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POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL

DIFFUSIONS

TITUS LUPU

Laboratoire de Mathématiques, Université Paris-Sud, Orsay

Abstract. We study the analogue of Poissonian ensembles of Markov loops ("loop soups")

in the setting of one-dimensional diffusions. First we give a detailed description of the corre-

sponding intensity measure. Then we identify the law of the occupation field of the Poissonian

ensembles of loops. Finally we explain how to sample this Poissonian ensembles using two-

dimensional Markov processes. We also state and prove a Vervaat-like relation between bridges

conditioned by the value of their minimum and excursion that holds for all the diffusion we

consider and not just for the Brownian motion.
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Introduction

Lawler and Werner introduced in [14] the notion of Poissonian ensemble of Markov loops

("loop soup") for two-dimensional conformal diffusions. In [21] it was used by Sheffield and

Werner to construct the Conformal Loops Ensemble (CLE). Le Jan studied in [10] the analogue

of the Poissonian ensembles of Markov loops in the setting of a symmetric Markov jump process

on a finite graph. In both cases one defines an infinite measure µ∗ on time-parametrizes unrooted

loops (i.e. loops parametrized by a circle where it is not specified when the cut between the

beginning and the end occurs) and considers the Poisson point ensemble of intensity αµ∗, α > 0,

denoted here Lα. In both cases the ensemble L1 (where α = 1) is related to the loops erased

during the loop-erasure procedure applied to Markovian sample path. In [10] Le Jan also studied

the occupation field of Lα, that is the sum of the occupation times in a given vertex of the graph

of individual loops. In case α = 1
2 he found that it the square of a Gaussian Free Field and

related it to the Dynkin’s Isomorphism ([6]).

The analogue of the measure µ∗ can be defined for a much larger class of Markovian processes.

The aim of this paper is to study the measure µ∗ and the Poissonian ensembles of Markov

loops in case of one-dimensional, not necessarily conservative, diffusion processes. The diffusion

processes we consider evolve on a subinterval I of R, are always killed et hitting a boundary point

of I, and may be killed by a killing measure on the interior of I. One can transform a diffusion

process into an other applying a change of scale, a random change of time, a restriction to a

subinterval, an increase of the killing measure or an h-transform. The measure µ∗ is covariant

with all this transformations on Markovian processes. In other words the map diffusion to

measure on loops is a covariant functor. Moreover we will show that µ∗ is invariant by h-

transform on underlying diffusions. We will also enlarge the scope of our study by associating

a measure on loops to "generators" which contain a creation of mass term: If L = L(0) + ν

where L(0) is a second order differential operator on I and ν is a signed measure, and if one sets

zero Dirichlet boundary conditions for L, one can define in a consistent way a measure on loops

related to L even in case the semi-group (etL)t≥0 does not make sense. This extended definition

of µ∗ will be particularly handy for computing the exponential moments of the Poissonian

ensemble of Markov loops.

The layout of this paper is the following: In section 1 we will recall some facts on one-

dimensional diffusions and set important notation. We will further consider "generators" with

creation of mass term and characterize a class of such operators which up to an h-transform are

equivalent to the generators of diffusions. In section 2 we will define the measure µ∗ and point

out different covariance and invariance properties. Further we will make a connection between

the Brownian measure on loops and the Levy-Itô measure on Brownian excursion using the

Vervaat’s bridge-to-excursion transformation. This in turn will lead us to a conditioned version

of Vervaat’s transformation that holds for every one-dimensional diffusions, that is an absolute

continuity relation between the bridge conditioned to have a given minimum and an excursion

of the same duration above this minimum. The Vervaat’s transformation is deeply related

to the measure on loops µ∗: The loops are unrooted, so one can freely chose a moment to

separate the end from the start. If one chooses this moment uniformly over the life-time of
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the loop, then the loop under the measure µ∗ looks in some sense like a bridge. If one chooses

this moment when the loop hits its minimum, then it looks like an excursion. In section 3

we will study the occupation field of the Poissonian ensemble of Markov loops. Each loops is

endowed with a family of local times. The occupation field is the sum of local times over the

loops. We will identify its law as an non-homogeneous continuous state branching process with

immigration parametrised by the position points in I. In case α = 1
2 we will identify it as

the square of a Gaussian Free Field and show how it is possible to derive particular versions

of the Dynkin’s Isomorphism using this fact and Palm’s identity for Poissonian ensembles. In

section 4 we will explain how to sample the Poissonian ensembles of Markov loops using sample

paths of two-dimensional Markov processes. For the particular case α = 1, one can sample

L1 by slicing the sample path of an one-dimensional diffusion. This is the analogue in the

setting of one-dimensional diffusions of the relation between L1 and the loop-erasure procedure

observed in the setting of the two-dimensional Brownian motion or of the symmetric Markov

jump processes on graphs. Results of sections 2 and 3 lead to an interpretation, in terms of

Poissonian ensembles of Markov loops, of the Ray-Knight theorem on the law of the local times

of a Brownian motion stopped at a first hitting time.

This paper contains definitions, propositions, lemmas, corollaries and properties. Properties

are non-proved statements that are either obvious or already known. Propositions, lemmas,

corollaries and properties have common counters which are restarted at the beginning of each

of four sections. Definitions are numbered separately.

1. Preliminaries on generators and semi-groups

1.1. A second order differential equation. Let I be an open interval of R and ν a signed

measure on I. By signed measure we mean that the total variation |ν| is a positive Radon

measure, but not necessarily finite, and ν(dx) = ǫ(x)|ν|(dx) where ǫ takes values in {±1}. We

look for the solutions of the linear second order differential equation on I:

(1.1) d
du

dx
+ udν = 0

In case ν is a negative non-zero measure, the equation (1.1) commonly appears when studying

the Brownian motion with a Killing measure. In this case the two-dimensional linear space

of solutions is spanned by two positive solutions u↑ and u↓, u↑ being non-decreasing and u↓
non-increasing. Given x0 ∈ I, we can construct u↑ as the limit when x1 → inf I of the unique

solution which equals 0 in x1 and 1 in x0. For u↓ we take the limit as x1 → sup I. See [3],

section 16.11, or [19], Appendix 8, for more details. Here we are mostly interested in the less

common case of a signed measure |ν|. For a solution u to (1.1) we will write
du

dx
(x+) and

du

dx
(x−)

for the right-hand side respectively left-hand side derivative of u at x. The two are related by
du

dx
(x+)− du

dx
(x−) = −u(x)ν({x}). Next we give a Cauchy-Lipschitz principle for (1.1):

Proposition 1.1. If x0 ∈ I and u0, v0 ∈ R, there is a unique solution u to (1.1), continuous

on I, satisfying u(x0) = u0 and
du

dx
(x+0 ) = v0.
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Proof. Let x1 ∈ I, x1 > x0. Let J be the map from L∞([x0, x1]) to itself defined by

(J V )(x) = v0 − u0ν((x0, x])−
∫ x

x0

ν((y, x])V (y)dy

A continuous function u on [x0, x1] is solution to (1.1) on [x0, x1] with given initial values at x0

if and only if u(x0) = u0,
du

dx
∈ L∞([x0, x1]) and

du

dx
is a fixed point of J . Conversely if V is a

fixed point of J , then u(x) = u0 +
∫ x
x0
V (y)dy is solution to (1.1).

