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POISSON ENSEMBLES OF LOOPS OF
ONE-DIMENSIONAL DIFFUSIONS

Titus Lupu

Abstract. — We study the analogue of Poisson ensembles of Markov loops (”loop
soups”) in the setting of one-dimensional diffusions. We give a detailed description
of the corresponding intensity measure. The properties of this measure on loops
lead us to an extension of Vervaat’s bridge-to-excursion transformation that relates
the bridges conditioned by their minimum and the excursions of all the diffusion we
consider and not just the Brownian motion. Further we describe the Poisson point
process of loops, their occupation fields and explain how to sample these Poisson
ensembles of loops using two-dimensional Markov processes. Finally we introduce a
couple of interwoven determinantal point processes on the line which is a dual through
Wilson’s algorithm of Poisson ensembles of loops and study the properties of these
determinantal point processes.

Résumé (Ensemble poissonien de boucles des diffusions unidimension-
nelles)

Nous étudions I’analogue des ensembles poissoniens de boucles markoviennes (”loop
soups”) dans le cadre des diffusions unidimensionnelles. Nous donnons une descrip-
tion détaillée de la mesure d’intensité correspondante. Les propriétés de cette mesure
sur les boucles nous amenent a une extension de la transformation de Vervaat pont-
excursion qui relie les ponts conditionnés par leur minimum et les excursions de toutes
le diffusions que nous considérons et non juste ceux du mouvement Brownien. En-
suite nous décrivons le processus ponctuels de Poisson des boucles, leurs champs
d’occupation et expliquons comment séquencer ces ensembles poissoniens de boucles
a partir de processus de Markov bidimensionnels. Enfin nous introduisons un couple
de processus ponctuels déterminantaux sur la droite, entrelacés, qui est un dual, a
travers 'algorithme de Wilson, de I’ensemble poissonien de boucles, et étudions les
propriétés de ces processus ponctuels déterminantaux.






CONTENTS

1. Introduction. ... 1
2. Preliminaries on generators and semi-groups.......................... )
2.1. A second order ODE. ... i 5
2.2. One-dimensional diffusions........... ... .. o i i 11
2.3. ”Generators” with creation of mass............ ... .o 15
3. Measure on loops and its basic properties................. ... .. ... 23
3.1, Spaces Of l0OPS. .« vttt 23
3.2. Measures p*¥ on finite life-time paths....... .. .. .. .. L 24
3.3. The measure p* on unrooted loops. ..., 31
3.4. Multiple local times. ....... ..ot 34
3.5. A disintegration of p* induced by the Vervaat’s transformation ......... 38
3.6. A generalization of the Vervaat’s transformation......................... 41
3.7. Restricting loops to a discrete subset. ..., 46
3.8. Measure on loops in case of creation of mass.....................oooo..n. 48
4. Occupation fields of the Poisson ensembles of Markov loops......... 51
4.1. Inhomogeneous continuous state branching processes with immigration.. 51
4.2. Occupation field. ... ..o i 53
4.3. Dynkin’s iSomorphism. ... ... 64
5. Decomposing paths into Poisson ensembles of loops.................. 67
5.1. Glueing together excursions ordered by their minima.................... 67
5.2. Loops represented as excursions and glued together...................... 69
5.3, The Case o = L.ttt e 76
6. Wilson’s algorithm in dimensionone..................... ... ... ....... 81
6.1. Description of the algorithm........ .. .. .. .o i 81
6.2. The erased paths. ... i 84

6.3. Determinantal point processes (Voo, Zo0): Brownian case................ 85



vi

CONTENTS

6.4. Determinantal point processes (Voo, Zo0): general case...................

7. Monotone

couplings for the point processes (Voo, Zoc) . evveveveenenn..

7.1, Conditioning. . . ...ovuine i
7.2, CoupPlINGS. . .ot

Bibliography



CHAPTER 1

INTRODUCTION

Lawler and Werner introduced in [19] the notion of Poisson ensemble of Markov
loops ("loop soup”) for planar Brownian motion. In [26] it was used by Sheffield and
Werner to construct the Conformal Loops Ensemble (CLE). Le Jan studied in [13] the
analogue of the Poissonian ensembles of Markov loops in the setting of a symmetric
Markov jump process on a finite graph. In both cases one defines an infinite measure
u@* on time-parametrizes unrooted loops (i.e. loops parametrized by a circle where it
is not specified when the cut between the beginning and the end occurs) and considers
the Poisson point ensemble of intensity au®, o > 0, denoted here L£,. In both cases
the ensemble £ (where o = 1) is related to the loops erased during the loop-erasure
procedure applied to Markovian sample paths.In particular in the discrete setting
Wilson’s algorithm ([31]) leads to a duality between £; and the Uniform Spanning
Trees. In [13] Le Jan also studied the occupation field of £, that is the sum of the
occupation times in a given vertex of the graph of individual loops. In case a = %
he found that it the square of a Gaussian Free Field and related it to the Dynkin’s
Isomorphism ([8]).

The analogue of the measure p* can be defined for a much larger class of Markov
processes ([15], [10]). The aim of this essay is on one hand to study the measure
u* and the Poisson ensembles of Markov loops L, in the setting of one-dimensional,
not necessarily conservative, diffusion processes, and on the other hand to define
and study some determinatal point processes on R that are analogous to Uniform
Spanning Tress and dual to £;. The diffusion processes we consider take values on
a subinterval I of R, are always killed at hitting a boundary point of I, and may be
killed by a killing measure on the interior of I. One can transform a diffusion process
into an other applying a change of scale, a random change of time, a restriction to a
subinterval, an increase of the killing measure or an h-transform. The measure p* is
covariant with all this transformations on Markov processes. In other words the map
diffusion to measure on loops is a covariant functor. Moreover we will show that p*
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is invariant by h-transform on underlying diffusions. We will also extend the scope of
our study by associating a measure on loops to ”generators” which contain a creation
of mass term: If L = L + v where L is a second order differential operator
on I and v is a signed measure, and if one sets zero Dirichlet boundary conditions
for L, one can define in a consistent way a measure on loops related to L even in
case the semi-group (e'f);>¢ does not make sense. This extended definition of u*
will be particularly handy for computing the exponential moments of the Poissonian
ensemble of Markov loops.

The layout of this paper is the following: In chapter 2 we will recall some facts on
one-dimensional diffusions and set the important notations. We will further consider
”generators” with creation of mass term and characterize a class of such operators
which up to an h-transform are equivalent to the generators of diffusions. In chapter
3 we will define the measure p* and point out different covariance and invariance
properties. Further we will make a connection between the Brownian measure on
loops and the Levy-I1td measure on Brownian excursion using the Vervaat’s bridge-
to-excursion transformation. This in turn will lead us to a conditioned version of
Vervaat’s transformation that holds for any one-dimensional diffusion process, that
is an absolute continuity relation between the bridge conditioned to have a given
minimum and an excursion of the same duration above this minimum. The Vervaat’s
transformation is deeply related to the measure on loops p*: The loops are unrooted,
so one can freely chose a moment separating the end from the start. If one chooses
this moment uniformly over the life-time of the loop, then the loop under the measure
u* looks in some sense like a bridge. If one chooses this moment when the loop
hits its minimum, then it looks like an excursion. In chapter 4 we will study the
occupation field of the Poisson ensemble of Markov loops. Each loop is endowed
with a family of local times. The occupation field is the sum of local times over the
loops. We will identify its law as an non-homogeneous continuous state branching
process with immigration parametrised by the position points in I. In case a = %
we will identify it as the square of a Gaussian Free Field and show how it is possible
to derive particular versions of the Dynkin’s Isomorphism using this fact and Palm’s
identity for Poissonian ensembles. In chapter 5 we will root each loop in L, at its
minimum and obtain this way a collection of positive excursions. Then we will order
this excursions in the decreasing sense of their minima and glue them together. We
will obtain this way a continuous path which can be described using two-dimensional
Markov processes. This is a way to sample £,. In the particular case « = 1 the path
we obtain is the sample path of an one-dimensional diffusion. This is the analogue in
our setting of the relation between £, and the loop-erasure procedure observed in the
setting of the two-dimensional Brownian motion or of the symmetric Markov jump
processes on graphs. In chapter 6 we will apply an extension of Wilson’s algorithm to
transient one-dimensional diffusions and obtain a couple of interwoven determinantal
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point processes on R which is dual to £;. In chapter 7 we will prove some monotone
coupling properties for the determinantal point processes introduced in chapter 6.

The author thanks Yves Le Jan for fruitful discussions and its helpful advice in
relation with this work.






CHAPTER 2

PRELIMINARIES ON GENERATORS AND
SEMI-GROUPS

2.1. A second order ODE

In this chapter we will introduce the one-dimensional diffusions we will consider
throughout this work (section 2.2). In the section 2.3 we will extend the framework
to the ”generators” containing a mass-creation term. In the section 2.1 we will prove
or recall some facts on the functions harmonic for these generators.

Let I be an open interval of R and v a signed measure on I. By signed measure
we mean that the total variation |v| is a positive Radon measure, but not necessarily
finite, and v(dz) = e(z)|v|(dz) where € takes values in {£1}. We look for the solutions
of the linear second order differential equation on I:

2
(2.1.1) %-FUZ/:O
Given a solution u of (2.1.1) we will write 2% (z+) and 9%(z~) for the right-hand side
respectively left-hand side derivative of u at x. The two are related by

du du , _
%(er) — £($ ) = —u(z)v({z})

Using a standard fixed point argument one can show that (2.1.1) satisfies a Cauchy-
Lipschitz principle: if z¢g € T and ug,vg € R, there is a unique solution u of (2.1.1),
continuous on I, satisfying u(zo) = ug and % (zf) = vo. Let z1 € I N (2o, +00). A
continuous function u on [z, 1] is solution of (2.1.1) with previous initial conditions
at xg if and only if it is a fixed point of the affine operator J on C([xo, z1]) defined as

(u)() = o + (z — z0)v0 — / (z — y)uly)v(dy)

(IU,I]

The Lipschitz norm of J™ is smaller or equal to ‘V|([z°’ml]2:(m*m“)n. So for n large

enough J" is contracting and thus J has a unique fixed poiﬁt in C([xo, z1])-
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Let W (u1,uz2)(x) be the Wronskian of two functions uy, ug:

dus duq
E(fr) - U2($)E($+)

If uy,us are both solutions of (2.1.1), W(uq,uz) is constant on I. Using this fact we
get a results which is similar to Sturm’s separation theorem for the case of a measure

W (uy,u2)(x) := uy(x)

v with a continuous density with respect to the Lebesgue measure (see theorem 7,
section 2.6 in [4]):

Property 2.1. — Given xg < x1 be two points in I:

— (i) Let uy be a solution of (2.1.1) satisfying ui(zo) =0, L2 (zf) >0, and us a
solution such that us(xg) > 0. Assume that us > 0 on [z, z1]. Then u; >0 on

(1"0; 1"1]‘
— (ii) Let uy,us be two solutions such that ui(zo) = uz(zo) > 0 and L2 (z) >
%(m{f). Assume that ug > 0 on [xg,x1]. Then uy > ug on (xg, 1].

— (43) If there is a solution u to (2.1.1) positive on (xg,21) and zero at xg and xq
then any other linearly independent solution of (2.1.1) has exactly one zero in

(1"0; 1‘1)'
Next we prove a lemma that will be useful in the section 2.3.

Lemma 2.2. — Let vy be the positive part of v. Let x9 < x1 € I. Let f be a
continuous positive function on [xg,x1] such that ming, ., f > v4([zo,21])?. Then
the equation

d2
dx2

has a positive solution that is non-decreasing on [xo, z1].

(2.1.2) +uv—uf =0

Proof. — Set a := minp,, ,,] f. Let u be the solution to (2.1.2) with the initial values
u(zg) =1, 2 (zf) = \/a. We will show that u is non-decreasing on [zg, 71]. Assume
that this is not the case. This means that Zg( T) takes negative values somewhere

in [zg,x1]. Let

T9 = inf {:I: [0, 21 }d ) < 0}
Since 9% (%) is right-continuous, 2%(23) < 0. Let r(z) := u(ll) du (3F). w is positive
on [xg,z2] hence r is defined [zg,z2]. r(zg) = v/a. 7 is cadlag and satisfies the
equation

dr = (f —r*)dx — dv
Let @3 := sup{z € [zo, z2]|r(z) > \/a}. We have

T2

rlea) =rlai) + [ (f@) = r*(a))ds — v(faa, 2]

3
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By construction r(x3 ) > y/a. By definition f —r? > 0 on (x3,z2]. Thus
r(xa) > vVa — v([z3, 22]) > 0

It follows that r(z2) > 0, which is absurd. O
In the case v = —2k where k is a non-zero positive Radon measure, the equation
(2.1.1) becomes:
1 d%u

It commonly appears when studying the Brownian motion with a killing measure «.
In this case the two-dimensional linear space of solutions is spanned by two convex
positive solutions vt and uy, uy being non-decreasing and u; non-increasing. Given
xo € I, we can construct uy as the limit when z; — infI of the unique solution
which equals 0 in 1 and 1 in xg9. For u) we take the limit as 1 — sup/. u4 and
uy are defined up to a positive multiplicative constant. See [5], section 16.11, or [24],
Appendix 8, for more details. Next we give equivalent conditions on the asymptotic
behaviour of vy and uy that will be used in chapter 6.

Proposition 2.3. — In case [0,+00) C I, the following four conditions are equiva-
lent:
— (i) f(07+00) zr(dr) < 400
(ii) uy(400) > 0
— (#1) There is C > 0 such that for all x > 1, uy(z) < Cx
- (iv) f(07+oo) ur(x)uy (z)k(dr) < 400

Proof. — We will prove in order that (ii) implies (i), (iii) implies (i), (i) implies (ii),

i) implies (iii) and (iv) implies (ii). (iv) is obviously implied by the combination o
Y molies (i) and (iv) implies (i) (iv) is obviously imolied by th bination of
(i), (ii) and (iii).

(ii) implies (i): For all x € [0, +00):

du
S =2 [ uwsldy) < 2u(+o0n((z +o0)

dx (z,400)

—Z=(z1) is integrable on (0, 400). Since uy(+00) > 0, this implies that:

/ k((z,+00))dx < 400
(0,400)

But
/ #((, +00))da = / yre(dy)
(O,Jroo) (0,+oo)

and hence (i).
(iii) implies (i): If (iii) holds then for all z € [0, +00), %4 (z+) < C. But

dup 4y _ dut o
-1 =7 )
o @) == (07) + o uy(y)r(dy)
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This implies that
[ () < +0
(0,400)

Since uq is convex, ut(y) > uqs(0) + d“T (07)y. So (i) is satisfied.
(i) implies (ii): For all y € [0, +oo)'

w—wto =2 [ [ s <) [ @)

(y,+00)
Condition (i) implies that:

lim 2/ (x —y)k(dz) =0
ymEee Sy, +oo)

So for y large enough, uy(y) — uy(+00) < uy(y). Necessarily u(+00) > 0.
(i) implies (iii): For all y < x € [0, +00):
du du
@1 M) = D) o) 2 [ () — )l
dx d’y (y,z)
Let y be large enough such that:

2/(y7+oo)(z —yk(dz) <1

Then there is C' > 0 large enough such that:

duT

(2.1.5) C > o (y

) + 2up(y)r((y, +00)) +2C e )(Z — y)r(dz)

Assume that there is € [0, 4+00) such that duT( ) > C. Let
o := inf {x > y‘ﬂ(af") > C}

x d L (1) is right-continuous. Thus “(z§) = C. By definition, for all z € [y, zo),
21 (2+) < € and hence ut(z) — up(y) < C(z— y). But then (2.1.4) and (2.1.5) imply
that duT( &) < C which is contradictory. It follows that dd%(:z:*) is bounded by C,
which implies property (iii).
(iv) implies (ii): Applying integration by parts we get that for all = > 0:
duT

> [ ) = [ ()@

duy , duy , /Z duy, . duy,
7 @)y (z) = = (07)uy (0) o (y )dy (y")dy
duT

(2t )uy (x) is positive. We get that:
(2.1.6)

T duy , L duy, | dus
- 4 kel B <2 d —(t 0
/0 a0 (y) i (y")dy < /(O . ur(y)uy (y)r(dy) + T (07)uy(0) < +o0
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Next

u U oo du
T @) — o) == T [ G

0 duy du
o [T du o dur
< /I dy(y)dy(y)y

implies that:

(2.1.7)

Assume that u)(4+00) = 0. Then (2.1.7)

im0y () = 0

and

(2.1.8) lim —%(z"‘)uT(x) =W(uy,up) — lim duy (2 M)y (z) = W(uy,ur)
rz—+oo  dx z—+oo dx

(2.1.6) together with (2.1.8) imply that

Foo 1 duT +
—(y")dy < 400
/0 ut(y) dy &™)

But this is impossible because log(us(+00)) = 400. Thus u|(+00) > 0. O

Next we deal with the continuity of uy and u| with respect the measure x. We will
write u,,1+ and u, | to denote the dependence on x.

Lemma 2.4. — Let xo € I. Let (kn)n>0 be a sequence of non-zero positive Radon
measures on I converging vaguely (i.e. against functions with compact support) to k.

u
wt _ and the conver-
U,y (0)

u u
Then —t2t o converges to ——l - _“snd — copgyerges to
U, 1 (20) Urt(@0) 7 Tyt (0)

gences are uniform on compact subsets of 1.

Proof. — We will deal with the convergence of ﬁ, the other one being similar.
To simplify notations we will chose the normalization u, |(z9) = s, (x0) = 1.
Without loss of generality we will also assume that x({z¢}) = 0. The proof will be
made of two parts. First we will show that if u is the solution of (2.1.3) and wuy,
solution of

1 d?u
2 dz?

and if u, (o) = u(zo) = 1 and L (zf) = lim,,_y oo L

(2.1.9) —uky, =0

dun (24) then u,, converges to u

uniformly on compact subsets of I After that we will show that du’—"l( &) converges
S ()
dx 0/

Let #1 € I N (xg,+0). Let (v,)n>0 be a sequence in R converging to v. Let J,

to

respectively J be the following affine operators on C([xg, z1]):

(Gnf)(@) =1+ (z — 20)vn +2 / (& — 1) £ (0)rn(dy)

(10111

(OF)() =1+ (& — 2o)v +2 / (z — ) (y)r(dy)

(IUvz]
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Let w, respectively u be the fixed points of J,, respectively J. Let ¢ € (0,1). The
Lipschitz norm of 37 is bounded by %mn([xo,xl])j(xl — 20)?. For j > je, for all
n € N, this norm is less then €. Then
max |u, —u| = max |¥eu, — Feu| < max |Feu — Feu| + max [Feu, — Tl
[z0,z1] [zo0,z1 (0,21 z0,21]
< max |Feu — Feu| + & max |u, — u

[IU,II] [Iﬂqzl

Hence

(2.1.10) max |u, — u| < max |3y — 3=y
[IU,II] 1 — & [10,11]

Fory <x €I and i € N* let

fni(y,z) = / (—yi—1) - (Y2 —y1) (Y1 — Y)knldyr) . . . kn(dyi-1)
Yy<y1<---<yY;—1<x

foy= [ @) e ) = () i)

and foi(y,z) = fo(y,z) =z —y. fn,; and f; are continuous functions. Moreover the
vague convergence of k, to k ensures that if (yp,, Zn)n>0 1S & sequence converging to
(y,z) then fp i(yn,zn) converges to f;(y,x).

j5_2

@) =1+ (a = o)en+ Y [ (= 00 o)
i=0 /o

xT
[ ) g ()
zo
‘ =2 o
@u)(@) =1+ (@ —zojo+ - [ (4 (= 20)o) iy, ()
S xr
x =0 ’
+ [ u) st a)n(ay)

zo
For fixed z, the functions y — lgi<y<afn,i(y,z) and y — 1y <y<afi(y, ) have a
compact support but are discontinuous at zg. If (z,)n>0 is a sequence in [xg, z1]
converging to z, then the convergence of v,, to v, the weak convergence of k,, to k and
the condition x({zo}) = 0 ensure that (J/su)(2,) converges to (37<u)(z). This implies
the uniform convergence of J/su to 3<u on [xg,z1]. From (2.1.10) follows that w,
converges uniformly to u on [zg,x1]. The situation is similar for z; < z¢ and we get
the uniform convergence on compact sets of u,, to u.

Let

du,.; 1 dun 1
v = liminf — (5 T := lim sup —=* (g4
U= = (0) n~>+o£) dr (z0)

Let v < %(xf{). There is &1 € I N (29, +00) such that the solution of (2.1.3) with

initial conditions u(zg) = 1, 2 (z+) = v is zero at z; since u,,,| converges to w |
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uniformly on [zg,x1] and w, | is positive on [zg, z1], we get that for n large enough,
Uy, .| is positive on [xg,z1] and 'mc’l‘—;“i(xar) > v. Thus v > %(xz{).
Conversely, let v < T. Let u, be the solution of (2.1.9) with initial conditions
Un (o) = 1, Lo (zf) = 0. If %(mé{) > v, then for any € T N [z, +00)
dun , duy,, | duy,, .| duy,, .|
2 () < ZEEnay (et _(—mer —v)<—(—"”x+ —v)

duy,,,
(@) < e,y = (2 (o) = v) (2 = 20)

If sup I < 400 then by convexity of u,, ;:

up () <

and u,(z,) < 0 where

supl —x (du,ﬂmi
supl — xg dx

() = v) (& — x0)

duy
sup I + (M(xa') - v)xo(supl — o)

Zn = dudxi
1+ (#(xa') - v) (supI — x9)
This is also true if sup I = +o00 and in this case z, = xo + (dud—;i(xar) — v) 71. Let
u be the solution of of (2.1.3) with initial conditions u(zo) = 1, 2(2*) = v and

supl + (0 — v)xo(sup I — xo)
1+ (@—v)(supl — zp)

oo T

N o dug — .
Considering a subsequence along which =42 (z) converges to U, we get by uniform
du,{,l

convergence of u,, tu u on compact sets that u(z.) > 0. It follows that == (2) > v.
duy, + _
Hence =& (zg) > 7.

Finally v =v =

du,;’L
dx

subsets of u,, | to u . O

(a:ar) and this implies the uniform convergence on compact

2.2. One-dimensional diffusions

In this subsection we will describe the kind of linear diffusion we are interested
in, recall some facts and introduce notations that will be used subsequently. For a
detailed presentation of one-dimensional diffusions see [12] and [5], chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We
consider a diffusion (X;)p<;<c) on I with generator

W (ﬁdi)

and Kkilled as it hits the boundary of I. In case I is unbounded, we also allow for X

to blow up to infinity in finite time. ¢(9) is the first time X either hits the boundary
or explodes. To avoid some technicalities we will assume that fli—zj is locally bounded,
although this condition is not essential. Given such a diffusion, the speed measure
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m(xz)dz and the scale measure w(z)dx are defined up to a positive multiplicative
constant, but the product mw is uniquely defined. A primitive S of w is a nat-
ural scale function of X. Consider the random time change df = mdt. Then
(%S(Xf))0§f<f(0) is a standard Brownian motion on S(I) killed when it first hits the

boundary of S(I). For all f, g smooth, compactly supported in I,

/(L(O)f)(x)g(x)m(x)dfc = /If(w)(L(O)g)(w)m(w)dw

I

The diffusion X has a family of local times (¢7(X))zer,t>0 with respect to the measure
m(z)dx such that (x,t) — ¢7(X) is continuous. We can further consider diffusions
with killing measures. Let x be a non-negative Radon measure on /. We kill X as
soon as [, £f(X)m(z)k(dx) hits an independent exponential time with parameter 1.
The corresponding generator is

Let (X¢)o<t<¢ be the diffusion of generator (2.2.1), which is killed either by hitting
OI, or by exploding, or by the killing measure k. For z € I let n2% and =% be the

exc exrc

excursion measures of X above and below the level x up to the last time X visits x.

The behaviour of X from the first to the last time it visits x is a Poisson point process

with intensity n2.% 4+ n5%, parametrized by the local time at 2 up to the value Ef(X ).

<z
exc

N2k and nSZE are obtained from the Levy-1t6 measure on Brownian excursions through
scale change, time change and multiplication by a density function accounting for the
killing. See [25] for details on excursion measures in case of recurrent diffusions.

If X is transient the Green’s function of L,
G(x,y) = E [0z (X)]
is finite, continuous and symmetric. For x < y it can be written

G(z,y) = ur(z)u(y)

where uq(z) and wu(y) are positive , respectively non-decreasing and non-increasing
solutions to the equation Lu = 0, which through a change of scale reduces to an equa-
tion of form (2.1.3). If S is bounded from below, u4(inf I7) = 0. If S is bounded from
above, uy(supI~) = 0. uqs(z) and uy(y) are each determined up to a multiplication
by a positive constant, but when entering the expression of G, the two constants are
related. For x <y € I:

up (@) =P, (X hits x before time () () =P, (X hits y before time ()
ut(y) uy(z)
See [12] or [5], chapter 16, for details. Let W (u,,uq) be the Wronskian of u) and u4:
du du
W (g, up) () 1= uy(2) - (@) — ug () - ()

dx dx



2.2. ONE-DIMENSIONAL DIFFUSIONS 13

This Wronskian is actually the density of the scale measure: W (uy,uq) = w. We may
write G, when there is an ambiguity on L.

If the killing measure x is non zero, then the probability that X, starting
from =z, gets killed by k before reaching a boundary of I or exploding equals
J; G(z,y)m(y)r(dy). Conditionally on this event, the distribution of X is:

1.e1G(x, z)m(2)k(dz)
J; G, y)m(y)x(dy)

Indeed, let f be a non-negative compactly supported measurable function on I and

7, = inf {t € [O,C(O)‘ /IE?(X)m(y)fi(dy) > l}

Then by definition

400 +oo v
E. [f(X¢-)] /O e 'E, [f(XnA<<0>)]dl/O dW”Ez[/O f(Xonco)dl
But
| 1Cncori= [ & o (Xmi)ntin)

(see corollary 2.13, chapter X in [24]). It follows that

+oo
B = [ [ 8o e mntay) = [ 16l pmry

The semi-group of L has positive transition densities p;(z,y) with respect to the
speed measure m(y)dy and (¢, z,y) — pi(z,y) is continuous on (0, +00) x I x I. McK-
ean gives a proof of this in [21] in case when the killing measure k has a continuous
density with respect to the Lebesgue measure. If this is not the case, we can take
u a positive continuous solution to Lu = 0 and consider the h-transform of L by
w: u~'Lu. The latter is the generator of a diffusion without killing measure and by
[21] this diffusion has continuous transition densities p;(z, y) with respect to m(y)dy.
Then u(x)p(z, y)ﬁ are the transition densities of the semi-group of L. Transition
densities with respect to the speed measure are symmetric: p:(z,y) = p:+(y,z). For

all z,y € I and t > 0 the following equality holds:

t
(2.2.2) E; [(in(X)] = /0 ps(w,y)ds
Next we deal with bridge probability measures.

Proposition 2.5. — The bridge probability measures P, ,(-) (bridge of X from x to
y in time t conditioned neither to die nor to explode in the interval) satisfy: for all
x € I the map (x,y,t) — P;7y(~) is continuous for the weak topology on probability
measures on continuous paths.
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Proof. — Our proof mainly relies on absolute continuity arguments of [22] and [6],
and the time reversal argument of [22]. [6] gives a proof of weak continuity of bridges
for conservative Feller cadlag processes on second countable locally compact spaces.
But since the proof contains an error and we do not restrict to conservative diffusions,
we give here accurate arguments for the weak continuity.

First we can restrict to the case k = 0. Otherwise consider u a solution to Lu = 0,
positive on I. The generator of the h-transform of L by w is

u(sc)?lm(:c) & (Z;(Zc)) di)

and does not contain any killing measure. The h-transform preserves the bridge

measures and changes the density functions relatively to m(y)dy to ﬁpt (x,y)u(y),
and thus preserves their continuity.

Then we normalise the length of bridges: if (ng’y’t))ogsgt is a path under the
law P% (-), let I@;y() be the law of (X "¥")oc,<1. It is sufficient to prove that
(z,y,t) — ﬁ‘;y() is continuous. For v € [0,1], let ﬁ‘;%() be the law of (X 5")o<r <.
Let PL?(-) be the law of the Markovian path (X, )o<y<, starting from z. For v € [0,1)
we have the following absolute continuity relationship:

P(1—v)t(Xot, )
pe(w,y)

Let (Jn)n>0 be an increasing sequence of compact subintervals of I such that

(2.2.3) dPLY, = 1yicc dPL?

I= Unzo Jn. Let T, be the first exit time from J,. Let f,, be continuous compactly
supported function on I such that 0 < f, <1 and f,;, = 1. We can further assume
that the sequence (f,)n>0 is non-decreasing. The map
(2,y.8) = fu(sup X) fu inf X)dPy"
[O,Ut] [O,Ut]
is weakly continuous. Let (z;,y;,t;);>0 be a sequence converging to (z,y,t). Let F
be a continuous bounded functional on C([0,v]). Then applying (2.2.3) we get:

(2.2.4) PL:Y (fu(supy) fu(inf ¥)F(7)) = PLY (fu(supy) fu(inf 7)F (7)) =
[0,v] [0,v] [0,v] [0,v]

(2.2.5)

T

( wiwo) ([SJ?SV)JC (Inf v)F()

pi(z,y) [0,v] [0,0]

(2.2.6) —PtY <an(sup ) fn(inf v)F(7)>

2.2.7 +Phv
( ) ’ < Pt (75, 95) [0,0] [0,7]

Pa—vyt; (7(v), yj)fn(SUP ) fa(inf WF(V))
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~iow p(lfv)t(’)/(v)ay) .
2.2.8 —Plv | = f (sup ) fu(inf y)F(y
(228) ; < ey GRIEME)
Since %;g)’y) is continuous and bounded on J,, (2.2.5)—(2.2.6) converges to 0.

Pa—wvye; (HY5) . . —o)e (5
20 Y7 g uniformly close on J,, to Pa—niCy) rppygg
pe; (T5,Y5) pe(e,y)

(2.2.7)—(2.2.8) converges to 0 and finally (2.2.4) converges to 0. Let ny € N and
n > ng. Then

Moreover for j large enough,

Ptiv (1 — n(su ' (Inf — 1Pt n(su ' (Inf
2y, (L= f ([0,57” ([O,U]v)) 2 S ([0757)1" ([OW] 20)

<1=PY" (fno ([Sgllf? v)fm([ionfl 7)) = 1= PL (fay ([SOUI? ¥) fro ([inf 7))

0]
and consequently

lim limsup ﬁtjjvyj (1 = fa(supy)fn(inf 7)) =0

n=te0 oo [0,v] [0,v]

It follows that
im P (F() = P2l (F()

From this we get that the law of any finite-dimensional family of marginals of ﬁ”;y()
depends continuously on (x, y,t). To conclude we need a tightness result for (z,y,t) —
=t . ™t (. : ™t .

P7 (). We haveNaIready tightness for (z,y,t) — P53 (). The image of P’} () through
time reversal is P}, ,(-). So we also have tightness on intervals [1 — ', 1] where 0 <
v/ < 1. But if v + o' > 1, tightness on [0,v] and on [1 — v’, 1] implies tightness on
[0,1]. This concludes. The article [6] contains an error in the proof of the tightness
of bridge measures in the neighbourhood of the endpoint. O

2.3. ”Generators” with creation of mass

In this section we consider more general operators

(2.3.1) L= %% <ﬁ%) e

with zero Dirichlet boundary conditions on 91, where v is a signed measure on [
which is no longer assumed to be negative. We set

LO .=y

In the sequel we may call L ”generator” even in case the semi-group (e'X);>o does not
make sense. Our main goal in this subsection is to characterize through a positivity
condition the subclass of operators of form (2.3.1) that are equivalent up to an h-
transform to the generator of a diffusion of form (2.2.1).
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We will consider several kinds of transformations on operators of the form (2.3.1).

First, the h-transform: Let h be a positive continuous function on I such that % is

a signed measure. We call Conj(h, L) the operator

) 1 d (h(x)* d 1
C h,L) = — - ~1.Op
onj(h, L) h(z)2m(z) dx <w(ac) ) TV
If f is smooth function compactly supported in I then

Conj(h,L)f = h *L(hf)

We will call Conj(h, L) the h-transform of L by h even though h may not be harmonic
(Lh = 0) or superharmonic (Lh < 0) and L is not necessarily the generator of a
diffusion.

dA

Second, the change of scale: If A is a C! function on I such that S > 0 and

f;Té € Ly2.(I) and (7(t))o<t<r a continuous path in I, then we will set Scalea(7) to

be the continuous path (A(y(s)))o<t<r in A(I). Let Scale’s™ (L) be the operator on
functions on A(I) with zero Dirichlet boundary conditions induced by this change of

1 d 1 d
le%" (L) = — — A,
Sealel™ (L) mo A~1(a) da <wOA—1(a) da) A

where A,v is the push-forward of the measure v by A.

scale:

Third, the change of time: If V is positive continuous on I then we can consider
the change of time ds = V(y(t))dt. Let Speedy be the corresponding transformation
on paths. The corresponding ”generator” is %L.

Finally, the restriction: if I is an open subinterval of I then set Lj; to be the
operator L acting on functions supported in I and with zero Dirichlet conditions on
ol.

For the analysis of L we will use a bit of spectral theory: If [z¢, 2] is a compact
interval of R and m, @ are positive continuous functions on [z, 1], then the operator

%% (N— di) with zero Dirichlet boundary conditions has a discrete spectrum
w(x)

of negative eigenvalues. Let —)1 be the first eigenvalue. It is simple. According
to Sturm-Liouville theory (see for instance [29], section 5.5) we have the following
picture:

Property 2.6. — Let A > 0 and u a solution to

1 1
d ( d)-i—)\u:O

na \wa
PR iy du

with initial conditions u(xg) = 0, d—(zo) > 0.
x

— (i) If u is positive on (xo,21) and u(x1) = 0 then X\ = A\, and u is the funda-
mental eigenfunction.
— (@) If u is positive on (zo,x1] then A < A\
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— (iii) If u changes sign on (xo,x1) then A\ > Ay
Next we state and prove the main result of this section.

Proposition 2.7. — The following two conditions are equivalent:

— (i) There is a positive continuous function u on I satisfying Lu = 0.
— (i) For any f smooth compactly supported in I

(232) J@On@s@mes + [ j@Pm@wd) <o
I I
Proof. — (i) implies (ii): First observe that the equation Lu = 0 reduces through a
change of scale to an equation of the form (2.1.1). Let u be given by condition (i).
Let L := Conj(u,L). Since Lu = 0, L is a generator of a diffusion without killing
measure. Let m(z) := u?(z)m(z). Then for all g smooth compactly supported in I,
[,(Lg)(x)g(x)m(x)dz < 0. But

[ @@ = [ @O )i ug)@meds + [ wo)@Pmw(d
Thus (2.3.2) holds for all f positive compactly supported in I such that u=1f is
smooth. By density arguments, this holds for general smooth f.

(ii) implies (i): First we will show that for every compact subinterval J of I there
is a positive continuous function u; on J satisfying Luy = 0 on J. Let J be such
an interval. According to lemma 2.2 there is A > 0 and wu) positive continuous on J
satisfying Luy — Auy =0 on J. Let Ly := Conj(uA,L‘j). Then

1 d (u?d
Iy=——(—=%
A u2mdx< )+)\

Let Lg\o) := Ly—A. L is the generator of a diffusion on J. We can apply the standard
spectral theorem to Lg\o). Let —\; be its fundamental eigenvalue. L(AO) + A= L, is
a non-positive operator because it is an h-transform of L;; which satisfies condition
(i). This implies that A < Ay. Let @ be a solution of L{”@ + A& = 0 with initial
conditions 4(min J) = 0 and %%(minJ) > 0. Since A < Ay, according to property
2.6, u is positive on J. We set u; := uyu. Then u; is positive continuous on J and
satisfies Lu; = 0. This finishes the proof of the first step.

Now consider a fixed point z in I and (J,)n>0 an increasing sequence of com-
pact subintervals of I such that xg € Jo and UnsoJn = I. Let uy, be a posi-
tive L-harmonic function on J,. We may assume that uj, (29) = 1. The sequence

(%(zg )) is bounded from below. Otherwise some of the u;, would change
n>0

sign on I N (29, +00). Similarly, since none of the u; changes sign on I N (—o0, o),



18 CHAPTER 2. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

(dZ‘;" (zd )) is bounded from above. Let v be an accumulation value of the se-
n>0

quence (dZi" (acar)) . Then the L-harmonic function satisfying the initial condi-
n>0

tions u(xg) = 1 and §%(xy ) = v is positive on 1.

We will divide the operators of the form (2.3.2) in two sets: ®%~ for those that
satisfies the constraints of the proposition 2.7 and ®* for those that don’t. ®%~ is

du (,.+
d

made exactly of operators that are equivalent up to an hA-transform to the generator
of a diffusion. We will subdivide the set D%~ in two: ®~ for the operators that are
an h-transform of the generator of a transient diffusion and ©° for those that are
an h-transform of the generator of a recurrent diffusion. These two subclasses are
well defined since a transient diffusion can not be an h-transform of a recurrent one.
Observe that each of L € ®~, D% and ©* is stable under h-transforms, changes of
scale and of speed. Operators in ©®~ and ©° do not need to be generators of transient
or recurrent diffusions themselves. For instance consider on R

1 d?

