n = 1)
vκ i−1

n

,κ i
n

(y)(κ i
n
− κ i−1

n
)(dy)

The (Yi,n,
i−1
n

) are assumed to be independent and independent from the family

(β1,n, β2,n, . . . , βn,n). The pair (Y(n,n),Z(n,n)) is sampled as follows: starting from

(Y∞,Z∞), independent from En, we apply successively, for i ranging from 1 to n, the

procedure 7.10 with the arguments κ i−1
n

and Yi,n whenever βi,n = 1. At the end we

get (Y(n,n),Z(n,n)). According to lemma 2.4, the law of the pair of point processes

returned by procedure 7.10 depends continuously on the arguments. So to prove that

(Y(n,n),Z(n,n)) converges in law to (Ỹ , Z̃), we only need to show that the random

set of point En converges in law to the Poisson point process ((Yj , qj))1≤j≤N used in
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procedure 7.18. All of the functions vκ i−1
n

,κ i
n

(y) are dominated by G0(y, y). Moreover

∣∣vκ i−1
n

,κ i
n

(y)−G i
n
(y, y)

∣∣

≤u i
n
,↓(y)

∫

y−1<y

u i
n
,↑(y−1)(u i−1

n
,↓(y−1)u i−1

n
,↑(y)− u i−1

n
,↑(y−1)u i−1

n
,↓(y))

× (κ i
n
− κ i−1

n
)(dy−1)

+u i
n
,↑(y)

∫

y1>y

u i
n
,↓(y1)(u i−1

n
,↑(y1)u i−1

n
,↓(y)− u i−1

n
,↓(y1)u i−1

n
,↑(y))

× (κ i
n
− κ i−1

n
)(dy1)

+

∫

y−1<y

u i
n
,↑(y−1)(u i−1

n
,↓(y−1)u i−1

n
,↑(y)− u i−1

n
,↑(y−1)u i−1

n
,↓(y))

× (κ i
n
− κ i−1

n
)(dy−1)

×
∫

y1>y

u i
n
,↓(y1)(u i−1

n
,↑(y1)u i−1

n
,↓(y)− u i−1

n
,↓(y1)u i−1

n
,↑(y))

× (κ i
n
− κ i−1

n
)(dy1)

≤G0(y, y)

∫

y−1<y

G0(y−1, y−1)(κ i
n
− κ i−1

n
)(dy−1)

+G0(y, y)

∫

y1>y

G0(y1, y1)(κ i
n
− κ i−1

n
)(dy1)

+G0(y, y)

∫

y−1<y

G0(y−1, y−1)(κ i
n
− κ i−1

n
)(dy−1)

×
∫

y1>y

G0(y1, y1)(κ i
n
− κ i−1

n
)(dy1)

Thus given any bounded interval J

lim
n→+∞

sup
1≤i≤n

sup
y∈J

∣∣vκ i−1
n

,κ i
n

(y)−G i
n
(y, y)

∣∣ = 0

It follows that

lim
n→+∞

sup
1≤i≤n

P(βi,n = 1) = 0

and the measure
n∑

i=1

vκ i−1
n

,κ i
n

(y)(κ i
n
− κ i−1

n
)(dy)⊗ δ i

n
(dq)

converges weekly to Gq(y, y)Λ(dy, dq), which is the intensity of the Poisson point

process ((Yj , qj))1≤j≤N . Thus the random sets En are compound Bernoulli approx-

imations of the Poisson point process ((Yj , qj))1≤j≤N and converge in law to the

latter.



136 CHAPTER 7. MONOTONE COUPLINGS FOR THE POINT PROCESSES (Y∞,Z∞)

Given a continuous monotonic increasing path (κq)0≤q≤1 in the space of Radon

measures and a pair of interwoven determinantal point processes (Y∞,Z∞) corre-

sponding to κ0, used as argument, procedure 7.18 yields non-homogeneous Markov

q-parametrized process in the space of interwoven pairs of discrete sets of points

whose one-dimensional marginal at any value q0 of the parameter is the pair of in-

terwoven determinantal point processes corresponding to the killing measure κq0 .

This corresponds to sampling only the partial Poisson point process of intensity

10≤q≤q0Gq(y, y)Λ(dy, dq) and successively applying procedure 7.10 for each of its

points. In general, multidimensional marginals corresponding to q1 < · · · < qn depend

not only on κq1 , . . . , κqn but on the whole path (κq)q1≤q≤qn . For instance consider

two different paths (κq)0≤q≤1 and (κ̂q)0≤q≤1 where

– κ0 = κ̂0 = δ− 1
2
+ δ 1

2

– κ1 = κ̂1 = δ− 3
2
+ δ− 1

2
+ δ 1

2
+ δ 3

2

– κq = 2qδ− 1
2
+ δ− 1

2
+ δ 1

2
for q ∈

[
0, 12
]
and κq = δ− 1

2
+ δ− 1

2
+ δ 1

2
+ (2q− 1)δ 3

2
for

q ∈
[
1
2 , 1
]

– κ̂q = δ− 1
2
+ δ 1

2
+ 2qδ 1

2
for q ∈

[
0, 12

]
and κ̂q = (2q − 1)δ− 1

2
+ δ− 1

2
+ δ 1

2
+ δ 3

2
for

q ∈
[
1
2 , 1
]

Let Gq(x, y) = uq,↑(x ∧ y)uq,↓(x ∨ y) be the Green’s function of 1
2
d2

dx2 − κq and

Ĝq(x, y) = ûq,↑(x ∧ y)ûq,↓(x ∨ y) the Green’s function of 1
2
d2

dx2 − κ̂q. Let ((Y∞,Z∞),

(Ỹ∞, Z̃∞)) be the coupling between the point process corresponding to κ0 respectively