For V1, V2 ∈ L∞([x0, x1]), J n(V2)− J n(V1) equals

(−1)n
∫

x0<y1<...<yn<x

ν((y1, x])...ν((yn, x])(V2(yn)− V1(yn)) dy1...dyn

The Lipschitz norm of J n is smaller or equal to
|ν|([x0, x1])n(x1 − x0)

n

n!
. So for n large enough

J n is contracting and thus J has a unique fixed point in L∞([x0, x1]). This implies existence

and uniqueness of a solution to (1.1) on [x0, x1]. The same is true if we take x1 < x0. By gluing

together solutions on different compact subintervals we get a solution on I. �

Let W (u1, u2)(x) be the wronskian of two functions u1, u2:

W (u1, u2)(x) := u1(x)
du2

dx
(x+)− u2(x)

du1

dx
(x+)

If u1, u2 are both solutions to (1.1), W (u1, u2) is constant on I. Using this fact we get a results

which is similar to Sturm’s separation theorem for the case of a measure ν with a continuous

density with respect to the Lebesgue measure (see theorem 7, section 2.6 in [2]):

Property 1.2. Let x0 < x1 be two points in I.

• (i) Let u1 be a solution to (1.1) satisfying u1(x0) = 0,
du1

dx
(x+0 ) > 0, and u2 a solution

such that u2(x0) > 0. Assume that u2 ≥ 0 on [x0, x1]. Then u1 > 0 on (x0, x1].

• (ii) Let u1, u2 be two solutions such that u1(x0) = u2(x0) > 0 and
du1

dx
(x+0 ) >

du2

dx
(x+0 ).

Assume that u2 ≥ 0 on [x0, x1]. Then u1 > u2 on (x0, x1].

• (iii) If there is a solution u to (1.1) positive on (x0, x1) and zero at x0 and x1 then any

other linearly independent solutions to (1.1) has exactly one zero in (x0, x1).

Next we prove a lemma that will be useful in the section 1.3.

Lemma 1.3. Let ν+ be the positive part of ν. Let x0 < x1 ∈ I. Let f be a continuous positive

function on [x0, x1] such that min[x0,x1] f > ν+([x0, x1])
2. Then the equation

(1.2) d
du

dx
+ udν − uf dx = 0

has a positive solution that is non-decreasing on [x0, x1].

Proof. Set λ := min[x0,x1] f . Let u be the solution to (1.2) with the initial values u(x0) = 1,
du

dx
(x+0 ) =

√
λ. We will show that u is non-decreasing on [x0, x1]. Assume that this is not the

case. This means that
du

dx
(x+) takes negative values somewhere in [x0, x1]. Let

x2 := inf{x ∈ [x0, x1]|
du

dx
(x+) ≤ 0}
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Since
du

dx
(x+) is right-continuous,

du

dx
(x+2 ) ≤ 0. Let r(x) :=

1

u(x)

du

dx
(x+). u is positive on

[x0, x2] hence r is defined [x0, x2]. r(x0) =
√
λ. r is cadlag and satisfies the equation

dr = (f − r2) dx− dν

Let x3 := sup{x ∈ [x0, x2]|r(x) ≥
√
λ}. We have

r(x2) = r(x−3 ) +
∫ x2

x3

(f(x)− r2(x))dx− ν([x3, x2])

By construction r(x−3 ) ≥
√
λ. By definition f − r2 ≥ 0 on (x3, x2].

Thus r(x2) ≥
√
λ− ν([x3, x2]) > 0. It follows that r(x2) > 0, which is absurd. �

1.2. One-dimensional diffusions. In this subsection we will describe the king of linear dif-

fusion we are interested in, recall some facts and set notations to be used subsequently. For a

detailed presentation of one-dimensional diffusions see [9] and [3], chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We consider a

diffusion (Xt)0≤t<ζ(0) on I with generator

L(0) :=
1

m(x)

d

dx

(
1

w(x)

d

dx

)

and killed as it hits the boundary of I. In case I is unbounded, we also allow for X to blow up to

infinity in finite time. ζ(0) is the first time X either hits the boundary or blows up. For the sake

of simplicity we will assume that
dw

dx
∈ L∞

loc(I), the space of functions on I that are bounded

on compact subintervals, although this condition is unimportant. Given such a diffusion, the

speed measure m(x) dx and the scale measure w(x) dx are defined up to a positive multiplicative

constant, but the product mw is uniquely defined. A primitive S of w is a natural scale function

of X. Consider the random time change dt̃ =
1

m(Xt)
dt. Then (12S(Xt̃))0≤t̃<ζ̃(0) is a standard

Brownian motion on S(I) killed when it first hits the boundary of S(I). For all f, g smooth,

compactly supported in I,
∫
I
(L(0)f)(x)g(x)m(x) dx =

∫
I
f(x)(L(0)g)(x)m(x) dx. The diffusion

X has a family of local times (ℓxt (X))x∈I,t≥0 with respect to the measure m(x) dx such that

(x, t) 7→ ℓxt (X) is continuous. We can further consider diffusions with killing measures. Let

k be a non-negative Radon measure on I. We kill X as soon as
∫
I
ℓxt (X)m(x) dk(x) hits an

independent exponential time with parameter 1. The corresponding generator is

(1.3) L =
1

m(x)

d

dx

(
1

w(x)

d

dx

)
− k

Let (Xt)0≤t<ζ be the diffusion of generator (1.3), which is killed either by hitting ∂I, or

through blowing up, or by the killing measure k. For x ∈ I let η>xexc and η<xexc be the excursion

measures of X above and below the level x up to the last time X visits x. The behaviour of X

from the first to the last time it visits x is a Poissonian point process with intensity η>xexc+ η<xexc,

parametrized by the local time at x up to the value ℓζt (X). η>xexc and η<xexc are obtained from the

Levy-Itô measure on Brownian excursions through scale change, time change and multiplication

by a density function accounting for the killing. See [20] for details on excursion measures in

case of recurrent diffusions.
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If X is transient the Green function of L,

G(x, y) := Ex[ℓ
ζ
t (X)]

is finite, continuous and symmetric. For x ≤ y it can be written

G(x, y) = u↑(x)u↓(y)

where u↑(x) and u↓(y) are positive , respectively non-decreasing and non-increasing solutions

to the equation Lu = 0, which through a change of scale reduces to an equation of form (1.1).

If S is bounded from below, u↑(inf I+) = 0. If S is bounded from above, u↓(sup I−) = 0. u↑(x)

and u↓(y) are each determined up to a multiplication by a positive constant, but when entering

the expression of G, the two constants are related. See [9] or [3], chapter 16 for details. Let

W (u↓, u↑) be the Wronskian of u↓ and u↑:

W (u↓, u↑)(x) := u↓(x)
du↑
dx

(x+)− u↑(x)
du↓
dx

(x+)

This Wronskian is actually the density of the scale measure: W (u↓, u↑) ≡ w.

If the killing measure k is non zero, then the probability that X, starting from x, gets killed

by k before reaching a boundary of I or blowing up to infinity equals
∫
I
G(x, y)m(y)k(dy).

Conditionally on this event, the distribution of Xζ− is:

G(x, z)m(z)k(dz)∫
I
G(x, y)m(y)k(dy)

The semi-group of L has positive transition densities pt(x, y) with respect to the speed mea-

sure m(y) dy and (t, x, y) 7→ pt(x, y) is continuous on (0,+∞) × I × I. McKean gives a proof

of this in [15] in case when the killing measure k has a continuous density with respect to the

Lebesgue measure. If this is not the case, we can take u a positive continuous solution to Lu = 0

and consider the h-transform of L by u: u−1Lu. The latter is the generator of a diffusion with-

out killing measure and by [15] this diffusion has continuous transition densities p̃t(x, y) with

respect to m(y) dy. Then u(x)p̃t(x, y)
1

u(y) are the transition densities of the semi-group of L.