=2
2 dz?

+a+51 —a_0_1
where ay,a_ > 0. If 3a; —a_ > 0then L € ®%, if 3a; —a_ = 0 then L € D0, if
3a+ —a_ <0then L e®™. O

If L € D%, the semi-group (e*%);>0 is well defined. Indeed, let X be the diffusion
on I of generator L(®) and ¢ the first time it hits the boundary of I or blows up
to infinity. Let u be a positive L-harmonic function and L= Conj(u, L). L is the
generator of a diffusion X on I without killing measure. Let ¢ be the first time X hits
the boundary of I or blows up to infinity. Using Girsanov’s theorem, one can show
that for any F' positive measurable functional on paths, x € I and ¢ > 0 the following
equality holds:

B [tccemp ([ 00mI@)) F((Xocacn)] =

mEI |:1t<€:u()?t)F((Xs)O§s§t):|

In case L € ©7, let (G7(2,y))z,yer be the Green’s function of L relatively to the
measure u(z)?m(z)dr. Then L has a Green’s function (G (2, y))s,yer that equals

GL(Z', y) = Ez

[ oo ([aomeman) dtéfz(X)] = u@u®Cr(e.y)

For L € ®~, the Green’s functions G, satisfy the following resolvent identities
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Lemma 2.8. — If L € ©® and U is a signed measure with compact support on I
such that L+ 0 € ©7, then for all z,y €

Proof. — We decompose L as L = L(©) + v where L(®) does not contain measures and
v is a signed measure on I. Let (X;)o<¢<¢ be the diffusion of generator L), Then

Gr(z,y) =E, Vj exp (/1 5?(X)m(a)l/(da)> dtﬁi’(X)l
Griole,y) = l / exp ( / (X)m(a)(v + 7)(d a)) dtfi’(X)]
and
exp (/ (X ym(a)(v + u)(da)) ~exp (/ (X (a)u(da))

- eXp< ax (da)) x <exp < / 0(X)m(a )ﬁ(da)) - 1>
eXp< | & COm(@u(da) ) // exp (/e X)m(a )ﬁ(da)) dol* (X )m(2)5(dz)

Thus Gr+5(z,y) — Gr(z,y) equals

(2.3.3)
l// / exp (/m V(g (X)v(da) + £2(X)D (da))) dsﬁ'z(X)dSﬁ’(X)m(z)ﬁ(dz)]
We would like to interchange E, [-] and [;(-)m(z)(dz). Let z € I and (Xt(z))ogtqz,

(Xt(z))ogt<€z be two independent diffusions of generator L starting in z respectively
z. Applying Markov property, we get

/ / exp< / m(a)(£2(X )v(da) + £2(X )i (da)))dséj(X)dSEZ{(X)]
=E[ / e ([ m@ex e+ o)

X exp (/Im(a)(fZ(X(z))V(da)) duf;j(X(Z))dsg?(X(w))]

=Grio(7,2)GL(2,y)
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Since 7 has compact support

E, l /] E / exp ( [ i@ vt +fﬂX)ﬂ(da)))dsez<x>dsf%<x>m<z>|a|<dz>]

_ /I El /O ‘ /0 " exp ( /I m(a>(eg(X)u(da)+£§(X)ﬁ(da)))

dsfi(X)dsf?(X)] m(z)|v|(dz)

= [ GLislw )Gl gm() ol d2) < +oc
I
Thus in (2.3.3) we can interchange E, [-] and [;(-)m(z)7(dz) and get

Grisey) = Guloy) = [ Guio(r 2061 m(2)o(d2)
I
Since L and L + 7 play symmetric roles, we also have

L) — Craole,y) = / GL (2, 2)Cr (2 y)m(2) () (dz)
]

The discrete analogue of the sets ®~, D% and D+ are symmetric matrices with
non-negative off-diagonal coefficients inducing a connected transition graph, with the
highest eigenvalue that is respectively negative, zero and positive. However in con-
tinuous case the sets L € ®~, D% and D1 can not be defined spectrally because
for operators from L € ®~ and ®T the maximum of the spectrum can also equal
zero. However the next result shows that the sets ®~ and D™ are stable under small
perturbations of the measure v and that D° is not.

Proposition 2.9. — — (i) If L € ©° and k is a non-zero positive Radon measure
onlthen L— k€D and L+rx€DT.

— (i) If L € ©~ and J is a compact subinterval of I then there is K > 0 such
that for any positive measure k supported in J satisfying k(J) < K we have
L+re®.

(111) If L € D7 then there is K > 0 such that for any positive finite measure &
satisfying k(1) < K we have L — k € D7

— (i) If L € D, there is a positive Radon measure k on I such that L — k € D°.
(v) Let L € D% and xo < x1 € I. Then Lz, 4,) € DY if and only if there is an
L-harmonic function u positive on (xg,x1) and zero in xy and xy.

Proof. — (i): Consider h positive continuous on I such that Conj(h, L) is the gener-
ator of a recurrent diffusion. Since Conj(h, L — k) = Conj(h,L) — k, Conj(h, L — k)
is the generator of a diffusion killed at rate x and thus L — x € ®~. Similarly we can
not have L + k € D%~ because this would mean L = (L +x) —k € D~.
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(ii): Without loss of generality we may assume that L is the generator of a transient
14

transient, I # R. We may assume that x¢ := inf I > —oco. Write J = [x1,x2]. Let

be a positive measure supported in [z1,22]. Let u be the solution to Lu+uk = 0 with
o)

diffusion and that it is at natural scale, that is L = Since the diffusion is

the initial conditions u(zo) = 0, %% (z) = 1. w is affine on [zo,21] and on [z2,supI).

On [z1, 23] u is bounded from above by o — xg. Thus, if

ming, z,] M

(w2 — x0)

then w is non-decreasing on I and hence positive. This implies that L + x € D0,

% then L+ Kk €.
(iii): By definition there is f smooth compactly supported in I such that (2.3.2)

does not hold for f. Let U be the value of the left-hand side in (2.3.2). U > 0. If ¥

is a positive finite measure on [ satisfying

K([z1,22]) <

By the point (i) of current proposition, if x([z1,x2]) <

U

< 2

1112 maxsupps m
then if we replace v by v — k in (2.3.2), keeping the same function f, we still get
something positive. Thus L — x € DF.

(iv): Let f be a smooth function compactly supported in I such that (2.3.2) does
not hold for f. Let J be a compact subinterval of I containing the support of f. The
set

k(1)

{se€[0,1]|L—vy+sljyy €D}
is not empty because it contains 0, and open by proposition 2.9 (ii). Let $y,q. by its
supremum. Then 8,4, < 1 and L — v; + Syazl vy € D0, Then
k= 1p vy + (1 = Smaa) Lovy
is appropriate.

(v): First assume that there is such a function u. Then by definition L, »,) €
D%=. Conj(u, L|(z¢,2,)) does not have any killing measure and the derivative of its
natural scale function is ;7. It is not integrable in the neighbourhood of zq or ;.
Thus the corresponding diffusion never hits zy or ;. This means that it is recurrent.
Conversely, assume that L, q.) € DY. Let u be a solution to Lu = 0 satisfying
u(zg) = 0 and 24(z{) > 0. If u changed its sign on (g, 1) then according to the
preceding we would have L, .,) € D+, If u were positive on an interval larger that
(w0, 21) we would have Lj(;,..,) € D~. The only possibility is that u is positive on
(20, 1) and zero in . O






CHAPTER 3

MEASURE ON LOOPS AND ITS BASIC PROPERTIES

3.1. Spaces of loops

In this chapter, in the section 3.3, we will introduce the infinite measure p* on loops
which is at the center of this work. Prior to this, in the section 3.2 we will introduce
measures pu*¥ on finite life-time paths which will be instrumental for defining p*. In
the sections 3.4, 3.5, 3.7, 3.8 will be explored different aspects of p*. In the section 3.6
we will extend the Vervaat’s Brownian bridge to Brownian excursion transformation
to general diffusions. This generalisation can be easily interpreted in terms of measure
w* and is related to the results of section 3.5. In the section 3.1 we will introduce
the spaces of paths and loops on witch will be defined the measures we will consider
throughout the paper.

First we will consider continuous, time parametrized, paths on R, (v(t))o<¢t<7(y)s
with finite life-time T'(y) € (0,+00). Given two such paths (y(t))o<¢<7(y) and
(Y'(t))o<t<r(+), & natural distance between them is

dpatns(7,7) = log(T'(7)) — log(T'(7"))| + Inax Y (T'(7)) = 7' (T (Y))l

A rooted loop in R will be a continuous finite life-time path (v(Z))o<¢<7(y) such
that v(T'()) = v(0) and £ will stand for the space of such loops. £ endowed with
the metric dpqens is a Polish space. In the sequel we will use the corresponding
Borel o-algebra, Bge, for the definition of measures on £. For v € [0,1] we define a
parametrisation shift transformation shift, on £: shift,(v) =4 where T(%) = T(v)
and

st ={ 20T i< -0T)
Yt =1 =v)T(y) ift=(1-v)T(v)
We introduce an equivalence relation on £: v ~ v if T(y') = T(v) and there is

v € [0,1] such that v/ = shift,(v). We call the quotient space £/ the space of
unrooted loops, or just loops, and denote it £*. Let m be the projection 7 : £ — £*.
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There is a natural metric de« on £*:
de-(m(v), 7(7")) := i dpaths(shifts(v),7")

(£*,dg«) is a Polish space and 7 is continuous. For defining measures on £* we will
use its Borel o-algebra, Bg«. 7~ 1(Bg-), the inverse image of Bg« by 7, is a sub-algebra
of B,g.

In the sequel we will consider paths and loops that have a continuous family of local
times (£ (7))zer,0<t<7(y) relatively to a measure m(z)dr such that for any positive
measurable function f on R and any ¢ € [0,T(7)]

/ 16 = [ eem

We will simply write £%(vy) for Ei(v)('y).

In the sequel we will also consider transformations on paths and loops and the
images of different measures by these transformation. We will use everywhere the
following notation: If £ and £’ are two measurable spaces, ¢ : £ — £’ a measurable
map and 7 a positive measure on &, p,n will be the measure on &’ obtained as the
image of ) trough .

3.2. Measures ;Y on finite life-time paths

First we recall the framework that Le Jan used in [13]: G = (V, E) is a finite
connected undirected graph. Lg is the generator of a symmetric Markov jump process
with killing on G. mg is the duality measure for Lg. (p%(2,9))zyev.i>0 is the family
of transition densities of the jump process and (Pg’é('))x,yev,tzo the family of bridge
probability measures. The measure on rooted loops associated with Lg is

dt
(321) pie) = [ S BRI @ ama(o) T
t>0 zev
K. is the image of pup, by the projection on unrooted loops. The definition of uj
is the exact formal analogue of the definition used in [19] for the loops of the two-
dimensional Brownian motion. In [13] also appear variable life-time bridge measures
(17)z,yev which are related to

—+oo
(3.2.2) ppl () = /O PSE()pf (. y)dt

In this subsection we will define and give the important properties of the formal
analogue of the measures uf@y in case of one-dimensional diffusions. In the next
section 3.2 we will do the same with the measure on loops uj ..

I is an open interval of R. (X;)o<i<¢ is a diffusion on I with a generator L of the
form (2.2.1). We use the notations of the section 2.1. Let z,y € I. Following the
pattern of (3.2.2) we define:
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Definition 3.1. —
+oo
wr? () 12/ P, ()pe(x, y)dt
0

We will write ™Y instead of p7"Y whenever there is no ambiguity on L. The defi-
nition of p*¥ depends on the choice of m, but m(y)u®? does not. Measures u*¥ were
first introduced by Dynkin in [7] and enter the expression of Dynkin’s isomorphism
between the Gaussian Free Field and the local times of random paths. Pitman and
Yor studied this measures in [23] in the setting of one-dimensional diffusions without
killing measure (k = 0). Next we give a handy representation of u*¥ in the setting
of one-dimensional diffusions. It was observed and proved by Pitman and Yor in case
k = 0. We consider the general case.

Proposition 3.2. — Let F' be a non-negative measurable functional on the space of
variable life-time paths starting from x. Then

(3.2.3) pU(F(y)) = Eg

¢

/ F((Xs>o<s<t>dtef<x>]
0

Equivalently

poY(F(y)) = By

(x)
/ F((X)ocaer )l
0

where 7/ := inf{t > 0147 (X) > l}.

Proof. — 1t is enough to prove this for ' non-negative continuous bounded functional
witch takes value 0 if either the life-time of the paths exceeds some value t,,4. < +00
or of it is inferior to some value t,,;, or if the endpoint of the path lies out of a
compact subinterval [z1, 2] of I. For j <n € N, set ;. := tmin + M and
At, = W Almost surely fOC F((Xs)o<s<t)dl] is a limit as n — +oo of

(3.2.4) S F((Xozsz ), pe(X) =8 (X))
)

Moreover (3.2.4) is dominated by [[F|lecl{ = ,c. It follows that the expectations
converge too. Using the Markov property and (2.2.2), we get that the expectation of
(3.2.4) equals

n—1 At,,
B25) Y [ R (F(esaet, ) s (o2 (o))
=0 zel JO

Using the fact that p.(-,-) is symmetric, we can rewrite (3.2.5) as
(3.2.6)

zo n—1 Aty
[ (st (P((Xodocect, ) o) 5 [ peln2)drm(z)as
Z1 =0 n Jo
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As n — +oo the measure - fOAt"' pr(y, 2)drm(z)dz converges weakly to d,. Us-
ing the weak continuity of bridge probabilities (proposition 2.5) we get that (3.2.6)
converges to

/t "B (F((X)oge<)) el y)dt

min

O

Proposition 3.2 also holds in case of a Markov jump processes on a graph, where
the local time is replaced by the occupation time in a vertex dived by its weight.
Proposition 3.2 shows that we can consider u™¥ as a measure on paths (v(t))o<t<7(+)
endowed with continuous occupation densities (¢7(7)).c 1,0<t<T(y)- Next we state
several properties that either follow almost immediately from the definition 3.1 and
proposition 3.2 or are already known.

Property 3.3. — — (i) The total mass of the measure u™v is ﬁm’te if and only
if X is transient and then it equals G(x,y). If it is the case, G( );ﬁ ® 4s the

law of X, starting from X (0) = z, up to the last time it visits x. G(m y)u

the law of X, starting from X (0) = x, conditioned to visit y before ¢, up to the
last time it visits y.

(i) The measure p¥* is image of the measure u*¥ by time reversal.
(111) If T is an open subinterval of I then

M?é (d’)/) = 1V contained in f:u?y(d’)/)

— (w) If K is a positive Radon measure on I then

pitatan) = oxp (= [ EOImi) ) i)

— (v) If A is a change of scale function then

A(z),A(y)

_ T,y
Scale?" 1, = Scale px i},

(vi) If V is a positive continuous function on I then for the time changed diffu-
sion of generator %L:

wY = Speedy 7!

;

V

— (vii) If h is a positive continuous function on I such that % s a signed measure
and Lu is a negative measure then

1

x,y =———u7Y
HConj(h,L) h(z)h(y) &

(viii) Let X and X be two independent Markovian paths of generator L starting
from X(0) =« and )~((0) =y. For a <z Ay, we introduce T, and T, the first
time X respectively X hits a. Let PTe be the first passage bridge ofX fmm x to
a, conditioned by the event T, < (. Let PT be the analogue for X. Let ]P’T N be
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the image of I@yfa through time reversal and PLa < I@yﬁtA the image of PLa ®I@§”A
through concatenation at a of two paths, one ending and the other starting in a.
Then

pr() = /EI BT < OBy (Ta <) (PT- <PJ+) (-uw(a)da

Previous equalities depend on a particular choice of the speed measure for the mod-
ified generator. For (iv) we keep the measure m(y)dy. For (iii) we restrict m(y)dy to I.
For (v) we choose (42 o Ail)_l
we choose h(y)*m(y) dy. Property (i) follows from that p(2,y) = p¢(y, ) and P, ,(-)
is the image of P,  (-) by time reversal. Property (vi) is not immediate from definition

mo A~ da. For (vi) we choose ﬁm(y)dy. For (vii)

1 because fixed times are transformed by time change in random times, but follows

from proposition 3.2. Property (vii) follows from that an h-transform does not change

bridge probability measures and changes the semi-group (p:(x, y)m(y)dy)i>0,zer to

(ﬁpt(x, Y)u(y)m(y)dy)i>o0,zer- Properties (ii) and (viii) were proved by Pitman and

Yor in case k = 0. See [23]. The case x # 0 can be obtained through h-transforms.
Next property was given without proof by Dynkin in [7].

Lemma 3.4. — Assume k # 0. Let P () be the law of (Xi)o<t<¢c where X(0) = .
Then

/ Ium’y(~)m(y)n(dy) = 1x kilted by P (*)

Proof. — Let 0 < t1 <tg < --- <ty andlet Ay, As,... Ay, A1 be Borel subsets of
I. The measure p*¥ satisfies the following Markov property

oY (T(y) > ta,y(t1) € A, .. y(tn) € Ap, v (T(7)) € Apy1) =

/ e (yx)m(zr) . e, (@Tn—1, Tp)m(xy ) Y (T(y) € Apyr)dzy ... dxy,
Ay X XAy

= 1y€An+1 /A N Dty (1"; Z'l)m(l'l) e Pty —tn 1 (znflv xn)m(xn)G(xna y)d‘rl cee d:Cn
X0 n

Hence

(3.2.7)
/ pEY(T(y) >ty v () € A,y (tn) € Ap,V(T(7)) € Ang)m(y)r(dy) =
yel
/ P, (@yx)m(z1) .. p, (Tt Tn)m(2,) G (2, y)m(y)dey . . . dep,k(dy)
Ap XX At
From Markov property of X follows
Pm(C > tantl € A17 s 7th € AanC* € An-‘,—l) =

/ P (T, x)m(zy) - pe,—ty ) (Tne1, Tn)m(xn) Pr, (Xe- € Apyr)dey .. dxy
A XX Ay,
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Since the distribution of X~ on the event of X killed by & is 1,e1G(Xo,y)m(y)rs(dy),
we get

(328) PI(C > tn, th € Aq,. .., th S AnaXC* S An—i—l) =
/ Pty (:L', zl)m(zl) s Pty —tn_1 (xnfla zn)m(xn)G(zna y)m(y)dzl s dzn“(dy)
A1><---><An+1
The equality between (3.2.7) and (3.2.8) implies the lemma. O
Next we study the continuity of (z,y) — pu*v.

Lemma 3.5. — Let J be a compact subinterval of I. Then the family of local times
of X satisfies: for every e >0

lim supP, <sup U (X) > E) =0

t—=0" zeJ yel
Proof. — 1t is enough to prove it in case the killing measure x is zero because adding
a killing measure only lowers £Y, C(X ). Without loss of generality we may also assume

that the diffusion is on its natural scale, that is to say w = 2. Then X is just a time
changed Brownian motion on some open subinterval of R. For a Brownian motion
(By)i>0 the statement is clear. In this case P, (supyeR E?AC(B) > 5) does not depend

on z and for a given x

lim P, (supﬁfAc(B) > 5) =0

t—0t yeR

Otherwise let
t
I = / m(X;s)ds
0
Then given the time change that transforms X into a Brownian motion B, we have
Y _
t(X) = {7,(B)

Let J = [zg, 21]. Let Zmin € I, Timin < o and Zmaz € I, Tymasw > 1. Let T,

Tmin,Tmax

the first time X hits either x,,im O Tz, Let s > 0, e > 0and x € J. If t <

2 then on the event T, > t, 7, is less or equal to s. So for ¢

Tmins;Tmazx
ma‘x[rmin,rmaac] m ’

small enough

P, <sup U (X) > 5) <P, <sup (B) > 5) F Py (T mnn < 1)
yel yER

But
P, (T,

Tmin;Tmax

< t) = ]P)Io (TIWLinamm,am < t) + ]P)Il (T

Tmin,Tmax

<t)
and

lim supP, (T <t)=0

10+ vl Tmin,Tmax
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Thus
lim sup sup P, (sup bl (X) > €> <P, (sup (B) > E)
t—0t zeJ yel yeR
Letting s go to 0 we get the statement of the lemma. O

Proposition 3.6. — Let tyq, > 0. Let F be a bounded functional on finite life-
time paths endowed with continuous local times that depends continuously on the path
(Vt)o<t<T(y) and on (l§(7)(7))z61 where we take the topology of uniform convergence
for the occupation densities on I. On top of that we assume that F is zero if T(v) >
tmaz- Then the function (z,y) — pu®Y(F(v)) is continuous on I x I.

Proof. — If we had assumed that F' does only depend on the path regardless to its
occupation field then the continuity of (z,y) — p™Y(F(v)) would just be a conse-
quence of the continuity of transition densities and of the weak continuity of bridge
probability measures. For our proof we further assume that L does not contain any
killing measure. If this is not the case, then we can consider a continuous positive
L-harmonic function w. Then Conj(u, L) does not contain any killing measure and
up to a continuous factor u(z)u(y) gives the same measure pu™¥ (property 3.3 (vii)).
We will mainly rely on the representation given by proposition 3.2.

Let z,y € I and (x;,y;)j>0 a sequence in I x I converging to (z,y). Without
loss of generality we assume that (x;);>0 is increasing. We consider sample paths
(X+t)o<t<c and (Xt(j))ogt«j of the diffusion of generator L starting from z and each
of x;, coupled on a same probability space in the following way: First we sample X
starting from z. Then we sample X (©) starting from z. It starts independently from
X until the first time Xt(o) = X;. After that time X (* sticks to X. This two paths
may never meet if one of them dies to early. If X, X(© . X() are already sampled,
we start XUFD from x;,; independently from the preceding sample paths until it
meets one of them. After that time X+1) sticks to the path it has met. Let

TU = inf{t > 0| X7 = X;}

If X does not meet X, we set T\ = +oo. By construction, (T));¢ is a non-
increasing sequence. Here we use that there is no killing measure. T is equal
in law to the first time two independent sample paths of the diffusion, one starting
from z and the other from x;, meet. Thus the sequence (T(j)) j>0 converges to 0 in
probability. Since it is decreasing, it converges almost surely to 0.

We use reduction to absurdity. The sequence (u®¥% (F(v)));j>0 is bounded
because F' is bounded and zero on paths with life-time greater then t,,4,. As-
sume that it does not converge to pu®¥Y(F(vy)). Then there is a subsequence that
converges to a value other than p®™¥Y(F(y)). We may as well assume that the
whole sequence (u®% (F()));j>0 converges to a value v # pu™¥(F(v)). According

to lemma 3.5, the sequence ((gé(j)(X(j)»Ze])jzo of occupation density functions
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converges in probability to the null function. Thus there is an extracted subse-
quence ((ﬁzT(jn)(X(j")))zeI)nzo that converges almost surely uniformly to the null
function. We will show that (p*in ¥%n (F(7)))n>0 converges to u™¥(F (7)) and obtain
a contradiction.

For z € I and ! > 0 let

77 = inf{t > 047 (X) > I}
and
77 o= inf{t > 0[6; (X D) > 1}
Then according to proposition 3.2

wwi) =] [

X)

H (
tmaz AC

F<<Xs>ogsgny>dz]

(X(j))

e
s (o)) =| [
0

Forany z € I, if 77, € [T, ¢;) then 77, = 7j; where

FXD Yoznet! >d1]

U'=1405,)(X) =t (X))

Along the subset of indices (jn)n>0, 7,7 converges to 7/ for every I € (0,1(X))

except possibly the countable set of values of | where [ +— ij ; jumps. For any [ such

that ijj"l converges to 7, the path (Xs(j)) converges to the path (X;)o<s<7/.

v
0<s<t. '™
=°=Tjn,

Moreover for such [ the occupation densities (li (XUn))),er converge uniformly to
J

Yin
in >l
(IZy(X))zer. Indeed
l

ns

O, (XUn)) = o (X) = 700y (X) + C) (X Gn)y

Jnl Jnl
Thus for all I € (0, Eg(X )), except possibly countably many,
lim F((XP)o<oer) = F((X)o<o<!)

n—-+oo Jnsl

For n large enough, (; = ¢ and £’" ¢ (XUn)) converges to tf  ac(X). Tt follows

tmazNCj,

that the following almost sure convergence holds

(3.2.9)
. é?tJr]‘r:Lam/\Cjn (X(J")) ( . ) yj ?tlm,aa: /\C(X)
ngg-loo ; F((XSJ”’ )OSSSTj;Tl)dl = /O F((XS)OSSSle)dZ

The left-hand side of (3.2.9) is dominated by ||F||1oofs’" (XUn)). In order to

tmazACip
conclude that the almost sure convergence (3.2.9) is also an L' convergence we need

only to show that

maz/\Gj,

(3.2.10) E |67 n, (X00) =t (0] =0
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We already know that Kfi:‘am AG (X Un)) converges almost surely to ¢} ae(X). More-

over

tmaxzACj,

tmaz
E[Eyjn ) (X(M)} :/O pe(j, 5 Y5,)
and

E [fi’mAg(X )} = /O o pi(z,y)

It follows that the expectations converge. By Scheffe’s lemma, the L' convergence
(3.2.10) holds.

We have shown that there is always a subsequence (u®n"¥in (F(7)))n>0 that con-
verges to p™¥(F(vy)) which contradict the convergence of (1%9:% (F(7))) >0 to a dif-
ferent value. O

3.3. The measure y* on unrooted loops

The measure u®* can be seen as a measure on the space of rooted loops £. Next
we define a natural measure pj on £* following the pattern (3.2.1)

Definition 3.7. — Let py be the following measure on £:

prld= [ B am@n = s [ a@mr

Wi = Ty is a measure on £*.

We will drop the subscript L whenever there is no ambiguity on L. The definition
2 does not depend on the choice of the speed measure m(z) dz. The measures p and
©* are o-finite but not finite. They satisfy the following elementary properties:

Property 3.8. — — (i) p is invariant by time reversal.
— (it) If I is an open subinterval of I then

H’L‘f(d/)/) = 17 contained in I ML(d’Y)

— (#i) If R is a positive Radon measure on I then

pa-stan) = oxp (= [ EOIm i) ) )
I
— (w) If A is a change of scale function then

HScalede™ L = SC&ZGA*,LLL
. e . . 2 . .
— (v) If h is a positive continuous function on I such that % s a signed measure
and Lu is a negative measure then
HConj(h,L) = KL

Same properties hold for p*.
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The measures p and p* contain some information on the diffusion X but the
invariance by h-transforms (property 3.8 (v)) shows that they do not capture its
asymptotic behaviour. In the section 3.4 we will prove a converse to the property
property 3.8 (v). In our setting, most important examples of h-transforms are:
— The Bessel 3 process on (0, +00) is an h-transform of the Brownian motion on
(0, +00), killed when hitting 0, through the function z — x.

— The Brownian motion on R killed with uniform rate xdz (i.e. k constant) is
an h-transform of the drifted Brownian motion on R with constant drift \/ﬁ,
through the function z s e~ V257,

In the sequel we will be interested mostly in p* and not p. As it will be clear from
the next propositions, the measure p* has some nice features that u does not.

Proposition 3.9. — Let v € [0,1]. Then shiftycp = . In particular
(3.3.1) W)= [ shiftuC)do
v€(0,1]

Proof. — For a rooted loop 7 of life-time T'(+) we will introduce 7; the path restricted
to time interval [0,vT'(y)] and 7, the path restricted to [vT(7),T(v)]. By bridge
decomposition property, the measure p(dvy1, dy2) equals

Y dt
[ [ [ @pnte, oo oo om(e) dym() do
t>0J1J1

Since v; and 7 play symmetric roles, changing the order of v; and 2 does not change
the measure . O

Formula (3.3.1) shows that we can get back to the measure p from the measure p*
by cutting the circle parametrizing a loop in £* in a point chosen uniformly on this
circle, in order to separate the start from the end.

Corollary 3.10. — Let F be a positive measurable functional on £. Then the map
v fol F(shift,(y))dv is 7=1(Be+)-measurable and

d(F !
A = [ Fshistu(as
dpp je1Bee)  Jo
Proof. — We need only to show that for every F’ measurable functional on £*:

332 [ FOPF M) = [ [ Fenit e o)

From proposition 3.9 follows that for every v € [0, 1]:

(3.3.3) /£ F(7)F'(n(7))u(dn) = / F(shi fty(7) F' (x(7))u(d)

e
Integrating (3.3.3) on [0, 1] leads to (3.3.2). O
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The next identity appears in [13] in the setting of Markov jump processes on
graphs. It can be generalized to a wider class of Markov processes admitting local
times (see lemma 2.2 in [10]). We will give a short proof that suits our framework.

Corollary 3.11. — Letx € I. Then
(3.3.4) () (dy) = mep™" (dy)

Forl >0, let P;Lx() be the law of the sample paths of a diffusion X of generator L,
started from x, until the time 1" when ¢7(X) hits |, conditioned by 77 < (. Then

—+o0

T __t dl
(335) 1'y visits zﬂ* (dV) = / W*Pml (d’7)€ G(”l:’z) T
0

Conventionally we set G(x,x) = +oo if X is recurrent.

Proof. — Let € > 0 such that [z —e,2+¢] C I. Let Tj,_. 44(7) be the time a loop
v spends in [x — ¢, 2 + £]. From the identity (3.3.1) follows that

T[m76,1+€](7) * o L ote
() () = T(v)/z

and simplifying T'(v):

e =% (dy)m(z)dz

—E&

T+e
Tio—c ate) (V)" (dy) = / T ™% (dy)m(z)dz
r—e&
Using local times we rewrite the previous expression as
[ D Emz)dz 1 vhe
(3.3.6) : W) = e [ m(dm()d:
Lo m(z)dz Lo m(z)dz Ja—e

Let g9 > 0 such that [x — g9,z + 9] C I. Let F be a continuous bounded functional
on loops endowed with continuous local times such that F' is zero if the life-time of
the loop exceeds tmae > 0 and if SUP. iy o) oqep] I#(y) exceeds lynaz. According to
the proposition 2.5, the right-hand side of (3.3.6) applied to F' converges as ¢ — 0
to (mp®*)(F(y)). By dominated convergence it follows that the left-hand side of
(3.3.6) applied to F converges as € — 0 to

.. () F () (dy)

Thus we have the equality
(3.3.7) / C(F ) (dy) = (mep™*)(F (7))

The set of test functionals F' that satisfy (3.3.7) is large enough to deduce the equality
(3.3.4) between measures.
From proposition 3.2 follows that

+oo > ,
por () = / P} (-)e” o= dl
0
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Applying (3.3.4) to the above disintegration, we get (3.3.5). O

Corollary 3.12. — Let V be a positive continuous function on I. We consider a
time change with speed V: ds = V(x)dt. Then

(3.3.8) 1

L
v

1, = Speedy.u7,

Proof. — By definition 3.7 and property 3.3 (vi):

T(v)
pyp(dy) = L /O Vo), Speedy . (pur, (d))

T() Vi(y(s))
Applying corollary 3.10 we obtain:
1y,
dSpeedy i, fo 14 1( (v ( )))dv -1
1 T(v) o
dpiyp |71 (Bax) T(7 7 Jo YV =1(y(s))ds
This concludes. U

In dimension two, the time change covariance of the measure u* on loops plays
a key role for the construction of the Conformal Loop Ensembles (CLE) using loop
soups as in [26]: Let D be an open domain of the complex plane, (By)o<i<¢ the
two-dimensional standard Brownian motion in D killed when hitting 0D and p* the
corresponding measure on loops. If f : D — D is a conformal map, then (f(B))o<t<c
is a time changed Brownian motion. If we consider p* not as a measure on loops
parametrized by time but a measure on the geometrical drawings of loops, then u*
is invariant by the transformation (v(t))o<t<r(y) = (f(7(t)))o<t<7(~)- This is proved
n [19].

Given that p* is invariant through h-transforms and covariant with the change of
scale and change of time, if X is a recurrent diffusion, then up to a change of scale
and time, p* is the same as for the Brownian motion on R, and if X is a transient
diffusion, even if the killing measure s is non-zero, then up to a change of scale and
time, p* is the same as for the Brownian motion on a bounded interval, killed when
it hits the boundary.

3.4. Multiple local times

In this subsection we define the multiple local time functional on loops. Corollary
3.11 gives a link between the measure p* and the measures (u™%),c;. Using multiple
local times we will get a further relation between p* and (4*¥)y yer. This will allow
us to prove a converse to the property 3.8 (v): two diffusions that have the same
measure on unrooted loops are related trough an h-transform.
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Definition 3.13. — If (7(t))o<¢<7(y) is @ continuous path in I having a family of lo-
cal times (£§ (7))zer,0<t<7(~) relatively to the measure m(z)dr, we introduce multiple
local times £*1%2:%n(~) for 21, xa,...,2, € I:

R GO / d, 0] (V)dey €7 (7) - - d, 027 (7)
0<t1<t2<---<t, <T'(7)
If v € £ and has local times, we introduce circular local times for :

[FTLT2,0 50 (’7) — Z fTe(1):Te(2)5Te(n) (’7)

c circular
permutation
of {1,2,...,n}
{12 5%n being invariant under the transformations (shift,),e(o,1], we see it as a
functional defined on £*.

Multiple local times of the form £%:%>-+% (), called self intersection local times, were
studied by Dynkin in [9]. Circular local times were introduced by Le Jan in [13].

Let n € N* and p € {1,...,n}. Let Shuffle,, be the set of permutations o
of {1,...,n} such that for all i < j € {1,...,p}, 0(:) < o(j) and for all i < j €
{p+1,....,n}, 0(i) < o(j). Permutations in Shuf fle,, are obtained by shuffling
two card decks {1,...,p} and {p+1,...,n}. Let Shuf fle;, , be the permutations of
{1,...,n} of the form o o ¢ where ¢ is a circular permutation of {p + 1,...,n} and
o € Shuf fley r, satisfies 0(1) = 1. One can check that

Property 3.14. — For all x1,...,Tp, Tpy1,...,%n € I:
- (i)

F T () T () = Z (Fo ) To @) Ta 1) To(n) (~)
oceShufflepn

FFT1eTp (,Y)g*mp+1 ..... Tn ('Y) _ § [Ea’ (1) 8ol () Tl (p41)1+ %! (n) ('Y)
o’e€Shuf fle, ,

The equality 3.14 (ii) appears in [13]. It is also shown in [13] that for transient
Markov jump processes:

(3.4.1) /E*Il’“"“’z"(v)u(dv) = G(z1,22) X -+ X G(Tn-1,2n) X G(zpn,x1)

It turns out that we have more: We consider L a generator of a diffusion on I of
form (2.2.1). If v; for i € {1,2,...,n — 1} is a continuous path from z; to z;11, then
we can concatenate y1,72, ..., Yn—1 to obtain a continuous path v1 <1ve <--- < yp—1
from x; to z,. Let p®%2 <. - qQu* 1% be the image measure p*"*2 @- - - @ prn-1n
by this concatenation procedure.

Proposition 3.15. — The following absolute continuity relations hold:
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= (1) (T2 Qe Q) (dy) = £t () pth e (dy)
= (1) o (u2 e QT Q) (dy) = et ()t (dy)

Proof. — (i): Let ((Xt(j))ogt«j Jo<j<n—1 be n—1 independent diffusions of generator
L, with X = ;. For 1 >0, let
Tﬁ;‘ﬂ := inf {t]— > 0|€ZJ‘+1(X(J')) > l}
According to proposition 3.2, (p™*2 < --- < p*=17)(F (7)) equals
(3.4.2)

1 n—1
E / et F((Xt( ))ogtgfﬁ SERIP ))ogthjlel )dll---dln—l}
l,~<e<j_+ (X),1<j<n~1 o 1l

Let (X¢)o<t<c¢ be an other diffusion of generator L. Let
7, = inf{t > 0lIy*(X) > 1}
and recursively defined
Thyody_a,ty = {t > 7, |7(X) > 15}
Then by strong Markov property, (3.4.2) equals

E [/ Lo o <cF ((Xt)OStS'rzl ..... lnl)dll---dlnl}

which in turn equals

343) B [l (Nosicn, ) da 200 i, 62 ()
By proposition 3.2, (3.4.3) equals [ (%1 Tn=1(y)F(y) % (dv).
(ii): According to the identity (i) and corollary 3.10, we have
1
T (T2 Qe QT Q) (dy) = / (= (shifto (7)) dv m ™" (dy)
0

According to corollary 3.11

But

which ends the proof. O
The proposition 3.15 (ii) implies (3.4.1).