κ1 induced by the path (κq)0≤q≤1 and ((Y∞,Z∞), (Ŷ∞, Ẑ∞)) the coupling induced

by the path (κ̂q)0≤q≤1. Then

P
(
Y∞ =

{
− 1

2
,
1

2

}
, Ỹ∞ =

{
− 3

2
,
1

2
,
3

2

})

= P
(
Y∞ =

{
− 1

2
,
1

2

})
×G 1

2

(
− 3

2

)u 1
2 ,↓
(
− 1

2

)

u 1
2 ,↓
(
− 3

2

)G1

(3
2

)(
1− u1,↑

(
1
2

)

u1,↑
(
3
2

)
)

P
(
Y∞ =

{
− 1

2
,
1

2

}
, Ŷ∞ =

{
− 3

2
,
1

2
,
3

2

})

= P
(
Y∞ =

{
− 1

2
,
1

2

})
× Ĝ 1

2

(3
2

)(
1−

û 1
2 ,↑
(
1
2

)

û 1
2 ,↑
(
3
2

)
)
Ĝ1

(
− 3

2

) û1,↓
(
− 1

2

)

û1,↓
(
− 3

2

)

But

Ĝ 1
2

(3
2

)
= G 1

2

(
− 3

2

)
Ĝ1

(
− 3

2

)
= G1

(3
2

)

and

û 1
2 ,↑
(
1
2

)

û 1
2 ,↑
(
3
2

) =
u 1

2 ,↓
(
− 1

2

)

u 1
2 ,↓
(
− 3

2

) û1,↓
(
− 1

2

)

û1,↓
(
− 3

2

) =
u1,↑

(
1
2

)

u1,↑
(
3
2

)
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Thus

P
(
Y∞ =

{
− 1

2 ,
1
2

}
, Ỹ∞ =

{
− 3

2 ,
1
2 ,

3
2

})

P
(
Y∞ =

{
− 1

2 ,
1
2

}
, Ŷ∞ =

{
− 3

2 ,
1
2 ,

3
2

}) =

u 1
2 ,↓
(
− 1

2

)

u 1
2 ,↓
(
− 3

2

)

1−
u 1

2 ,↓
(
− 1

2

)

u 1
2 ,↓
(
− 3

2

)
×

1− u1,↑
(
1
2

)

u1,↑
(
3
2

)

u1,↑
(
1
2

)

u1,↑
(
3
2

)

But
u 1

2 ,↓
(
− 1

2

)

u 1
2 ,↓
(
− 3

2

) =
3

11

u1,↑
(
1
2

)

u1,↑
(
3
2

) =
11

41

Thus

P
(
Y∞ =

{
− 1

2 ,
1
2

}
, Ỹ∞ =

{
− 3

2 ,
1
2 ,

3
2

})

P
(
Y∞ =

{
− 1

2 ,
1
2

}
, Ŷ∞ =

{
− 3

2 ,
1
2 ,

3
2

}) =
45

44
6= 1

The two couplings are different.

If κ̃ − κ does not have a first moment we can still construct a coupling between

(Y∞,Z∞) and (Ỹ∞, Z̃∞) as follows: Consider a continuous monotonic increasing path

(κq)0≤q≤1 joining κ to κ̃ satisfying the constraint

∀q ∈ [0, 1),

∫

R

|x|(κq(dx)− κ0(dx)) < +∞

Given q0 ∈ (0, 1), one can apply procedure 7.18 to the arguments (Y∞,Z∞),κ, κq0
and the partial path (κq)0≤q≤q0 . As result we get a two interwoven determinantal

point processes corresponding to the killing measure κq0 . At the limit as q0 tends to

1 we get something that has the same law as (Ỹ∞, Z̃∞).

Next we prove the existence of stronger couplings in case κ̃ = cκ where c > 1 is a

constant.

Proposition 7.20. — If κ̃ = cκ with c > 1 then there is a coupling between

(Y∞,Z∞) and (Ỹ∞, Z̃∞) such that Z∞ ⊆ Z̃∞ and Y∞ ⊆ Ỹ∞.

Proof. — Consider a coupling between (Y∞,Z∞) and (Ỹ∞, Z̃∞) given by procedure

7.18, possible extended to the case where κ does not have a first moment. Then

Z∞ ⊆ Z̃∞ but in general Y∞ 6⊆ Ỹ∞. So we will sample other point processes Y ′
∞ and

Ỹ ′
∞ that conditionally on Z∞ respectively Z̃∞ have the same law as Y∞ respectively

Ỹ∞, and such that Y ′
∞ ⊆ Ỹ ′

∞. For each connected component J̃ of R\ Z̃∞ we sample

a point Ỹ
J̃
according the measure

1
y∈J̃

κ̃(dy)

κ̃(J̃)
. We assume that conditionally on Z̃∞,

all the Ỹ
J̃
are independent from Z∞ and independent one from another. We set

Ỹ ′
∞ := {Ỹ

J̃
|J̃ connected component of R \ Z̃∞}

Then (Ỹ ′
∞, Z̃∞) has the same law as (Ỹ∞, Z̃∞). Let be J a connected component of

R \ Z∞ and J̃1, . . . , J̃NJ
the connected components of J \ Z̃∞. On J we define the
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r.v. YJ as follows: YJ takes value in Ỹ
J̃n

and

P
(
YJ = Ỹ

J̃n
|J, J̃1, . . . , J̃NJ

)
=
κ(J̃n)

κ(J)

We set

Y ′
∞ := {YJ |Jconnected component of R \ Z∞}

By construction Y ′
∞ ⊆ Ỹ ′

∞. Moreover the proportionality of κ and κ̃ ensures that

(Y ′
∞,Z∞) has the same law as (Y∞,Z∞).
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