Transition densities with respect to the speed measure are symmetric: pt(x, y) = pt(y, x). For

all x, y ∈ I and t ≥ 0 the following equality holds:

(1.4) Ex[ℓ
t∧ζ
y (X)] =

∫ t

0
ps(x, y)ds

Newt we deal with bridge probability measures.

Proposition 1.4. The bridge probability measures Ptx,y(·) (bridge of X from x to y in time

t conditioned neither to die nor to explode in the interval) satisfy: for all x ∈ I the map

(x, y, t) 7→ Ptx,y(·) is continuous for the weak topology on probability measures on continuous

paths.

Proof. Our proof mainly relies on absolute continuity arguments of [16] and [4], and the time

reversal argument of [16]. [4] gives a proof of weak continuity of bridges for conservative Feller

cadlag processes on second countable locally compact spaces. But since the proof contains an

error and we do not restrict to conservative diffusions, we give here accurate arguments for the

weak continuity.
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First we can restrict to the case k = 0. Otherwise consider u a solution to Lu = 0, positive

on I. The generator of the h-transform of L by u is

1

u(x)2m(x)

d

dx

(
u(x)2

w(x)

d

dx

)

and does not contain any killing measure. The h-transform preserves the bridge measures and

changes the density functions with respect to m(x) dx to
1

u(x)
pt(x, y)u(y), and thus preserves

their continuity.

Then we normalise the length of bridges: if (X
(x,y,t)
s )0≤s≤t is a path under the law Ptx,y(·), let

P̃tx,y(·) be the law of (X
(x,y,t)
rt )0≤r≤1. It is sufficient to prove that (x, y, t) 7→ P̃tx,y(·) is continuous.

For v ∈ [0, 1], let P̃
t,v
x,y(·) be the law of (X

(x,y,t)
rt )0≤r≤v. Let P̃

t,v
x (·) be the law of the Markovian

path (Xrt)0≤r≤v starting from x. For v ∈ [0, 1) we have the following absolute continuity

relationship:

(1.5) dP̃t,vx,y = 1vt<ζ
p(1−v)t(Xvt, y)

pt(x, y)
dP̃t,vx

Let (Jn)n≥0 be an increasing sequence of compact subintervals of I such that I =
⋃
n≥0 Jn.

Let Tn be the first exit time from Jn. Let fn be continuous compactly supported function on

I such that 0 ≤ fn ≤ 1 and fn|Jn ≡ 1. We can further assume that the sequence (fn)n≥0 is

non-decreasing. The map

(x, y, t) 7→ fn(sup
[0,vt]

X)fn( inf
[0,vt]

X)dP̃t,vx

is weakly continuous. Let (xj, yj , tj)j≥0 be a sequence converging to (x, y, t). Let F be a

continuous bounded functional on C([0, v]). Then applying (1.5) we get:

(1.6) P̃
tj ,v
xj ,yj(fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)) − P̃t,vx,y(fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)) =

(1.7) P̃
tj ,v
xj

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)

)

(1.8) − P̃t,vx

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)

)

(1.9) + P̃
tj ,v
xj

(
p(1−v)tj (γ(v), yj)

ptj (xj, yj)
fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)

)

(1.10) − P̃
tj ,v
xj

(
p(1−v)t(γ(v), y)

pt(x, y)
fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)F (γ)

)

Since
p(1−v)t(·, y)
pt(x, y)

is continuous and bounded on Jn, (1.7)−(1.8) converges to 0. Moreover

for j large enough,
p(1−v)tj (·, yj)
ptj (xj , yj)

is uniformly close on Jn to
p(1−v)t(·, y)
pt(x, y)

. Thus (1.9)−(1.10)
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converges to 0 and finally (1.6) converges to 0. Let n0 ∈ N and n ≥ n0. Then

P̃
tj ,v
xj ,yj(1− fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)) = 1− P̃

tj ,v
xj ,yj(fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)) ≤

(1.11) 1− P̃
tj ,v
xj ,yj(fn0(sup

[0,v]
γ)fn0( inf

[0,v]
γ)) → 1− P̃t,vx,y(fn0(sup

[0,v]
γ)fn0( inf

[0,v]
γ))

From (1.11) we deduce that

lim
n→+∞

lim sup
j→+∞

P̃
tj ,v
xj ,yj(1− fn(sup

[0,v]
γ)fn( inf

[0,v]
γ)) = 0

It follows that

lim
j→+∞

P̃
tj ,v
xj ,yj(F (γ)) = P̃t,vx,y(F (γ))

From this we get that the law of any finite-dimensional family of marginals of P̃tx,y(·) depends

continuously on (x, y, t). To conclude we need a tightness result for (x, y, t) 7→ P̃tx,y(·). We have

already tightness for (x, y, t) 7→ P̃
t,v
x,y(·). The image of P̃tx,y(·) through time reversal is P̃ty,x(·).

So we also have tightness on intervals [1 − v′, 1] where v′ ∈ (0, 1). But if v + v′ > 1, tightness

on [0, v] and on [1 − v′, 1] implies tightness on [0, 1]. This concludes. The article [4] contains

an error in the proof of the tightness of bridge measures in the neighbourhood of the ending

point. �

1.3. "Generators" with creation of mass. In this section we consider more general opera-

tors

(1.12) L =
1

m(x)

d

dx

(
1

w(x)

d

dx

)
+ ν

with zero Dirichlet boundary conditions on ∂I, where ν is a signed measure on I which is no

longer assumed to be negative. We set

L(0) := L− ν

In the sequel we may call L "generator" even in case the semi-group (etL)t≥0 does not make

sense. Our main goal in this subsection is to characterize through a positivity condition the

subclass of operators of form (1.12) that are equivalent up to an h-transform to the generator

of a diffusion of form (1.3).

We will consider several kinds of transformations on operators of the form (1.12). First, the

h-transform: Let h be a positive continuous function on I such that
d2h

dx2
is a signed measure.

We call Conj(h,L) the operator

Conj(h,L) =
1

h(x)2m(x)

d

dx

(
h(x)2

w(x)

d

dx

)
+ ν +

1

h
L(0)h

If f is smooth function compactly supported in I then

Conj(h,L)f = h−1L(hf)

We will call Conj(h,L) the h-transform of L by h even though h may not be harmonic (Lh = 0)

or sub-harmonic (Lh ≤ 0) and L is not necessarily the generator of a diffusion.
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Second, the change of scale: If A is a C1 function on I such that
dA

dx
> 0 and

d2A

dx2
∈ L∞

loc(I)

and (γ(t))0≤t≤T a continuous path in I, then we will set ScaleA(γ) to be the continuous path

(A(γ(s)))0≤t≤T in A(I). Let Scale†A(L) be the operator on functions on A(I) with zero Dirichlet

boundary conditions induced by this change of scale:

Scale
†
A(L) =

1

m ◦ A−1(a)

d

da

(
1

w ◦ A−1(a)

d

da

)
+A∗ν

where A∗ν is the push-forward of the measure ν by A.