Proposition 3.16. — If L and L are two generators of diffusions on I of the form
(2.2.1) such that p; = /ﬁi, then there is a positive continuous function h on I such
that % is a signed measure, Lh a negative measure and L= Conj(h,L). If the

diffusion of generator L is recurrent then L=L.
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Proof. — Let m(x)dx be a speed measure for L and m(xz)dx be a speed measure
for L. First let’s assume that both L and L are generators of transient diffusions.
Applying the identity (3.4.1) to fg* =Y (y)p*(dy) we get that for all x,y € I:

(3.4.4) Gi(z,y)G5(y, x)m(x)m(y) = Gr(z,y)GL(y, x)m(x)m(y)

and for all x,y,z € I:

(3.4.5)

Gi(z,y)Gi(y, 2)Gy (2, x)m()m(y)m(z) = Go(z,y)GL(y, 2)GL(z, 2)m(x)m(y)m(z)
Fix x¢g € I. Let h be

G (xo, z)m(x)

W) = Gr(xg,x)m(x)

h is positive and continuous. ﬁGL (x, y)h(y)m(y) equals:

(3.4.6)

Gr(xo,2)Gr(x,y)GL(y, xo)m(xo)m(x)m(
G (o, 7)Gr(2,y)G 7 (Y, wo)m(zo)m(z)m(y)

~

Applying (3.4.4) and (3.4.5) to (3.4.6) we get that

(3.4.7) ﬁG(w,y)h(y)m(y) = Gz (z,y)m(y)

Applying (3.4.7) once to (z,y) and once do (x,x) we get that

Gi(z,y) Gly,y)

3.4.8 h(y) = h(x
345 W= Gy Gi(y.y)
From (3.4.8) we deduce that % is a signed measure. From (3.4.7) we deduce that

L= Conj(h,L). —Lh is the killing measure of L and is positive.
If we no longer assume that L and L generate transient diffusions then consider
A> 0. Then pj_, = “*fo According to the above, there is h positive continuous

function on I such that j—; is a signed measure and
L—X=Conj(h,L—\) = Conj(h,L) — X

Then L = Conj(h, L) and necessarily Lh is a negative measure.

The class of recurrent diffusions is preserved by h-transforms. So if L is the gen-
erator of a recurrent diffusion then so is L, and thus A is bound to satisfy Lh = 0.
But since the diffusion of L is recurrent, the only solutions to Lh = 0 are constant
functions. Thus L = L. O
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3.5. A disintegration of u* induced by the Vervaat’s transformation

By conditioning the measure p by the life-time of loops we get a sum of bridge
measures. In this section we will disintegrate the measure p* as a measure on the
minimal value of the loop and its behaviour above this value. By doing this way we
will obtain a sum of excursion measures 12,%. In case of Brownian loops on R this
disintegration will follow from the Vervaat’s bridge to excursion transformation. The
case of general diffusion will be obtained using covariance of the measure on loops by
time and scale change, restriction to a subinterval, killing, as well as invariance by

h-transforms.

Theorem(Vervaat). — ([30],[3]) Let (v(s))o<s<t be a random path following the
Brownian bridge probability measure P%M,O,O(')' Let Smin = argminy. Then the
path

$+— —miny + (shiftsm%'y)(s)

has the law of a positive Brownian excursion of life-time t.

In the sequel if 7 is a measure on paths and z € R, we will write (z + n) for the
image of by v — x + . 735, will be the Levy-It6 measure on positive Brownian
excursions and 77t>, %  the probability measure on positive Brownian excursions of
duration ¢. Given a continuous loop (vt)o<¢<7(y) and t,i, the first time v hits min -y,
let V() be the transformation shift%. V is Be-measurable.

Proposition 3.17. — Let uj,, be the measure on loops associated to the Brownian
motion on R. Then:

(3.5.1) () =2 [ mat uzodn) da
ac

The measure on (min~y, max~y) induced by iy, i la<p(b — a)~?dadb. Let a < b€ R
and p, p two independent Bessel 3 processes starting from 0. Let Ty—_, and Tp_, be

the first times p respectively p hits b — a. Let (ﬂt)0<t<T,,, o7, be the path
ﬂ L a—+ pt iftSTb—a
v a+ ﬁbeaJl',l:b*a_t ’Lf t>Tyq

Then the law of (Bt)0<t<Tb, oT,, S the probability measure obtained by conditioning

the measure pi,, by (miny, maxy) = (a,b).

Proof. — For the Brownian motion on R, pupys writes

dt
BM( ) bR t>0( BM,0,0)( )\/W
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Let x(a)da be the law of the minimum of the bridge under PtB]M,O,O' Applying the
Vervaat’s transformation, we get that

dt
Vo) = | / </ xa)d:c) (@479 ()2 da
acR Jt>0 ’ 273

Since fm>a x(x — a) dz = 1, the right-hand side above equals

/ / a+npu) () — dt da
a€R Jt>0 b BM vV 27t3

- dt .
/t>0<a+m,BM><>m 2a+ 132,)()

The equality (3.5.1) follows. The rest of the proposition is a consequence of the
William’s representation of Brownian excursions. o

Corollary 3.18. — Let I be an open interval of R and A > 0. Let u* be the measure
on loops in I associated to the generator %j—; — A Given a loop (Y(t))o<t<r(v), let

R(v) be the loop
R(v) := (maxy + minvy — y(t))o<t<1(+)
that is the image of v through reflection relatively to w Then

Proof. — 1t is enough to prove this in case A = 0 and I = R. Otherwise we multiply
the measure pj;,, by a density function that is left invariant by R. Then we use the
description of the measure ul;,, conditioned by the value of (min-y, max~y) and the
fact that if @ > 0, (p¢)¢> is a Bessel 3 process starting from 0 and T is the first time
it hits b, then (y — p1y,—¢t)o<i<t, has the same law as (p;)o<i<7, (see [24], chapter VII,
§4). O

Now we consider that L is a generator of a diffusion on I of form (2.2.1). Given a
point zg € I, T and u™*° will be the L-harmonic functions satisfying the initial

conditions w0 (xg) = w0 (xg) = 0, d“;m () = 1 and 2 (z5) = —1. If
x <y € I then
(3.5.2) w(y)u™?(z) = w(@)u™"(y)

Indeed, the Wronskian W (u ™Y, u*%) takes in x the value u™¥(z) and in y the value
uT*(y), and the ratio w(Z)W( =Y uT%)(z) is constant. If K = 0, then the both sides
of (3.5.2) equal f 2)dz. w0 is positive on I N (zg,+00) and u™%° is positive
on I N(—o0,z0). Let L+ 0 be Conj(u™ "0, L) restricted to I N (xq,+o0) and L0
be Conj(u=%°, L) restricted to I N (—oo,xp). LT and L™% are generators of
transient diffusions without killing measures. If L is the generator of the Brownian
motion on R, then L° is just the generator of a Bessel 3 process. In general case, g
is an entrance boundary for LT%0 and L%, that is to say a diffusion started from
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x # x¢ will never reach the boundary at xg, and we can also start this diffusions at

the boundary point g, in which case it will be immediately repelled away from z.

Let x € I and (p;"")o<i<ct. be a diffusion of generator L*+* starting from x. Let

y €I,y >z Let T,n" be the first time p™* hits y and T,* the last time it visits
—+,z . . . . +, .

y. Then (pfyﬂcth)ogt<<+,g_Ty+,gc is a diffusion of generator L™¥ starting from y. Let

(p: ¥ )o<t<c—w be a diffusion of generator L™ ¥ starting from y and T, ¥ the first time
it hits 2. Then (p;ﬁz)ogth;'“ and (p;ﬁy,t)ogth;'y are equal in law: Indeed let C
be the constant

w(z)

W(u_fy’ u'hm)(z)
The Green’s operator of p™ killed in y is

C =

+.z \—1 no_ Y o) n, — ’ /UJF’I(y/) N
(L) 706 = € [t ny vy e ()

and the Green’s operator of p~¥ killed in z is
—y =1 no_ Yt —yrr o U (Y) N
(L) D) =€ [t nyy @) g

The potential measure of (pf’z)0<t<Ty+,z starting from x is
U(z")dx' = Cu™* (2" yu™Y(2")m(2")dz’

and for any f, g bounded functions on (z,y)
Y + 1 Y - 1
353) [ (-Li7,) D69V = [ F@)(-Li,) 90 )

The time reversal property for (p; %), ., <+ follows from the duality relation (3.5.3).
See [24], chapter VII, §4 for details on time reversal.

Corollary 3.19. — If L is a generator of a diffusion on I of form (2.2.1), then
(3.5.4) W)= / I7T*77>“(-)w(a)da
ac

The measure on (min~y, max~y) induced by p* is 1a<b61%. Leta <bel.

Let (pz“a)ogKﬁ,a and (p;’b)OSKC,b be two independent diffusion, the first of gener-
ator LT starting from a and the second of generator L™ starting from b. Let Tb+’a
be the first time p™@ hits b and T, the first time p~—* hits a. Let (B;)
be the path

0<t<T, 415"

p " if t< T,
Bt =

—,b . +,a
’ > ’
ptiT:,a if t>T,

Then the law of (ﬂt)OStST;,aJr
the measure p* by (min-~y, max~y) = (a,b).

b 8 the probability measure obtained by conditioning
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Proof. — Both sides of (3.5.4) are covariant by scale and time change. Moreover both
sides satisfy the property 3.8 (ii) for the restriction to a subinterval and the property
3.8 (iii) when adding a killing measure. Thus the general case (3.5.4) follows from the
Brownian case (3.5.1) by this covariance properties.

If L is a generator without killing measure (k = 0) then the description of the
measure on (min~vy, maxy) and the probabilities obtained after conditioning by the
value of (min~y, max~y) follow through a change of scale and time from the analogous
description in proposition 3.17. If k # 0, then we can take u a positive L-harmonic
function and deduce the result for L from the result for Conj(u, L) using the fact

that pu; = u*conj(%L). O

The relation between the measure on loops and the excursions measures in dimen-
sion 1 (identity (3.5.4)) is analogous to the relation between the measure on Brownian
loops and the so called bubble measures observed by Lawler and Werner in dimension
2. See propositions 7 and 8 in [19].

3.6. A generalization of the Vervaat’s transformation

In this subsection we will show a conditioned version of the Vervaat’s transforma-
tion that holds for any one-dimensional diffusion of form (2.2.1) and not just for the
Brownian motion. L will be a generator of a diffusion on I of form (2.2.1). From
corollary 3.11 and identity (3.5.4) follows that for every x € I:

I R A IR L oL

a€l,a<lx

Let be7z(d’y| miny = a) be the bridge probability measure condition by the value
of the minimum to equal a. Further we will show that there is a version that de-
pends continuously on (a,t). Let n;® the probability measure obtained from 1> by
conditioning the excursion to have a life-time t. The identity (3.6.1) suggests the
following:

Proposition 3.20. — For everya<x €1l andt >0

. = gy = L) (dY)
(3.6.2) VP, . (dy|miny = a) ()

t

x,x

The distribution of min~y under P, .. equals

1 77>a(T(’)/) € (t,t + dt))
pe(x, x) dt

(3.6.3) w(a)ng (€7 (7)) da

1> (T(y)E(t,t+dt))
dt

where is the density of the measure on the life-time of the excursion

4 (g (dy)
ng * (6 (7))
in x is a measure on {s € [0,t]|v(s) = x}. The transformation V sends the starting

induced by n”%. Given an excursion 7y following the law , the local time
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point of the bridge to a point s € [0,t] distributed conditionally on the excursion v

according the measure / (,(Y;Y).

Identities (3.6.2) and (3.6.3) can be viewed as a conditioned analogue of the Ver-
vaat’s relation between the Brownian bridge and the Brownian excursion. The latter
can be deduced from (3.6.2) and (3.6.3) using the translation invariance of the Brown-
ian motion. From (3.6.2) we can only deduce that (3.6.2) and (3.6.3) hold for Lebesgue
almost all t and a. We need to show the weak continuity in (a, t) of conditioned bridge
probabilities and biased conditioned excursion probabilities to conclude. It is enough
to prove the proposition 3.20 for L not containing any killing measure and such that
for all @ < = € I, a diffusion starting from x reaches a almost surely. Indeed, for a
general generator, Conj(uy, L) does satisfy the above constraints and if the proposi-
tion 3.20 is true for Conj(u,, L) then it is also true for L. From now on we assume
that L satisfies the above constraints. Next we give a more constructive description
of the conditioned bridges and biased conditioned excursions. We start with brldges

Property 3.3 (viii) shows that the measure PZe PT A conditioned on T, + T, =t
is a version of P,  (dy|miny = a). Let pﬁ‘”)( x,y) be the transition density on
I N (a,+o0) relatively to m(y)dy of the semi-group generated by Lj;n(a,+00)- Then
pgax)(ac, at) = 0. According to [21], for all ¢ > 0, y p(ax)(ac, y) is Ct. Let
82p§ax)(x,y) be the derivative relatively to y. It has a positive limit agp§“x>(x, a™)
as y — a*. Extended in this way, the map (¢, z,y) 82p§ax)(x,y) is continuous on
(0 + 00) x IN(a,+00) x I N[a,+00). The distribution of T, under P, is (see [12],
page 154):

1 a
—82]),5 X)(gc,cf“)dt
w

Let chayx ) be the bridge probability measures of L|rn(q,400)- It has a weak limit
Pia(ﬁt as y — a™. Let F, be the sigma-algebra generated by the restriction of a
continuous path to the time interval [0, s]. Let P/® be the law of p™% starting from

a. For all s € (0,t) we have the following absolute continuity relations:

(ax),t a
(3.6.4) Foul” ) Dopi ) (X a)
dP; |7, e 62p§ax)(x, at)
and for the time reversed bridge
(ax),tA a a
(3 6 5) sz at _ pz(f—i;)(p;h ,.T)

AP \r 0ap\™) (x,at)
Using the absolute continuity relation (3.6.4) and (3.6.5) one can prove in a similar
P<a><+)7t

way as in proposition 2.5 that the map (¢,y) — is continuous for the weak

topology. The first passage bridge P disintegrates as follows

(3.6.6) P () = o [ P 00 et
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From the property 3.3 (viii) and (3.6.6) we get that

Property 3.21. — The distribution of min~y under P;Z 18

da /t
3.6.7 — | 9@ (z,aT)O (a) x,a™)ds
( ) w(g)pt(x7x) 0 2D s ( ) 2D s( )
There is a version of P!,  (dy|minvy = a) that disintegrates as

fot (P(ax)’s < P(ax)’tfsA) (dv)agpgax)(x, aﬂ@wii?(m, a™)ds

x,at z,at

(3.6.8)
I 00pl) (2, at)Dap ™) (w, at)ds

Next we show that the probability measure given by (3.6.8) depends continuously
on (a,t).

Lemma 3.22. — The functions (z,a,t) — pgax)(x, a®) and (z,a,t) — 62p§“X>(x, a®)
are continuous on {(z,a)|lr > a € I} x (0,+00).

Proof. — As in [21], we can use the eigendifferential expansion of L to express
P\ (2, a*) and 9ap{™ (x,at). Let z9. For A € R consider ey(-,A) and es(-,\)
two solutions to Lu + Au = 0 with initial conditions
61(:60,)\) =1 %(SE&)\) =0 62(:60,)\) =0 %(SE&)\) =1
Let e(x,\) be the 2-vector whose entries are ej(z,A) and ex(z,\). According to
theorems 3.2 and 4.3 in [21], for all a € I there is a Radon measure f*) on (—o0, 0]
with values in the space of 2 X 2 symmetric positive semi-definite matrices such that
for all x € TN (a, +00)
0

A ) = [ P Tel NI @N)e(a )
(ax) 0 e
O™ (z,a™) :/ et)‘Te(x,)\)f(“x)(d)\)g(a,)\)

Let + > a € I. Consider a two sequences (Zn)p>0 and (an)n>0 in I N (—o0,x)
converging to x respectively a such that for all n > 0, &, > a,. Let (bj);j>0 be
an increasing sequence in I N (z,sup I) converging to sup I. Let f, ; be the 2 x 2-
matrix valued measure on (—o0,0] corresponding to the eigendifferential expansion
of L restricted to (an,b;). fn,; charges only a discrete set of atoms. As shown in
the proof of theorem 3.2 in [21], the total mass of the measures 1 A [\ 72§, ;]| (dN),
LA N72|§@|(dX) and 1 A [A| 72| (d)) is uniformly bounded. Moreover for a
fixed n, as j — +00, 1 A [A|72f, ;(d)\) converges vaguely, that is against continuous
functions vanishing at infinity, to the measure 1 A |A[~2§(®»*)(d)). Moreover, for
any increasing integer-valued sequence (j,)n>0 converging to +o0, 1 A [A|7%f, ;. (dN)
converges vaguely as n — +o0o to 1 A [A|72f(@)(d)). Since the sequence (j,)n>0
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is arbitrary, this implies that 1 A [A|~2§(@»*)(d)) converges vaguely as n — 400 to
1A A 725@) (aN).
There are constants C, ¢’ > 0 such that for all A <0 and n >0

(369)  llelwn VIl < VT fe(an, NIl < eV |2 (a, 1) < Ce' VT
X

Let t > 0 and (tn)n>0 & sequence of times converging to t. From (3.6.9) follows that

lim_sup [A%e™* ez, A)| % [[e(an, N)[| =0
)“’*OOnZO

A= 1V A 2et? (e(mp, A), Oe(an, \)) vanishes at infinity an converges uniformly on
(—00,0] to A = 1V|A|2e (e(x, A), e(a, ). The vague convergence of measures implies
that

0 0
lim e AT (2, A)f@ ) (dA)e(an, ) = / e Te(z, @) (dN)e(a, \)

n—+oo J_ o —c0
Similarly 82p§3"'x)(:cn, a;’) converges to 82p§ax)(z, a™). O
Lemma 3.28. — The map a — PT% is weakly continuous.

Proof. — Let ag € I. Consider the process (p; " );>o following the law P#:%. For
a € IN (ag,+00), let T, be the last time p* visits a. Then (pJTI’i“t)tZO follows the

law P}-®. The process valued map a (p;":’t)tzo is almost surely continuous on
IN(ag, +00) and thus the laws depend weakly continuously on a. O

Proposition 3.24. — The version of P, ,(dy|min~y = a) given by (3.6.8) is weakly
continuous in (a,t).

Proof. — From the absolute continuity relations (3.6.4) for the bridge P(zaaﬁ)’t

(3.6.5) for its time reversal, together with the continuity of the densities which follows
from lemma 3.22, and the weak continuity of a — P1% we can deduce in a very

ax),t . .
(@x).t i weakly continuous on
z,at

similar way as in proposition 2.5 that the map (a,t) — P

(0, +00) x IN(—o0, ) and hence (a, s,t) — ]P’iaaﬁ)’s QPC(E“;)’FSA
Finally the densities that appear in expression (3.6.8) are continuous with respect to
(a,s,t). O

>a

and

is weakly continuous.

Next we will give a decomposition of the measure n~* which is similar to the
Bismut’s decomposition of Brownian excursions (see [24], chapter XII, §4, theorem
4.7). Biane used this Bismut’s decomposition to give an alternative proof for the
Brownian Vervaat’s transformation ([3]). 52p§ax)(x, at) is C! relatively to x and the

)(.T, a™) has a positive limit 01 op;" ™’ (a*,a™) as y — a*. Moreover

derivative al,gpgax
t— 8172pgax)(a+, a™) is continuous. The measure on the life-time of the excursion

induced by 7~ is (see [25]):

1 (@x)( + .+
Wal’ﬂ)t (a ,a )dt
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Let s € [0,]. The measure 7; *(-) disintegrates as (see [25]):

B dypleX) at)d (ax) +
o) [ (BTGB () @0 0o, (B0 Jmty)
zel,x>a ’ ’ 81,22% (aJr’ a+)
For every s1 < s2 € [0, s], under the bridge measure ]P’y(fzX )
S2 (a><) (a><)
(3.6.11) Pg(jazx),t(g: (7) — €= (7)) :/ pr (Y, 2)ps—, (@, 2) dr
) 2 1 (ax)
51 ps" " (y, 2)
and under the bridge measure IP’(an *
Yy,a
5o, (ax) (ax) +
a s T €T 2 pT (y"r)aQPS—r ((E,a )
(3.6.12) B0, 0) - £5,00) = [ e dr
’ 51 dops " (y,a™)
Combining (3.6.10) and (3.6.12) we get that for every s1 < s2 € [0, 8]
a(pr () g = 0™ (2,009 (1, 0%)
(3.6.13) o) - o) = [ e ds
S1 al,th (a+a a+)
Proposition 3.25. — Let Fy and F5 be two non-negative measurable functional on

the paths with variable life-time. Then

(3.6.14) 77 < | B G0Der Bl + T))0<r<ts>ds€§(7)> -

0o\ (a, a*)0ap\ ) (2, ™)

@ ds
81,22% (a’+7 a’+)

t
/ P(a)(),s/\(Fl)P(aX),t—S(FQ)
0

z,at z,at

In particular

(3.6.15)

' 0 gax) z,at)o (ax) x.at
) = [ (o i) an (g0 ()
0 7 7 6112pt (GJ’_, a/+)
Proof. — 1t is enough to prove the result in case F} and F5 are non-negative, contin-

uous and bounded. On top of that we may assume that there are s, < Smaz € (0, 1)
such that Fj respectively F5 takes value 0 if the life-time of a path is smaller than $,,,;,,
respectively t — S;pqz, and that there is C € I, C > a, such that F} and F; take value
0 if maxy > C. For j <n € N set As,, := %(smw — Smin) a0d Sjpn 1= Smin + JAS,.
Then almost surely

(3.6.16) /0 Fi((v(r)osr<s) Fa((7(s +7))osr<i—s)dsl5(y) =

n——+00 <

lim iFl((V(T))OSTSSJ}TL)(£§j+1,n, (7) - E?ym (7))F2((7(Sj+1,n + T))Ogrgtfs]url’n)
7=0
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Moreover the right-hand side of (3.6.16) is dominated by €% (v)||F1|lcol| F2llco. Thus
the n; *-expectation converges too. Applying (3.6.10) and (3.6.11) we get

P (FL (10 osrcn ), (1) = (O)E((4 (55410 + T ot syin) =
Asn
/ /( B R T ()0 )y

where

0op" ) (y, aT)0up\™)  (z,a™)

Sjm j+1,n

129" (a7, a)

4n(r,y, 2) = P (y, 2)plE0_ (x, 2)

1
As,
O(z,2)- The maps (s,y) — agpgax)(ac,a*‘) and (s,y) — Pgax)’y’(ﬁ(-) are continuous.
Moreover 82pS] N (y, )0 pg ELM (2,a™) is uniformly bounded for j < n € N and
y,z € (a,C]. All this ensures that the n;*-expectation of the right-hand side of
(3.6.16) converges as n — 400 to the right-hand side of (3.6.14). O

The measure 1y .5qcr fOAS" Gn(r,y, 2)drdydz converges weakly as n — +oo to

Now we need only to match the preceding descriptions to prove proposition 3.20.

(3.6.8) and (3.6.15) imply (3.6.2). (3.6.7) and (3.6.13) imply (3.6.3). The fact that

the point where the excursion is split is distributed according to ef ((;) follows from

(3.6.14).

3.7. Restricting loops to a discrete subset

Let L be the generator of a diffusion on I of form (2.2.1) and (X;)o<i<¢ be the
corresponding diffusion. Let J be a countable discrete subset of 1. A Markov jump
process to the nearest neighbours on J is naturally embedded in the diffusion X.
In this section we will show that, given any x,y € J, the image of the measure
u7? through the restriction application that sends a sample paths of the diffusion
(Xt)o<t<c to a sample path of a Markov jump process on J is a measure on J-valued
paths that follows the pattern (3.2.2). From this we will deduce that the image of
the measure p7 through the restriction to J is a measure on J-valued loops following
the pattern (3.2.1) and which was studied in [13]. This property will be used in
section 4.2 to express the law of finite-dimensional marginals of the occupation field
of a Poisson ensemble of intensity auj .

For a continuous path (y(t))o<t<7(y) in I, endowed with continuous local times,

let
= Gym
z€]
For s > 0, we introduce the stopping time

72 (7) == inf{t > 0|Z{(7) > s}
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We write 7! for the path (y(77)) y on J. Let my be the measure

. J
OS‘SSZT(W) (v

my = Z m ()0,

xze]

The occupation measure of 77 is

> m(a)s,
zel]
and (€% (7))zey are also occupation densities of the restricted path v? with respect to
my.
The restricted diffusion X7 is a Markov jump process to nearest neighbours on J,

potentially with killing. If zg < z; are two consecutive points in J, the jump rate from
1 1 1 1

m(zo)w(wo) ut 0 (z1) m(z1)w(z1) u®1(zo) "

If xg < x1 < 2 are three consecutive points in J, then the rate of killing while in z;

1 (W(u*“,u**zo)(xl) B 1 B 1 >
m(z)w(zr) \ w2 (v)utmo(v1) w1 (v0)  uwh(z2)

If J has a minimum x¢ and x; is the second lowest point in J, then the killing rate

xg to x1 is

and the jump rate from x; to xg is

is

while in xq is

1 <W(u_’c”1,uT)(ac0) B 1 )

m(xo)w(wo) \ w1 (zo)ur(xo) — who(w1)
An analogous expression holds for the killing rate while in a possible maximum of J.
X7 is transient if and only if X is. Let Ly be the generator of XJ. Lj is symmetric
relatively to my. Its Green’s function relatively to my is (G(x,y))syer, that is the
restriction of the Green’s function of L to J x J. X7 may not be conservative even if
the diffusion X is. In case if J is not finite, X7 may blow up performing an infinite
number of jumps in finite time. Measures (u}¥)s yer, pr and pj have discrete space
analogues (17")z yer, pr; and py as defined in [13], that follow the patterns (3.2.2)
and (3.2.1).

Y Y

Proposition 3.26. — Let x,y € J. Then v+ 3 transforms Y in sz and py, in
HL,;-
Proof. — The representation (3.2.3) also holds for x7”. For [ > 0, let
7/ = inf{t > 0|¢{(X) > I}
and
1= inf{s > 0]¥(X7) > 1}

Then for any non-negative measurable functional F'

+oo
iy (F(7) = /0 Al {175"J<I§F (Xogagrp)
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But (Xf)OSSSTi,,JJ is the image of (X¢)o<;<,» by the map vy +— ~7 and le,JI < Ig if and
only if 7/ < (. Thus x7” is the image of u7¥ through the restriction on path to J.
The second part of the proposition can be deduced from that for any = € J

C(Y)pp(dy) = mopp" (dy)
and as noticed in [13]
(g, (dy') = mpp" (dy')
O

Previous restriction property and the time-change covariance of pu* (corollary 3.12)
can be treated in a unified framework of the time change by the inverse of a continuous
additive functional. This is done in [10], section 7.

3.8. Measure on loops in case of creation of mass

We can further extend the definition of the measures p*¥ on paths and p and p*
on loops to the case of L being a ”generator” on I containing a creation of mass term
as in (2.3.1). Doing so will enable us to emphasize further the h-transform invariance
of the measure on loops and will be useful in section 4.2 to compute the exponential
moments of the occupation field of Poisson ensembles of Markov loops. Let v be
signed measure on I. Let L(0) .= 1.4 ( 1 i) and L := L) 4+ p,

m(z) de \ w(z) dz
Definition 3.27. —  — u7¥(dy) == exp ([, 1*(v)m(z)v(dz)) w7 (dy)
= pr(dy) = exp ([, 1°(v)m(z)v(dz)) ppo (dy)
= WL = TR

Definition 3.27 is consistent with properties 3.3 (iv) and 3.8 (iii). If  is any other
signed measure on I, then

(3.8.1) pitstan) = e ( [ Em@i() ) wyta)

I

Same holds for ;¢ and p*. Under the extended definition, the measures p*¥ still satisfy
properties 3.3 (ii), (iii), (v) and (vi). Proposition 3.6 remains true. pu still satisfies
properties 3.8 (i), (ii) and (iv). Proposition 3.9 and corollary 3.10 still hold. The
identities (3.3.4) and (3.3.8) remain true for p*. Concerning the h-transforms, we
have:

Proposition 3.28. — Let h be a continuous positive function on I such that %
is a signed measure. h(x)?*m(x)dx is a speed measure for Conj(h, L). Then for all
z,y € I, ué’gnj(hym = mui’y, and ficonj(h,L) = Hr- Conversely, if L and
L are two "generators” with or without creation of mass such that pp = pz then
there is a positive continuous function h on I such that 4% is a signed measure and

d2
. dx
L =_Conj(h,L).
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Proof. — There is a positive Radon measure £ on I such that both L — £ and
Conj(h,L) — k are generators of (killed) diffusions. But

Conj(h,L) — k = Conj(h, L — k)

It follows that ;fé:gnj(hl)ik = muifk and ficonj(h,L)-r = ML—&- Applying

(3.8.1) we get the result.

If uz, = py, we can again consider & a positive Radon measure on I such that both
L — & and L — & are generators of (killed) diffusions. Then according to proposition
3.16, there is a positive continuous function h on I such that % is a signed measure
and L — k = Conjj(h, L — k). Then L = Conj(h, L). O

Similarly to the case of generators of diffusions (section 3.5), one can consider L-
harmonic functions © ™% and u™** in case of L containing creation of mass. If L € DT,
then u™® respectively u™% is not necessarily positive on I N (—oo,x) respectively
IN(x,+00). Let

M(z) :=sup{y € I,y > z|Vz € (z,y),u""(2) >0} € U {sup !}

If L € %~ then for all x € I, M(z) = supl. Let y € I, y > x. If y < M(x),
then L|(z7y) € D~. If y = M(x), then L|(z7y) c DY If y > M (z), then L|(z7y) € DT,
The diffusion p™* of generator L™* = Conj(u™*, L‘JE;EZM(I))) is defined on (z, M (x)).

o _ . - M
Similarly for p~—¥. Moreover if If M (z) € I, then LI;?M(I)) = Ll(z,M?w))'

If L € ©%~, the description of the measure on (min~, max~) induced by u*
as well as of the probability measures obtained by conditioning p* by the value of
(min v, max ) is the same as given by corollary 3.19, with the same formal expressions.

Next we state what happens if L € D7

Proposition 3.29. — Let L € ©%. The measure on (min~y, max~y) induced by
w* and restricted to the set {a € I,b € (a,M(a))} is 1,16[71,6(@7]\4(,1))%.
If a < b < M(a), then the probability measure obtained through conditioning by
(min~vy, maxy) = (a,b) has the same description as in corollary 3.19. Outside the set
{a € 1,b€ (a,M(a))}, the measure on (min~y, max~y) is not locally finite. That is to
say that, if a < b€ I and b > M(a), then for all e > 0.

(3.8.2) p*({miny € (a,a+¢),maxy € (b—¢,b)}) = +o0

Proof. — For the behaviour on {a € I,b € (a, M (a))}: There is a countable collection
(I;)j>0 of open subintervals of I such that

{acIbe (a,M(a)}=|J{z <yel}

Jj=0

Since for all j, L, € DY~ corollary 3.19 applies to Ly;;. Combining the descriptions
on different {a < b € I;}, we get the description on {a € I,b € (a, M(a))}.
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For the behaviour outside {a € I,b € (a, M (a))}: Let A < B € R. Then

i . too A dadb
(3.8.3) wiy({miny < A;max~y > B}) = 5 =t
B —o0 (b - a)
Ifa<beland M(a)=>, then 14« <pp™ is the image of p3;,, through a change of
scale and time. In this case (3.8.2) follows from (3.8.3). If b > M (a), then L) €
DT. According to proposition 2.9 (iv), there is a positive measure Radon measure x
on (a,b) such that Ljqp) — & € D0, From what precedes, (3.8.2) holds for ,u*i‘(a o
Moreover, pg, 2 BT, —re SO (3.8.2) holds for BT O



CHAPTER 4

OCCUPATION FIELDS OF THE POISSON ENSEMBLES
OF MARKOV LOOPS

4.1. Inhomogeneous continuous state branching processes with immigra-
tion

We will identify the occupation fields of the Poisson ensembles of Markov loops
as inhomogeneous continuous state branching processes with immigration. This will
be done in section 4.2. In the section 4.1 we will give the basic properties of such
processes. In section 4.3 we will deal with the particular case of the intensity being
% w*, in relation with Dynkin’s isomorphism.

Let I be an open interval of R. We will consider stochastic processes where x € I
is the evolution variable. We do not call it time because in the sequel it will rather
represent a space variable. Let (B,).cr be a standard Brownian motion. Consider
the following SDE:

(4.1.1) dZ, = a(ac)\/idlﬁ%m + b(x)vadx
(4.1.2) dZy = 0(2)\/ ZodBy + b(2) Zpda + c(x)dx

For our needs we will assume that ¢ is positive and continuous on I, that b and
c are only locally bounded and that c¢ is non negative. In this case existence and
pathwise uniqueness holds for (4.1.1) and (4.1.2) (see [24], chapter IX, §3), and Z
and Z take values in R;. 0 is an absorbing state for Z.

(4.1.1) satisfies the branching property: if Z® and Z® are two independent pro-
cesses solutions in law to (4.1.1), defined on I N [zg,+0c), then ZM) + Z?) is a
solution in law to (4.1.1). If Z and Z are two independent processes, 7 solution in
law to (4.1.1) and Z solution in law to (4.1.2), defined on I N [zg, +0c), then Z + Z
is a solution in law to (4.1.2). Solutions to (4.1.2) are (inhomogeneous) continuous
state branching processes with immigration. The branching mechanism is given by
(4.1.1) and the immigration measure is ¢(z)dx. The homogeneous case (o, b and ¢
constant) was extensively studied. See [17].
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The case of inhomogeneous branching without immigration reduces to the homo-
geneous case as follows: Let xg € I and let

C(x) := exp (— /ﬂ: b(y) dy) A(z) = /; a(y)*C(y)*dy

0

If (Z4)ser is a solution to (4.1.1), then (C(A_l(a))ZvA—l(a))aeA([) is a solution in law

to
dZ, = 2\/ Z,dB,

Let Z be a solution to (4.1.1) defined on I N [xg,+00), starting at xo with the
initial condition Z,, = 29 > 0. Then, for A > 0 and z € I, x > z(:

~ |: *AZI:| — =209 (x0,x,\)
7 =€
0 =20

¥(xo, z,\) depends continuously on (zg,x,A). If & = 2y then
(4.1.3) ’lb(wo,wo,)\) =A
If 29 <21 <29 € I then

Y(x0, 22, A) = Y(20, 71,9 (71, T2, \))
1) satisfies the differential equation

(4.1.4) g—;/;(xo, T,A) =

If b is not continuous, equation (4.1.4) should be understand in the weak sense. If be
is continuous, then (4.1.4) satisfies the Cauchy-Lipschitz conditions, and v is uniquely
determined by (4.1.4) and the initial condition (4.1.3). This is also the case even if
b is not continuous. Indeed, by considering C(m)ZE rather than ZI, that is to say
considering %1/1(%07 x, A) rather than ¥ (zo,z, ), we get rid of b.

Inhomogeneous branching processes are related to the local times of general one-

Mw(mx, A)? = b(xo)(zo, x, A)

dimensional diffusions:

Proposition 4.1. — Let xg € I and let (X;)o<i<c be a diffusion on I of generator
L of form (2.2.1) starting from xo. Let zg > 0 and

720 = inf{t > O¢°(X) > 20}

z

Then conditionally on 720 < C, ((220(X))zer,z>a, 8 a solution in law to the SDE:
ED) -

~ - dl ~
(4.1.5) dZy = \/2w(x)\/ Z,dB, + 2%(@@@
X

Proof. — If X is the Brownian motion on R, then w = 2 and wu, is constant. In
this case the assertion is the second Ray-Knight theorem. See [24], chapter XI,
82. The equation (4.1.5) is then the equation of a square of Bessel 0 process. If
Tmin < o and X is the Brownian motion on (X, +00) killed in &y, then the law
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of (Ef:é) (X))zer,z>z, conditionally on 720 < ¢ does not depend on ¥, and is the
same as in case of the Brownian motion on R. Equation (4.1.5) is still satisfied.

If X is a diffusion on I that satisfies that for all x > a € I, starting from z,
X reaches almost surly a, which is equivalent to u; being constant, then through
a change of scale and time X is the Brownian motion on some (Zin,+00) where
Tmin € [—00,400). Time change does not change the local times because we defined

them relatively to the speed measure. Only the change of scale matters. If S is a
6571(211)
720

Bessel 0 process. The equation (4.1.5) follows from the equation of the square of

primitive of w, then conditionally on 77° < ¢, ( (X ))yZ% S(zo) 18 & square of

Bessel 0 process by deterministic change of variable dy := %w(m)dw.

Now the general case: let (X;) be the diffusion of generator Conj(uy,L).
w(x)
uy(z)? ~ -
We assume that both X and X start from zg. The law of X up to the last time it

visits xg is the same as for X. Let

0<t<(
dz is the natural scale measure of X and uy(x)?*m(x)dx is its speed measure.