Third, the change of time: If V is positive continuous on I then we can consider the change

of time ds = V (γ(t)) dt. Let SpeedV be the corresponding transformation on paths. The

corresponding "generator" is
1

V
L.

Finally, the restriction: if Ĩ is an open subinterval of I then set L|I be the operator L acting

on functions supported in Ĩ and with zero Dirichlet conditions on ∂Ĩ .

For the analysis of L we will use a bit of spectral theory: If [x0, x1] is a compact interval of R

and m̃, w̃ are positive continuous functions on [x0, x1], then the operator
1

m̃(x)

d

dx

(
1

w̃(x)

d

dx

)

with zero Dirichlet boundary conditions has a discrete spectrum of negative eigenvalues. Let

−λ̃1 be the first eigenvalue. It is simple. According to Sturm-Liouville theory (see for instance

[23], section 5.5) we have the following picture:

Property 1.5. Let λ > 0 and u a solution to

1

m̃

d

dx

(
1

w̃

d

dx

)
+ λu = 0

with initial conditions u(x0) = 0,
du

dx
(x0) > 0.

• (i) If u is positive on (x0, x1) and u(x1) = 0 then λ = λ̃1 and u is the fundamental

eigenfunction.

• (ii) If u is positive on (x0, x1] then λ < λ̃1

• (iii) If u changes sign on (x0, x1) then λ > λ̃1

Next we state and prove the main result of this section.

Proposition 1.6. The following two conditions are equivalent:

• (i) There is a positive continuous function u on I satisfying Lu = 0.

• (ii) For any f smooth compactly supported in I

(1.13)

∫

I

(L(0)f)(x)f(x)m(x) dx +

∫

I

f(x)2m(x)ν(dx) ≤ 0

Proof. (i) implies (ii): First observe that the equation Lu = 0 reduces through a change of scale

to an equation of the form (1.1). Let u be given by condition (i). Let L̃ := Conj(u,L). Since

Lu = 0, L̃ is a generator of a diffusion without killing measure. Let m̃(x) := u2(x)m(x). Then

for all g smooth compactly supported in I,
∫
I
(L̃g)g m̃ dx ≤ 0. But

∫

I

(L̃g)g m̃ dx =

∫

I

(L(0)(ug))(ug)mdx +

∫

I

(ug)2mν(dx)
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Thus (1.13) holds for all f positive compactly supported in I such that u−1f is smooth. By

density arguments, this holds for general smooth f .

(ii) implies (i): First we will show that for every compact subinterval J of I there is a

positive continuous function uJ on J̊ satisfying LuJ = 0 on J̊ . Let J be such an interval. By

lemma 1.3 there is λ > 0 and uλ positive continuous on J satisfying Luλ − λuλ = 0 on J . Let

Lλ := Conj(uλ, L|J̊). Then

Lλ =
1

u2m

d

dx

(
u2

w

d

dx

)
+ λ

Let L
(0)
λ := Lλ − λ. L(0) is the generator of a diffusion on J̊ . We can apply the standard

spectral theorem to L
(0)
λ . Let −λ1 be its fundamental eigenvalue. L

(0)
λ + λ = Lλ is a non-

positive operator because it is an h-transform of L|J which satisfies condition (ii). This implies

that λ ≤ λ1. Let ũ be a solution to L
(0)
λ ũ + λũ = 0 with initial conditions ũ(min J) = 0 and

dũ

dx
(min J) > 0. Since λ ≤ λ1, according to property 1.5, ũ is positive on J̊ . We set uJ := uλũ.

Then uJ is positive continuous on J̊ and satisfies LuJ = 0. This finishes the proof of the first

step.

Now consider a fixed point x0 in I and (Jn)n≥0 an increasing sequence of compact subintervals

of I such that x0 ∈ J̊0 and
⋃
n≥0 Jn = I. Let uJn be a positive L-harmonic function on J̊n.

We may assume that uJn(x0) = 1. The sequence

(
duJn
dx

(x+0 )

)

n≥0

is bounded from below.

Otherwise some of the uJn would change sign on I ∩ (x0,+∞). Similarly, since none of the uJn

changes sign on I ∩ (−∞, x0),
duJn
dx

(x+0 ) is bounded from above. Let v be an accumulation

value of the sequence

(
duJn
dx

(x+0 )

)

n≥0

. Then the L-harmonic function satisfying the initial

conditions u(x0) = 1 and
du

dx
(x+0 ) = v is positive on I. �

We will divide the operators of the form (1.12) in two sets: D0,− for those that satisfies

either of the constraints of the proposition 1.6 and D+ for those that don’t. D0,− is made

exactly of operators that are equivalent up to an h-transform to the generator of a diffusion.

We will subdivide the set D0,− in two: D− for the operators that are an h-transform of the

generator of a transient diffusion and D0 for those that are an h-transform of the generator

of a recurrent diffusion. These two subclasses are well defined since a transient diffusion can

not be an h-transform of a recurrent one. Observe that each of L ∈ D−, D0 and D+ is stable

under h-transforms, changes of scale and of speed. Operators in D− and D0 do not need to be

generators of transient or recurrent diffusions themselves. For instance consider on R

L =
1

2

d2

dx2
+ a+δ1 − a−δ−1

where a+, a− > 0. If 3a+− a− > 0 then L ∈ D+, if 3a+− a− = 0 then L ∈ D0, if 3a+− a− < 0

then L ∈ D−.

If L ∈ D0,−, the semi-group (etL)t≥0 is well defined. Indeed, let X be the diffusion on I

of generator L(0) and ζ the first time it hits the boundary of I or blows up to infinity. Let

u be a positive L-harmonic function and L̃ := Conj(u,L). L̃ is the generator of a diffusion
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X̃ on I without killing measure. Let ζ̃ be the first time X̃ hits the boundary of I or blows

up to infinity. Then for any f positive bounded compactly supported in I, x ∈ I and t > 0,

Ex
[
1t<ζ exp(

∫
I
l
y
tm(y)ν(dy))f(Xt)

]
< +∞ and we have the equality:

(1.14) Ex

[
1t<ζ exp(

∫

I

ℓ
y
t (X)m(y)ν(dy)) f(Xt)

]
=

1

u(x)
Ex

[
1
t<ζ̃

u(X̃t)f(X̃t)
]

Identity (1.14) can be proved using Girsanov’s theorem. If L ∈ D−, let (G̃(x, y))x,y∈I be the

Green function of L̃ relatively to the measure u(x)2m(x) dx. Then L has a Green function

(G(x, y))x,y∈I that equals

G(x, y) = Ex

[
exp(

∫

I

ℓzt∧ζ(X)m(z)ν(dz)) ℓyt∧ζ (X)

]
= u(x)u(y)G̃(x, y)

For x ≤ y ∈ I, G̃(x, y) = ũ↑(x)ũ↓(y) where ũ↑ and ũ↓ are L̃-harmonic. Then we set u↑ := uũ↑
and u↓ := uũ↓. u↑ and u↓ are L-harmonic and for x ≤ y ∈ I, G(x, y) = u↑(x)u↓(y). But

contrary to ũ↑ respectively ũ↓, u↑ respectively u↓ is not necessarily non-decreasing respectively

non-increasing.

The discrete analogue of the sets D−, D0 and D+ are symmetric matrices with non-negative

off-diagonal coefficients inducing a connected transition graph, with the highest eigenvalue that

is respectively negative, zero and positive. However in continuous case the sets L ∈ D−, D0 and

D+ can not be defined spectrally because for operators from L ∈ D− and D+ the maximum of

the spectrum can also equal zero. However the next result shows that the sets D− and D+ are

stable under small perturbations of the measure ν and that D0 is not.