= 1
7:=inf <t > OF°(X —
7:=1in {t > 0] (X) > u¢(z0)2z0}

Then the law of (€22 (X))zerz>z, conditionally on 750 < ( is the same as the law
zZ0 -

of (uy(2)202(X))ser.a>z, conditionally on 7 < ¢. The factor uy(z)? comes from the
fact that performing an h-transform we change the measure relatively to which the
local times are defined. For any a < xo € I, X reaches a a.s. Thus (¢2(X))pera>a,

satisfies the SDE
_ /2 =
iz, = V2@ 7 o,
uy(x)

and (uy (2)20%20 (X))zer.aza, Satisfies (4.1.5). O
Z0

If there is immigration: Let Z be a solution to (4.1.2) defined on I N [z, +00),
starting at xp with the initial condition Z,, = 2o > 0. Then, for A > 0 and z € I,
T > Iop:

(4.1.6) Ez,,=z [e_)‘Z“”] = exp (—zow(xo,x, A) — /ﬂ: ¥(y, z, )\)c(y)dy)

4.2. Occupation field

Let L be the generator of a diffusion on I of form (2.2.1). Let L, 1, be a Poisson
ensemble of intensity apj. Lo, 1 is a random infinite countable collection of unrooted
loops supported in I. It is sometimes called ”loop soup”.

Definition 4.2. — The occupation field of L, 1, is (EﬁjL)ig where

Cop= Y (°()

’YGCQ,L
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We will drop out the subscript L whenever there is no ambiguity on L. In this
subsection we will identify the law of (22)16 7 as an inhomogeneous continuous state
branching process with immigration. If J is a discrete subset of I, then applying
proposition 3.26 we deduce that (Eg)ze g is the occupation field of the Poisson ensem-
ble of discrete loops of intensity auj as defined in [13], chapter 4. This fact allows
us to apply the results of [13] in order to describe the finite-dimensional marginals of
the occupation field. If the diffusion is recurrent, then for all z € I, Eﬁ = +o00 a.s. If
the diffusion is transient, then for all x € I, Ez < +o0 a.s. Next we state how does

the occupation field behave if we apply various transformations on L.

Property 4.3. — Let L be the generator of a transient diffusion.
— (i) If A is a change of scale function, then

EA(I) rx

a,Scaled™ L = L

— (i) If V is a positive continuous function on I, then

~x _ px
Loar=Lar

— (#3) If h is a positive continuous function on I such that Lh is a negative
measure, then
~ 1 -
‘Cz,Conj(h,L) = h(z)Qﬁz,L

Previous equalities depend on a particular choice of the speed measure for the
modification of L. For (i) we choose (22 o 14’1)71 m o A~ da. For (ii) we choose
ﬁm(m)dw. For (iii) we choose h(x)?m(x)dx. The fact that EZ,Conj(h,L) # EgL
despite La,conj(h,1) = La,r comes from a change of speed measure.

Next we characterize the finite-dimensional marginals of the occupation field by
stating the results that appear in [13], chapter 4.

Property 4.4. — The distribution of Eg 18

(Crea) as (1
@) p( GL<x,:c>)1l>°C”

Let x1,29,...,2y € I and A1, A2, ..., A\ > 0. Then
n N det(Gr_sn 5. (T2, ij<n
exp —Z)\iﬁzj ( (Gr, 21:1)\163:1( i)1<ij< )
P det(Gr(Ti, j))1<ij<n

The moment E [[,ﬁl Lrz .. .Efyn} 1S an a-permanent:

(4.2.1) E

s[epes ] - 5 oot ot
=1

oeS,
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~

If I is a discrete subset of I, then (LZ)zey, viewed as a stochastic process that evolves
when T increases, is an inhomogeneous continuous state branching process with im-
migration defined on the discrete set J. In particular, for any x1 < xo < ---<zxp €1
andp € {1,2,...,n}, (Egl,ﬁgg, ... ,Eff) and (Eﬁp, Lot ,Egn) are independent

conditionally on cir.
Next we show that the processes = — L',Afi parametrized by = € I, where x is

assumed to increase, is an inhomogeneous branching process with immigration of
form (4.1.2). In particular, it has a continuous version and is inhomogeneous Markov.

Proposition 4.5. — (Zg)zg has the same finite-dimensional marginals as a solu-
tion to the stochastic differential equation

dl
(4.2.2) dZ, =\ 2w(x)\/ Z,dB,; + 2 (C)lgui () Zydz + aw(z)dz
x

If L is the generator of a Brownian motion on (0,400) killed when it hits 0, then
(Eﬁ)m>0 has the same law as the square of a Bessel process of dimension 2« starting
from 0 at x = 0. If L is the generator of a Brownian motion on (0, Tymas), killed when
hitting the boundary, then (L',Af;)0<z<zﬂmc has the same law as the square of a Bessel
bridge of dimension 2a from 0 at x =0 to 0 at T = Tyaz-

Proof. — Let zy < x € T and Mg, A > 0. Applying the identity (4.2.1) to the case of
two points, we get that
(4.2.3)

E [exp (fAOEfY“ — Afg)} = (14 XoG(x0, 20)) (1 + AG(x, ) — AoA(Glo, 2))?) "

Let

T G(xo,x0) “
— ALY ’
A($0,>\0) = E |:€ :| (G(,’L‘O’,’L'O) + )\O
For y <z, let
G(z,y)G(y, 2)A
G(y,9)(G(y,y) + Adety . G)

G(y,y)
y,y) + Adety » G

One can check that the right-hand side of (4.2.3) equals

Yy, z, N) =

o(y,z,\) := —log <G(

A(ZL'(), )\0 + 1/}(5607 Zz, )\)) exp(foch(:co, xz, A))

In particular for the conditional Laplace transform:

(42.4) E [exp (—)\Ez) |E§°} = exp (—Ziow(xo, x, )\)) exp(—ap(xo, z,\)) a.s.
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Moreover
0y - 2 dy
a_y (ya €, )‘) _W(uia UT)(?/)Q/’(% x, )‘)2 Ui(y) dy (y)w(ya Z, )‘)
(). VP~ 2 (),
and
0
a—j(y,w, A) = =W (uy, up)()v(y, z,A) = —w(y)(y, z, )

and we have the initial conditions ¥ (x,z,A) = A and p(x,z,A) = 0. Thus (4.2.4)
has the same form as (4.1.6) where c(y) = aw(y). Let (Zy)yer,y>z, be a solution to
(4.2.2) with the initial condition Z,, being a gamma random variable of parameter o
with mean aG(zg, xo). It follows from what precedes that (230, Eg) has the same law
as (Zy,, Zz). Using the conditional independence satisfied by the occupation field, we
deduce that (Zg)yelyyzmo has the same finite-dimensional marginals as (Zy)yer,y>o-
Making x( converge to inf I along a countable subset, we get a consistent family of con-
tinuous stochastic processes, which induces a continuous stochastic process (Zy)yer
defined on whole I. It satisfies (4.2.2) and has the same finite-dimensional marginals
as (Egz)yel .

In case of a Brownian motion in (0, +00) killed in 0, the equation (4.2.2) becomes

dZ, = 2~/ Z,dB, + 2a dx

which is the SDE satisfied by the square of a Bessel process of dimension 2. Moreover
(Eg)wo has the same one-dimensional marginals as the latter, more precisely Eg is
a gamma r.v. of parameter o with mean 2ax. This shows the equality in law.

In case of a Brownian motion in (0, Zq.) killed in 0 and 2,4, the equation (4.2.2)
becomes

dZy = 27/ Z,dB, + L
Tmax —

which is the SDE satisfied by the square of a Bessel bridge of dimension 2« from
0at x =0 to 0 at x = xyq,. Moreover the latter process and (L',AZCY)()<1<1T,Wc have
the same one-dimensional marginals, more precisely gamma r.v. of parameter a with

mean 2a(Tmay — ) ==

Tmazx

Thus the two have the same law. O

We showed that (£%)se; has the same finite-dimensional marginals as a continu-
ous stochastic process. We will assume in the sequel and prove in section 5.2 that
one can couple the Poisson ensemble £, and a continuous version of its occupation
field (Eg)ze 7 on the same probability space. This does not follow trivially from the
fact that the process (Eg)me 1 has a continuous version. Consider the following coun-
terexample: Let U be an uniform r.v. on (0,1). Let £ be a countable random set of

Brownian excursions defined as follows: conditionally on U £ is a Poisson ensemble
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with intensity 734, + n55. Let (€)zer be the occupation field of £ Then & is
continuous on (—oo,U) and (U, 4+00) but not at U. Indeed &y = 0 and

lim & = lim & =1
x—U— x—U—

Let (£]).er be the field defined by: &, = &, if ¢ # U and &, = 1. (EL)ser is
continuous and for any fixed z € R £, = &, a.s. Thus (£.).er is a continuous version
of the process (EI)IE]R but it can not be implemented as a sum of local time across
the excursions in £. As we will show in section 5.2, such a difficulty does not arise in
case of L.

(Eﬁ)me 7 is an inhomogeneous continuous state branching with immigration. The
branching mechanism is the same as for the local times of the diffusion X, given by
(4.1). The immigration measure is aw(z)dr. The interpretation is the following:
given a loop in L,, its family of local times performs a branching according to the
mechanism (4.1), independently from the other loops. The immigration between x and
x+ Az comes from the loops whose minima belong to (x, x+Az). It is remarkable that
although the immigration measure is absolutely continuous with respect to Lebesgue
measure, there is only a countable number of moments at which immigration occurs.
These are the positions of the minima of loops in £,. Moreover the local time of each
loop at its minimum is zero. For x > a € I, let

Eem Y e

Y€ La
minvy > a

Let a <be I Forj<nécN,let Az, = 1(b—a) and let Zjn = a+ jAz,. Then

n

(ﬁazj —1):; ) is a sequence of independent gamma r.v. of parameter « and the
1<j<n
o , Glzi_1,7:)G(z;, 25—
mean of £577" i a(G(zj,zj) _ Gy, )Gl 35 1)> For n large
G(xj-1,2j-1)

G(rj-1,2;)G(x),75-1)
G(zj—1,7j-1)

G(zj,z;) — = w(xj_1)Az, + o(Az,,)

and o(Ax,,) is uniform in j. Thus

n——+oo G(xj_1,$j_1)

mlan?@me“j“%m@“””)aLZMMz
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and
i AIJ 1) _
i Var(32 £ =
j=1
- G(zioi.2:)G(zi 2 1)\
lim « (G(:Cj,mj) _ (‘TJ 1;55_]) (‘T]ax_] 1)) —0
n—-—+oo = G(xjfl,zjfl)
It follows that Z zﬂ 1):25 converges in probability to « f; w(x) dz. This is con-

sistent with our mterpretation of immigration.
Next proposition deals with the zeroes of the occupation field.

Proposition 4.6. — Let xg € I. Iff (x)dx < +00 then

lim EAI =

z—inf I

sup

Analogous result holds if f

If « > 1, then the continuous process (Eﬁ)zel stays almost surely positive on I. If

(x)dx < +00.

a <1 then (Eﬁ)mel hits 0 infinitely many times on 1.

Proof. — If fmf[w )dx < 400, then L + k, where & is the killing measure of L, is
also the generator of a transient diffusion. We can couple (Ea L)xe 7 and (L',CY Lir)zel
on the same probability space such that a.s. for all z € I, E””yL < £ L4k But
according to property 4.3 (i), (L',Afy,L+K)z€[ is just a scale changed square of Bessel
process starting from 0 or square of a Bessel bridge from 0 to 0. Thus

lim £* < lim L =0
z—inf I oL z—inf I o Ltr

Regarding the number of zeros of (L', )zer on I, property 4.3 ensures that it remains
unchanged if we apply scale, time changes and h-transforms to L. Since any generator
of a transient diffusion is equivalent through latter transformation to the generator
of a Brownian motion on (0,4o00) killed in 0, the result on the number of zeros of
(Eﬁ)me 1 follows from standard properties of Bessel processes. O

In [26] respectively [14] are studied the clusters of loops induced by a Poisson
ensemble of loops in the setting of planar Brownian motion respectively Markovian
jump processes on graphs. In our setting of one dimensional diffusions the description
of such clusters is simple and is related to the zeros of the occupation field. We
introduce an equivalence relation on the loops of L£,: v is in the same class as 7 if
there is a chain of loops v9,71,---,7Vn in L4 such that v9 = 7, v, = 4 and for all
i€{0,1,...,n—1} %[0, T(7:)]) NYi+1([0, T (7i+1)]) # 0. A cluster is the union of all
~([0, T'(~y)]) where the loops 7y belong to the same equivalence class. It is a subinterval
of I. By definition clusters corresponding to different equivalence classes are disjoint.
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Proposition 4.7. — Let L be the generator of a transient diffusion on I. If a > 1,
the loops in L, form a single cluster: I. If a« € (0,1), there are infinitely many
clusters. These are the mazimal open intervals on which (Eﬁ)mel 1s positive. In case
of the Brownian motion on (0, +00) killed at 0, the clusters correspond to the jumps of
a stable subordinator with index 1 — a.. In case of a general diffusion, by performing a
change of scale of derivative %u—wz, we reduce the problem to the previous case. In case

of the Brownian motion on (0, +00) killed at 0 and with uniform killing k, the clusters

correspond to the jumps of a subordinator with Levy measure 1z>0(e2e\/227iﬁ'
Proof. — Assume that £, and a continuous version of (Eg)ze 7 are defined on the

same probability space. Almost surely the following holds

— Given v # ' € L, min~y # max~’ and max~y # min~’.
— For all v € L,, ™n7(y) = (MaxY(y) = 0 and ¢*(y) is positive for z €
(min vy, maxy).

Whenever the above two conditions hold it follows deterministically that the clusters
are the intervals on which (Eﬁ)me 1 stays positive. We deduce then the number of
clusters from proposition 4.6.

If L is the generator of the Brownian motion on (0, +00) killed at 0, then (£2)ze;
is the square of a Bessel process of dimension 2« and its excursions correspond to the
jumps of a stable subordinator with index 1 — a.

In general a generator L has the same measure on loops as Conj(uy, L). A diffusion
of generator Conj(uy, L) transforms through a change of time and a change of scale
of density %u% into a Brownian motion on (0,+0c0) killed at 0. For the clusters, the
change of time does not matter.

In case of a Brownian motion on (0,4o00) killed at 0 and with uniform killing &,

2K

we can take uy(z) = e~ . The scale function is then

S(z) = / — / 62 2/{ydy — 62 2k 1
) o u(y)? 0 2\/2;-;( )

Let (Yi)t>0 be an 1 — a stable subordinator with Levy measure 1y>0y*(2’°‘)dy. The
clusters of Ea,%%_ﬁ correspond to the jumps of the process (S71(Y;))i>0, which is
not a subordinator. We will that nevertheless the latter process the same set of jumps
S et ¢ > 0 and (Y t)t>0 be

2 2»;3:71)27@
the process obtained from (Y;)¢>0 by removing all the jumps of height less then e.
By construction Yz ; < Y;. (S7H(Yt))i>0 is a Markov process: given the position of
S~1(Y.+) at time ¢, the process waits an exponential holding time with inverse of the

/+OO dy _ 1
A

as a subordinator with Levy measure 1,-¢ (
€

mean equal to




60CHAPTER 4. OCCUPATION FIELDS OF THE POISSON ENSEMBLES OF MARKOV LOOPS

Once a jump occurs, the jump of Y; is distributed according the probability
dy

Tyse(1— a)el 5o

Y

The distribution of the corresponding jump of S~!(Y. ;) is obtained by pushing for-
ward the above probability by the map y +— S~ (y + Yz ;) — S™1(Yz+) which gives

(2\/E)Q*OLQQM(I+571(YE,t))d:C
(62\/R(m+sfl(ys,,,)) _ em/ﬂsfl(yg,t))%a

-«

Loss—1(etve )51y (1 —a)e

o o —(l—0)2v/ERS 1 e2V2r
= Loss-1(ery, -1 (v, (L)l T4 (2V/2R)2 e (1me2VEeS (Y&t)w
(2v2k)%7« e2V2re gy

= lz -1 _g-1 11—« 51_a
>S5 (e Yo ) =51 (ve ) ( ) (14 2V2KY, ,)1-o (e2V2rr — 1)2-a

Consider now the random time change

(21/2k)2~
inf t>0‘/ ds >wv
a( ) { 1+2 /QH}/ss)l a }
and at the limit as e — 0
2 2 2—o¢
7(v) := inf t>0‘/ r) ds > v
(14 2v2KY, o)1~

For the time-changed process (S~1(Y. 7. (v)))v>0, the rate of jumps of height belonging
to [z, x + dzx] is

e2\/ 2RT dzr

2V2kT __ 2—«
(e 1)

0 otherwise

Zf T > 871(5 + }/a,‘rg(v)) - Sil(}/a,‘rg(v))

Thus, as € goes to 0, on one hand the process (S™(Y .. (v)))v>0 converges in law to

(571 (Y;(»)))v=0 and on the other hand it converges in law to a subordinator with
2V2kz g
€ X D

Levy measure 11>07(62mm,1)27a'

The clusters coalesce when « increases and fragment when « decreases. Some
information on the coalescence of clusters delimited by the zeroes of Bessel processes
is given in [2], section 3. This clusters can be obtained as a limit of clusters of
discrete loops on discrete subsets. In case of a symmetric jump process to the nearest
neighbours on eN, if a > 1, there are finitely many clusters, and if a € (0, 1), there
are infinitely many clusters and these clusters are given by the holding times of a
renewal process, which suitable normalized converges in law as € — 0" to the inverse
of a stable subordinator with index 1 — c. See remark 3.3 in [14].

We can consider the occupation field (EZ )zer if L is not the generator of a
diffusion but contains creation of mass as in (2.3.1). In this setting, if & is a positive



4.2. OCCUPATION FIELD 61

2
t &h

continuous function on I such that -3

is a signed measure, then for all x €
~r _ 1 ~x
[’oz,Conj(h,L) - Wﬁa,L

It follows that if L € ©~ then for all z € I, EgL < +oo a.s. and if L € ©° then

for all z € I, EAI L =tocas IfLe DT, then according to proposition 2.9 (iv),
there is a positive Radon measure % such that L — & € ©°. Then for all € I,
Ei L > Ea 1_z = t+oo. If L € ®, then properties 4.3 (i) and (ii) still hold. The
description given by the property 4. 4 of the finite-dimensional marginals of (E Veel

is still true, although the case of creation of mass wasn’t considered in [13]. (Eg)me I
still satisfies the SDE (4.2.2).

Proposition 4.8. — Let L € ©~ and U a finite signed measure with compact support
in I. Then there is equivalence between

— (i)IE[exp (flfg,Lﬁ(dz))] < +00
— (i) L+ D e®D™
If L+ 7D e® then for s € [0,1]

(4.2.5) |:eXp (/c L(da) )} ~exp (a /Ol/IGL+Sg(x,x)z7(dx)ds)

Proof. — First observe that [, Aa .|7|(dz) is almost surely finite because |7 is finite

and has compact support and (Ea 1 )zer is continuous. Also observe that ©~ is
convex. So if L+ € ®~, then for all s € [0,1], L +sv € D~

(i) implies (ii): Let P, , be the law of Lo 1 and Pr, ., be the law of L 145
There is an absolute continuity relation between the intensity measures:

pr+o(dy) = exp < /1 f””(v)) pr(dy)

is absolutely continuous with respect to Pr, , and
exp (f] Eg Lﬁ(dz))

IE {exp (f[ Ly(dz))}

But this can not be if L +7 ¢ ®~ because then for any = € I, EgL < +oo and

Ei L+5 = T00. Thus necessarily L + v € D7

(11) implies (i): We first assume that # is a positive measure and L+2 € ©®~. Then

In case (i) is true Pz, , .,

(4.2.6) Py

a,L+o dPCa,L

and

P, .. is absolutely continuous with respect to P, ;. .
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Inverting the above absolute continuity relation, we get that

E [exp ( /1 E;La(dx))] _E [exp (— /1 EZ7L+I;Z7(CZ$))} .

If 7 is not positive, let o and —&~ be its positive respectively negative part. Then

E[exp </IEAZ7LD(dz))]
sl (21 ) o -]

E [exp (— I; EZ L (dm))}
{GXP( f[ aL+17V+ (dx ))}

For the expression (4.2.5) of exponential moments:

(4.2.7) %]E |:eXp (s /1 E;L;;(dx))] =E [ /1 L2 v(dz) exp (s /1 E;La(dx))]

From the absolute continuity relation (4.2.6) follows that the right-hand side of (4.2.7)

equals
q o [ Gootaitas oo (s [ 25,5000

This implies (4.2.5). O

< 400

As in discrete space case, the above exponential moments can be expressed using
determinants. On the complex Hilbert space .2(d|7|) define for s € [0, 1] the operators

sl/f /GL+su z y ( )D(dy)

(16251)(x) = / Grvas(,9)F(4)|7](dy)

The operator |&%;]| is self-adjoint, positive semi-definite with continuous kernel func-
tion, and according to [27], theorem 2.12, it is trace class. Since trace class operators
form a two-sided ideal in the algebra of bounded operators, B, is also trace class.
Moreover

(4.2.8) Tr(®.) = /1 Grv o, 2)5(d2)

The determinant det(Id+®;) is well defined as a converging product of its eigenvalues
(see [27], chapter 3).

Proposition 4.9. —

exp (a /0 1 /1 GL+SD(x,:v)z7(d:v)ds) — (det(Id + ®,))°
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Proof. — ®; has only real eigenvalues. Indeed, let A be such an eigenvalue and f a
non zero eigenfunction for A. The sign of 7, sgn(v), is a {—1, +1}-valued function
defined d|7| almost everywhere.

@29 [m@N@I: o))l = [ 11

The left-hand side of (4.2.9) is non-negative. If the right-hand side of (4.2.9) is non-
zero, then \ is real. If it is zero, consider f. := f + esgn(?)f. Then

A= tim o ( [m@)R)@1es som@) )@ an) ) ([ 172 dw))_l

and thus A is real.

The operators ®,; are compact and the characteristic space corresponding to each
of their non-zero eigenvalue is of finite dimension. Let (););>o be the non-increasing
sequence of positive eigenvalues of &;. Each eigenvalue \; appears as many times as
the dimension of its characteristic space ker(®5 — A\;Id)™ (n large enough). Similarly
let (f:\j )j>0 be the non-decreasing sequence of the negative eigenvalues of ®;. Let
s € ]0,1]. According to the resolvent identity (lemma 2.8), the operators &; and &5
commute and satisfy the relation

(4.2.10) G5By = 6,6, = — (65 — 6,5)

Since &; and &, commute, these operators have common characteristic spaces. From
(4.2.10) follows that (

is a non-increasing sequence of positive eigenvalues
1—(1—s)X; /j=0
eigenvalues of &,;. But the family of operators (&,5)sc0,1] is bounded. Thus none

1+(1—s)X; /i>0

of B,p. If 17_715 is not an eigenvalue of &, then ( is also a sequence of

of % can blow up when s varies. So it turns out that &; has no eigenvalues
in (—oo ] From (4.2.8) we get
JEPERTERD PR R S .
SV b e
I = 178 jzol_(l_s))‘j

The above sum is absolutely convergent, uniformly for s € [0,1]. Integrating over
[0, 1] yields

//GLerxac (dwds-Zlogl—i—)\ +Zlog1—)\)

>0 7=>0

This concludes the proof. O
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4.3. Dynkin’s isomorphism

In this subsection we recall the equality in law observed in [13] between the occu-
pation field (Eﬁ )zer and the square of a Gaussian Free Field and show how to derive
from this partiéular versions of Dynkin’s isomorphism.

Let L be a generator of a transient diffusion on I of form (2.2.1). Let (¢ )zecr be
a centred Gaussian process with variance-covariance function:

(¢ )zer is the Gaussian Free Field associated to L. Let S be a primitive of -%. Then
"

§(sup I) = +00. Moreover g(inf I) > —o0 because L is the generator of a transient

diffusion. (%qbg,l ) _is a standard Brownian motion starting from 0 at
u (S~ (a)) @)/ aed(r)

S(inf I). In particular (¢)zer is inhomogeneous Markov and has continuous sample
paths.
It was shown in [13], chapter 5, that when o = L (£%),cr has the same law as
2

2
(262)zer. In case of a Brownian motion on (0, 400) killed in 0, (L% )40 is the square
of a standard Brownian motion starting from 0. In case of a BrZ()wnian motion on
(0, Zmaz) killed in 0 and Zpmaq, (2€)0<z<zmw is the square of a standard Brownian
bridge on [0, Zyaz] from 0 to 0. 1121 case of a Brownian motion on R with constant
killing rate &, (Eﬁ )zer is the square of a stationary Ornstein—Uhlenbeck process.

The relation between the occupation field of a Poisson ensemble of Markov loops
and the square of a Gaussian Fee Field extends the Dynkin’s isomorphism which we
state below (see [7] and [9]):

Theorem(Dynkin’s Isomorphism). — Letxq,xa,...,xo, € I. Then for any non-
negative measurable functional F' on continuous paths on I,

(431) E [H%F«%asi)meﬂ

> [E [P+ e epen] T wo ey

pairings pairs
where Y ivings Means that the n pairs {y;,z;} are formed with all 2n points x; in
(2n)! .
all 77 possible ways.
Next we will show that in case x; = x4y, for i € {1,...,n} , ie. Hle ¢, being

a product of squares []"_; qﬁii,

relation between the square of the Gaussian Free Field and the occupation field. In
[15] and [10] this is only done in case n = 1 and z7 = z2 using the Palm’s identity
for Poissonian ensembles and the analogue of the relation (3.3.4). To generalize for

one can deduce the Dynkin’s isomorphism from the
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any n we will use an extended version of Palm’s identity and the absolute continuity
relation given by proposition 3.4.1 (ii).

Lemma 4.10. — Let € be an abstract Polish space. Let MM(E) be the space of locally
finite measures on € and let M € M(E). Let ® be a Poisson random measure of
intensity M. Let H be a positive measurable function on IM(E) x E™. Let P, be the
set of partitions of {1,...,n}. If P € P, and i € {1,...,n}, then P(i) will be the
equivalence class of i under P. The following identity holds:

n

(4.3.2) E[ . H(‘I),(Jh---,Qn)Hq)(in)} =

=1
Z /5‘117’ E|:H((I) + Z 6%’ ap(1),--- aqp(n))i| H M(dqc)

ceP ceP

Proof. — We will make a recurrence over n. If n = 1, (4.3.2) is the Palm’s identity
for Poisson random measures. Assume that n > 2 and that (4.3.2) holds for n — 1.
We set

ﬁ(@’ q1,--- ;Qn—l) = /EH((I)7 q1,---,9n—1, QN)q)(dqn)
Then
(4.3.3)

E[ H®,q1, ... G, dn) ﬁ cp(dqi)} - E[ H@®, g1, gur) ﬁ @(dqi)]

g‘n, gn—l

= E H@‘i’ 5/7 ’ geeey ' — s dn
Z /51179’ [/g ( Z q. > 9P’ (1) apr( 1)Q)

PrEBn_1 cEP
< (00 + 3 0y, a0,)| T Mtcar)
¢ EP ¢ EP
Given a partition P’ € §3,,_1, one can extend it to a partition of {1,...,n—1,n} either
by deciding that n is single in its equivalence class or by choosing an equivalence class

¢ € P and adjoining n to it. In the identity (4.3.3) the first case corresponds to the
integration with respect to ®(dgy,), and according to Palm’s identity

E

/5 H((I) + Z 5(]C/ ydpr(1)s -+ -5 4P (n—1)5 qn)¢(dqn)‘| =

c'epP’!
/
&

The second case corresponds to the integration with respect to d,,(dg,). Thus the
right-hand side of (4.3.3) equals the right-hand side of (4.3.2). O

H((I) + Z 5(]C/ ydpPr(1)s -+ -5 4P (n—1)» qn)] M(dqn)
ceP’
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Next we show how derive a particular case of Dynkin’s isomorphism using the
above extended Palm’s formula. Since (E )ecr and (3¢2),cr are equal in law:

HﬁgiF«Aﬂg)m)]

i=1

Hqﬁle 161)‘| = QnEﬁé

Applying lemma 4.10 we get that

Er % lH‘CII ((AE)ZEI)‘| =
~ 1
> /Hﬁ (P E E+Z€I(7c))zel>] II SH (de)

i=1
PePn ceP ceP
Let &,,(P) be all the permutations o of {1,...,n} such that the classes of the partition
P are the supports of the disjoint cycles of 0. Given a class ¢ € P, let j. be its smallest
element. From property 3.14 (ii) follows that

ngi('yp(i)): Z HE”“’I“Uc)""’Ia‘c‘uc)(%)
=1

0€G,(P)cEP
Proposition 3.15 (ii) states that

e teGer ol o () (dye) =

lel—1 j

i o(i) g s - Y gleliy, - ool ()G 1~
e (e (Jc)(d»yjc) G- (de), (]C)(d’ya\c\fl(jc)) Quo el (dFle j.)))
and if the loop 7. is a concatenation of paths ;.. ..., Yylcl-1¢;,y: Volel(j,) then

E(ve) = 7(F5,) + -+ Fgle-1¢,)) + €5 (Fplel ()
It follows that

~

wl= 8

@34) 2B, [ﬁﬁgim W)} =

Z 2n—ﬁcycles of G/EL%

FL + 3 Giaer) | T] 17 (d52)
=1 =1

cEG,
But the right-hand side of (4.3.4) is just the same as the right-hand side of (4.3.1) in
the specific case when for all ¢ € {1,...,n}, 24, = x;. This finishes the derivation

of the special case of Dynkin’s isomorphism.



CHAPTER 5

DECOMPOSING PATHS INTO POISSON ENSEMBLES
OF LOOPS

5.1. Glueing together excursions ordered by their minima

Let L be the generator of a diffusion on I of form (2.2.1). A loop of L, 1, rooted at
its minimal point is a positive excursion. For a given zy € I, we will consider the loops
v € Lq, such that miny € (inf I, z]. We will root these loops at their minima and
then order the obtained excursions in the decreasing sense of their minima. Then we
will glue all these excursions together and obtain a continuous paths fgfz). The law
of this path can be described as a one-dimensional projection of a two-dimensional
Markov process. Moreover this path contains all the information on the ensemble of
loops Lo, 1, N {7y € £*|min~y < z¢}. So this is a way to sample the latter ensemble of
loops. In the particular case of a =1, f&”) is the sample paths of a one-dimensional
diffusion. This is analogue of the link between £; and the loop-erasure procedure
already observed in [19] and in [13], chapter 8 and will de described in detail in
section 5.3 In the section 5.1 we will consider generalities about glueing together
excursions ordered by their minima and probability laws won’t be involved. In the
section 5.2 we will deal with fgfz) and identify its law. In the section 5.3 we will focus
on the case @ = 1 and describe other ways of slicing sample paths of diffusions into
Poisson ensembles of loops.

Let 2p € R and let Q be a countable everywhere dense subset of (—oo,xzg). We
consider a deterministic collection of excursions (eq)qeo Where (eq(t))o<i<r(e,) is @

continuous excursion above 0, T'(e;) > 0 and
e4(0) = ey(T(e)) = 0
Vt € (0,T(eq)), eq(t) >0

We also assume that for all C > 0 and a < g, there are only finitely many ¢ €
QN (a,zo) such that maxe, > C and that for all a < zo

(5.1.1) > T(ey) < 400

g€9N(a,zo)
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Let 7 (y) be the function defined on [0, 4+00) by
T(y) = Y. T(ey)
€N (z0—y,Zo)
T is a non-decreasing function. Since Q is everywhere dense, T is increasing. 7 is
right-continuous and jumps when zo —y € Q. The height of the jump is then T'(e_,).
Let Thag = T (+00) € (0, +00]. For t € [0, Thnae) we define
0(t) := zo — sup{y € [0, +00)[T (y) > t}

6 is a non-increasing function from [0, Tyaz) to (—00, zg]. Since T is increasing, 6 is
continuous. We define

b (t) = sup{s € [0, Tinaa)|0(s) = 0(t)}
b= (t) < b*(t) if and only if () € Q and then b (t) — b~ (t) = T'(eg()). We introduce
the set

b= (t) = inf{s € [0, Tjnaa)|0(s) = O(t)}
(

b™ :={t € [0, Thnaz)|0(t) € Q, b~ (t) = 0(¢)}
b~ is in one to one correspondence with Q by ¢ — 6(t).
Finally we define on [0, T),4.) the function &:

= { 10 if 0r) ¢ O
0() + eon (t — b (1)) if 0(1) € Q
Intuitively £ is the function obtained by gluing together the excursions (¢ + eq)qco

ordered in decreasing sense of their minima. See figure 1 for an example of £ and 6.

Proposition 5.1. — £ is continuous. For allt € [0, Trax)

(5.1.2) o(t) = inf ¢

The set b~ can be recovered from & as follows:

(5.1.3) b7 ={t€[0,Tha)l(t) = [igltf}f and Je > 0,Vs € (0,¢),&(t+s) > £(t)}

Ifto € b~ then
(514) b+ (to) = inf{t S [th Tmaz”g(t) < é(to)}

Proof. — Let t € [0, Tynaz). To prove the continuity of £ at ¢ we distinguish three
case: the first case is when 0(t) € Q and b~ (t) < t < b*(¢), the second case is when
0(t) ¢ Q and the third case is when 0(t) € Q and either b~ (¢t) = ¢ or b (¢) = t.

In the first case, for all s € (b~ (¢),b7(t)),

£(s) =0(t) + eq(e)(s — b~ (1))
eg(+) being continuous, we get the continuity of £ at .

In the second case we consider a sequence (tp)n>0 in [0, Tnqee) converging to t. Let
C > 0. There are only finitely many ¢ € Q such that there is n > 0 such that 6(¢,) = ¢



5.2. LOOPS REPRESENTED AS EXCURSIONS AND GLUED TOGETHER 69

and maxe, > C. Moreover for any ¢ € Q, there are only finitely many n > 0 such
that 6(t,) = q. Thus there are only finitely many n > 0 such that 0(t,) € Q and
maxeg(;,) > C. So for n large enough

(5.1.5) O0(tn) < E(tn) < O(t,) + C

But &(t) = 6(¢) and 6(t,) converges to 6(t). Since we may take C arbitrarily small,
(5.1.5) implies that £(¢,) converges to 6(t).

Regarding the third case, assume for instance that 6(¢t) € Q and ¢t = b~ (¢). The
right-continuity of ¢ at ¢ follows from the same argument as in the first case and
left-continuity from the same argument as in the second case.

By definition, for all ¢ € [0, Thaz), 0(t) < &(t). 6 being non-increasing, for all
t €10, Tmaz)

0(t) < inf
0 < e

For the converse inequality, we have

0(t) = £b~ (1) > inf €

[0,¢]

Regarding (5.1.3) and (5.1.4) we have the following disjunction: if 6(t) € Q and
b=(t) < t < bT(t) then £(t) > O(t). I 0(t) € Q and t = b~ (t) then for all s €
(0,67 () — b= (), &(t + s) > &(t). If either () € Q and t = bH(¢) or 6(t) € Q
then £(t) = 6(t) and there is a positive sequence (s, ),>0 decreasing to 0 such that
O(t +s,) & Q and &(t + sn) = 0(t + s,) < O(¢). O

Fig. 1 - Drawing of £ (full line) and 6 (dashed line).

Previous proposition shows that one can reconstruct @ and the family of excursions
(eq)qeo only knowing £. (5.1.2) shows how to recover 6 from £. (5.1.3) and (5.1.4)
show how to recover the left and the right time boundaries of the excursions of £ above
6. Also observe that the set defined by the right-hand side of (5.1.3) is countable
whatever the continuous function £ is, even if it is not obtained by glueing together
excursions.

5.2. Loops represented as excursions and glued together

Let a > 0 and L, g the Poisson ensemble of loops of intensity o} ,, where s,
is the measure on loops associated to the Brownian motion on R. Let xo € R. We
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consider the random countable set Q:
Q :={min~v|y € Lo pm} N (—00,20)

Almost surely Q is everywhere dense in (—oo, zg) and for every ¢ € Q there is only
one v € L, gy such that miny = ¢. Almost surely v € L, pa reaches its minimum
at one single moment. Given ¢ € Q and v € L, gy such that miny = ¢ we consider
e, to be the excursion above 0 equal to v — g where we root the unrooted loop
at argminy. Then the random set of excursions (e4)4co almost surely satisfies the
assumptions of the section 5.1. In particular the condition (5.1.1) follows from the
fact that, according to (3.5.1)

T Al

LA TO) i (o g (d7) = (20 — @ AL
/* (M) Lminve(a,e0)PBar(dy) = (o )O Nz

Thus we can consider the random continuous function (&, pas(t)*°));>o constructed
by glueing together the excursions (¢ + e4)qeo in the way described in section 5.1.
Let
(z0) _ inf c(@0)
o aa (£) = I0f €750

EC0 (1) = (€70 (1),059),, (1)

Next we will describe the law of the two-dimensional process (E((f"B)M(t)) >0

Proposition 5.2. — Let (Et)tzo be a standard Brownian motion on R starting from
0. (E(agf(’B)M(t))tzo has the same law as
- 1, ~ 1, ~
zo + |Bi| — =4 (B), mo — —;(B)
@ @ >0

In particular fora =1, ( fg)M(t))tgo has the same law as a Brownian motion starting

from xg.
Proof. — For a < xg let T, be the first time Hgfj)g)M hits a. For [ > 0 let
7= inf{t > 0|¢2(B) > 1}

According to the disintegration (3.5.1) of the measure u},, in the proposition 3.17,

for all a < x¢ the family (e4)ge0n(a,z,) Of €xcursions above 0 is a Poisson point process

of intensity 2an§?\4. This implies the following equality in law
(law) , =~

(€ () = 0780 (D) gcper, = (Billosers

Since the above holds for all a < xp, we have the following equality in law

(zg—a)

T T law ~ ~
(€89 (8) = 02 (1), a(@wo — B mrr (D))o = (1B, £2(B) )iz

which is exactly the equality in law we needed. Finally for o = 1, (z-+|B| fﬁto(é))tzo
has the law of a Brownian motion starting from zg. See [24], chapter VI, §2. O
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According to proposition 5.2 a Brownian sample path can be decomposed into a
Poisson process of positive excursion with decreasing minima.This decomposition id
for instance described in [16], section 6.2.D. In case & = 1, proposition 4.5 states that
the occupation field of a the Poisson ensemble of loops associated to the Brownian
motion on (0, +00) killed at 0 is the square of a Bessel process of dimension 2 starting
from 0 at 0. This result can also be obtained using the fact that ( fg)M(t))tSO is a
Brownian sample path and applying the first Ray-Knight theorem which gives the
law of the occupation field of a Brownian path stopped upon hitting 0.