Proposition 1.7. • (i) If L ∈ D0 and k is a non-zero positive Radon measure on I then

L− k ∈ D− and L+ k ∈ D+.

• (ii) If L ∈ D− and J is a compact subinterval of I then there is K > 0 such that for

any positive measure k supported in J satisfying k(J) < K we have L+ k ∈ D−.

• (iii) If L ∈ D+ then there is K > 0 such that for any positive finite measure k satisfying

k(I) < K we have L− k ∈ D+.

• (iv) If L ∈ D+, there is a positive Radon measure k on I such that L− k ∈ D0.

• (v) Let L ∈ D+ and x0 < x1 ∈ I. Then L|(x0,x1) ∈ D0 if and only if there is an

L-harmonic function u positive on (x0, x1) and zero in x0 and x1.

Proof. (i): Consider h positive continuous on I such that Conj(h,L) is the generator of a

recurrent diffusion. Since Conj(h,L − k) = Conj(h,L) − k, Conj(h,L − k) is the generator

of a diffusion killed at rate k and thus L − k ∈ D−. Similarly we can not have L + k ∈ D0,−

because this would mean L = (L+ k)− k ∈ D−.

(ii): Without loss of generality we may assume that L is the generator of a transient diffusion

and that it is at natural scale, that is L =
1

m(x)

d2

dx2
. Since the diffusion is transient, I 6= R.

We may assume that x0 := inf I > −∞. Write J = [x1, x2]. Let k be a positive measure

supported in [x1, x2]. Let u be the solution to Lu + u dk = 0 with the initial conditions

u(x0) = 0,
du

dx
(x+0 ) = 1. u is affine on [x0, x1] and on [x2, sup I). On [x1, x2] u is bounded
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from above by x2 − x0. Thus, if k([x1, x2]) ≤
min[x1,x2]m

(x2 − x0)
then u is non-decreasing on I and

hence positive. This implies that L + k ∈ D0,−. By the point (i) of current proposition, if

k([x1, x2]) <
min[x1,x2]m

(x2 − x0)
then L+ k ∈ D−.

(iii): By definition there is f smooth compactly supported in I such that (1.13) does not hold

for f . Let U be the value of the left-hand side in (1.13). U > 0. If k is a positive finite measure

on I satisfying k(I) <
U

‖f‖2∞maxSuppf m
then if we replace ν by ν − k in (1.13), keeping the

same function f , we still get something positive. Thus L− k ∈ D+.

(iv): Let f be a smooth function compactly supported in I such that (1.13) does not hold

for f . Let J be a compact subinterval of I containing the support of f . The set

{s ∈ [0, 1]|L − ν+ + s 1J ν+ ∈ D−}

is not empty because it contains 0, and open by proposition 1.7 (ii). Let smax by its supre-

mum. Then smax < 1 and L− ν+ + smax 1J ν+ ∈ D0. Then k := 1I\J ν+ + (1− smax)1J ν+ is

appropriate.

(v): First assume that there is such a function u. Then by definition L|(x0,x1) ∈ D0,−.

Conj(u,L|(x0,x1)) does not have any killing measure and the derivative of its natural scale

function is
w

u2
. It is not integrable in the neighbourhood of x0 or x1. Thus the corresponding

diffusion never hits x0 or x1. This means that it is recurrent. Conversely, assume that L|(x0,x2) ∈
D0. Let u be a solution to Lu = 0 satisfying u(x0) = 0 and

du

dx
(x+0 ) > 0. If u changed its sign

on (x0, x1) then according to the preceding we would have L|(x0,x1) ∈ D+. If u were positive on

an interval larger that (x0, x1) we would have L|(x0,x1) ∈ D−. The only possibility is that u is

positive on (x0, x1) and zero in x1. �

2. Measure on loops, invariance, covariance and disintegration properties

2.1. Spaces of loops. In this subsection we introduce the spaces of paths and loops on witch

will be defined the measures we will consider throughout the paper. First we will consider

continuous, time parametrized, paths on R, (γ(t))0≤t≤T (γ), with finite life-time T (γ) ∈ (0,+∞).

Given two such paths (γ(t))0≤t≤T (γ) and (γ′(t))0≤t≤T (γ′), a natural distance between them is

δpaths(γ, γ) := | log(T (γ))− log(T (γ′))| + max
v∈[0,1]

|γ(vT (γ)) − γ′(vT (γ′))|

A rooted loop in R will be a continuous finite life-time path (γ(t))0≤t≤T (γ) such that γ(T (γ)) =

γ(0) and we will write L for the space of such loops. L endowed with the metric δpaths is a

Polish space. In the sequel we will use the corresponding Borel σ-algebra, BL, for the definition

of measures on L. For v ∈ [0, 1] we define a parametrisation shift transformation shiftv on L:

shiftv(γ) = γ̃ where T (γ̃) = T (γ) and

γ̃(t) =

{
γ(vT (γ) + t) if t ≤ (1− v)T (γ)

γ(t− (1− v)T (γ)) if t ≥ (1− v)T (γ)

We introduce an equivalence relation on L: γ ∼ γ if T (γ′) = T (γ) and there is v ∈ [0, 1] such

that γ′ = shiftv(γ). We call the quotient space L�∼ the space of unrooted loops, or just loops,
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and write it L∗. Let π be the projection π : L → L∗. There is a natural metric δL∗ on L∗:

δL∗(π(γ), π(γ′)) := min
v∈[0,1]

δpaths(shiftv(γ), γ
′)

(L∗, δL∗) is a Polish space and π is continuous. For defining measures on L∗ we will use its

Borel σ-algebra, BL∗ . π−1(BL∗), the inverse image of BL∗ by π, is a sub-algebra of BL.

In the sequel we will consider paths and loops that have a continuous family of local times

(ℓxt (γ))x∈R,0≤t≤T (γ) relatively to a measure m(x) dx such that for any positive measurable func-

tion f on R and any t ∈ [0, T (γ)].
∫ t

0
f(γ(s))ds =

∫

I

ℓxt (γ)m(x) dx

We will simply write ℓx(γ) for ℓx
T (γ)(γ).

In the sequel we will also consider transformations on paths and loops and the images of

different measures by these transformation. We will use everywhere the following notation: If

E and E ′ are two measurable spaces, ϕ : E 7→ E ′ a measurable map and η a positive measure on

E , ϕ∗η will be the measure on E ′ obtained as the image of η trough ϕ.

2.2. Measures µx,y on finite life-time paths. First we recall the framework that Le Jan

used in [10]: G = (V,E) is a finite connected graph. LG is the generator of a symmetric Markov

jump process with killing on G. mG is the duality measure for LG. (pGt (x, y))x,y∈V,t≥0 is the

family of transition densities of the jump process and (PG,t
x,y(·))x,y∈V,t≥0 the family of bridge

probability measures. The measure on rooted loops associated with LG is

(2.1) µLG
(·) =

∫

t>0

∑

x∈V
PG,t
x,x(·)pGt (x, x)mG(x)

dt

t

µ∗LG
is the image of µLG

by the projection on unrooted loops. The definition of µ∗LG
is the exact

formal analogue of the definition used in [14] for the loops of the two-dimensional Brownian

motion. In [10] also appear variable life-time bridge measures (µx,yLG
)x,y∈V which are related to

µ∗LG
:

(2.2) µ
x,y
LG

(·) =
∫ +∞

0
PG,t
x,y(·)pGt (x, y) dt

In this subsection we will define and give the important properties of the formal analogue of

the measures µx,yLG
in case of one-dimensional diffusions. In the next subsection 2.3 we will do

the same with the measure on loops µ∗LG
.

I is an open interval of R. (Xt)0≤t<ζ is a diffusion on I with a generator L of the form (1.3).

We use the notations of the section 1.2. Let x, y ∈ I. Following the pattern of (2.2) we define:

Definition 1.

µ
x,y
L (·) :=

∫ +∞

0
Ptx,y(·)pt(x, y)dt

We will write µx,y instead of µx,yL whenever there is no ambiguity on L. The definition of

µx,y depends on the choice of m, but m(y)µx,y does not. Measures µx,y were first introduced

by Dynkin in [5] and enter the expression of Dynkin’s isomorphism between the Gaussian Free

Field and the local times of random paths. Pitman and Yor studied this measures in [17] in the
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setting of one-dimensional diffusions without killing measure (k = 0). Next we give a handy

representation of µx,y in the setting of one-dimensional diffusions. It was observed and proved

by Pitman and Yor in case k = 0. We consider the general case.

Proposition 2.1. Let F be a non-negative measurable functional on the space of variable life-

time paths starting from x. Then

(2.3) µx,y(F (γ)) = Ex

[∫ ζ

0
F ((Xs)0≤s≤t)dtℓ

y
t (X)

]

Equivalently

µx,y(F (γ)) = Ex

[∫ ℓ
y
ζ
(X)

0
F ((Xs)0≤s≤τyl ) dl

]

where

τ
y
l := inf{t ≥ 0|ℓzt (X) > l}

Proof. It is enough to prove this for F non-negative continuous bounded functional witch takes

value 0 if either the life-time of the paths exceeds some value tmax < +∞ or of it is inferior to

some value tmin or if the end point of the path lies out of a compact subinterval [z1, z2] of I

(with y ∈ (z1, z2)). For j ≤ n ∈ N, set tj,n := tmin +
j(tmax−tmin)

n
and ∆tn := tmax−tmin

n
. Almost

surely
∫ ζ
0 F ((Xs)0≤s≤t)dtl

y
t is a limit as n→ +∞ of

(2.4)

n−1∑

j=0

F ((Xs)0≤s≤tj,n)(ℓ
y
tj+1,n∧ζ(X) − ℓ

y
tj,n∧ζ(X))

Moreover (2.4) is dominated by ‖F‖∞lytmax∧ζ . It follows that the expectations converge too.

Using the Markov property and (1.4), we get that the expectation of (2.4) equals

(2.5)

n−1∑

j=0

∫

z∈I

∫ ∆tn

0
P
tj,n
x,z

(
F ((Xs)0≤s≤tj,n)

)
ptj,n(x, z)pr(z, y) dr m(z) dz

Using the fact that pr(·, ·) is symmetric, we can rewrite (2.5) as

(2.6)

∫ z2

z1



n−1∑

j=0

∆tn P
tj,n
x,z

(
F ((Xs)0≤s≤tj,n)

)
ptj,n(x, z)


 1

∆tn

∫ ∆tn

0
pr(y, z) dr m(z) dz

As n → +∞ the measure 1
∆tn

∫∆tn
0 pr(y, z) dr m(z) dz converges weakly to δy. Using the weak

continuity of bridge probabilities (proposition 1.4) we get that (2.6) converges to
∫ tmax

tmin

Ptx,y (F ((Xs)0≤s≤t)) pt(x, y)dt

�

Proposition 2.1 also holds in case of a Markov jump processes on a graph, where the local

time is replaced by the occupation time in a vertex dived by its weight. Proposition 2.1 shows

that we can consider µx,y as a measure on paths (γ(t))0≤t≤T (γ) endowed with continuous occu-

pation density functions (ℓzt (γ))z∈I,0≤t≤T (γ). Next we state several properties that follow almost

immediately either from the definition 1 or proposition 2.1:
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Property 2.2. • (i) The total mass of the measure µx,y is finite if and only if X is

transient and then it equals G(x, y).

• (ii) The measure µy,x is image of the measure µx,y by time reversal.

• (iii) If Ĩ is an open subinterval of I then

µ
x,y
L|Ĩ

(dγ) = 1γ contained in Ĩ µ
x,y
L (dγ)

• (iv) If k̃ is a positive Radon measure on I then

µ
x,y

L−k̃(dγ) = exp

(
−
∫

I

ℓz(γ)m(z)k̃(dz)

)
µ
x,y
L (dγ)

• (v) If A is a change of scale function then

µ
A(x),A(y)

Scale
†
AL

= ScaleA∗µ
x,y
L

• (vi) If V is a positive continuous function on I then for the time changed diffusion of

generator 1
V
L:

µ
x,y
1
V
L
= SpeedV ∗µ

x,y
L

• (vii) If h is a positive continuous function on I such that
d2h

dx2
is a signed measure and

Lu is a negative measure then

µ
x,y
Conj(h,L) =

1

h(x)h(y)
µ
x,y
L

Previous equalities depend on a particular choice of the speed measure for the modified

generator. For (iv) we keep the measure m(y) dy. For (iii) we restrict m(y) dy to Ĩ. For (v)

we choose

(
dA

dx
◦ A−1

)−1

m ◦ A−1 da. For (vi) we choose
1

V (y)
m(y) dy. For (vii) we choose

h(y)2m(y) dy. Property (ii) follows from that pt(x, y) = pt(y, x) and Pty,x(·) is the image of

Ptx,y(·) by time reversal. Property (vi) is not immediate from definition 1 because fixed times

are transformed by time change in random times, but follows from proposition 2.1. Property

(vii) follows from that an h-transform does not change bridge probability measures and changes

the semi-group (pt(x, y)m(y) dy)t≥0,x∈I to ( 1
u(x)pt(x, y)u(y)m(y) dy)t≥0,x∈I .

Next we state different representations for the measures µx,y

Property 2.3. • (i) Assume k 6= 0. Let Px(·) be the law of (Xt)0≤t<ζ where X(0) = 0.

Then ∫

y∈I
µx,y(·)m(y)k(dy) = 1X killed by k Px(·)

• (ii) Assume that X is transient. Then 1
G(x,x)µ

x,x is the law of X, starting from X(0) = x,

up to the last time it visits x. 1
G(x,y)µ

x,y is the law of X, starting from X(0) = x, con-

ditioned to visit y before ζ, up to the last time it visits y.

• (iii) Let X and X̃ be two independent Markovian paths of generator L starting from

X(0) = x and X̃(0) = y. For a ≤ x ∧ y, we introduce Ta and T̃a the first time X

respectively X̃ hits a. Let PTax be the law of X up to time Ta, conditioned by the event

Ta < ζ. Let P̃T̃ay be the analogue for X̃. Let P̃T̃a∧y be the image of P̃T̃ay through time
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reversal and PTax � P̃T̃a∧y the image of PTax ⊗ P̃T̃a∧y through concatenation at a of two

paths, one ending and the other starting in a. Then

µx,y(·) =
∫

a∈I,a≤x∧y
Px(Ta < ζ)Py(T̃a < ζ̃)

(
PTax � P̃T̃a∧y

)
(·)w(a) da

Property 2.3 (i) was noticed by Dynkin in [5]. Properties 2.3 (ii) and (iii) were proved by

Pitman and Yor in case k = 0. See [17]. The case k 6= 0 can be obtained through h-transforms.