From proposition 5.2 follows in particular that (ESTB)M (t)) />0 is a sample path of
a two-dimensional Feller process. Let

TH(R?) := {(z,a) € R*|z > a} Diag(R?) := {(z,z)|x € R}

For (z9,ap) € TT(R?) we define the process

(5:21) BV 1) 1m0 = €750 ©), 05539 (1) 120

~ 1 ~ 1 ~
= (0,0 =+ |.CCO — ap =+ Bt| — EE?O_ZO(B), ag — EE?O_ZO(B))

t>0

where (By);>0 is a Brownian motion starting from 0. E((f%’ﬁ) has the same law

as ES”B)M. The family of paths (E(;"B%}) are the sample paths of the same

)o2a
Feller semi-group on T (R?) starting from ;1_1 Io)ossible positions. Next we describe
this semi-group in terms of generator and domain. Let f be a continuous function on
T+(R?), C? on the interior of T (R?), such that all its second order derivatives extend
continuously to Diag(R?). This implies in particular that the first order derivatives
also extend continuously to Diag(R?). We write 0y f, 02 f and 01 1 f for the first order
derivative relatively to the first variable, the second variable and the second order

derivative relatively the first variable. Applying It6-Tanaka’s formula we get

t
FETSY @) = f(zo,a0) + / 01f (B39 (s)) sgn(zo — ao + By)dBs+

t
[((1-2) o= 2o) sl —d)+ 5 [ o o)as

Let D, v be the set of continuous functions f on Dg, C? on the interior of 7 (R?),

such that all the second order derivatives extend continuously to Diag(R?) and that

moreover satisfy the following constraints: f and 0;,f are uniformly continuous

and bounded (which also implies that 91 f is bounded by the inequality [|01 flco <
1 flsol]@1.1 f]loo) and on Diag(R?) the following equality holds:

(- 2}
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If f € Doy then 1 (E[f(E 53,(1)] — f(xo,a0)) converges as t — 0F, uniformly
for (zg,a0) € TT(R?), to %8171f(z0,a0). Moreover D, g is a core for %8111 in the
space of continuous bounded function on T (R?).

Next we describe what we obtain if we glue together the loops, seen as excursion,
ordered in the decreasing sense of their minima, where instead of £, g we use the
Poisson ensemble of Markov loops associated to a general diffusion. Let I be an open
interval of R and L a generator on I of form

7o 1 d 1 d
~ m(z) de \w(z) da
with zero Dirichlet boundary conditions. Let S be a primitive of w(x). We assume
that S(supI) = +oo. Let

THI?) = {(x,a) € I*|zx > a} Diag(I?) := {(z,z)|z € I}

Let T+(I2) be the closure of T7(I?) in (inf I, sup I]%.
Given any z{, > af, > %g(inf I) let C, be the first time E((f”B’]l\}’[) hits %S’(inf I). Let

t
~ 1 ~7 I/,a6
I, ;:/ — (57 (2617550 (5))) ds
0 m

Let (E_l) be the inverse function of (E) . It is a family of stopping times

0<t<I; 0<t<Ca

:(161116)

for En. B - Forzo >ag €l and t < I}a let

—(zo,a xo,a xo,a ’—‘g:c,ga T
=y (0 = (€05 0,005 () = =05V A

If o = 1 then 55%’%) is just the sample paths starting xo of a diffusion of generator

L. Let ﬁa’ ;7 be the space of continuous functions f on 7" (I?) satisfying

— fo S5 1is C? on the interior of TF(I2) and all the second order derivatives

extend continuously to Diag(I?).
— f(z,a) and =<0, ( =0, f(x,a)) are bounded on T (I?) and extend contin-

uously to TT(I\Q)

— f(z,a) and %81 (ﬁ@lf(z,a)) converge to 0 as a converges to inf I uni-

formly in x.
— On Diag(I?) the following equality holds:

(5.2.2) ((1 - é) o1 — éag) Fla) =0

o :(Imao)
Lemma 5.3. (“a,i )102%6[

sible positions of the same Markovian or sub-Markovian semi-group on T+ (I?). The

is a family of sample path starting from all pos-

law of the path Ef%’ao) depends weakly continuously on the starting point (o, aop).
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The domain of the generator of this semi-group contains ﬁa 7, and on this space the

Moreover there is only one Markovian or sub-Markovian semi-group with such gener-

generator equals

ator on D_ +.
a,L

Proof. — Since a change of scale does not alter the validity of the above statement,

we can assume that @ = 2. Then supl = +4oo0. (E(z‘l’ao) t is then ob-

oL ( ))ogtgfia

tained from (E(;OB?J}) () o<t<t, by a random time change. The Markov property and

the continuous dependence on the starting point for ES%’%) follows from analogous

properties for ESE‘;\;). If fe ﬁa 7 then

—(x0,a T— ot 1 f;l/\fa —(z0,a
(f(z&,gw?(ft "AG)) ~ 5 / 81,1f<:;§w%><s>>ds>
t>0

is a local martingale. We can rewrite it as

t
- 1
FEEL© (AT —/ —

EZ™ L) 0 2m (€Y (s))

The above local martingale is bounded on all finite time intervals and thus is a true

a1 f(EXO™ (s))1,_;. ds

a,L Ca
t>0

martingale. Since #(1)81,1 f(z,a) converges to 0 as a converges to inf I, uniformly
in z, it follows that

FESEAT ) =1, fET™®)

Thus
1 ZTo,a0 1
lim = (E [1t<75af(5i,27 )(t))} - f(xo,ao)) = 72m($0)81,1f(zo,a0)

t—0+ ¢
Moreover the above convergence is uniform in (xg,ag) because #(z)@m f(z,a) ex-

tends continuously to T+ (12).
To prove the uniqueness of the semi-group we need to show that there is A > 0
such that

1 .
——011— ) (D, ¢
(F =) P
is sufficiently large, for instance that it contains all functions with compact support
in TF(I?). Let g be such a function and A > 0. Consider the equation

1
(5.2.3) Wal,lf(xv a) = Af(z,a) = g(z,a)
Let @y, be a positive decreasing solution to

1 d%u

—Qm(z) @(ac) —Au(z) =0
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Let

+oo +oo
fo(z,a) = ﬂA,¢(5E>/ / 2im(z)g(z, a)tiry(2) dz #

Then fy is a solution to (5.2.3) and it is compactly supported in T (1%). We look for
the solutions to (5.2.3) of form

f(z,a) = fo(z,a) + C(a)uy, (x)
f satisfies the constraint (5.2.2) if and only if C satisfies

« da « dx

h(a) = ((1 - é) o — %32) fola,a)

h is compactly supported in I. We can set
. o (7 k)
Cla) = ay,(a)* 1/ —
v inf 1 Ux,4(Y)*

C is zero in the neighbourhood of inf I. Moreover @y  has a limit at 4+o00. It follows
that f € D, O

L@ @) + <1 - l) Yl (C(a) + h(a) = 0

where

Let L be the generator of a diffusion on I of form (2.2.1). Let zyp € I. Consider
the loops 7y in L, 1, such that miny < xg, rooted at argminy, seen as excursions. Let
(ngz) (t))o<t<c, be the path on I obtained by glueing together this excursions ordered
in the decreasing sense of their minima. Let

053 (1) = min &y

Proposition 5.4. — Let L := Conj(uy,L). Then (ES”L)
:(10110)
law as (“a,Z (t))

(t))0§t<ca has the same

. So it is a sample path of a two-dimensional Feller process.

In particular for o =1, §§ng) is the sample path of a diffusion of generator L. For all

a>0

0<t<la

lim inf €9 (¢) = inf I
imin op (1) =1in
If L is the generator of a recurrent diffusion then

lim sup 555”2) (t) =supl
t—Ca ’

Otherwise
lim sup 5((;52) (t) =inf I

t—Ca
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Proof. — First notice that if L is the generator of a recurrent diffusion then L=L.
Otherwise a diffusion of generator L=1L is, put informally, a diffusion of generator
L conditioned to converge to inf I (which may occur with zero probability). From
h-transform invariance of the measure on loops follows that £, = L From

H(Io)

a,Z'

property 3.8 (iv) and corollary 3.12 follows that = is obtained from Z, ga by

scale and time change in the same way as :(I(’Z’Z”) and thus ESE"L) and E(m"z’m") have
a, ,

)

the same law. Regarding the limits of §£fz) at (,, we need just to observe that they
hold if L is the generator of the Brownian motion on an interval of form (a,+00),
a € [—00,400), and by time and scale change they hold in general. o

As explained in the proposition 5.1, the knowledge of the path (Eizz) () o<t<e
alone is enough to reconstruct L, 7, N {7y € £*|min~y < x(}. From this we deduce the
following

Corollary 5.5. — If L is the generator of a transient diffusion, it is possible to con-
struct on the same probability space Lo.1, and a continuous version of the occupation

ﬁeld ( a, L)IEI

Proof. — By scale and time change covariance and h-transform invariance of the
Poisson ensembles of loops, it is enough to prove the proposition in case of a Brownian
motion on (0,+o0) killed at 0. Let (x,)n>0 be an increasing sequence in (0, +00)

converging to +o0o. We consider a sequence of independent paths (5&?;’;1"))712 , defined

by (5.2.1). Let

T,y i=inf {t > O|§((f§]@" (t) =2p_1}
where conventionally we set x_; := 0. By decomposing on [0,7}, ,,, ,] the restricted
path (55%13\5/1” )( £) o<y <., , One canreconstruct a family of loops 7 such that min~y €

(p—1,2y): there is a random countable set %, of disjoint compact subintervals
[b=,bT] of [0,T}, 2, ,] such that

{(é»gg,;[n)(b* +t))0§t§b+7k|[b*7 bl € B} = LapuN{y € £ miny € (zn_1,2,)}
(see (5.1.3)). The union of all previous families of loops for n > 0 is a Poisson ensemble
of loops Lo, gy N {7y € £ miny > 0}.

Each of fazg’]fj") is a semi-martingale and its quadratic variation is

(& &), =t

Moreover for all x € R

t 1 t _
Lponan_ den@n)(g) = (1 - = / Lo s do9(B) =0
/O B =T gaaBM (S) < a> 0 0 (B)=ax s( )

From theorems 1.1 and 1.7 in [24], chapter VI, §1, follows that we can construct on

Tn,T n)

the same probability space «Ea = and a space-time continuous version of local times
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(¢7 (5&35%’1\7))% eraso Of 5((;%’]@”) relatively to the Lebesgue measure. In particular

(fggf\cf ) is continuous. If [b~,b"] € 7y, then

(O (€5 m)) = - (€5)) om0

is the occupation field of the loop corresponding to the time interval [b~,b%]. We
need to check that a.s

(5:24) Vx>0 (S = Y (€l -6 )
[b—,bt]€B,,

:E»—)Wn

T,

For z > 0, consider the random set of times

(5.2.5) {tel0,Tha, JIESmm @ =2\  [b7,b7]
b= ,bT)€B,

If z is a minimum of a loop embedded in ({gg’l\?)(t))MKT orifx ¢ (x" 1 z,)

then the set (5.2.5) is empty. Otherwise it is reduced to one point: the first hitting
time of the level x. Almost surely, for all x > 0, the measure d;¢y (fg%ﬂ")) is
supported in {¢ > 0|§£fj§’13\6/1n)(t) = 2} and has no atoms, and thus does not charge the
set (5.2.5). This implies (5.2.4). Finally we can conclude that (6% (fgcgj\zf ))z>0
is the occupation field of Lo gy N{y € £ min~y € (Ty—1,2n)}

The occupation field of L g N {7y € £*| miny > 0} is

(Xt (i)
>0

n>0

The above sum is locally finite and thus varies continuously with . O

5.3. The case o =1

According to proposition 5.4 in case o = 1 the Poisson ensemble of loops L,
can be recovered from sample paths of one-dimensional diffusions. A similar prop-
erty was observed for loops of the two-dimensional Brownian Motion and of Markov
jump processes on graphs. In [13], chapter 8, it is shown that by launching consecu-
tively symmetric Markov jump processes from different vertices of a finite graph and
applying the Wilson’s algorithm ([31]), one can simultaneously construct a uniform
spanning tree of the graph with prescribed weights on the edges and an independent
Poisson ensemble of Markov loops of parameter o = 1. If D is a simply-connected
open domain of C other than C, it was shown in [32] that one can couple a Brownian
motion on D, killed at hitting dD, and a simple curve (SLE;) with same extremal
points such that the latter appears as the loop-erasure of the first. It is conjectured
that given this loop-erased Brownian motion and an independent Poisson ensemble
of Brownian loops of parameter 1, by attaching to the simple curve the loops that
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cross it one reconstructs a Brownian sample path. See [19], conjecture 1, and [18],
theorem 7.3.

in case of one-dimensional diffusions one can partially recover £, ; from Marko-
vian sample paths otherwise than slicing §§ LO) in excursions. The next result has an

analogue for loops of Markov jump processes on graphs. See [13], remark 21.

Proposition 5.6. — Assume that L is the generator of a transient diffusion. Let
xz € 1. Let (X¢)o<t<c be the sample path of a diffusion of generator L started from x.
Let T, the last time X wisits x. For 1 >0 let

7= {t =2 0l (X) > 1}

Let (q;)jen be a Poisson-Dirichlet partition PD(0,1) of [0,1], independent from X,
ordered in an arbitrary way. Let

b= ()Y a

The family of bridges ((Xt)Tl; <t<r )]>o has, up to unrooting, the same law as the
loops in
Ly N {y € £z €~([0,T(v))}

In particular (X3) 7, can be obtained through sticking together all the loops in

Lo.1, that visit x.

0<t<

Proof. — According to corollary 3.11, (€*(7))yeLa 1.y visits « i3 a Poisson ensemble

1 ~
of intensity e~ ¢@» #. Thus L7, | is an exponential r.v. with mean G(z,z) and has
the same law as E%(X). Moreover the Poisson ensemble (€%(y)) e, .y visits « has
up to reordering the same law as (I; —j_1);>0. Almost surely ! — 7;* does not jump
at any ;. Conditionally on (;);>0, ((Xt)ﬂ <t<rp )]>0 is an independent family of

bridges and (Xt)Tar  St<rp has the same 1aw as (Xt)0<t<'r . We conclude using

—liq "

identity (3.3.5) and the theory of marked Poisson ensembles O

Assume that L is the generator of a transient diffusion. Let x € I and let (X;)o<t<c
be a sample path starting from x of the diffusion corresponding to L. We will describe
two different ways to slice (X¢)o<t<¢ s0 as to obtain the loops

L1, N{y € £ ([0, T()]) N [X(0), X(¢)](or [X(¢T), X(0)]) # 0}

The first method corresponds to the ”loop-erasure procedure” applied to (X;)o<i<c
and the second to the ”loop-erasure procedure” applied to the time-reversed path
(Xc¢—t)o<t<c. Let ﬁc be the last time (X;)o<t<¢ visits . Let T be the first time
X hits Xe—. If X, € OI then T = ¢. Let (gj)jen be a Poisson-Dirichlet partition
PD(0,1) of [0,1], independent from X. The first method of decomposition is the
following:
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— The path (X¢),.,.7 is decomposed in bridges ((Xt)Tlm <t<r )j>o0 from x to
Sty jo1= =T =
z by applying the Poisson-Dirichlet partition (g;);en to £§(X), as described in
proposition 5.6.

— Given the path (X if X <z we define

fx+t)0§t<<—fz’

bt = {t €0,¢ —T,)X

Toa¢= Sup X~

P Tr+s
SE[t,C—Tm)

and 3¢ € (0,t) s.t. Vs € (t —,t), X7 < XTIH}
b™ is countable and we define on b* the map b™:

b~ (t) := sup {s € [O’t)|Xﬁ+s = XTI+t}

(X4 (t)JrS)OSsStfb*(t))th* is the family of negative excursions of the path

Tytb—
(X~ If X,- > x then

Tm+t)0§t<<—ﬁ below (SUP[TIH,C) X)

0<t<(—Ty"

b*::{te[O,g—TmﬂXA - inf Xs .
T ety T

and Je € (0,t) s.t. Vs € (t —,t), X7

We define on b™ the map b™:

b~ (t) := sup {s € [o, t)|Xﬁ+s = Xfm+t}
((X’fm-l,-b*(t)+s)0§5§t*b7(t))t€b+ are the positive excursions of (Xz , )oc;oc 7,
above (1nf[ﬁ+t7<) X)o<tcc 7,

— We denote £ ((X¢)o<t<¢) the set of loops
{(Xre sdososry - 17 2 03 UL(X7, )4 Jo<aseb-nlt € 67
where the loops are considered to be unrooted.

The second method of decomposition is the following:

— If X;- <z we define
b = {t € [0,7)|X; = inf X and 3¢ > 0 .. Y5 € (1,6 + €), X, > Xt}
0,t

On b~ we define the map b™:
bt (t) == inf{s € (,T)| X, = X;}

((Xt4s)o<s<vt(t)—t)teco— are the positive excursions of the path (Xt)ogt<f above
(info,) X)y<y<q This is exactly the decomposition described in the previous
section 5.2. If X~ > x then

b~ = {t €[0,7)|X; =sup X and Je > 0 s.t. Vs € (t,t +¢), X5 < Xt}
[0,2]
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The map b™ defined on b~ is
bT(t) == inf{s € (,T)| X, = X;}

((Xt+s)o<s<bt(t)—t)tep— are the negative excursions of the path (Xt)0§t<f be-
low (sup[07t] X)ogtgf'

T < ¢ we introduce:

and
n = inf{t € [T,0)16, (X) > I}
We decompose the path (X;)
X,
— We denote £%((Xt)o<t<¢) the set of loops

{(Xits)o<s<ot et €67} U {(XT[j71+s)0§s§Tl~j—T[j71 lj >0}

F<i<c in bridges ((Xt)Tij,IStSTz’j )j>o0 from X to

where the loops are considered to be unrooted.

The loops in £ ((Xt)o<t<c) and L2((Xt)o<t<c) are not the same but follow the same
law.

Proposition 5.7. — L1 ((Xt)o<t<c) and L*((Xt)o<t<c), considered as collections
of unrooted loops, have the same law. Let Ly 1 be a Poisson ensemble of loops in-
dependent from X.—. Then L' ((Xi)o<t<c) and L2((Xi)o<i<c) have the same law
as

(5.31) Lz N{y € L ([0,T()]) N [X(0), X(¢T)] (or [X(CT), X(0)]) # 0}

Proof. — First we will prove that £2((Xt)o<t<¢) has the same law as (5.3.1). If
P(X¢- = infI) > 0, then conditionally on X.- = infI, (X¢)o<¢<¢ has the law of
a sample path corresponding to the generator Conj(uy,L). If y € I N (—o0,z] and
y is in the support of £ (the killing measure in L) then conditionally on X.- =y,
(Xt)o<t<c is distributed according the measure mﬂiy (property 3.3 (i)). Accord-
ing to the lemma 3.4, (Xt),,.7 and (X7,,)
Xe— =y, (X¢)geyor having the law of a sample path corresponding to the generator
Conj(uy, L), run until hitting y, and (X744)o<t<c_q following the law G(;,y)“%y-
From proposition 5.4 and 5.6 follows that .22 ((X;)o<t<¢) and (5.3.1) have the same
law on the event X~ < z. Symmetrically this also true on the event X.- > x.

The decomposition £ ((X;)o<t<¢) is obtained by first applying the decomposition

o<t<c—i are independent conditionally

#? to the time-reversed path (X;_)o<t<¢ and then applying again the time-reversal
to the obtained loops. The law of the loops in (5.3.1) is invariant by time-reversal.
Let y € I, y in the support of k. Conditionally on X.- =y, the law of (X¢_¢)o<i<¢ is
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mﬂy’m. So applying the decomposition .#? to the path (X¢_¢)o<t<¢ conditioned
by X.- =y gives

Ly {y € L ([0, T(M]) Ny, 2] (or [z,y]) # 0}

If P(X,- = infI) > 0 then conditionally on X.- = inf I, the path (X;)o<i<¢ is a
limit as y — inf I of paths following the law G(; m u® Y (i.e. the latter are restrictions
of the former). Thus conditionally on X.- = inf I 2 ((X;)o<i<¢) is an increasing

limit as y — inf I of

L0y € L0, T()]) Ny, =] # 0}
which is
Ly {y € £([0, T()]) Nlinf 1, 2] # 0}
Similar is true conditionally on X - = sup /. O



CHAPTER 6

WILSON’S ALGORITHM IN DIMENSION ONE

6.1. Description of the algorithm

Given a finite undirected connected graph G = (V, E) and C a positive weight
function on its edges, a Uniform Spanning Tree of the weighted graph G is a random
spanning tree with the occurrence probability of a spanning tree 7 proportional to

H C(e)
e edge of T

The edges belonging to the Uniform Spanning Tree are a determinantal point process
(transfer current theorem). In [31] Wilson showed how to sample a Uniform Spanning
Tree using successive random walks to nearest neighbours, with transition probabili-
ties proportional to C, starting from different vertices, and erasing the loops created
by these random walks. The edges left after loop-erasure form a Uniform Spanning
Tree. This is known as Wilson’s algorithm. See [1] for a review. In [13], chapter 8,
Le Jan shows that the loops erased during the execution of Wilson’s algorithm are
related to the Poisson ensemble of Markov loops of parameter 1.

In [13], chapter 10, Le Jan suggests that Wilson’s algorithm can be adapted to the
situation where the random walk on a graph is replaced by a transient diffusion on a
subinterval I of R. In this section we will describe the algorithm in the latter setting.
The algorithm returns on one hand a sequence of one-dimensional paths which can
be decomposed into a Poisson ensemble of Markov loops of parameter 1 (section 6.2),
and on the other hand a pair of interwoven determinantal point processes on I, which
may be interpreted as some kind of Uniform Spanning Tree. In section 6.3 we will
derive the law of this pair of determinantal point processes in the setting where the
underlying is a Brownian motion on R with a killing measure. In section 6.4 we will
give without proof the law in general case as it follows directly from the Brownian
case.

Let I be a subinterval of R and L a generator of a transient diffusion on I of form
2.2.1. Let & be the killing measure in L, which may be zero. Let (x,,)n>1 be a sequence
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of pairwise distinct points in I which is dense in I. Let ((Xt(x")) be a

0§t<<n)

sequence of independent sample paths of the diffusion of generator L, Withnsztlarting
points Xéz") = x,. In the first step of Wilson’s algorithm we will recursively define
sequences (Tn)n>1, (Vn)n>1 and (J)n>1 where T, is a killing time for X@n) Y isa
finite subset of Supp(k)UOI and T, is a finite set of disjoint compact subintervals of

I, some of which may be reduced to one point:

~Ti=C, 0= {X;Tj)}’ T = {[ml,X;?)}} (or {[B<T?>,x1}}).

— Assume that ), and J, are constructed. If x,41 € UJan J then we set
Tht1:=0, Vnr1 :=Vn and Tpg1 := Tpn- U 2y & U.]gjn J then we define

Tpi1 = min (gn,inf {t > 0|Xt(z"“) € U J})
JCIn

If X;I,"“) € U,cy, J then there is a unique J € J, such that X;z,"“) eJ. In

nt1 n+1
this case we set V1 := YV, and

Tni1 = (T \{J}HU{JU [;cnﬂ,xggﬂ]}
(or (T \{J})U {J U [X;Tijl)’x”“] })

If X\ @ (0 J then we set Voy1 = Yy U { X7} and
n+1 = n+1

TIn+1 = Tn U {[wnﬂa Xémfnﬂ)]} ( or Jn U {[X;Z—Hl)axnﬂ] })
n+1 n+1
It is immediate to check by induction the following facts:
— Y € Supp(r)UII. More precisely V,, € Supp(r)U{y € 8[|P(X§gf") =y) > 0}.
— The intervals in 7, are pairwise disjoint. ’
— 4V =14Jn <n
— For every y € ), there is one single J € J, such that y € J.
= Vn C Vnt1
— If n < n/, then for every J € 7, there is one single J' € 7,/ such that J C J'.
We denote 1, v the corresponding application from J,, to J,/. The application
tn,n is injective. Trivially for n <n' < n”, 4, v = tp/ 7 0ty
— For any J € T, 0J C Y U{z1,..., 20}
In the second step of Wilson’s algorithm we will take the limit of the sequence
((Vn, Tn))n>1 and define (Yoo, Joo) as follows:

Yoo= UV T=J U { U zn,nf(J)}

n>1 n>1Je€Jn ~n'>n
Yo is a finite or countable subset of Supp(k) U dI. T is a finite of countable set of
disjoint subintervals of I, but these subintervals are not necessarily closed or bounded.
For any y € Vo, there is a single J € J such that y € J, and this induces a bijection
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between ), and J. For any J € J,, there is a single J' € J, such that J C J'. We
define 1y, 00 (J) = J'. 1,00 is injective. Trivially, for n < n’, 15 00 = /00 © tnn. We
will sometimes write YV, (21, ..., %n), Tn(T1s- -, Zn), Voo ((Tn)n>1) and Jeo (Zn)n>1)
in order to emphasize the dependence on the starting points (,),>1. In the sections
6.3 and 6.4 we will see that

— The set Vs is a.s. discrete.

— A.s. for any intervals J € Juo, J \ 01 is open

The subset I\ e, J is a.s. discrete.

— The law of (Yoo, Joo) does not depend on the choice of starting points (2, )n>1-

We introduce Z, = T\ (UJGJDO J). We will further see that )., and Z., are
determinantal point processes.

The couple (Vo Joo) may be interpreted as a spanning tree. Consider the following
undirected " graph”: Its set of "vertices” is I U{t} where { is a cemetery point outside
of I. Ever point « € I is connected by an "edge” to its two infinitesimal neighbours
x—dz and z+dz. Every point in Supp(k) is connected by an "edge” to {. Finally any
point in y € OI such that P(Xégf”) = y) > ( is connected by an "edge” to 1. On this
"graph” (Veo, Joo) induces the Tfollowing ”spanning tree”: Each point in (J;c, J is
connected to its infinitesimal neighbours in I and Z., represents "edges” on I that
are missing. Moreover every point in Y, is connected to f.

There are two trivial cases in which (Yoo, Joo) is deterministic. In the first one k = 0
and I has one single regular or exit boundary point y characterized by P(Xéj,") =

y) > 0 (see [5], chapter 16, for the characterization of boundaries). Then Y. is made
of this boundary point and J., contains one single interval I U V. Z is empty.
In the second case I does not have regular or exit boundaries and x is proportional
to a Dirac measure ¢d,,. Then Voo = {yo} and Joo = {I}. Z is again empty. In
all other situation Z,, is non-empty and random. See figure 2.a for an illustration of
(Vny Tn) for 1 < n <5 and figure 2.b for an illustration of (Yoo, Z0)-
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x4 x2 x3 xr1 x5
° * ° X °
T4 x2 x3 x1 T5
N \/ - V4 °
- £ - Can 2 -
T4 D) T3 T x5
. L~ % .
T4 « x2 x3 x1 T5
> % X o
T4 D) T3 T x5
> e X

Fig. 2.a - llustration of ((Vn, Jn))i1<n<s5: x-dots represent the points of Vr

and thick lines the intervals in 7.

Fig. 2.b - Illustration of (Veo, Jeo): x-dots represent the points of Voo

and diamonds the points of Z.

6.2. The erased paths

During the execution of Wilson’s algorithm we used the paths ((X t(x")) 0<t<T ) .
> n/n>1

These paths can be further decomposed using the procedure described in the section
5.3.

Proposition 6.1. — The family of unrooted loops
1 (In)
U Z ((Xt )O§t<Tn)
n>1
has the same law as the Poisson ensemble L1 1. Moreover it is independent from

(Voo Too)-

Proof. — Let L1 1, be a Poisson ensemble of loops independent from the family of

paths ((Xt )0§t<<n)n>1'
show that the triple B

Using proposition 5.7 and induction is it immediate to

Ins T, 0 Z! ((Xt(zj))ongj)

Jj=1
has the same law as

(J}mjn, {(V(t))ogth(w) € L1 p|v([0,T(y)]) N U J # 0})

JETn
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Since (Voo, Joo) is by construction independent from ((Xt(zj))o<t<T‘) condi-
1<j<n
tionally on (¥, Jn), we further get that the triple

Yoo, Joo O Zz! ((Xt(mj))OSKTj)

j=1

has the same law as

<3’oo,Joo,{<v< Nosi<r € Lieh (0TGN Jﬂ})

JETn
Taking the limit of the third component as n tends to infinity we get that

Voo Toes U 21 (K)o

j=1

has the same law as

<3’oo,Joo,{<v< Nost<ry € Lih(0. TGN U Jﬂ})

JET
To conclude we need only to show that almost surely

{(’Y(t))o<t<T(7) € Ly p|v([0,T(v U J # (0} =Ly
The latter is equivalent to |J Je7., J being dense in I, which will be proved in the
next section. O

6.3. Determinantal point processes (), Z-): Brownian case

In this section we will describe (Yoo, Joo) in the Brownian case by giving the joint
law of the point processes V., and Z,. First we will study the case of a Brownian
motion on a bounded interval (a,b), killed upon hitting a or b, and without killing
measure. Then we will study the case of the Brownian motion on R with a non-zero

Radon killing measure k. We will write (Bt(z") instead of (Xt(z"))

)O§t<§n 0<t<Cn "’

Proposition 6.2. — In the case of a Brownian motion on a bounded interval (a,b),
killed upon hitting a or b, and without killing measure, YV~ is deterministic and equals
{a,b} and Z is made of a single point distributed uniformly on (a,b).

Proof. — For n > 1 we define Z,,0 < Zpn,1 < -+ < & n41 as the family zq,...,2,,a,b
ordered increasingly. According to this definition Z,0 = @ and &, ,+1 = 0. As a
convention we denote Zgo := a and ZTo; := b. For n > 2, one of the following
situations may occur:

= Vo = {b} and J, = {[Zn,1,b]}

— Vo ={a} and 7, = {[a, Tnn]}
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— Yn = {a,b} and for some j € {2,...,n}, Tn = {[a, Tn j-1], [@n,;, ]}
In any case (a,b) \ (UJeJn, J) is an interval of form (%, j—1,%n.j)-

We set {J}o = 0. Let n > 1. There is a 5 € {1,...,n} such that z, €
(in_17j_1,jn_17j). CODditiODaHy on (a,b) \ (UJGJTL71 J) = (:En—l,j—lajn—l,j)z the

Tn_1j—Tn

point B(Tmf”) equals 1 j—1 with probability = and T,_1,; with proba-

n—1,j)—Tn—1,j-1

bility W# By induction we get that

n—1,j)—&n-1,j-1

JETn

Hence

P(Voo = {a}) < lim P <<a,b> V(U V)= <:c:c>> = lim Zrenb g
JETn

and similarly P(Veo = {b}) = 0. Thus Vo = {a,b}. Almost surely for n large enough
JIn, will be of form {[a, @ j—1], [En,j,b]} for a random j € {2,...,n}. We denote by
prtl respectively p, , the random values of Z,, ;1 respectively Z, ;. Almost surely,
neither of the non-decreasing sequence (prtl)n or non-increasing sequence of (p;Q)n
is stationary. This fact follows from the same argument according to which Y., is
not reduced to one point. Moreover p,, 5 —pj;l, bounded by sups< <, (Zn,j — Tn,j—1),
converges to 0. It follows that a.s. Z,, is reduced to one point, the common limit of
p and p, ,. Finally if a < b are two values taken by the sequence (2,,)n>1 then

- b—a
P(Z., C (a,b)) =
(2o € (@,5) =
It follows that the unique point in Z is distributed uniformly on (a,b). O
We consider now the case of the Brownian motion on R with a non-zero Radon
killing measure k. G(z,y) = ur(zAy)uy (xVy) will be the Green’s function of %j—; —K.

The law of (M, Jn) may be expressed explicitly. Let @, be the cardinal of },,. Let
Yo1,Yn2,--.,Y5 Q) be the points in V), ordered in the increasing sense. Denote by
[p;l,p:;l], [p;Q,p;;Q], e [p;Qn,p:;Qn] the intervals in J,, ordered in the increasing
sense. Forallg e {1,...,Qn}, Yo q € [p;q,p,tq]. It happens with positive probability
that for some ¢, p,, , = p,tq if one of the starting points z1,...,x, is an atom of .
To compute recursively the joint law of above random variables we use the following

()

facts: Given a killed Brownian path (Bt starting from z, the distribution of

)0§t<<
Béf) is G(x,y)r(dy) (see section 2.2). Given a < x, let T, be the first time B(*®) hits
a. Then

]P):c(Ta < C) = =




6.3. DETERMINANTAL POINT PROCESSES (Vs, Z5): BROWNIAN CASE 87

On the event T, > ¢, the distribution of Bégf) is:

(Ga1) = Pully < OG0 ) 1yan(d) = (Gav) — CEDOEI N1y

More generally, if a < < b and CN is the first time B(®) gets either killed by the
killing measure « or hits a or b then

— The probability that Bg) =q is:

uy(z)usr(d) — up (b)us(z _ det ( g((?c:al:; g((Z: llj; >
up(a)ur(b) —uy(b)ur(a) ( g((z,, Zg giz,’ Z)) )
— The distribution of Béff) on (a,b) is:
G(z,y) Glay) G(y,b)
det | G(a,z) G(a,a) G(a,d)
G(z,b) Gla,b) G(b,b) s o)

G(a,a) G(a,b)
det ( Gla,b) G(b,b) )

Above expressions give the law of (Y, J1) and the law of (V5 41, Jn+1) conditionally
on (Yn,Jn). By induction one can derive the law of (), ,). We will express it
using a single identity involving a determinant. However this single identity may
correspond to different configurations: We will divide the set of indices {1,...,Q.,}
in three categories £, , E, and E, " where for ¢ € E, Y4 = p,,,, for ¢ € Ef,
Yoq = 0y, and for ¢ € E0F, p o < Y, . < pf,. For instance on the figure 2.a,
Qs =3, B5 = {3}, B = {1} and E;"" = {2}.

Proposition 6.3. — Let q € {1,...,n}. Let (E,,Ef E %) be a partition of
{1,...,q}:

,....q)=E UETIE"
Let x~ be an increasing function from E; 1LE T to{x1,...,z,} and zT an increasing
function from EX W E; % to {x1,...,x,}. We assume that the sets v~ (E, 11 E, )
and x (BT 1L E, %) are disjoint, that for every i € E,»% x~(i) < (i) and that for
every i € B, WE," and j € Ef WE, " such that i # j, (x*(j) — 2~ (i) has the
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same sign as (j —1). Let (A;)1<i<n be a family of disjoint bounded intervals each of
which may be open, closed or semi-open such that for every i < j, maxA; < min Ay,
that for every i, min A; > x~ (i) ifi € E, IET, maxA; < x%(i) ifi € EFIIE T,

and that for all i

(i —1),27(i —1) <minA;, maxA; <z (i+1),27(i +1)

where in the previous inequalities one should only consider the terms that are defined.
Let p; (y;) and pf (y;) be the functions defined by: p; (v;) = 2~ (i) ifi € E,, L E, >+
and y; otherwise. p; (y;) = 2+ (i) ifi € Ef W E, " and y; otherwise. Then

(6.3.1)
]P)(Qn = QaVZ S Egvp;,i - (Z),p n,g Yn ZV’L S En 5pnz =T (Z)vp;,l = Yn,iv
VieEg’J“,p;i:x (),p:{z— ) Vre{l,. .., q}, Yar €A,) =
Yy1€AL Yq€Aq - 1<r<q

det (G(p; (yi)’p;r(yj)))gi,qu may be rewritten as a simpler product:

632) Gorw)rie) I (G@m<yT+1>,pi+1<yr+1>>

1<r<qg-—-1

_ Glpy (yr),p;ll(yr+1))G(pi(yr),pr‘+1(yr+1))>
G(pr (yr). Pt (yr))

If o is a permutation of {1,...,n}, then (Vn(To1)s- -+ Tom)), Tn(To(1), - Ta(n)))

has the same law as (Vn(21,...,Tn), Tn(21,...,2n)) Moreover, for any n’ > n and
any permutation o of {n+1,...,n'}, the law of (Vn' (21, .., Tny To(ns1)s - - > Ta(n))s
T (X1, Ty T(ng1)s - - To(nr))) conditionally on (Vp(x1,. .. 20), Tn(T1,. .. 2n))
is the same as the law of (Vn/ (T1,- -y Tny Tt 1y v s T )y T/ (T1y e ooy Ty T 1y e v oy Tt )

conditionally on (Vn(x1,. .., Zn), Tn(T1, ..., Tn)).