Indeed, and h-transform does not change the law of a diffusion from the first to the last time it

visits a point x, and does not change the measures PTax (·).
Next we study the continuity of (x, y) 7→ µx,y.

Lemma 2.4. Let J be a compact subinterval of I. Then the family of local times of X satisfies:

for every ε > 0

(2.7) lim
t→0+

sup
x∈J

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
= 0

Proof. It is enough to prove it in case the killing measure k is zero because adding a killing

measure only lowers ℓyt∧ζ(X). Without loss of generality we may also assume that the diffusion

is on its natural scale, that is to say w ≡ 2. Then X is just a time changed Brownian motion

on some open subinterval of R. For a Brownian motion (Bt)t≥0 (2.7) is clear. In this case

Px

(
supy∈R ℓ

y
t∧ζ(B) > ε

)
does not depend on x and for a given x

lim
t→0+

Px

(
sup
y∈R

ℓ
y
t∧ζ(B) > ε

)
= 0

Otherwise let

It :=
∫ t

0
m(Xs) ds

Then given the time change that transforms X into a Brownian motion B, we have

ℓ
y
t (X) = ℓ

y
It(B)

Let J = [x0, x1]. Let xmin ∈ I, xmin < x0 and xmax ∈ I, xmax > x1. Let Txmin,xmax the first

time X hits either xmin or xmax. Let s > 0, ε > 0 and x ∈ J . If t ≤ s

max[xmin,xmax]m
then on

the event Txmin,xmax ≥ t, It is less or equal to s. So for t small enough

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
≤ Px

(
sup
y∈R

ℓys(B) > ε

)
+ Px (Txmin,xmax < t)

But

Px (Txmin,xmax < t) = Px0 (Txmin,xmax < t) + Px1 (Txmin,xmax < t)

and

lim
t→0+

sup
x∈J

Px (Txmin,xmax < t) = 0

Thus

lim sup
t→0+

sup
x∈J

Px

(
sup
y∈I

ℓ
y
t∧ζ(X) > ε

)
≤ P

(
sup
y∈R

ℓys(B) > ε

)

Letting s go to 0 we get (2.7). �
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Proposition 2.5. Let tmax > 0. Let F be a bounded functional on finite life-time paths

endowed with continuous local times that depends continuously on the path (γt)0≤t≤T (γ) and

on (lx
T (γ)(γ))x∈I where we take the topology of uniform convergence for the occupation den-

sities on I. On top of that we assume that F is zero if T (γ) > tmax. Then the function

(x, y) 7→ µx,y(F (γ)) is continuous on I × I.

Proof. If we had assumed that F does only depend on the path regardless to its occupation

field then the continuity of (x, y) 7→ µx,y(F (γ)) would just be a consequence of the continuity of

transition densities and of the weak continuity of bridge probability measures. For our proof we

further assume that L does not contain any killing measure. If this is not the case, then we can

consider a continuous positive L-harmonic function u. Then Conj(u,L) does not contain any

killing measure and up to a continuous factor u(x)u(y) gives the same measure µx,y (property

2.2 (vii)). We will mainly rely on the representation given by proposition 2.1.

Let x, y ∈ I and (xj, yj)j≥0 a sequence in I×I converging to (x, y). Without loss of generality

we assume that (xj)j≥0 is increasing. We consider sample paths (Xt)0≤t<ζ and (X
(j)
t )0≤t<ζj

of the diffusion of generator L starting from x and each of xj, coupled on a same probability

space in the following way: First we sample X starting from x. Then we sample X(0) starting

from x0. It starts independently from X until the first time X
(0)
t = Xt. After that time X(0)

sticks to X. This two paths may never meet if one of them dies to early. If X, X(0),..., X(j)

are already sampled, we start X(j+1) from xj+1 independently from the preceding sample paths

until it meets one of them. After that time X(j+1) sticks to the path it has met. Let

T (j) := inf{t ≥ 0|X(j)
t = Xt}

If X(j) does not meet X, we set T (j) = +∞. By construction, (T (j))j≥0 is a non-increasing

sequence. Here we use that there is no killing measure. T (j) is equal in law to the first time two

independent sample paths of the diffusion, one starting from x and the other from xj, meet.

Thus the sequence (T (j))j≥0 converges to 0 in probability. Since it is decreasing, it converges

almost surely to 0.

We use reduction to absurdity. The sequence (µxj ,yj(F (γ)))j≥0 is bounded because F

is bounded and zero on paths with life-time greater then tmax. Assume that it does not

converge to µx,y(F (γ)). Then there is a subsequence that converges to a value other than

µx,y(F (γ)). We may as well assume that the whole sequence (µxj ,yj(F (γ)))j≥0 converges to a

value v 6= µx,y(F (γ)). According to lemma 2.4, the sequence of occupation density functions

((ℓz
T (j)(X

(j)))z∈I)j≥0 converges in probability to the null function. Thus there is an extracted

subsequence ((ℓz
T (jn)(X

(jn)))z∈I)n≥0 that converges almost surely uniformly to the null function.

We will show that (µxjn ,yjn (F (γ)))n≥0 converges to µx,y(F (γ)) and obtain a contradiction.

For z ∈ I and l > 0 let

τ zl := inf{t ≥ 0|ℓzt (X) > l}

and

τ zj,l := inf{t ≥ 0|ℓzt (X(j)) > l}
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Then according to proposition 2.1:

µx,y(F (γ)) = E

[∫ ℓ
y
tmax∧ζ

(X)

0
F ((Xs)0≤s≤τ

y
l ) dl

]

µxj ,yj(F (γ)) = E

[∫ ℓ
yj
tmax∧ζj

(X(j))

0
F ((X(j)

s )0≤s≤τ
yj
j,l ) dl

]

For any z ∈ I, if τ zj,l ∈ [T (j), ζj) then

τ zj,l = τ zl′

where

l′ = l + ℓz
T (j)(X) − ℓz

T (j)(X
(j))

Along the subset of indices (jn)n≥0, τ
yjn
jn,l

converges to τyl for every l ∈ (0, lyζ (X)) except possibly

the countable set of values of l where l 7→ τ
y
j,l jumps. For any l such that τ

yjn
jn,l

converges to τyl ,

the path (X
(j)
s )

0≤s≤τyjnjn,l

converges to the path (Xs)0≤s≤τ
y
l . Moreover for such l the occupation

densities (lz
τ
yjn
jn,l

(X(jn)))z∈I converge uniformly to (lz
τ
y
l

(X))z∈I . Indeed

ℓz
τ
yjn
jn,l

(X(jn)) = ℓz
τ
yjn
jn,l

(X)− ℓz
T (j)(X) + ℓz

T (j)(X
(jn))

Thus for all l ∈ (0, ℓyζ (X)), except possibly countably many,

lim
n→+∞

F ((X(jn)
s )0≤s≤τ

yjn
jn,l

) = F ((Xs)0≤s≤τ
y
l )

For n large enough, ζj = ζ and ℓ
yjn
tmax∧ζjn (X

(jn)) converges to ℓytmax∧ζ(X). It follows that the

following almost sure convergence holds

(2.8) lim
n→+∞

∫ ℓ
yjn
tmax∧ζjn

(X(jn))

0
F ((X(jn)

s )0≤s≤τ
yjn
jn,l

) dl =

∫ l
y
tmax∧ζ(X)

0
F ((Xs)0≤s≤τ

y
l ) dl

The absolute value of the left-hand side of (2.8) is bounded by ‖F‖+∞ℓ
yjn
tmax∧ζjn (X

(jn)). In order

to conclude that the almost sure convergence (2.8) is also an L1 convergence we need only to

show that

(2.9) E
[
|ℓyjntmax∧ζjn (X

(jn))− ℓ
y
tmax∧ζ(X)|

]
= 0

We already know that ℓ
yjn
tmax∧ζjn (X

(jn)) converges almost surely to ℓytmax∧ζ(X). Moreover

E
[
ℓ
yjn
tmax∧ζjn (X

(jn))
]
=

∫ tmax

0
pt(xjn , yjn)

and

E
[
ℓ
y
tmax∧ζ(X)

]
=

∫ tmax

0
pt(x, y)

It follows that the expectations converge. By Scheffe’s lemma, the L1 convergence (2.9) holds.