Proof. — We will only give the sketch of a short proof. First let’s check that the
i = (). o+ (s

determinant det (G(pi (Yi), pj (yﬂ>>)1gi,qu b

(6.3.2). We use the fact that foranya <b<a<beR:

may be indeed expressed as a product

G(a,b)G(b,a) = G(a,a)G(b,b) = ur(a)us(b)uy(a)uy(b)
By subtracting from the last line in the matrix (G(p; (yi),p;r (yj>>)1<i i<q which is
(G(py (a), P} (Yj)))1<j<q, the second to last line (G(py_;(yg-1),1; (¥5)))1<j<q mul-
G(py—1(Yg-1), P (Yq))

tiplied by —
G(py—1(¥g-1),Py—1(Yg-1))

we get zero for all coefficient on the last line,
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except the diagonal one. Thus det (G(pi_ (yi), pj(y]))) equals

1<4,5<q

det G (P (i), 2} (W3) 1 <;scqy *

(G(pq_ (Yg): P (yq)) —

Gy 1Wa—1), 0§ W))G (i1 (Yg—1), Py (yq)))
G(py 1 (Yg—1),Pg—1(yg—1))

By induction we get (6.3.2).

Next step is to check that (Y, (x1, ..., Tn-2,Tn-1,2Zn), Tn(T1,. .., Tn_2,Tn_1,Tn))
and (Vn (21, ..., Tn—2, Tny Tn—1), Tn(T1,. .., Tn—2, Tpn, Tn_1)) have the same law condi-
tionally on (Vn—2(z1,- -, Tn-2), Tn—2(x1,...,2Zn—2)). This can be done using the ex-
plicit expressions for the conditional destitution of B (z,"’l), B(Tz," ), B(Tz," ) and B(Tz," -1,
This invariance by transposition of the two last starting pointg implies in turn aTlLl the

n—1 n—1

invariances by permutation stated in the proposition.

From the invariance by permutation follows that one only needs to prove (6.3.1) in
case 1 < Iy < -+ < Zp. In this case one can prove (6.3.1) by induction on n using
the expression (6.3.2) for det (G(p; (yz),pj(yj))) O

1<4,j<q’

The fact that the law of the tree obtained after n steps of Wilson’s algorithm is
invariant under permutations of the starting points (z1,...,z,) is something that is
also satisfied in case of random walks on a true finite graph. The product (6.3.2) can
be further rewritten as
(6.3.3)

ur(py ()ur (g we))  [1 uapF W) ur (o W) —us (0 (i) (0741 (Wr41)))

Next we will show that V., and Z are a.s. discrete.
Lemma 6.4. — For alln>2 and ¢ € {2,...,n}:
]P) (yOO m (p';qqfl?p’;"l»,q) = ®|p777,7q—17p;"11q7 Q’n Z q) =

2(p'r-i1_,q - p'riz,qfl)
uy (P g 1)Ut (Pihg) — ur(py, o 1wy (pig)

Proof. — Let n and ¢ be fixed. For n’ > n, let
N(n/) = u({zn+1; e ,Z'n/} ﬁ (p;,qflap';q)

and ZTpr1 < Tpg < o0 < T N(pry the points of {zpy1,..., 20} N (p;qfl,pf;q)
ordered increasingly. Conventionally we define Ty 0 = p, , 1 and Zp N1 =
Pt 4 The condition Y N (p,, .1, ,) = 0 is satisfied if and only if for some i €
{1,2,...,N(n') + 1}, necessarily unique, the following holds:

[p;,qflaii'ngifl] - J and [jn/th:lr,q] < J

JETm JeT,
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Thus

]P) (yn’ ﬁ (p;,quprtq) = ®|p;q—1apr—tqa Qn 2 q) =

N(n')+1
> P(rger @i € U AEwiplbd € U Ifpigcspho Qo2 a)
i=1 JETm JET

Let T’ ; be the first time B@x.i) hits either Prg—1 OF pj;q or gets killed by the killing
measure k. For i € {1,2,...,N(n') + 1} let Ty ;5 ,, , be the first time B@n )
hits &/ ;—1. Since the law of (Y, Jn/) conditionally on (¥, J,) is invariant by
permutation of points in (,41,...,2Tn ), we get that

P(pyrsdnin) € U SlEwarilc U 7

JETm JeT,
(in/,ifl) —
P (BT = Png—1>

n’i—1

Prg-10Ph g Qn > q) =

(in/,i) +
BT* = pn,q) Tn’,i < Tn’,i,i ’
n’ i

n'i—1

Prg1:Dm s Qn > q) =

wy (Fri—1)ut (T i) — ur(@nrim1)uy (T )
uy (P g 1) ur (i) — up(pyy 1 )uy(pig)

It follows that

P (Vo N (D go1:Prmg) = 0Py g5 D1y g0 @n > @) =

N(n')+1 ~ - - -
i Uy (Tnsi—1)ur (T i) — up (T im1)uy (T i)

i=1 ui(p'r:,q—l)uT(p’VtQ) - U’T(p;,q—l)ui(p;lrﬂ)

If Z,/ ;1 is close to T,/ ; then

Uy (T i—1)ut(Tnr i) — up (T im1)uy (T i)
(ug, up)(@nrie1) @nr s — Tnryie1) + 0(Enr i — Tpr 1)
n’,i

=W
=2(z — T ic1) F0(Tnr i — Tnsie1)

The sequence (2 )ns>n1 is dense in (p,, ,_q,pst ). Thus

im P (Vo N (P 1500 g) = P g1, 0m gy @n > q) =

n’—4-o00
20 = Prg—1)
uy (P g 1) ut (i) — ur(pyy o 1) uy (Pig)

O
Proposition 6.5. — Let a <b e R. Then for alln > 1

(6.3.4) E[#(Vn Na,bd))] < w G(x, z)k(dz)

It follows that a.s. for alla < b € R, Vo N[a,b) is finite.
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Proof. — Leta<be [a, b] where a is close to b. We will first show that for all n > 1

(6.3.5) P (yn N [a,b) # @) < / G(z, z)k(dx) 4 o(b — @)

[a.b)
where o(b—a) is uniform over @ and b close to each other in [a, b]. Then we will deduce
(6.3.4) by partitioning the interval [a, b) in small subintervals [a, b) and approximating

the expected number of points in [a, I;) by the probability of presence of one point.
Let n > 1. Then

B (Puers ) N [0,5) #0) <P (Vusaler,.oo0,,5) 0[a,b) £0)
Since the law of YV, is invariant by permutation of the starting points:
P (J}n+2($1, e Tn D) N [d,B) # (2)) —P (yn+2(a,6,x1, o xn) N [a,b) # (z))
But
(636) P (Vnsa(@ a1, .o, wn) 1[aB) £0) =P (¥2(a,5) n[a.b) £ 0)
+ P (32(a5) (@) = 0, Y12(@ b2, 20) N [a.D) £ 0)

We start Wilson’s algorithm by launching first B(® starting from a followed by B®

starting b. Then

P (¥2(@.b)n(a,b) #0) =P (BY € [a,b))+P (B ¢ [a.5), By <a BY efa D)
) ) Tf ) Tf ) ) Tf —_ ? T; )

Applying proposition 6.3 we get that

P (@) [a.5) #0) =

/xe[a,m (G(a’x) * /y<&(G(y’a)G(va) - G(y,g)G(&,z))n(dy)> x(dz)

For z € R, let T, be the first time B@ hits x. Then

Gla, ) + / _(Ca)G(.) ~ 6. DG(@.a))(dy) =

G(z, ) (P(T1 >T.)+ g((z:z))P(Tl < TLZ,B(T‘? < a)) < G(z,x)
Thus
(6.3.7) P(yg(a,é)m[a,é) ;A@) < |  Gaz)s(d)
[@.b)
Further
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Applying lemma 6.4 and proposition 6.3 we get that
P(Jig(d, D) N [a@,0) = 0, Voo (@, b, (2;);>1) N [, b) # 0)
P (Voo (@b, (25),21) N1 [a,8) # 01V2(a, 5) 1 [a,5) = 0) x P (Va(@, b) 0 [a,5) = 0)

[\~

_ <1 (b-a) )
uy(@)ur(b) — up(@)u 4 (b)

/ <a/z>b v.=¢1a det( gi Z; 2212 >H(dy>n(dz>

< (uy(@)ur(B) — up(@yu L (5) - 26— ) / i) / ()
But
uy (@)ur(b) — wr(@yu L (B) — 20— a) = ofb — a)
Thus
6.38) P (y2(a, B) N [3,5) = 0, Voyo(@, b, 21, ..., 20) N [a,b) £ (z)) = o(b — a)

Combining (6.3.6), (6.3.7) and (6.3.8) we get (6.3.5).
Now for j € N* and i € {1,...,27} consider the intervals A; ; defined by

A"{ [at (i =127 (b ~a),ati2(b—a)) ifi< -1
i,J [a+(172*J)(b—a),b] if i=2

Then E [§(V, N [a, b))] is the increasing limit of Zil PV, NA;; #0). But

ZP (VuNAij#0) < Z/ k(dz) + 270(277)

(6.3.4) follows. Since (6.3.4) holds for all n, it also holds at the limit when n tends to
400. This implies that Voo N [a, b) is a.s. finite. O

Proposition 6.6. — Almost surely all the intervals in Joo are open.

Proof. — We need only to show that for any n > 1 and g € {1,...,n}

(6.3.9) P (Qn >q,Vn' >n, min(zn,nr([p;q,p:’q])) = p;,q) =0
and
P (Qn > ¢, 1" > n,max(inu [Py g, P gl) = Pgn) =0
Let n and ¢ be fixed. We will show (6.3.9). We will also assume that ¢ > 2. The proof

is similar if ¢ = 1. We need to show that a.s. the following conditional probability
converges to 0:

lim P (mm(ln n’ ([p'r:,q5p;;q])) = p;,q|(yn7jn)aQn > Q) =0

n’—+oo
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We recall that for n” > n+ 1, B is a Brownian motion starting from x,~ and
it is independent from (Y, J,). Let Tn”,p;n be the first time it hits p_,, and Tnu
the first time it either hits (J . 7, J or gets killed by the killing measure . Since the
law of (Y, Jn) conditionally on (V,,J,) is invariant by permutation of points in

(Tpgiy .-y Tnr), we get that
]P) (min(lnan’([pr_z,q’p;q])) = p'r_z,q (y”“ ‘-7")’ Q" Z q)

. _ - _ + —
S n+1i1;llf;/<n/ 1 1pi’q,1<1n//<P;,qP (Tn” - Tn”,P;n |p"aq_1’p"aQ’ Qn Z q)

But P (Tnu T

" i |p:;q_1,p;1q) is close to 1 if x,~ is close enough to p, .. There is
always a subsequence of (2, )n»>n+1 made of points in (p:Lr g—1>Pn,q) Which converges
to p,, ;- It follows that
: T + - _
n”lzn'rg—i-l 1-— 1p;q71<1n//<P;,q]P) (Tn” - Tn”,p;n |pn,q717pn,qa Qn Z Q) - 0

which concludes the proof. O

From proposition 6.6 follows that Z., is closed. Moreover it does not contain any of
the points of the sequence (z,),>1. Since the sequence (z,,)n>1 is everywhere dense,
the connected components of Z,, are single points. One can see that

— If y < g are two consecutive points in YV, then $(Z N (y,7)) = 1.

— If Yo is bounded from below and y = min Vs, then Z N (—o0,y] = 0.

— If Y is bounded from above and y = max Vs then Z, N [y, +00) = 0.
See figure 2.b. The set Z,, may be empty, which for instance happens almost surely
if k is a Dirac measure. For n > 1 we define

) {p;7q1+p:,q
Z, = - E—

2Sq§Qn}

We will write Z,(z1,...,2,) and Zo((@n)n>1) whenever we need to emphasize the
dependence on the starting points.

Proposition 6.7. — The law of (Voo, Zo0) does not depend on the starting points

(:En)nzl .

Proof. — Let (Z,,)n>1 be another sequence of pairwise disjoint points in R. We will
show that the sequence (YVon (x1,. .., Tn,y &1, ..., &Tn), Zon(X1, .., Ty &1, ..., 2Tp)) cON-
verges in law t0 (Voo ((n)n>1); Zoo((n)n>1)) and that (Von (Z1,...,%n, 21, .., Tn),
Zon (1, oy Bn, T1,y ..oy Tp)) cONVErges t0 (Voo ((Zn)n>1)s Zoo ((Zn)n>1)). Since the two
couples of point processes (Von(Z1,...,Tn,T1,---,Tn), Zon(T1, ..o Tn, T1, ..., &)
and (Von(Z1,. .y &n, X1y -y Tn)y Z2n (1, - oy &n, X1, .. ., Tp)) have the same law, this
will finish the proof.

For the convergence in law we will use the topology of uniform convergence on
compact sets of collections of points in R. It can be defined using the following
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metric: Let dg be the Hausdorff metric on compact subsets of R. One may use the
metric dpp on point processes:

dpp(X,X) := dg(tan~ (X) U{~1,1}, tan" 1 (X) U {—1,1})
In order to simplify the notations we will write:
(yn; Zn) = (yn(-rla ceey :En)a Zn(-rla cee 7xn))
(ymazm) = (yOO((wn)nzl)aZOO((xn)nzl))
(ana 2277,) = (yQ’rl(:L'la vy Ty jl) e 7‘%77,)3 ZQn(xla s 7‘1"77,3'%1) LR )jn))
We can construct (Vn, Zn))n>1, (Voos Zoo) and (()72,1, 22»”))”21 on the same proba-
bility space using independent Brownian motions starting from the points in (2, )n>1
and (&y)n>1 and killed by the measure k. We construct the sequence ((Vn, Zn))n>1
using the Wilson’s algorithm described in introduction. This way V, C YV,+1 and
Voo = Un>1 Y. In order to construct Ys,, we first construct ),, and then continue
the Wilson’s algorithm using the Brownian motions starting from Zi,...,&,. This
way Vn € Vo, but not necessarily Vo, C Vo(nq1)-
Let C >0and ¢ € (0,%). Let 6 € (0,1), § small. There is N € N* such that
POnNN[-C,Cl =YV N[-C,C]) >1-9§

There is ¢’ € (0,¢) such that for all a < b € [-C, C] satisfying b—a < €’ the following
holds:

2(b—a) < g
wy(@ur () —us(@uy(0) ~ N
There is N’ > N such that with probability 1 — 26 the following two conditions hold:

(6310) yN N [70, C] = yoo N [70, C]
(6.3.11) Leb(-C,C1\ |J J)<¢
JeTN'

We define the following two random variables:

K™= min (min J) Kt = max (max J)
JETN,JC[-C,C] JeIn,JE[-C,C]

If (6.3.11) holds, then [-$,<] C [K—,KT*]. If (6.3.10) and (6.3.11) hold than for

202
n> N, [K~, K"\ Uy, J is made of at most N intervals, each of length at most

¢’. Consider the following condition on Vo
(6.3.12) Vo N[K™, K] =Y, N[K™, K]
Applying lemma 6.4 we get that for all n > N’
P (%n satisfies (6.3.12) | (6.3.10) and (6.3.11) hold) >1-6
This implies that for all n > N’
P (%n satisfies (6.3.12), and (6.3.10) and (6.3.11) hozd.) >1-36
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Let n > N’. On the event when (6.3.10) and (6.3.11) hold and ), satisfies (6.3.12),
which happens with probability at least 1 — 39, the following is true:

~ Vo N[K™, K+ = Voo N[K™, K]

- dH(ZQn N [K_5K+]aZOO N [K_5K+]) S €
In particular with probability at least 1 — 39

— dpp(Von, Voo) < 1~ tan™(§)

— dp(Zan, Zoo) < e+ (1 - tan™(§))

Since C' is arbitrary large and € and ¢ are arbitrary small, this implies that ()7%, Z~2n)
converges in law as n — 400 t0 (Voo, Zo)- O

Next we identify the law of V., as a determinantal fermionic point process. For
generalities on this processes see [11], chapter 4, and [28].

Proposition 6.8. — Letn>1 anda; <bi <ag <by <---<a,<b, €R. Then
(6.3.13)

E lHﬂo}m n [ar,bm] - /[

a1,b1)

) /[ ERCICORmII | EC7S
QAn, ,0n r=1

In other words Voo is a determinantal point process on R with reference measure K
and determinantal kernel G.

Proof. — Consider points a, < b, € [ar,b,] for r € {1,...,n}. We will show that
(6.3.14) P (vr € {1,....n}, Yoo N [ar, b)) # (b) -

[ ety e, [T )
[&1,b1) [&ﬂvbﬂ)

+ (Y06 —a)) < [Tr@nb)+ > o —an) [ #llarb)
r=1 r=1 EC{1,...,n} TEE r¢E
E#0

where the quantities O(Z;T — a,) and o(l;r — a,) are uniform over a, < b, € [ar, by,
a, close to b,. From (6.3.14) one deduces (6.3.13) by splitting the intervals [a,., b,
in small subintervals and approximating the number of points in YV N [a,, b-) by the
number of subintervals of [a,, b,) that contain a point in V..

As the law of )V, does not depend on the choice of everywhere dense sequence of
starting points, we will assume that the first 2n starting points in Wilson’s algorithm

are in order ai,b1,...,an,0,. We will show that for all non-empty subsets E of
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{1,...,n}
(6.3.15) P (Vr € B, Yau N [ir,by) = 0, Voo N [, by) # 0,57 € E, Vo N [, by) # (Z))

=TI o — ) T #(lar. b))

rek r¢FE
Further we will show that for any rg € {1,...,n}
(6.3.16)
P(VT € {17 TL} an [a’T? T) 7& @, [a‘ToaBTU] ;@ U J) = O(BTO 75‘7“0) H H([a‘TaBT))
JET2n r=1

If for all r € {1,...,n}, Yon N [ar,b,) # 0 and [a,,b,] C Ujey,, J then necessarily
Q2n = n and Jo, = {[ELT,BT]H < r < n}. We will use the fact that according to
(6.3.1)

(6.3.17) P (an =1, Jan = {[ar, B,]|1 <7 < n})

:/ / det (G=%) T n(dy,)
[&1751) [&THETL) 1<ij<n 1

r=

= /[& 5)'”/[5 ' )det (G(yi’yj>>1<iﬁj<nﬁ“(d%)*(iO(gr&r))Xﬁ[n([ar,Br))

Let’s show (6.3.15). A closed expression of the probability in (6.3.15) can be
computed using (6.3.1) and lemma 6.4. Since many different configurations (different
values of @2, and configurations of Ja,,) contribute to the probability in (6.3.15), we
won’t give the closed expression and only give the estimates. Let E be a non-empty
subset of {1,...,n}. If r ¢ E, then the condition Ya, N [d,,br) # 0 contributes
by a factor O(k([ar,by))) to the probability in (6.3.15). If r € E, then the two
conditions YVay, N|a,., br) =0 and Yoo N [@r, I;r) # () imply that (a,, br) NUjesn, J = 0.
According to the identity (6.3.3), the condition (@, br) N Usez,, J = 0 contributes
to the probability in (6.3.15) by a factor

O(uy (ar)ur(br) — up(@r)uy (by)) = O(by — ay)

According to the lemma 6.4, the additional condition Ve N [d,, br) # () contributes
to the probability in (6.3.15) by a factor
2 Z;T - ~’l“
o Aemd) g
uy (Gr)uq (by) — up(ar)uy (br)

(6.3.15) follows.
We deal now with (6.3.16). As in the previous case, the condition that for all

re {1,...,n}, Yo N[y, b,) # O contributes by a factor O (H:Zl n([dr,gr))) to
the probability in (6.3.16). The condition [dy,, by,] € Use,, J implies that there is
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i €{2,...,Q2,} such that a,, < p;'n,i_l < Papi < BTO. As previously, this contributes
by a factor O(by, — dr,) to the probability. Combining (6.3.15), (6.3.16) and (6.3.17)
yields (6.3.14). O

Let &, be the following operator defined for functions in L?(dk) with compact
support:

(Brf)(z / G(z,y)f dy)
A standard condition for a determinantal point process with kernel G relative to
the measure k to be well defined is &,, to be positive semi-definite, contracting and
locally trace class. We explain why this is true. Let f be a compactly supported
L?(dk) function. Then the weak second derivative of &, f is

a("O=I) 56,5 pan

&, f and are square-integrable and

A(ﬁnf)fdn:A(®nf)2dn+ %/R(Qm“)d(%)
= /R (esm?dm% /R (d(‘z;f ))de

Identity (6.3.18) shows that &, is positive semi-definite. It also shows that
fR &, f)%dr < fR &, f)fdk, which implies that &,; is contracting and hence can be
continuously extended to a contraction of the whole space L2(dk). &, is locally trace

d(®,f)
dx

(6.3.18)

class because it is positive semi-definite and its functional kernel is continuous (see
theorem 2.12 in [27], chapter 2).

Next we give a criterion for ), to be finite or just to be finite in the neighbourhood
of either 400 or —oo

Proposition 6.9. — If f(o +00) zk(dx) < +oo then almost surely $(Vso N (0, +00))
is finite. Moreover

(6.3.19) E[#(Voo N (0,400))] = / G(z,z)k(dx) < +00

(0,+00)

If f(o to) TH(dx) = +00 then almost surely §(Voo N (0, +00)) = +00. In general, for
alla e R

(6.3.20) P(Vso N (a, +00) = ) = uy(4+00) /( ] uy(z)k(dx)
Similarly, if [, |x|k(dr) < +oo then a.s. §Vu is finite and
E[iYVe] = | Gz, x2)k(dx 00
9] = [ Glaain(dn) < +

If [5 |zk(de) = +oo then a.s. Yoo = +00.
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Proof. — We need only to deal with the finiteness of #(Vs N (0,+00)). If
f(O,-l—oo) x k(dx) < +o0 then (6.3.19) holds according to 2.3 and hence (VN (0, +00))
is finite is finite a.s.

We will prove (6.3.20). If [, , ) @#(dz) = +oo then according 2.3 uy(+00) > 0
and thus §(Vs N (0,+00)) = 400 a.s. Let a < b € R. We assume that the two first
starting points in Wilson’s algorithm are a and b. Then
(6.3.21)

— (a) (a) b _
P(Voo N (a,b] = 0) ]P’(B > b) + (BTI, <a,B)" = a)
(a) (@) b) 1 ;
IP’(B > b) (BCf < a) X IP’(B( ) hits a before time §2)

uy (b)
/<b,+oo> Gla, p)nlde) + (/(—OO,a] G(a’z>“(dz>) . ui(a)

:/ G(a,z)k(dx) +u¢(b)/ up () (dz)
(b,400)

(70010‘]

Letting b go to +o0 in (6.3.21) gives (6.3.20). O

Next we will show that Z, is a determinantal point process with kernel KC relatively
to the Lebesgue measure where

Kl 2) = = 3 2 (A 2) ) (v 2))

- /(OO,y/\z] up(@)(de) x /[yvz#oo) uy (2)k(dx)

Proposition 6.10. — Letn>1 and a1 < by < as <by <---<a, <b, €R. Then

3. E Zoo vy bp = det(KC iy %5))1<i,j<n dz,
322 & |[[1z= 0 (a >>] Y A CR IR | O
If forr € {1,2,...,n}, k({ar}) = k({b,}) = 0 then

(6.3.23)

P(vr € {1,2,...,n},8(Zac N (ar, b)) = 1) = det(K(as, bj))1<ij<n x [[ (b

Proof. — We will only prove (6.3.23). (6.3.22) can be deduced from (6.3.23) by diving
the intervals (a., b,) in small subintervals and approximating the expected number of
points in these subintervals by the probability to have one single point per subinterval.
Observe that if the measure x has atoms then X is not continuous. Yet z — %(z*)
is right-continuous and z +— %(z*) is left-continuous. So the approximation can

still be done.
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Consider the Wilson’s algorithm where the 2n first starting points are in order
al,bl,ag,bg,. ..,an,bn. Then

(6.3.24) P(Vre {1,2,...,n}4(Zu N (ar, b)) =1) =

P(Vre{l,Q,...,n},(aT, D CRN | (e myoo_(b)

JET2n

Applying lemma 6.4 we get that (6.3.24) equals

(6.3.25)
- 2(by — ay)
P(vre (120 b anb) € = U 7) % 1 oty
Further
(6.3.26) P(Vr €{1,2,...,n},(arb,) CR\ [ J) =

JET2n

2r 41

Applying (6.3.1) and (6.3.3) we get that (6.3.26) equals
(6.3.27)

[T ua(ar)ur(0) = s 0n) /

(—oo,a1]

us (1) dyn) x /[ et

:1

( bl 4 [ n()un) )l (i)

But

6328 [ s )w(d5)

%/b . u¢(yr)((i;; (ary1) — ?(yr ))H(dyr)

duy du¢ duT 1 / duy
= T br T o ) 5 d r
4( d.T (a’ +1> dQE ( )) dQE (a’ Jrl) 2 b <yT<aT+1 u’i(y ) d.T (y’l“ )K( y )

and

©320) = [ o wd) s ( )

S B~

duy duy duy / duy
(Tl = 0 @) +5 | o) G ()

N~

1
4
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Combining (6.3.28) and (6.3.29) we get that

/b o () () —un (g ey (5))e(dye Jx(dg)

1 /dus duy duy duy
= (G )G ) = L0 T )

f%/b < (m(yr)%(yf) - uT(yr)Cfi—(yr ))n(d%)

(S 0 B (1) — D (0) D 0,41)) — )

It follows that (6.3.27) equals

= 1du du
(6.3.30) H uy (ar)us(by) — up(ar)uy (b)) x (— Zd—;(a ) d; (bn, ))
r=1

ﬁ (3 (5200 S ) — T T (wri))
= g7 Loy 0r) (o)) x (Ko i

(6.3.25) together with (6.3.30) gives (6.3.23). O

To see that the operator induced by the kernel K on L?(Leb) is positive semi-
definite, one can check that for any L? function f with compact support

[ Hwk )Gz = [ 6G.2) ( | f(w)dw> (A5 ()

Too see that K induces a contraction one can check that for any C! function f with
compact support

[kt @yds = [ f@rde -5 [ Faca.27 G

and that [o, L(7)G(7, %)L (2)djdz > 0.
The determinantal kernels G and K both satisfy the following relation: for any
r<y<zelR

(6.3.31)  G(z,y)G(y,2) = G(z,2)G(y,y)  K(z,y)K(y,2) = K(z, 2)K(y, y)

For x € R and y, z > x, we define
(6.3.32)
G (y,z) == Gy, z) — Gz, y)G(x,2)

G(z,x)

K(z,y)K(z, 2)

K (5.2 = Kl ) = S
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Relation (6.3.31) ensures that det(G(yi, y;))1<i,j<n and det(K(z;, zj))1<i,j<n can be
factorised as follows: If y; < yo < --- < y,, then

n

(6.3.33) det(G(yi, yj))1<ij<n = G(Y1,1) H GO (g, yy)

r=2

If 21 <29 <+ < 2, then

n

(6.3.34) det(K (i, 2))1<ij<n = K(z1, 21) [ K% (21, 24
r=2

The relations (6.3.31) or equivalently the factorisations (6.3.33) and (6.3.34) imply
that the spacings between consecutive points of ), respectively Z., are independent,
that is to say conditionally on )., having a point at yp, the position of the next
higher point y is independent on Y., N (—00,yo), and similarly for Z,, ([28], section
2.4). Conditionally on yg € Vs the distribution of its higher neighbour in Vs, is of
the form fa(yo,y)x(dy). Similarly denote fi(zo,2)dz the distribution between two
consecutive points in Z,, conditionally on zp be the lowest one. Following relations
relate G(¥0>)(y, ) respectively K(*0%)(z, 2) to fg respectively fi:

G (y,y) = fa(yo,y)

+Z/ falo,y)fa(yry2) - fa(yi—1,y)k(dyr) - k(dy;-1)

§>2 Yo<y1<-<yY;j—1<y

K& (2, 2) = fic(z0,2)

+ Z/ f}c(Z(), zl)f;c(zl, ZQ) o fIC(Zj—h z)dzl .. .de_l
§>2 zo<z1<<zj—1<z
If [ig, 400y T R(dz) < +00,ie. Yoo (0, +00) a.s. finite, then [, ) fa(yo,y)r(dy) <

1 and f frc(z0,2)dz < 1.

G1ven a couple of interwoven point processes (), Z) on R such that between any
two consecutive point in ) lies one single point of Z and such that for any J bounded
subinterval of R Y satisfies the constraint

E[t(Y N J)] < +oo

the joint distribution of (), Z) can be fully described using the family of measures
(Mn (y, Z))nzo defined by

/fyoMo(yz (dyo) =E[ 3 F(wo)]

Yo€Y
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/ FWo, 21, Y15 -+ - 20, Yn ) Mn (Y, Z)(dyo, dz1, dyr, . . . dzy, dyy)
Yyo<z1<yi<...zn<Yn

=E Z F(Wo, 21,915 -+ - Zn, Yn)

n + 1 consecutive points in Y
Zlyeney Zn € Z
Yo < z1 <Y1 <...z2p < Yn

M,.(Y, Z)(dyo, dz1,dy1, - . . dzp, dyy) is the infinitesimal probability for yo,y1,...yn
being n + 1 consecutive points in Y and z1, ...z, being the n points in Z separating
them. In case of (Yoo, Zo0), Mo(Voo, Zo0)(dyo) = G(yo, yo)r(dyo)-

Proposition 6.11. — Forn >1
(6.3.35)
My, (Voos Zoo)(dyo, dz1, - . . dzn, dyn) =2"u(yo)uy (yn)k(dyo)dz1 - . . dznk(dyn)
=2"G(yo, yn)k(dyo)dz1 . . . dzpk(dyy)
Moreover

uy(y)
uy(Yo)

fa(o,y) = 2(y — vo) k(dy) — almost everywhere

d 14
(20, 2) = 26((20, 2)) (%(Zo)) %(z) dz — almost everywhere
x x
The distribution on Z., conditionally on Vs is the following: given two consecutive
points y1 < Y2 N Voo, then the point of Zo, lying between them is distributed uni-
formly on (y1,y2) and independently on the behaviour of Z, on (—oo,y1)U (ya, +00).
The distribution on Vs conditionally on Z4 is the following: given two consecutive
points z1 < zo N Zs, then the point of Vs lying between them is distributed on
(21, 22) according the measure 1Z1<y<22% and independently on the behaviour
of Voo 0m (=00, 21)U (22, +00). If [ o |2|k(dz) < +oo, then min Vas is distributed

x(dy)
o k((—oo,min Z,))
dependent on the behaviour of Yoo on (—oo,min Zy). Similarly for the distribution

of max V., conditionally on max Z., if f(o +00) zk(dx) < 4o00.

conditionally on Z, according to the measure 1y<min = and it is in-

Pmof.—Leta0<bo<d1<l~)1<a1<b1<---<dn<l~)n<an<bn€R. Let
%n(ao,bo,a1,b1,a1,b1,...,Gan, by, an,b,) corresponding to the following conditions:

— Voo Nao, bo] # 0, Voo N [an,by] # 0
—Vred{l,....,n}H (Vo N[ar,b;]) =1
—Vre{l,....n}#(Zx N (@, b)) =1
—Vre{0,...,n =1}, (Voo U Zo0) N (bry @] = 0, (Voo U Zoo) N [by, iy 1) = 0
We will compute the probability of ‘Kn(ao,bo,dl,gl,al,bl, .. .,dn,l;n,an,bn). Con-
sider that we execute the Wilson’s algorithm where the 2n first starting points are

as, l~71, «evyQpn,by. The only configurations that contribute to the studied event are
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those where B(T‘?) € [ao, bol, B;f;l;) € [an,bn] and for r € {1,...,n — 1}, B

B(T&f“) € [arg1,br41])- We further need that for r € {1,...,n}, Yoo N (ELT,BT)
2r+1

Thus applying (6.3.1), (6.3.3) and lemma 6.4 we get the probability of the event

Gn(ag, by, a1,b1,a1,b1,...,0n, by, an,by) equals

/[a07b0] UT(yO)K(dyO) . /[an,,bn] ui(yn)ﬁ(dyn) X 71;[1 H([a“ br]) X H 2(?% - er)

The above probability also equals My, (Vso, Zo0)([ag, bo] X [a1,b1] % [a1,b1] X -+ x

[Gn, bn] X [an,by]) and gives the expression of (6.3.35). To get the expressions of fg
and fic just observe that

G (y0,Y0) fa (Yo, y)k(dyo)r(dy) = Mi([yo, yo + dyo] X (yo,y) x [y,y + dy])

K(z0, 20) fic (20, 2)dzodz = M3((—00, 20) X [20, 20 + dz0] X (20, 2) X [2, 2+ d2] X (2, +00))

Expression (6.3.35) gives also the law of Z., conditionally on Y, and the law of
Vs conditionally on Z,, except for the possible extremal points of V... Let’s deal
with the distribution of max )., conditionally on max Z., in case f (0,400) zk(dx) <
+o00. Again according to (6.3.35), conditionally on zg € Z., the distribution of
min Vo N (20, +00) is proportional to 1y, u;(y)k(dy). To obtain the distribution
max Voo conditionally on max Z.,, one must weight u;(y) by 1 — fg>y fa(y, 9)k(dg),
i.e. the probability of not having any point in Y, consecutive to y. But

(3 — )49 . (ag)

| setwinan =2 | G-nid

. g—yduy, 1 / duy o\ .
lim —(y7) — — (g7 )dy
g—+oo uy(y) d:z:( ) up(y) Jgsy dx( )
But
. duy , -
G0 =G-v [ ek <z (@ pusds) 50
x (§,+00) (§,+00)
It follows that:
N (e 1 duy .- uy (+00)
fa(y, 9)k(dg) = — / — (G )dy =1 - ———=
g>y ( ( uy(y) 7>y dx( uy(y)

Thus 1y>Z0u¢(y)(1 - fg>y fG(y,g)n(dﬂ))n(dy) is simply proportional to 1y, k(dy).
O

Proposition 6.12. — In case [, |x]k(dz) < +oo

P(#YVoo = 1) = up(—00)uy (+o0)x(R)

Conditionally on YV~ = 1 the unique point in Voo is distributed according i(g%).
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Proof. — The distribution of the unique point yg of V. on the event )., = 1 is
given by the following sieve identity:

(G(yoayt))—/ ) G(Y-1,Y-1)fc(y-1,v0)k(dy-1)
*/ G(Y0,yo0) fa (Yo, y1)k(dyr)

+ /y » /y Gl y1)fG(y1,yo)fc(yo,y1)l-€(dy1)H(dy1)) (dyo)

It is the infinitesimal probability of V. having a point at yo minus the probability of
having a point at yo and an other lower, minus the probability of having a point at
yo and an other higher, plus the probability of having a point at yg surrounded by
two neighbours on both sides. The identity can be further factorized as

(00 =2 [ 0= eayuntronintann)
X (w(yo) - 2/y1>y0 (y1 — yo)m(y1)fi(dy1)> x £(dyo)

According to the calculation done in the proof of proposition 6.11 this the above
equals uq(—o0)u (+00)k(dyo). O

Now let’s describe (Vso, Zo0) in two particular cases. If the killing rate is uniform,
that is k(dy) = cdy where ¢ is constant, then

CfG(an :L') = f}C(ZL'o, :L') = 20(1' — $0)67@(17$0)

Both the spacings of V., and Z,, are i.i.d. gamma-2 variables with mean \/g . Ac-
tually the union Y., U Z, is a Poisson point process with intensity v/2cdz. If the

jez 0; where c is constant, then again the spacings

between consecutive points in V., are i.i.d random variables, this time integer valued.
Let N3 be a random variable with same distribution as this spacings. For any j € N

P(Ny = j) = 2¢j(1 4 v2¢) 7
Ny can be written as Ny = N7 + Kfl — 1 where N7 and Kfl are two independent

killing measure is of form k = ¢

geometric variables of parameter (1++/2¢)~!. Actually, if yo < y are two consecutive
points in V. and z the point of Z,, lying between them, then conditionally on yq,
(lz] — yo,y — |2]) has the same law as (N — 1, N). Moreover {|z]|z € Zs} has the
same law as V.

6.4. Determinantal point processes (), Z): general case

Let I be an open subinterval of R and L be the generator of a transient diffusion

on I of form L = ﬁ% (ﬁ%) — Kk with zero Dirichlet boundary conditions on
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0I with sample path denoted (X¢)o<t<c We will describe, without proof, the law of
(Voo, Zo0) in this generic case. It can be derived in the same way as it was done in
the previous section. Let G be the Green’s function of L relatively to the measure
m(y)dy, factorisable as G(z,y) = uq(z A y)uy(z V y).

Proposition 6.13. — Y., and Z,, are a.s. discrete point processes. Let OI be the
boundary of I in RU {—o0,+o0}. Almost surely

Voo NOI = {y € OIP(X- =y) >0}

If k # 0, the points in Yo N1 are a determinantal point process with determinantal
kernel G(x,y) relatively the reference measure m(y)k(dy). Z. is a determinantal
point process on I with determinantal kernel

duy duy

—((yn2)")—=((yV2)~

o (A=) =y v2)7)
relatively to the reference measure %. Given two consecutive points y1 < yz in

Voo, then the point of Z. lying between them is distributed according to the mea-
w(z)dz
Jeus ) w(@)da
(y2,+00). Given two consecutive points z1 < za in Zoo, then the point of Voo lying

sure 1y, <2<y, and independently on the behaviour of Zo, on (—oo,y1)U

between them is distributed on (21, z2) according the measure 1Z1<y<22%
(21,22)

and independently on the behaviour of Yoo on (—00,21) U (22, +00).






CHAPTER 7

MONOTONE COUPLINGS FOR THE POINT
PROCESSES (s, Z.)

7.1. Conditioning

In this chapter we will deal with monotone coupling for the determinantal point
processes Vo, and Z., intruded in chapter 6. We will restrict to the Brownian case.
Consider two different killing measures x and & on R, with x < &, and the couples
of determinantal point processes (Moo, Zoo) respectively ()700,200) corresponding to
the Brownian motion on R with killing measure x respectively . We will show
that one can couple (Yoo, Z) and ()700,200) on the same probability space such
that Z,, C Z~Oo and )700 C Voo U Supp(k — k). Moreover if k and K are proportional
we may also have Vo, C )700. We will provide an explicit construction for the this
couplings in the section 7.2.

In the section 7.1 we will prove conditionning results for (Veo, Zo0): what is ob-
tained if YV, or Z, is conditioned by either containing a point at a given location or
not containing any points in a given interval. These results will be used in the next
section. The conditional law we will obtain are analogous to those of the Uniform
Spanning Tree on a finite undirected connected graph: Let G be such a graph, F the
set of its edges, C' a weight function on E and T the corresponding Uniform Spanning
Tree on G. Let F; and F»> be two disjoint subsets of E such that F; contains no cycles
and such that erasing the edges in Fy does not disconnect G. The law of T condi-
tioned by E; C Y and Y N Ey = @ can be described as follows: Let G’ be the graph
obtained from G trough erasing the edges in Es and contracting (i.e. identifying the
two end vertices) the edges in F1. The edges of G’ are in one to one correspondence
with E \ Ey. If we keep the same weight function C on these edges and take Y’ an
Uniform Spanning Tree on G’, then Y/ U E; has the same law as T conditioned by
E; €Y and Y N Ey = (see proposition 4.2 in [1]).

Let x be a Radon measure on R and G(z,y) = ut(z A y)uy(z V y) the Green’s
function of 1 j—; — k. First we will restrict the Brownian motion with killing measure

2
k to a half-line by adding either a killing or a reflecting boundary point and describe
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what is obtained if we apply the Wilson’s algorithm to it. This is related to some of
the conditional laws we are interested in. Diffusions with reflection were not discussed
so far.

For zg < y let

() = up(y) -

and for xg < y, z let

G(mox)(y’z) — U%IOX)(Q A z)ui(y V Z)

(wox)
" 1du du _
KEN (g, 2) o= —5 —L— (A=) )V 2)7)

G(®0%) was already introduced in (6.3.32). For y < x¢ let

L) — o))

(XI())
U
b ur(wo)

y)i=u
and for y, z < xg let

GOy, 2) == uy(y A 2)uf ™ (y v 2)

1 duy duix @o)

KO0 (y,2) = —5 =Ly A o)) ——((y v 2)7)
1.4d?

G@0x) respectively G(*#0) is the Green’s function of 5 9.2 — k restricted to the interval

(x0, +00) respectively (—oo, x¢) with zero Dirichlet boundary condition at .
Let zy € R such that k({zo}) = 0. For zg < y let

xo —1du
uf"™ () = ur(y) +

du, 1
o)) T @o)uy)
and for y, z < x¢ let

dx

G(IOD) (% Z) = ’UJ%IOD) (y A Z)Ui(y v Z)

(wor)
1du du
(zob) —_ + g -
KOy, 2) 1= =5 (g A 2) ) S (g v 2))
K(*0®) was already introduced in (6.3.32). For y < xq let

W0 (y) 1=y (y) + (%(xo))—l%(zo)m(w

and for y, z < x¢ let

G(qzo)(y’ Z) = U’T(y A Z)UE/QIO)(:U V Z)

1 duT

K(qmo)(y,z> - 75%(@ A Z>+) ix ((y V Z)i)
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G@o™) regpectively G(970) is the Green’s function of % 5 d 4 — k restricted to the interval
[0, +00) respectively (—oo, zg] with zero Neumann boundary condition at zg. Equiv-
alently G(*0®) respectively G(9%0) is the restriction to [z¢, +00) respectively (—oo, x|
of the Green’s function on R of éd 22 L[z, 400) K TESPECtively %# = 1(—oo,z0] K-
Consider now z9 € R and (zy),>1 & dense sequence of pairwise disjoint points
in (zg,+00). We consider the Wilson’s algorithm applied to the Brownian motion
on (xg,400) with killing measure « and killing boundary zo, where (x,,),>0 is the

V) and 2507 be the interwoven point processes

sequence of starting points. Let
in [xg, +00) obtained as result. See figure 3.a for an illustration of the first four steps
of Wilson’s algorithm and of (yé;””), Z&fox)). According to proposition 6.13, zg €

(@0x) a.s., @) (20, +00) is a determinantal point process with determinantal
kernel G(*0%) relatively to the measure L (20, 400)k and Zc(xf" *) is a determinantal point
process with kernel K(#0%) relatively to the measure 1.>2,dz. The distribution of the
2n closest to xp points in (y(”“’x) N (xg, +00)) U 2{0) the odd-numbered belonging

to yéif“x N (29, +00) and the even-numbered to Zg“x), is given by the measure

M) Yz Z2E0) ) (dzy, dy, . .. dz, dys) = 2"U¢Ey”§dzm(dy1) oo dzph(dyy)
uy(To

Its total mass equals P(ﬁy@“) > n+1). If the Wilson’s algorithm is applied to
the Brownian motion on (—oo,xg), killed at 2y and with killing measure &, and
(y(”") Z(XI(’)) are the point processes returned by the algorithm, then the distri-
bution of the 2n closest to zo points in (V™) N (=00, 20)) U 287 is given by the
measure

MT(IX%)O}CEOMO)’ Zéo””))(dz_l, dy_1,...,dz_p,dy_y) =

2”%&2 16(dy—1) ... dz_nk(dy—_n)

Let now 29 € R such that x({zo}) = 0. If we replace the Brownian motion
on (zg,+00) killed in o by a Brownian motion on [zg,+00) reflected in zg, and
keep the killing measure x, we get another pair (yéi‘”), Z&f"b)) of interwoven point
processes on [xg, +00). The pair (y(x“” Z (IUD)) can be also obtain through applying
Wilson’s algorithm to a Brownian motion on R with the killing measure 14, 4o0)-

(zo>) Z{o"))  Observe the difference with figure

See figure 3.b for an illustration of (YVso
3.a at the third step of Wilson’s algorithm. JJ( °®) is a determinantal point process
with determinantal kernel G(¥o>) relatively to the measure 1(z, 1o0)k- Zc(xf(’b) is a
determinantal point process with kernel K (o) relatively to the measure 1,>2,dz. The

distribution of the 2n — 1 closest to xg points in y§3§°'>> U Zc(g(’b), the odd-numbered



110 CHAPTER 7. MONOTONE COUPLINGS FOR THE POINT PROCESSES (Yoo, Zoc)

belonging to 2$%*) and the even-numbered to yéf;‘“b), is given by the measure

Mo (YEop) | Z(@02)y gy dzy .. dzn_y, dyy)
_9n (E(xo)) u¢(yn)n(dy1)d21 coodzp_1k(dyn)

If the Wilson’s algorithm is applied to the Brownian motion on (—oo, 2], reflected at
xo and with killing measure &, and ()Jé;u”), ZC(,Z]J“'O)) are the point processes returned by
the algorithm, then the distribution of the 2n—1 closest to x points in yé;“””“ U z{gzo)
is given by the measure

M 3mo) (Y(azo) | Z (o)) (dy y dz_q,...dz_pi1,dy_pn) =

du -1
2"(d—;(170)) up(y—n)r(dy_1)dz_1 ... dz_py16(dy_n)

) T3 T2 T4 T
° ° ° ° N

o T3 x2 T4 1

xg T3 T2 T4 T

X
X
X

\
4
R
4
q

xo x3 x2 T4 Z1
xg
Y Y Y
7N 7N 7N 7N 7N 7N
Fig. 3.a - Illustration of the first four steps of Wilson’s algorithm in case of killing at xq
and of (yéi’“x), Zgox)): x-dots represent the points of y,‘f'“x),
diamonds the points of 27(le><) and thick lines the intervals in Jflw”x).
x0 x3 x2 T4 Z1
i) xrs3 2 T4 x]
. ° X . L2
o xr3 2 Z4 1
. a4 . b4
xo xs3 2 T4 x1
. > >
o
X b4 b4
T 4 7N 7N 7N 7N 7N

Fig. 3.b - Illustration of the first four steps of Wilson’s algorithm in case of reflection at zg
and of ())C(ngob), zc(jf‘”)): x-dots represent the points of y}f“”,

diamonds the points of ZSLIOD) and thick lines the intervals in jr(lng).
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Let V., and Z,, be the determinantal point processes associated to the Brownian
motion on R with killing measure k. Let n,n’ € N*. The following two factorizations
hold:

MnJrn’(yoo; Zoo)(dyfn’; dZ,n/, e dy,l, dzfla dyO; le, dyla ceey dzna dyn) -
MUY (YEvo) ZOW0 ) (dz g dy g, ... dzpr, dy—nr) X G(yo, yo)r(dyo)
x MWo) (YWox)  zWoX)y(dzy dyy, ..., dzy,, dyy)

Mn+n/71(y007 Zoo)(dyfn/v dzfn’Jrlv e dZ,l, dy*lv dzOv dyh le, ) dznfla dyn) =
MT(;]Z“)(JJSZ”), 2N (dy_1,dz_1,...dz_pi1, dy_n) X K(zo0, z0)dzo
x MoP) (PEoR) -z (o) (dyy dzy, L dz,_q, dyy)

The above factorisations imply the following;:

Property 7.1. — Lete > 0 and let F1 and Fy be two measurable non-negative func-
tionals on couples of point processes on R and f a measurable non-negative function

on R. Then

E { > FW0) Fi (Yoo (=00, Yo], ZooN(—00, 30]) Fa (Voo N[0, +00), ZoeN[yo, +oo))]
YoEVoo

= / £ (50) G (yo, yo E[FL (V) ZL0)E[F (W5, 28807))]k(dyo)
R

and

]E{ > f(zO)Fl(yooﬁ(oo,zo],Zooﬁ(oo,zo])Fg(yooﬂ[zo,Jroo),Zooﬂ[zo,Jroo))]

20€E 200
- / F(20)K (20, 20)E[Fy (V) ZL=NE[Fp (V™) 2E0%))]dzg
R

If yo € Supp(k), then conditionally on yo € Voo, (Voo N (—00, Yo, Zoo N (—00, Yol)
and (Voo N [Yo, +00), Ze0 N [Y0, +00)) are independent, (VooN(—00, Yo], ZecN(—00, yo])
has the same law as ( §§y°),z§§y°)) and (Voo N [Yo, +0), Zoo N [yo, +00)) has the
same law as (yéé‘“”,zéé‘“”).

If K((=00,20)) > 0, k((20,4+00)) > 0 and k({z0}) = 0, then conditionally on
20 € Zoo, (Voo N (—00, 20], Zoo N (=00, 20]) and (Vs N [20, +0), Zoo N [20, +00)) are
independent, (Voo N(—00, 20], Zoo N (—00, 20]) has the same law as ()/SZO), ZSZU)) and
(Voo N [20, +00) 2o N [20, +00)) has the same law as (yéé"b), Zéé“b)).

Let yo € R and ¢ > 0. We will denote by (yéé"”,zéz”)) the pair of interwoven
determinantal point processes corresponding to the killing measure s + cdy,, con-

ditioned on yég“ containing yo. The law of (yéé’“,zé}{”)) does not depend on the
value of ¢ according to the property 7.1. (yéé’”) N (yO,Jroo),Zég”) N (yo, +00)) and
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(Y A (=00, 10), 289 N (00, 10)) are independent. The distribution of the 2n clos-
est to yo points in (V) U Z(yo)) N (yo, +00), on the event H(YY") N (yo, +00)) > n,
is

nu’ yn
(7.1.1) Lyo<zr<ys <o <zn<yn 2 o >d21“(dy1)---dzn’f(dyn>

uy(yo)

The distribution of the 2n closest to yo points in (yéé“) u Zéé’”’) N (=00, o) is

U
(7-1-2) 1yo>z,1>y71>~~>z,n>y7n2 Mdz 1’1(dy 1) dZ—n’f(dyfn)
ut(yo)

Let a < b € R. Next we will describe what happens if we condition by Z,, N
[a,b] = 0. This condition implies in particular that #(Vse N [a,b]) < 1. Let R be the
quotient space where in R we identify to one point all the points lying in [a, b]. R is
homeomorphic to R. Let & be the projection from R to R. Let 6 be the class of [a, b]
in R. We define on R the metric dg:

)

() =y —=.

—Ifr<y<aorb<z<ythen dg(7(x)
) =—2)—(b-a)

— If x < aand y > b then dg(7(z), 7 (y))

— If x < a then dg(7(x),0) = a — .

— If £ > b then dg(7(x),0) =« — b.
R endowed with dg is isometric to R. So we can define a standard Brownian motion on
R. Let & be the measure r pushed forward by # on R. In particular 2({6}) = x([a, b]).
Let (yoo, o) be the pair of interwoven determinantal point processes on R obtained
by applying the Wilson’s algorithm to the Brownian motion on R with killing measure

K.

Proposition 7.2. — Conditionally on Z.cN[a,b] =0, (7(Veo), 7(Z£c0)) has the same
distribution as (Veo, Zoo). Moreover on the event Yoo N [a,b] # 0, the unique point in
Voo N a, b] is distributed according the probability measure —*=Y=2p )

Proof. — First we compute P(Z5 N[a,b] = ). We consider that a and b are the first
two starting points in the Wilson’s algorithm. Then

P(Zs N [a,b] = 0) :P(B(TC? > b) + IP(B(T‘? <a,BY) = a) + ]P’(B(T‘? =B € a, b])

=5 I 0 Yy (0) — gurla >Cfi“ (5%) + ur(@)u, (0. B)

Next we determine the Green’s function G of 1 — & on R. Let Uy and 4 be

2 d i
two solutions on R to
i
2 dx un=
with the initial conditions @4+(0) = uq(a), d—T(H’ = dd%(a*), 4,(0) = uy(b) and

)
20 (g+) = L9 (pt). Then for = < a, @y (#(2)) = up(z) and for x > b, a4 (7(z)) =
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uy(x). 44 and 4, are positive, @4 is non-decreasing and @ non-increasing. Moreover:

ity g _ dig o -
T (0%) = ZE07) + 20 O)A(0) = Sl () + 2us(a)n([a, b)
The Wronskian of 4 and 4 equals
. . diy . di
W(ty, i) :U¢(9)E(9+) - u?(@@(m)

:d—f(aﬂw(b) - uT(a)%(bJr) + 2ur(a)uy (b)r([a, b])

=2P(Z5 N [a,b] = 0)
Thus G equals

P o CRAN L
@9 = Pz nab

FAVEN)
| =0)
In particular if z < a and y > b then
~ ur(T)u G(x

(7.1.3) Glr(@). 7)) = gz (m )[aié]y = 1) P2 m([;,yﬁ] =0

To prove t}ae equality in laYV, we need to consider the probabilities of ‘Ehe events
%n(ao,bo,dl,bl,gl,bl,...,dn,bn,an,bn) where n > 1 and ag < bg < @1 < by < a1 <
by < - <ap <b, <an <b, €R, corresponding to following conditions:

— Yoo Nao, bo] # 0, Voo N [an, by] # 0

—Vre{l,...,nhi(Vs Nlar, T]):l

—Vre{l,...,n} #( 2o N (ap, b)) =1

—Vre{0,...,n—1}, (Voo U Zo0) N (by,@r] = 0, (Voo U Zoo) N [br, arp1) = 0
We will also assume that either all of the [a,,b,] do not intersect [a,b] or one of the
[ar,b,] is contained in [a,b] and the other do not intersect [a, b]. The probabilities of
such events determine the joint law of (Vao, Zo0) on the event Vo, > 2, Zo,Na, b] = 0.
We will denote %n (+) the analogously defined events where we replace (Yoo, Zo0) by
(yoo, ). We do not need to deal with the event $),, = 1 because then Z., = 0.

We first consider the case of [a,b] N (U;_y[ar, by]) = 0. If there is 7o € {0,n — 1}
such that b,, < a and b < a,,+1 then

P ((gn(ao,bo,al,l;l,al,bl, .. .,&H,Bn,an,bn),zm n [a,b] = @)

= /[ao,bo] up(yo)r(dyo) x /[ambn] uy (Yn)k(dyn) X Tl;[l w([ar, br])

< I 2(br — ar) x 2Leb([dry, bry] \ [a, b])
r#rg

Using (7.1.3) we get that the above equals
P(Zo N a,b] = 0) x P (%}(ﬁ(ao), #(bo), 7 (@), 7 (b), ... ,fr(an),fr(bn)))
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If b < ag, then we consider a Wilson’s algorithm where the 2(n+1) first starting points
are dl, bl, ey &n, bn, a, b. The conditions an(ao, bo, &1, bl, ai, bl, ey dn, bn, Qn, bn) and
Zoo N a, b] = O are satisfied if and only if the following is true:

ai bn b a,
- B<T1,> € [ao, bol, B<T2,n> € [an,by], for all r € {1,...,n — 1}, B(TZ,B = Bl ¢

[ar,b;] and for all 7 € {1,...,n}, Voo N (Gr,b.) = O.

O (a) (a1) (b) (@  _ p®
Either BTZ,n+1 € (b, BTf ] or BTZ,n+2 <aor BT;”+1 =B o € [a,b].

Then
P(an(ao,bo,&l,gl,al,bl, e ,dn,l;n,an,bn),Zoo n [a,b] == @)

/[ \ ]Ui(yn)ﬁ(dyn) X 1:[ H([ar,br]) X H 2(?77" i &r)

r=1 r=1

X (UT(CL)/ (uy (y)ur(yo) — ur(y)uy(yo))r(dy)k(dyo) + ur(a)k([ao, bo))
b<y<wyo,yo€[ao,bo]

([ wtomsnty) + ur@)n(lon. b))

x /[] (uy (B (o) — uT<b>u¢<yo>>n<dyo>>

n

) TT #la-. b)) = [ 265, — )

r=1

% (%UT(a) /[ao,bo] (%(“)UT@O) - %(bﬂui(yo))ﬁ(dy())

+ (%%(a*) + ur(a)s(lao, bor))) /

o 1 Our(a0) ~ wy (B)uy (o) (o)

But for yg > b
(7 (90)) =50 () (5 (6 Y (90) — S 5%y )

(5T @) + urla)s(la, b)) (s (e (40) — e (6 30)

Indeed one can check the initial conditions 44+(7(b)) = wut(a) and %(ﬁ'(b)*‘) =
dd%(a_) + 2ut(a)k([ao, bo). It follows that
P(%’n(ao’ bOa a/la 613 ttty ana bn)) ZOO N [a’a b] = @)
n—1 n
:/ ﬂT(ZJO)H(ng) X / ﬁl(gn)’i(dgn) X H H([arabr]) X H 2(br - dr)
[#(a0),7 (bo)] [7(an),7(bn)] r=1 r=1

:P(Zoo N [a’a b] = (Z)) x P ((é;z(ﬁ(a())a ﬁ(bO)vﬁ(ad)a 7Ar(l;l)v ) 7Ar(a’n)vfr(bn»)

Similar holds if b, < a.
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Now we consider the case when there is ro € {0,...,n} such that [ay,,br,] C [a,b]
and [a, b] N (Uriro[ar,br]) =0. If1<ry <n—1then

P (%H(GOabOaa/laEl) st )an)bn))ZOO N [aab] = @)

n—1

< [ 20— ar) x 2Leb([ary, bry] \ [a,b]) x 2Leb([arg+1, bros1] \ [a, b])
r#ro,ro+1
_ ti([@ry, bro])

IR P(Z N[a,b] = 0) x P (cgn(fr(ao),ﬁ(bo), #@1), 7 (B1), ..., 7 (an), fr(bn)))
Moreover 7 (ar,) = T (by,) = 6. If 7o = 0 then
P (%n(ao, bo, aq, l~)1, ey Qny, bn), Zo N [a, b] = @)

—ur(@)(fao, bo]) % / uy () (dy)

[an, n]
X T ([ar, b H 2(b ) x 2Leb([a1, b1] \ [a, b])
_ﬁqcf,b]) B U
_ K([z, bo) % P(Zo N [a,5] = 0) x P (%n(w(ao),ﬂ(bo), #@1), 7#(B1), . .., 7(an), w(bn)))
and 7 (ag) = #(by) = 6. We have a similar expression if ro = n. O

Next we deal with the condition of the determinantal point process Vo, not charging
a given subinterval of R. We will consider the following more general situation: Let
k and K be two different killing measures on R, with « < K, and the couples of
determinantal point processes (Voo, Zo0) respectively (yoo, o) corresponding to the
Brownian motion on R with killing measure x respectively k. Let G be the Green’s

function of 2 — K, factorized as

G(x,y) = ip(z Ay)iy(z Vy)

a2
2 d:c2

Let
1 diiy du

Kly.2) =5 M A2 (v 2))

We will assume that & — k has a first moment, that is to say

[ (i) = wdo)) < +o0

Let x be the Radon-Nikodym derivative
. ds
X7 R

By definition 0 < x < 1. Let Af/ be the point process obtained from )700 as follows:
Given a point y in Yo, we chose to erase it with probability x(y) and keep it with
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probability 1 — x(y), each choice being independent from the other choices and the
position of other points. It is immediate to check that A)~J is a determinantal point
process with determinantal kernel (é(:c, Y))zyer relatively to the measure (1 — x)F,
that is to say the measure K — k. We will show that conditionally on AY = 0,
(Voos Z0) has the same law as (Vso, Zoo). In case 1 — y being the indicator function
of a bounded subinterval of R, this gives the law of (yoo, ) conditioned on Y. not
charging this subinterval.

Lemma 7.3. — AY is a.s. finite. Let
vealy) = (wy) [ ) - ) @(dy_l))
x (auy) [ ) - ) - n)(dyn)

Then
P(AY = 1) = / o 2 (1) (% — ) (dy)

The distribution of the unique point in AY conditionally on ﬁAJNJ =11s

Ui (Y) (R — K)(dy)
P(HAY =1)

Furthermore

N | —

P(aY > 2) < 5( [ Glu)(Ean) — ()

and P(AY = 0) > 0

Proof. — First let us check that [ G(y, y)(R(dy) — r(dy)) < +oo. Since & — & has
a first moment, we need only to show that é(y y) grows sub-linearly in the neigh-
bourhood of —oco and +oo Let a < b € R such that #((a,b)) > 0. Let éa,b be
the Green’s function of 2 5 d = — L(a,p)k- Then Gayb(y y) is affine on (—o0,a) and on

(b, +00). Moreover G(y, y) < Ga,b(y, y). Thus we get
E[tAY] = / G(y,y)(R(dy) — K(dy)) < +o0
R

In particular AY is a.s. finite.
To bound P(ﬁA)} > 2) we use the following:

IN

SE[ATGAY - 1)
-3 / (G, 2)Gly,) — G, )?) (R(d) — w(do) (R (dy) — ()
/G v, ) (E(dy) — fi(dy)))2

P(tAY > 2)

I /\
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The expression of E[ﬁAf)(ﬁA)j —1)] that we used is general for determinantal point
processes.

Let’s prove now that P(Aﬁ =0)>0. AY is determinantal point process associated
to a trace-class self-adjoint positive semi-definite contraction operator on L?(d& — dk).
IP’(AJNJ = () > 0 if and only if all the eigenvalues of the operator are strictly less then
1 (see theorem 4.5.3 in [11]). Let f € L*(& — x). Let

/ G(z,y) f () (R(dy) — (dy))

F' is continuous, dominated by

Gla.a)* ([ Glnw)alay) () / 0 s() = )

and has left-side and right-side derivatives at every point. F' satisfies the equation

Assume by absurd that f = F' (& — x)-almost everywhere. Then
[ F @) =t = [ Fla)Pa)Ede) - o)

- [ F@y(a) + /fﬂ da

Thus F is necessarily constant. But then this means that (& — k)(R) = £(R), which is
impossible because « is non zero. Thus 1 is not an eigenvalue of the operator defining
the determinantal process AY and thus P(AY = () > 0.

As for )700, the spacing between consecutive points of AY are independent. By
construction AY C Supp(k — k). Given yo € Supp(k — k), let

1y>yofA37(yoa y)(R(dy) — k(dy))

be the distribution of the lowest point in AY N (Yo, +00) conditionally on yg € AY.
Since yo may be the maximum of AY, f,5(yo,y)(R(dy) — r(dy)) < 1. For y to be
min AY N (yg, +00), y must belong to V., all points in 3y’ € Voo N (yo,y) must be
erased (probability x(y’) for each), and y must be kept (probability 1 — x(y)). For
Y > yo, let fa(yo,y’) be

falo,v') =2y ~ )=
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Lyr>yo f&(yo,y')R(dy’) is the distribution of min Voo N (yo, +00) conditionally on yo €
Yoo (proposition 6.11). fay and fg are related as follows:

fAf}(QOa Y)
-1

yOa +Z/ fé(y()vyl) y] 1,Y HX y’b dyz

j>2 Yo<--<yj-1<y

~((y))( Y —Yo +223/ (y1—yo)---(y—yj—l)ﬁ“(dyi))

§j>2 Yo<<yY;-1<y i=1
But
j—1
2(y—yo) +Z2J/ (W= v0). - (y—y—1) [ [ w(dy:)
j>2 Yo<-<yY;-1<Y =1

-1

- ui(é;) < (Yo, +Z/ fa(o, ) .. fa(yi—1,y H“ dyz>

ji>2 Yo< - <yY;j—1<y

_ ) (g, ) S0y

= uy(yo)ur(y) — ur(yo)uy(y)

uy(y) G(y0,90)
(see section 6.3). It follows that
Fago0,1) = 2y 4) = (s ()

In particular, if yo < y1 < -+ < y, € R, the infinitesimal probability that A)~) has a
point at each of the locations y; and no points in-between is

n

é(yo, yo)fm“;(yo, Y1) ... fm“;(yn—la Yn) H(’%(dyi) - H(dyi))
i=0

n
+(Y0)iy (yn H uy (yi)ur(yi-1) — UT(yi)UJ,(yi—l))H(k(dyi) — k(dyi))
i=1 i=0
Thus the expression of vy, z(y) is a sieve identity obtained as follows: v, z(y)(F—&)(dy)
is the infinitesimal probability that A)~J contains a point at y, from which we subtract
the infinitesimal probabilities to have a point at y at another below respectively above,
and to which we add the infinitesimal probability to have a point at y and points both
below and above y. o

Next we deal with the law of ()700,200) conditionally on A)~J = 0. Let yg €
Supp(f — k). First we will compute the probability that AY N (yo, +00) # @ condi-
tionally on yp € Veo-
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Lemma 7.4. — There are positive constants ¢y and ca such that for all x € R

(7.1.4) /< (uy (Y)ur(z) — ur(y)uy(@))ir (y)(F(dy) — K(dy)) = Gr(z) — crup(z)

(7.1.5) /> (ur(y)uy(z) — uy(y)ur(z))ay (y) (F(dy) — k(dy)) = () — cauy ()

In particular
ki (Y) = crcaup (y)u (y)
Proof. — We will prove (7.1.5). The proof of (7.1.4) is similar. Let f be the function

f@) = ay(z) - / (ur(y)uy (2) = uy(y)ur())ay (y)(R(dy) — x(dy))

y>x
The derivative of f, defined everywhere except at most countably many points, is
df B dﬂ¢ dui duT ) - -
) =@ = [ () G 1) G ) 1)) )

The weak second derivative of f is:

@ =Tt @~ [ (00) @) ) G )10 Rdy) — ()
+ () S ) — g ) 5 (@) ) 1y ) () — )

=20, (z)k(dx)

- /> (ur(y)uy(z) = uy(y)ur(x))a, (y)(R(dy) — £(dy)) x r(dz)

+ 24 (z)(k(dz) — k(dz))
=24y (z)k(dx)

—/ (ur(y)uy(x) = uy(y)ur(z))a, (y) (R(dy) — r(dy)) x k(d)
y>x
=2f(z)k(dx)
Thus f satisfies the same differential equation as uy. Moreover |f]| is dominated by

iy () + uy () G(y,y)(R(dy) — K(dy))

y>x
Thus f is bounded on the intervals of the type (a,+o00). It follows that there is a
constant ¢ € R such that f = couy. Thus we get the identity (7.1.5). Let’s show
that cg > 0. Let = € Supp(k). Then
1

()

/ (ur(y)uy(z) = uy(y)ur(x))a, (y)(R(dy) — x(dy))

=1- /> Fay(@,y)(R(dy) — r(dy)) = P(AY N (2, +00) = 0|z € Ya)
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The above conditional probability is positive because according to the lemma 7.3,
P(AY = V)) > 0. Thus f is positive and ¢y > 0. O

Lemma 7.5. — Conditionally on the event A)~) =0, ()700, 200) has the same law as
(Voor Z0)-

Proof. — 1t is enough to show that conditionally on A)~) = 0, )700 has the same
law as )V, . Indeed in both cases the points of z;,’voo respectively Z., are distributed
independently and uniformly between any two consecutive points of 3700 respectively
Voo- Forn > 1 and y1 < -+ < yn, let p,(dyr,...dyy) be the infinitesimal probability
for )700 having a point at each of the locations y; and none in-between, conditionally
on AY = (). We need only to show that

n n

(7.1.6) pu(dyr, .- dyn) = 2" ug (g1 )uy (vn) [ [ (wi — vioa) [ #(dwe)

i=2 i=1
For y; < --- < y, to be n consecutive points in 3700 and for AY = 0, we need y; <
-+ < yp, to be n consecutive points in Vs, to choose not to erase any of y; (probability
X(y;)) and finally we need that AY N (—oco,y1) = @ and AY N (yn, +00) = 0. Thus

1
n(dyi, ..., dy,) = —————2"7 13 iy (Yn
P (dy Yn) FAY = 1) Ty (Y1)t (Yn)
1 _ _
(-0 / s @unn) = ur()us ()2 0) (R(dy) = n(d)
1 _
(s L ) s ), 0) ) — sl
< [T = vies) [ ] x(wi)(dys)
=2 =1
Applying lemma 7.4 we get that
c1¢o o n n
w(dyy, ... dyy) = ————2 n i — Ui dy;
pn(dys Yn) FAY = 1) ur (y1)uy (y )g(y Y 1)1_1;[1'1( Yi)
Since the constant o (2152: o does not depend on n, the previous equations implies that
P(Voo # OAY = 0) = — 22 Py, £0
(Voo #0|AY =0) Ay —0) (Voo #0)
But P(Vso # 0|AY = 0) = P(Voo # 0) = 1. Thus
C1C2
P(AY = 0)
and 7.1.6 holds. O

Corollary 7.6. — Let a < b € R such that &(R \ [a,b]) > 0. Conditionally on
Yoo Na,b] =0, (Yoo, Z0) has the same law as the pair of interwoven determinantal
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point processes obtained from the Wilson’s algorithm applied to the Brownian motion

with killing measure 1g[q p]f-

Lemma 7.7 — Conditionally on ﬁAJNJ = 1 and on the position of the unique point
Y in AY, Vso, Zoo) has the same law as (ym Z(Y))

Proof. — It is enough to show that conditionally on ley = 1 and on the position
of the unique point Y in AJ} yoo has the same law as yoo . Indeed the points of
ZOO respectively ZC()O ) are independently and uniformly distributed between any two
consecutive points in JJOO respectively Zsg M.

Letn > 1andig € {1,...,n}. Let y1 < --- < y,, € R. The infinitesimal probability
for y1,...,y, being n consecutive points in JJOO and AY = {yi, } s

2"t (1)t (yn)

(i | (o) = (s 90)) 7 0) () — ()

(U L om0 0) ) — ()

H —Yi-1 H K dyz H - ’i)(dyio)

=2 i#io
= c1622" Mg (y1)uy (yn) H(yi —Yi—1) H r(dyi) x (F — k)(dyi,)
i=2 iio
ur(y1) 1
i 1
= v, (3o ) (R — 1) (dyi,) x 27077 *y ) T i1 — vi)r(dys)
(7.1.7) 0) =
u¢ Yn
x 2" o —Yi— dyz
uy yio) H 1 ( )

In 7.1.7 appears the infinitesimal probability for AY = {¥io } times the infinitesimal
probability for y1,...,y, being n consecutive points in y<y°> (compare with expres-

sions 7.1.1 and 7.1.2). O

7.2. Couplings

In this section we will prove the monotone coupling results for (Y, Zo) stated
at the begining of section 7.1. The construction of the coupling will be explicit.
However it will not appeal to Wilson’s algorithm used to define (Y, Zo0). First we
will describe analogous monotone coupling results for Uniform Spanning Trees on
finite graphs. In this case no explicit construction is known in general and the proof
relies on Strassen’s theorem and the conditions for stochastic domination between
determinantal processes shown in [20].
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Proposition 7.8. — Let G be a finite connected undirected graph with E its set of
edges, and (C(e))eck a positive weight function on E. Let F' be a subset of E. Let
(C(€))ecr be an other weight function such C > C and C = C on E \F. Let T be
the Uniform Spanning Tree of G corresponding to the weights C' and T the Umform
Spanning Tree of G corresponding to the weights C. There is a coupling of T and T
such that

(7.2.1) TN(E\F)CYN(E\F)

In case F is made of all edges adjacent to a particular vertex xg, and C is proportional
to C on F', then there is a coupling satisfying the additional condition

(7.2.2) TNFCYNF

Proof. — Tt is enough to prove the first coupling ((7.2.1)) in case F' is a single edge
(F = {e}). Then by induction on §F the general result will follow. From definition of
Uniform Spanning Trees is clear that P(e € ) < P(e € T). Moreover, T conditionally
on e € Y respectively e € T has the same law as T conditionally on e € T respectively
e ¢ T. A possible coupling is the following: first we couple leey with 1 5 in a way

such that leey <1 5. In case leey =1 = 0 respectively lecy =1 =1 we

ecY eeY
sample for both T and T the same tree having the law of T conditioned by e ¢ T
respectively e € T. In case leex = 0 and 1__5 = 1, we use the fact that on the edges
in E\ {e}, the law of T conditioned by e E T is stochastically dominated by the law
of T conditioned by e ¢ Y, which implies the existence of a monotone coupling by
Strassen’s theorem. See theorems 5.2, 5.3 and 5.5 in [20].

Now we consider the case of F' made of all edges adjacent to a particular vertex
xo, and Cis proportional to C' on F. Let (T, Y‘) be a coupling satisfying (7.2.1). In
general it does not satisfy (7.2.2). To deal with this issue we will re-sample the edges of
T and T contained in F, that is to say sample Y’ having the same law as T, T’ having
the same law as T, such that Y'N(E\F) = YN(E\F), T'N(E\F) = TN(E\ F) and
such that Y'NEF C T'AF. Let Ti,...,Tn be the connected components of YN(E\ F).
(7.2.1) ensures that each connected component of Y'N(E\ F) is contained in one of the
Ti- Let Tiay- o, Tigrs---s TN, - - - Tiv gy De the connected components of T’H(E\F),
where 7; ; C 7;. Conditionally on 71,...,7n, T N F has the following law: for each
T; one chooses an edge connecting o to 7; with probability proportional to C, and
independently from the edges of T that will connect zo to other (7; )i ;. Similarly
for the law of T conditionally on T11,..., Ti,q1,---> IN1s-- -5 TN,qn- TO construct Y’
and T’ we use the fact that C is proportional to C' on F:

— We start with T and T satisfying (7.2.1).

— Then we remove from Y and Y the edges contained in F'.

— For each 7; ;, we add to Y’ an edge connecting xo to 7; j, chosen proportionally
to its weight under C, each choice being independent from the others.
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— For each i € {1,..., N}, there are ¢; edges in T/ connecting zg to 7;, one for
each (7;;)i<j<q- In order to construct Y’, we need to chose one out of ¢; to
keep and remove the others. We chose to keep the edge corresponding to 7; ;
with probability proportional to:

Z C(e)

e connecting
o to 7’1'7]'

The choice is done independently for each i € {1,..., N}.
By construction Y’ NF C Y N F. O

Consider now two different killing measures x and < on R, with x < &, and the cou-
ples of determinantal point processes (Yoo, Zoo) respectively ()700, Z~Oo) corresponding
to the Brownian motion on R with killing measure « respectively <. We want to show
that one can couple (Yoo, Zoo) and (3700, goo) on the same probability space such that
Zs C ZNOO and 3700 C Voo U Supp(k — k), and if k and & are proportional also have
Vo C ﬁ)o. The condition Z., C ZNOO and 3700 C Yoo U Supp(k — k) is analogous to
(7.2.1). The condition Yo, C 3700 is analogous to (7.2.2), where the cemetery { plays
the role of the distinguished vertex xg. We used the stochastic domination principle
([20]) for determinantal point process with determinantal kernel a projection opera-
tor. It ensures the existence of a monotone coupling but does not give one explicitly
(see open questions [20]). However for (Vso, Zoo) and (Vso, Zeo) we will construct a
whole family of rather explicit monotone couplings.

Let G be the Green’s function of %%22 — k, factorized as

G(z,y) = ur(z Ay)iy(z Vy)

Let
~ 1 diiy

R(y,2) = —5 22y A 2V S (v 2))

Let &z be the operator on L?(d&) defined on functions with compact support as
follows:

(6:1)() = / G y) f (y)i(dy)

In case k = ck where c is a constant, ¢ > 1, we have the following resolvent identity,
which follows from lemma 2.8:
(7.2.3) %esckesn = %esnesm = chl G %c’im)

Next we prove that a simple necessary but not sufficient condition for monotone
couplings to exist is satisfied. It won’t be used in the sequel but we prefer to give a
direct proof for it.

Proposition 7.9. — For any z1, ...,z € R such that &({z}) =0

(7.2.4) det(K(2i, 25))1<ij<n > det(K(zi, 25))1<ij<n
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If k = ¢k, ¢ > 1, then for any y1,...,yn € Supp(k)

(7.2.5) " det(G(ys, y5))1<ij<n > det(G(yi, y5))1<i,j<n

Proof. — We will first show (7.2.4). To begin with we will show that for any z; € R,

K(z1,21) > K(21,21). The Wronskian

W, i) =) = () L () = i () ()

is non-negative. Indeed W (u4,ty)(—o00) = 0 and
AW (ut, y) = 2uqtiq(di — dk) > 0

Similarly the Wronskian

W, 10)(2) 5=y (2) () — () T2 ()

is non-positive. Using the fact that

Wuy,uq) = Wiy, ) =2

we get
~ 1 /du du du du
K(z1,2) = K(ar, 21) =5 (LD TG - ZLHED T2 ED)
1 /du du o du du
=1 (FEEOTEENW . i) = T2 ) T W g, un)
Clyduy, duy, o -
=1 (T TEEW ) ()
_ dup oy di

LD THENW g a)(1)) 2 0
To prove (7.2.4) in general, we will use the factorization (6.3.34). For zo < z, let
~(zob) o~ da,l, -\ —\~
"7 () = () + () @) (e)

Factorization (6.3.34) ensures that we only need to prove that for zp < z with

k({zo}) =0:
da(mgb) d,., du(IUD) d
_ oy s T +y 2
dx () dx (2) dx 2") dx (2)
First observe that the Wronskian
x x x da(IUD) x du(xob)
W(u% OD),U% OD))(Z> = u% OD)(Z)—;QC (%) — u% OD)(Z)ichx (=)

is non-negative on [xg, +00). Indeed W(ugzob),ﬂfob))(z) =0 and

AW (ul™, a{™") = 20" (2)al"™) () (di — dr) > 0

The sequel of the proof works as in the previous case.
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Let’s prove now (7.2.5). First we consider the case n = 1. From the resolvent
identity (7.2.3) follows that
Goe — B, = (c— 1)(B, — G B,)

Since &, is contracting, this implies that &, < &,,;, where the inequality stands for
positive semi-definite operators on L?(dr). Let y; € Supp(k). Then for any & > 0

(7.2.6) c/(yl&ylﬂ)2 G(z,y)k(dx)k(dy) > /(yls,y1+s)2 G(z,y)k(dz)k(dy)

Since y1 € Supp(k), both sides of (7.2.6) are positive. The continuity of G and G
ensures that ¢G(y1,y1) > G(y1,y1). In case of general n, we use the factorization

(6.3.33). Tt is enough to prove that for any zo < y, y € Supp(k)

(7.2.7) G (y, ) > G@0X) (37, 4))
where _
~(a ~ G(xo,y)?
Gy, ) = Clyy) — S0 d
G(.To,l‘o)
G is the restriction to (70, +00)? of the Green’s function of %dd—; — L(zg,4o00) k- Let

&) and &2 be the operators on L?(1 (49,4 00)dr) defined for functions f with
compact support as

(60 f)(z) = / G (2, ) £ () (dy)

(z0,+00)

(609 f)(2) = ¢ / G0 () £ () (dy)

(z0,+00)

&%) and B2 are contractions and satisfy a resolvent identity similar to (7.2.3),
which similarly implies (7.2.7). O

The resolvent identity (7.2.3) implies that &, and &., commute and that &, <
B.. It was shown in case of determianatal point processes on discrete space that this
a sufficient condition for a monotone coupling to exist. See theorem 7.1 in [20].

To construct the couplings we will give several procedures that take determinis-
tic arguments, among which pairs of interwoven sets of points, and return pairs of
interwoven random point processes. The first procedure we describe will be used as
sub-procedure in subsequent procedures.

Procedure 7.10. — Arguments:

— a pair (Y, 2) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{-c0},supYUZ € YU {+oo}

— a positive Radon measure k

— a point yo € R such that yo € Z
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Procedure:

— (1) If yo € YV, we define a random variable Z distributed as follows:
o (ia)If there arey’ €Y, 2’ € ZU {400}, such that y' < 2', yo € (v, 2')
and Y N (y',2") = 26 N (Y, 2") =0 then Z is distributed according to
Lae(y yo) %
(o) — @) &
o (ib) If there are y' € Y, 2/ € ZU{—o0}, such that 2’ <y, yo € (2',y')
and YN (2, y) = ZN(2,y') =0 then Z is distributed according to
—lieyoy) ﬂ
uy(y') — uy(yo) da
— (i) If there are y' € Y, 2/ € Z U {400}, such that y' < 2/, yo € (¢v',2') and
yni,z)=Zn(,z) =0, then
ut(y')

e (ii a) with probability o) we set
u+r(Yo

P, 2) = Uu{y}\{v} 2)
e (ii b) and with probability 1 — M we set
ut(yo)
(¥, 2) = (YU {w}, Z2U{Z})
— (i3) If there are y' € Y, 2/ € Z U {—o0}, such that 2z’ < y', yo € (2',y') and
yni,y)=Zn(,y) =0, then
uy(y')
uy(yo)
¥, 2)=(@U{w}\{¥} 2
e (iii b) and with probability 1 — %
(¥, 2) = (YU {w}, Z2u{z})
— (iv) Ifyo € Y, we set (Y, Z) = (I, Z).
Return: (Y, Z).

(2)dz

z)dz

o (iii a) with probability we set

we set

Lemma 7.11. — If procedure 7.10 is applied to the pair of interwoven determinantal
point processes (Yoo, Zoo) corresponding to the killing measure &, then its result (Y, Z)

has the same law as ( éé‘“,zé?’).

Proof. — By construction yo € )7 Let Zl < }71 < e < Zn < ffn be the 2n closest
points to yo in (Y U Z) N (yo, +00). On the event min(Yeo U Z0) N (Yo, +00) € 2o
(point (ii) in procedure 7.10) their distribution is given by

(728) 1y0<z1 <y1<---<zp <yn2n ( /

(—o0,y0)

uT(y’)fﬁ(dy’))ui(yn)dzm(dyl) oo dzpk(dyy)
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On the event min(Yeo U Zoo) N (Y0, +00) € Voo (point (iii) in procedure 7.10), the
distribution of min(Ye U Z5) N (yo, +00) is (see proposition 6.11)

([ o)~y s)sldy) st
%G(?JO, yo)k(dy')
1y (30) — 10y (+90) ) (4 (') + Lyt (o) (3 ()
1y (), (4 (dy )

Thus on the event min(Yoo U Z5) N (Yo, +00) € Voo (point (iii) in procedure 7.10),
the distribution of (Z1,Y1,...,Z,,Y,) is

+ 1y’>yo

(7.2.9)
ui(y/) ’ n“i(yn) /
lyo<zr<o<yn ——u U 2 k(dy') |dz1k(dyr) . . . dznk(dyn
Yo<z1 <<y (/My/@l 0 wo) +(yo)uy (y') w(y) ( y)) 16(dy1) (dyn)
(7.2.10)
—1 dui _1U,L(yn)
1 —_— QN 2 co.dzy n
+lyo<zr < <yn w(yo) dz (z1)ur(yo)uy (y1) ui(yl)d’zm(dyl) dznk(dyn)

The term (7.2.9) corresponds to the case when a point is removed from Yo, (case (iii
a) in procedure 7.10) and (7.2.10) to the case when Z is added to Z., (case (iii b) in
procedure 7.10). The sum of the densities that appear in (7.2.8), (7.2.9) and (7.2.10)

1S
/

2”(/(001740) UT(y/>H(dy/))ui(yn> + (/y uy(y >uT(yo)u¢(y’)2” ui(yn)n(dy/))

o<y'<= U (o) uy(y')
s )2 L)
ot ) + ui(y) (41— L) Y (o) ()
" ;fm L (o) ()

-1 duy, _ n“i(yn)
o e W) = 2
So we obtain the density which appears in (7.1.1).

It remains to prove that (Y N (yo,+00), Z N (yo, +00)) and (Y N (=00, o), Z N
(—00,y0)) are independent. Let Z_1 > Y_ 1 > -+ > Z_,» > Y_,, be the n’ clos-
est points to yo in (JNJ UZzZ)n (—00,y0). The distribution of the family of points
(Z_4, Y10y Z Y, Z1, Y1, ..., Zpn, Ys) on the event ﬁ(fi N (—00,90)) > n, ﬂ()jﬂ
(90, +00)) > ' is
(7.2.11)

L(¥)

, 20 Ny (g )y ()
2" (e Yy () 5 w(dy') - Do = (=)
( /yo <y'<z1 ' uy(yo) u (o) dx

e
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(7.2.12)

+/ 2" g (Y Juy (yn)
z-1<y’'<yo

e

(1)
ut(Yo)
X1y,n/<Z,n/<”'<z—1<y0<21<”'<Zn,<yn"<‘-‘(dy_n/)d’z_n, e dz_1d21 e dznfi(dyn)

The term (7.2.11) corresponds to point (iii) in procedure 7.10 and (7.2.12) to point

(ii) in procedure 7.10. One can check that the sum of the densities equals

gn+n’ M uy (yn)

ur(yo) uy(yo)

Thus (YN (yo, +00), ZN(yo, +00)) and (¥ N (—o0,3), Z N (=00, yo)) are independent.
O

r(dy') +

27 L (y— Juy (yn) duy z
ut(Yo) o 1)>

Lemma 7.12. — We consider the subspace of triples (¥, Z), k,y0) consisting of a
pair of discrete sets of points (¥, Z), a Radon measure k and a point yo € R, and
which satisfies the restrictions on the arguments of procedure 7.10. We assume this
subspace endowed with the product topology obtained from the topology of uniform con-
vergence on compact subsets for the pairs (Y, Z), the vague topology for the measures
k and standard order topology on R. If (JNJ, 2) is the pair of point processes obtained
by applying procedure 7.10 to the arguments (¥, 2), k,yo), then its law depends con-
tinuously on (¥, 2),K,¥o)-

Proof. — From lemma 2.4 it follows that the cumulative distribution function of Z
(point (i) in procedure 7.10) depends uniformly continuously on ((), Z), &, yo) in the
neighbourhood of triples where yo & ). Moreover the probabilities to make either
the choice (ii a) or the choice (ii b), as well as to make either the choice (iii a) or the
choice (iii b), depend continuously on (¥, Z), %, o). Thus the law of (), Z) depends
continuously on ((Y, £), &, yo) in the neighbourhood of triples where yo ¢ ). Moreover
in the neighbourhood of triples where yo € ), with high probability, converging to 1,
(Y, Z) = (¥, Z). Thus the law of (), Z) is continuous also at these triples. O

First we will describe a coupling in case when £ and s differ by an atom: & =
K + cdy,. We construct the coupling as follows:

Procedure 7.13. — Arguments:

— a pair (Y, Z) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{-o0}, supYUZ € YU {+o0}

— two positive Radon measures k and Kk where K is of form k = k + cdy, and

Yo & Z.

Procedure:

— (i) Let B be a Bernoulli r.v. of parameter cé(yo,yo).
— () If 8 =0 we set (Y, 2) = (), 2).



7.2. COUPLINGS 129

— (i) If B =1, we apply the procedure 7.10 to the arguments (Y, Z), k and yo
and set (Y, Z) to be its result.

Return: (Y, Z).

(J} Z) constructed this way satisfies the following: between any two consecutive
points in JJ lies a single point in Z and between any two consecutive points in Z lies
a point in . By construction Z C Z and Y C Y U {yo}.

Proposition 7.14. — If procedure 7.13 is applied to to the pair of interwoven deter-
minantal point processes (Yoo, Zo0) corresponding to the measure K, then the returned
pair of point processes ()7, 2) has the law of the interwoven determinantal point pro-
cesses (Voo, Zoo) corresponding to f = ki + Oy, -

Proof. — Observe that a.s. yp € Zoo. First we deal with the case x({yo}) = 0. Then
almost surely yo € Vo and yo € Y if and only if 5 = 1. But

P(B=1)=P(yo € 37) = Cé(yo,yo)

According to corollary 7.6, conditionally on g ¢ )7 (yoo, o) has the same law
S (Vso, Zoo), that is to say the same law as (Y, Z) conditionally on § = 0. Ac-
cording to lemma 7.11, conditionally on g = 1, (Y, Z) follows the same law as
()}ﬁ( 00,%0); Z N (=00, 40)), which is also the law of (Vso, Zo0) conditioned on

Yo € yoo
We deal now with the case x({yo}) >0

P(yo € Vo) = F({50})G (310, v0)
Plyo € ¥) =P(8 =1) +P(8 = 0,30 € V)
= G(yo,yo) + (1 = cG(y0, 40)) ({40 })G(y0, yo)
But G and G satisfy the resolvent identity (see lemma 2.8):

Gl o) (101G 0) = =D Gy, 0) = Gl )

It follows that P(yo € V) = P(yo € Voo). Let i := k — K({yo})dye and (Yoo, Zoo)
be the interwoven determinantal point processes corresponding to f.et & := Kk —
k({yo})dy, and (Y., Z!.) be the interwoven determinantal processes corresponding
to &’. According to corollary 7.6, (JJ Z) conditioned by yo & Y has the same law as
(Voo OO) conditioned by yg € Yo, which is the same law as (JJOO, oO) conditioned
by yo & Vs, and it is the law of (JJOO, Oo). For yq € Y there are two possibilities:
either yg € Voo Or Yo € Voo and = 1. In the first case, it follows from proposition 7.1
that (Veo, Z00) conditioned on yy € Voo has the same law as ()700, 200) conditioned
on yy € )700. In the second case (Yoo, Zo0) conditioned on yg € Voo has the same
law as (Yoo, Zoo). This bring us back to the situation s({yo}) = 0. According to
what was proved earlier, conditionally on yg € Ve and 8 = 1, ()7, Z~) has the same
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law as (7)0, Z~éo) conditioned on yy € )7(;0 But this is the same law as for (Vao, Zao)
conditioned on yg € Voo. So again, (), Z) has the same law as (Voo, Zc0)- O

Next we consider the more general case where the measure k£ —k has a first moment:

/ |z|(R(dx) — k(dx)) < 400
R

First we describe a procedure that does not give a coupling between (Yoo, Z50) and
(Voo, Zo0) but allows to approach it.

Procedure 7.15. — Arguments:

— a pair (Y, Z) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{—o0},supYUZ e YU{+oo}

— two positive Radon measures k, k such that k < & and [, |z| (k(dz) — k(dz)) <
+o0o and (k — K)(Z) =0.

Procedure:

(i) Let 8 be a Bernoulli r.v. of parameter

/R 0 () (R — )(dy)

(see notations of proposition 7.3)
— (it) Let Y be a real r.v. independent from B distributed according to

e (y) (K — £)(dy)
P(B=1)
(iii) If B = 0 we set (¥, Z) = (Y, Z).
() If B = 1, we apply the procedure 7.10 to the arguments (¥,Z), k and Y
and set (JNJ, 2) to be its result.
Return: (Y, Z).

Observe that in case & and « differ only by an atom, procedure 7.15 is the same as
procedure 7.13.

Lemma 7.16. — Let (Yoo, Z00) respectively (3700, Z..) be the pair of interwoven de-
terminantal point processes corresponding to the killing measure k respectively k. We
assume that the procedure 7.15 is applied to (Yoo, Zoo) and that ()7, Z~) is the returned
pair of point processes. Then the total variation distance between the law of ()7,Z~)

and the law of (Yo, Zo0) is less or equal to (fR Gy, y)(R(dy) — n(dy)))Q.

Proof. — Let A)~J be the determinantal point process defined in section 7.1 (see lemma
7.3). According to lemma 7.5, the law of (), Z) conditionally on 8 = 0 is the same
as the law of (Vs, Zo0) conditionally on AY = (. From lemmas 7.11 and 7.7 follows



7.2. COUPLINGS 131

that the law of (), Z) conditionally on 8 = 1 is the same as the law of (Vso, Zoo)
conditionally on §AY = 1. Moreover P(8 = 1) = P(1AY = 1). However

P(5 = 0) = P(AY = 0) + P(1AY > 2) > P(AY = ()

It follows that the total variation distance between the law of (V, Z) and the law of
Voo, 2 ) is less or equal to QIP’(ﬂAJJ > 2), which according lemma 7.3 is less or equal

to ( T Gy, y)(i(dy) — n(dy))) . O

Corollary 7.17. — Let kg < k1 < -+ < K; be positive Radon measures such that
Jg |2|(kj(dx) — Ko(dz)) < 4o00. Let G; be the Green’s function of %dd—; — ki and
(J}C()é), Zc()é)) the pair of interwoven determinantal point processes corresponding to K;.
Let ((y<i>,z<i>))0§i§j be the sequence of pairs of interwoven point processes defined
as follows: (J}(O),Z(O)) = (yéﬁ’,zég)); given (y(i_l),Z(i_l)), (J}(i),Z(i)) is obtained
by applying procedure 7.15 to the arguments (y(i’l),Z(ifl)), Ki—1 and k;. Then the
total variation distance between the law of (Y9, Z2U)) and the law of ( ég),zéi)) is
less or equal to

J 2
> ([ o)) = i ()
i=1
Proof. — Let ('@, Z'()) be the pair of point processes obtained by applying proce-
dure 7.15 to the arguments ()/(Z 2 Z(l 1)), ki—1 and ;. According to lemma 7.16,
the total variation distance between the law of (3", Z/()) and the law of ( @, Zéé))

2
is less or equal to (fR Gi—1(y,y)(ki(dy) — ﬁi_l(dy))) . We denote by d, the total
variation distance between the law of (Y@, Z(@)) and the law of ( ég),zé?). The

total variation distance between the law of ()’ 2’(¥) and the law of (Y, Z()) is
less or equal to d;—1. It follows that

< st ([ Gty - vica ()’

and thus

dj < Z (/ i-1(y,y) (ri(dy) — ri- 1(dy)))2

=1

O

Next we give a true monotone coupling between (Yoo, Zo) and ()700,200). We
still consider that x < & and that [ |2z|(A(dz) — k(dz)) < +oo. To construct the
coupling we will use a continuous monotonic increasing path in the space of measures,
(Kq)o<q<1, joining k to &k (ko = K, k1 = k). Such a path is defined as follows: Let A
be a positive Radon measure on R X [0, 1] satisfying the following constraints:

— For any ¢ € [0,1], AR x {q}) =0

— For any A Borel subset of R, A(A x [0,1]) = &(A)
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For ¢ € [0,1], we define k4 as the measure on R satisfying, for any A Borel subset of
R

riq(A) = ro(A) + A(A x [0,q])

For any ¢ < ¢’ € [0,1], kg < kg. Moreover the map ¢ — Kk, is continuous for the
vague topology. In the sequel we will denote Gy the Green’s function of %dd—; — Kq
(for x <y, Gq(z,y) = uq1(z)uq,, (y)) and use the measure Gy(y,y)A(dy, dg), which
is finite.

Procedure 7.18. — Arguments:

— a pair (), 2) of disjoint discrete sets of points in R such that between any two
points in Y lies a single point in Z and vice-versa, and such that inf Y U Z €
YU{-c0},supYUZ € YU {+o0}

— two positive Radon measures k, k such that & < & and [, |z|(A(dx) — k(dz)) <
+o0o and (k — K)(Z) = 0.

— a continuous monotonic increasing path in the space of measures, (Kq)o<q<i,
joining K to K, obtained by integrating the Radon measure A on R x [0,1].

Procedure:

— (i) First sample a Poisson point process of intensity Gq4(y, y)A(dy, dg) on R x
[0,1]: ((Yj,q5))1<j<n, the points being ordered in the increasing sense of q;.

— (i) Then construct recursively the sequence (Y9, Z20)))o<;<n of pairs of in-
terwoven point processes as follows: (Y(©, Z(0)) is set to be (¥, Z). (YW, Z2())
is obtained by applying procedure 7.10 to the arguments (y(j’l),Z(j’l)), Kq;
and Y.

— (iii) (Y, Z) is set to be (YN, Z(N)

Return: (Y, Z).

The condition (% — x)(Z) = 0 ensures that a.s., none of Y lies in Z. By con-
struction Z C Z and Y C Y U Supp(k — K). (JNJ,g) differs from (), Z) only by a
finite number of points. The law of (37, Z~) depends only on the ”geometrical path”
(Kq)o<q<1 and not on its parametrization: if 6 is an increasing homomorphism from
[0,1] to itself, then procedure 7.18 applied the path (kg(g))o<q<1 returns the same
result (in law). Below an illustration of procedure 7.18:
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X — X HOHK—)—K—-K)—XK)-X%

Fig. 4 - Ilustration of procedure 7.18: On the left are represented (Y, Z) and
the Poisson process ((Y;,q;))1<j<n. On the right are represented the successive

((y(ﬂ,z(j)))ogglv. x-dots represent the points of (/) and diamonds the points of Z(9).

Proposition 7.19. — Let (Yoo, Zoo) respectively (;)700, goo) be the couple of interwo-
ven determinantal point processes corresponding to the killing measure k respectively
K. We assume that the procedure 7.18 is applied to (Yoo, Z0) and that ()7, 2) is the
returned couple of point processes. Then ()7, Z~) has the same law as ()700, 200)

Proof. — Observe that a.s. (K — k)(Zx) = 0. Let n € N*. We define the family
(YU Z2Gm)Y)) o< iy, of interwoven point processes as follows: (Y07 Z(01)) equals
(Voos Zoo). Given (YU—Lm) zG=1n)) (yUn) z(:m)) is obtained by applying proce-
dure 7.15 to the arguments (YU=17) ZG=11)) ;1 and ;. We will show that as
n tends to infinity, the law of (™), Z(nn)) convenrges in tgtal variation to the law
of ()700, Z~Oo) and converges weakly to the law of ()7 , z ), which will imply that ()7 , Z~)
and ()700, Z~Oo) have the same law.
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Applying corollary 7.17, we get that the total variation distance between the law
of (Y(m) Z(mn)) and the law of (Vao, Zs0) is bounded by

n

Z (/]RG%(y’y)(’f%(dy) _ “%(dy)))Q

<oup (DY S ([ (0t ey ) s @)’

zeR

<sup (M> [+ ) = sta)

z€R 1+ |‘T|

X sup /R(l + |y|)(l€%(dy) - Fv’%(dy))

1<j<n

The continuity of the path (kq)o<q<1 ensures that

fim s [ (1 o) () = s (d) = 0

n=+eo1<i<n

and hence the total variation distance between the law of (Y™™, Z()) and the law
of (Yoo, Zo0) converges to 0 as n tends to infinity.

We define a random finite set E,, of points in R x %, %, ceey %} as follows: Let
(BinsB2ns -+ Pnn) be a family of independent Bernoulli variables, 5;, being of
parameter

/ Vs e, )R — K1) (dy)
R

n n n

Whenever S, , = 1, we add to E,, a point (Y, %) to E, where Y;, is a r.v.

)

distributed according the measure

1

vaF s (Y) (ks

1,K 4 %
n n

— Kiz1)(dy)

The (Yin, %) are assumed to be independent and independent from the family
(Bins B2y -+ -5 Brn). The pair (Y™™ Z(m)) is sampled as follows: starting from
(Yoo, Z00), independent from E,,, we apply successively, for ¢ ranging from 1 to n, the
procedure 7.10 with the arguments Kiz1 and Y; ,, whenever 3;,, = 1. At the end we
get (Y Z(n)) - According to lemma 2.4, the law of the pair of point processes
returned by procedure 7.10 depends continuously on the arguments. So to prove that
(Y Z(nn)) converges in law to (Y, Z), we only need to show that the random
set of point E,, converges in law to the Poisson point process ((Y;,¢;))i1<j<n used in
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procedure 7.18. All of the functions vy ,_, «,; (y) are dominated by Go(y,y). Moreover

n

Vki1,k4 (y) -G (yay)‘

n

a
n

X (ki —Riza)(dy-1)
+u%,T(y)/ wi () (uiza 4 (Y (y) —wiza | (y1)uiza 1(y)
Y1>y

X (ki — n%)(dyl)

+ wi 4 (y-1)(uizs | (Y-1)uizs 1 () —wizs 4 (y-1)uiza | (y))
y—1<y ) )
X (ki = Kiza)(dy-1)

)

X / wi g (y)(uiza 4 (y)uiz | (y) —wiza | (y1)uiza 1(y))
y1>y ) '
X (ki —riza)(dyr)

SGO(?/’?J)/ Go(y-1,y-1) (ki
Y-1<y

— Kiz1)(dy-1)

— i) (dy)

i
n

+Go(y,y) / Golyr,y1)(x

Y1>y

— i) (dy 1)

i
n

+Go(y,y)/ Go(y-1,y-1)(k

Y-1<y

X Go(yh?h)(“%
Y1>yY

~ ki) (i)
Thus given any bounded interval J

lim  sup sup }vlﬂi—l K (y) -G. (y,y)| =0
n—=+00 1<i<n yeJ noon "

It follows that
lim sup P(Bin=1)=0

and the measure
n

D Vnis s (W)(Fs — Kz )(dy) © 61 (da)

=1 n

3=

converges weekly to G,(y,y)A(dy,dq), which is the intensity of the Poisson point
process ((Y},q;))1<j<n. Thus the random sets E,, are compound Bernoulli approx-
imations of the Poisson point process ((Y;,¢;))i<j<n and converge in law to the
latter. (]
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Given a continuous monotonic increasing path (kq)o<q<1 in the space of Radon
measures and a pair of interwoven determinantal point processes (Yoo, Zo0) cOITE-
sponding to kg, used as argument, procedure 7.18 yields non-homogeneous Markov
g-parametrized process in the space of interwoven pairs of discrete sets of points
whose one-dimensional marginal at any value gy of the parameter is the pair of in-
terwoven determinantal point processes corresponding to the killing measure g, .
This corresponds to sampling only the partial Poisson point process of intensity
lo<g<qoGq(y,y)A(dy,dq) and successively applying procedure 7.10 for each of its
points. In general, multidimensional marginals corresponding to ¢; < --- < ¢, depend
not only on Kg,,...,Kq, but on the whole path (£q)q,<g<g.- For instance consider
two different paths (kq)o<q<1 and (Rq)o<q<1 where

— Kg=FkRog=0_ 1+(51

— K1 =KL =0_ 3+(5 1+(51—|—53

— kg =2¢6_ 1+5 1+51 foqu[O —} and kg = d_ 1+5 1+51+(2q—1)53 for
g€ [51]

— Rq=10_1+0d1+2¢5; for ¢ € [0,%] and &q = (2¢ — 1)0_ 1+06_1+01+0s for

2
a€51]
Let Gy(z,y) = ugt(x A y)ug (xz V y) be the Green’s functmn of Qd; — kg and
G g, y) = Qg4(x Ay)lg, (z Vy) the Green’s function of 1-4L; . Let (Yoo, Zo0),
(J}OO, ~)) be the coupling between the point process correspondmg to ko respectively
k1 induced by the path (kq)o<g<1 and (Yoo, Zoo), (Yoo, Zs0)) the coupling induced
by the path (f%q)qugl- Then

A i14(3)\ 5 dny (4
“r0n =) () (- ) B (- DR
But
é%(g):G%(_g) Gl(—§)=G1(§)
and
iy4(3) _upa(=3)  aag(-3) _ wa(3)
43 wpa(=3) (=3 w3
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Thus
1
111 9 313 u%’i(ii) 1—u1’T(%)
LC ) S 1)) B Tl
PUw={-41}In={-343}) _ (o3 mil)
ug (= 3) u4(3)
But
uy (—3) 3 wip(d) e
o (—3) Uuma(d) 4
Thus

(= {~13).5~
yOO:

TCa E

The two couplings are different.
If K — Kk does not have a first moment we can still construct a coupling between

(SIS

(Voo Zso) and (Yoo, Zo0) as follows: Consider a continuous monotonic increasing path
(Kq)o<q<1 joining k to & satisfying the constraint

Vg € [0,1), /R (2] (d) — ro(dz)) < +00

Given ¢o € (0,1), one can apply procedure 7.18 to the arguments (Veo, Zc0):K, Kqo
and the partial path (kq)o<g<q,- As result we get a two interwoven determinantal
point processes corresponding to the killing measure kg4,. At the limit as go tends to
1 we get something that has the same law as (3700, goo)

Next we prove the existence of stronger couplings in case kK = ck where ¢ > 1 is a
constant.

Proposition 7.20. — If k& = ck with ¢ > 1 then there is a coupling between
(Voos Zoo) and (Yoo, Zoo) such that Zoo C Zoo and Voo C Voo

Proof. — Consider a coupling between (Voo, Zo0) and (J}OO, ) given by procedure
7.18, p0551b1e extended to the case where k does not have a first moment. Then
Zs C Z but in general Y, & yoo So we will sample other point processes Y. and
y’ that conditionally on ZOO respectively Z have the same law as yoo respectively

yoo, and such that )/ C y’ For each connected component J of R\ Z we sample
1,c 7R(dy)
N &(J)

all the Y75 are independent from Z., and independent one from another. We set

a point Yj according the measure . We assume that conditionally on ZOO,

= {}7~|j connected component of R\ Zu}

Then (V.. , Z+) has the same law as (Vso, Zoo). Let be J a connected component of
R\ Z. and Ji,...,Jy, the connected components of J \ Z.. On J we define the
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r.v. Yy as follows: Y takes value in }7] and

K(Jn)

P(Y;=Y5 | Ji,. . dn,) = =)

We set
Y. = {Y;|Jconnected component of R\ 2.}

By construction Y. C )Z’)O Moreover the proportionality of x and & ensures that

(V.., Zo0) has the same law as (Voo, Zoo)-

00

O



1]

[10]

[11]

BIBLIOGRAPHY

I. BENngaMINI, R. Lyons, Y. PERES & O. SCHRAMM — “Unifrom spanning
forests”, The Annals of Probability 29 (2001), no. 1, p. 1-65.

J. BERTOIN & J. PITMAN — “Two coalescents derived from the ranges of stable
subordinators”, Electronic Journal of Probability 5 (1999), no. 7.

P. BIANE — “Relations entre pont et excursion du mouvement brownien réel.”,
Annales de Uinstitut Henri Poincaré 22 (1986), no. 1, p. 1-7.

G. BIRKHOFF & G. C. ROTA — Ordinary differential equations, 4th ed., John
Wiley and Sons, 1989.

L. BREIMAN — Probability, Classics in applied mathematics, vol. 7, STAM, 1992.

L. CuAUMONT & G. U. BrRAVO — “Markovian bridges : weak continuity and
pathwise construction”, The Annals of Probability 39 (2011), no. 2, p. 609-647.

E. B. DYNKIN — “Gaussian and non-gaussian random fields associated with
markov processes”, Journal of Functional Analysis 55 (1984), p. 344-376.

, “Local times and quantum fields”, in Seminar on Stochastic Processes,
Gainesville 1983, Progress in Probability and Statistics, vol. 7, Birkhauser, 1984,
p. 69-84.

, “Polynomials of the occupation field and related random fields”, Journal
of Functional Analysis 58 (1984), p. 20-52.

P. FrrzsimMmons & J. ROSEN — “Markovian loop soups: permanental processes
and isomorphism theorems”, arXiv:1211.5163, Nov. 2012.

J. B. HouGH, M. KRISHNAPUR, Y. PERES & B. VIRAG — Zeros of gaussian
analytic functions and determinantal point processes, University Lecture Series,
vol. 51, American Mathematical Society, 2009.



140

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[25]

[26]

BIBLIOGRAPHY

K. IT6 & H. P. McKEAN — Diffusion processes and their sample paths,
Grundlehren der mathematischen Wissenschaften, vol. 125, Springer, 1974.

Y. L. JAN — Markov paths, loops and fields, Lecture Notes in Mathematics, Ecole
d’Eté de Probabilités de Saint-Flour, vol. 2026, Springer, 2011.

Y. L. JAN & S. LEMAIRE — “Markovian loop clusters on graphs”, To be published
in Ilinois Journal of Mathematics.

Y. L. Jan, M. MARcus & J. ROSEN — “Permanental fields, loop soups and
continuous additive functionals”, arXiv:1209.1804, Sept. 2012.

I. KArRATZAS & S. E. SHREVE — Brownian motion and stochastic calculus, 2nd
ed., Graduate Texts in Mathematics, vol. 113, Springer, 2010.

K. Kawazu & S. WATANABE — “Branching processes with immigration and
related limit theorems”, Theory of Probability and its Applications 16 (1971),
no. 1, p. 36-54.

G. F. LAWLER, O. SCHRAMM & W. WERNER — “Conformal restriction: the
chordal case”, Journal of American Mathematical Society 16 (2003), no. 4,
p. 917-955.

G. F. LAWLER & W. WERNER — “The brownian loop-soup”, Probability Theory
and Related Fields 128 (2004), p. 565-588.

R. LyoNs — “Determinantal probability measures”, Publications Mathématiques
de UTHES 98 (2003), p. 167-212.

H. P. McKEAN — “Elementary solutions for certain parabolic partial differential
equations”, Transactions of the American Mathematical Society 82 (1956), no. 2,
p- 519-548.

J. P. P. Frrzsimmons & M. YOR — “Markovian bridges: Construction, palm
interpretation, and splicing”, in Seminar on Stochastic Processes 1992 (Boston),
Birkhauser, 1993, p. 101-134.

J. PitMAN & M. YOR — “Decomposition at the maximum for excursions and
bridges of one-dimensional diffusions”, in Ito’s Stochastic Calculus and Probabil-
ity Theory, Springer, 1996, p. 293-310.

D. REvUz & M. YOR — Continuous martingales and brownian motion, 3rd ed.,
Grundlehren der mathematischen Wissenschaften, vol. 293, Springer, 1999.

P. SALMINEN, P. VALLOIS & M. YOR — “On the excursion theory for linear
diffusions”, Japanese Journal of Mathematics 2 (2007), no. 1, p. 97-127.

S. SHEFFIELD & W. WERNER — “Conformal loop ensembles: the markovian
characterization and the loop-soup construction”, Annals of Mathematics 176
(2012), no. 3, p. 1827-1917.



[27]

28]

[29]

[30]

31]

32]

BIBLIOGRAPHY 141

B. SIMON — Trace ideals and their applications, 2nd ed., Mathematical Surveys
and Monographs, vol. 120, American Mathematical Society, 2005.

A. SOSHNIKOV — “Determinantal random point fields”, Uspekhi Mathematich-
eskikh Nauk 55 (2000), no. 5, p. 107-160.

G. TESCHL — Ordinary differential equations and dynamical systems, Graduate
Studies in Mathematics, vol. 140, American Mathematical Society, 2012.

W. VERVAAT — “A relation between brownian bridge and brownian excursion”,
The Annals of Probability 7 (1979), no. 1, p. 143-149.

D. B. WILSON — “Generating random spanning trees more quickly than the
cover time”, in Proceedings of the Twenty-FEighth Annual ACM Symposium on the
Theory of Computing, Association for Computing Machinery, 1996, p. 296-303.

D. ZHAN — “Loop-erasure of planar brownian motion”, Communications in Math-
ematical Physics 303 (2012), no. 3, p. 709-720.