Finally there is a subsequence (µxjn ,yjn (F (γ)))n≥0 that converges to µx,y(F (γ)) which con-

tradict the convergence of (µxj ,yj(F (γ)))j≥0 to a different value. �
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2.3. The measure µ∗ on unrooted loops. The measure µx,x can be seen as a measure on

the space of rooted loops L. Next we define a natural measure µ∗L on L∗ following the pattern

(2.1):

Definition 2. Let µL be the following measure on L:

µL(dγ) :=

∫

t>0

∫

x∈I
Ptx,x(dγ)pt(x, x)m(x) dx

dt

t
=

1

T (γ)

∫

x∈I
µ
x,x
L (dγ)m(x) dx

µ∗L := π∗µL is a measure on L∗.

We will drop the subscript L whenever there is no ambiguity on L. The definition 2 does not

depend on the choice of the speed measure m(x) dx. The measures µ and µ∗ are σ-finite but

not finite. They satisfy the following elementary properties:

Property 2.6. • (i) µ is invariant by time reversal.

• (ii) If Ĩ is an open subinterval of I then

µL|Ĩ
(dγ) = 1γ contained in Ĩ µL(dγ)

• (iii) If k̃ is a positive Radon measure on I then

µ
L−k̃(dγ) = exp

(
−
∫

I

ℓz(γ)m(z)k̃(dz)

)
µL(dγ)

• (iv) If A is a change of scale function then

µ
Scale

†
AL

= ScaleA∗µL

• (v) If h is a positive continuous function on I such that
d2h

dx2
is a signed measure and

Lu is a negative measure then

µConj(h,L) = µL

Same properties hold for µ∗.

The measures µ and µ∗ contain some information on the diffusion X but the invariance by

h-transforms (property 2.6 (v)) shows that they do not capture its asymptotic behaviour. In

the subsection 2.4 we will prove a converse to the property property 2.6 (v). In our setting,

most important examples of h-transforms are:

• The Bessel 3 process on (0,+∞) is an h-transform of the Brownian motion on (0,+∞),

killed when hitting 0, through the function x 7→ x.

• The Brownian motion on R killed with uniform rate k dx (i.e. k constant) is an h-

transform of the drifted Brownian motion on R with constant drift
√
2k, through the

function x 7→ e−
√
2kx.

In the sequel we will be interested mostly in µ∗ and not µ. As it will be clear from the next

propositions, the measure µ∗ has some nice features that µ does not.
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Proposition 2.7. Let v ∈ [0, 1]. Then

shiftv∗µ = µ

In particular

(2.10) µ =

∫

v∈[0,1]
dv shiftv∗µ

Proof. For a rooted loop γ of life-time T (γ) we will introduce γ1 the path restricted to time in-

terval [0, vT (γ)] and γ2 the path restricted to [vT (γ), T (γ)]. By bridge decomposition property,

the measure µ(dγ1, dγ2) equals

(2.11)

∫

t>0

∫

I

∫

I

Pvtx,y(dγ1)P
(1−v)t
y,x (dγ2)pvt(x, y)p(1−v)t(y, x)m(y) dy m(x) dx

dt

t

In (2.11) γ1 and γ2 play symmetric roles, so changing the order of γ1 and γ2 does not change

the measure µ. �

Formula (2.10) shows that we can get back to the measure µ from the measure µ∗ by cutting

the circle parametrizing a loop in L∗ in a point chosen uniformly on this circle, in order to

separate the start from the end.

Corollary 2.8. Let F be a positive measurable functional on L. Then γ 7→
∫ 1
0 F (shiftv(γ)) dv

is π−1(BL∗)-measurable and

d(F (γ)µ)

dµ |π−1(BL∗ )

=

∫ 1

0
F (shiftv(γ)) dv

Proof. We need only to show that for every F ′ measurable functional on L∗:

(2.12)

∫

L

F (γ)F ′(π(γ))µ(dγ) =
∫ 1

0

∫

L

F (shiftv(γ))F
′(π(γ))µ(dγ) dv

From proposition 2.7 follows that for every v ∈ [0, 1]:

(2.13)

∫

L

F (γ)F ′(π(γ))µ(dγ) =
∫

L

F (shiftv(γ))F
′(π(γ))µ(dγ)

Integrating (2.13) on [0, 1] leads to (2.12). �

The next identity appears in [10] in the setting of Markov jump processes on graphs. We will

give a proof for that suits our framework.

Corollary 2.9. Let x ∈ I. Then

(2.14) ℓx(γ)µ∗(dγ) = π∗µ
x,x(dγ)

For l > 0, let P
τx
l
x (·) be the law of the sample paths of a diffusion X of generator L, started from

x, until the time τxl when ℓxt (X) hits l, conditioned by τxl < ζ. Then

(2.15) 1γ visits xµ
∗(dγ) =

∫ +∞

0
π∗P

τxl
x (dγ)e

− l
G(x,x)

dl

l

Conventionally we set G(x, x) = +∞ if X is recurrent.
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Proof. Let ε > 0 such that [x− ε, x + ε] ⊆ I. Let T[x−ε,x+ε](γ) be the time a loop γ spends in

[x− ε, x+ ε]. From the identity (2.10) follows that

T[x−ε,x+ε](γ)

T (γ)
µ∗(dγ) =

1

T (γ)

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z) dz

and simplifying T (γ):

(2.16) T[x−ε,x+ε](γ)µ
∗(dγ) =

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z) dz

Using local times we rewrite (2.16) as

(2.17)

∫ x+ε
x−ε ℓ

z(γ)m(z) dz
∫ x+ε
x−ε m(z) dz

µ∗(dγ) =
1∫ x+ε

x−ε m(z) dz

∫ x+ε

x−ε
π∗µ

z,z(dγ)m(z) dz

Let ε0 > 0 such that [x− ε0, x + ε0] ⊆ I. Let F be a continuous bounded functional on loops

endowed with continuous local times such that F is zero if the life-time of the loop exceeds

tmax > 0 and if supz∈[x−ε0,x+ε0] l
z(γ) exceeds lmax. According to the proposition 2.5, the

right-hand side of (2.17) applied to F converges as ε → 0 to (π∗µx,x)(F (γ)). By dominated

convergence it follows that the left-hand side of (2.17) applied to F converges as ε→ 0 to
∫

L∗

ℓx(γ)F (γ)µ∗(dγ)

Thus we have the equality

(2.18)

∫

L∗

ℓx(γ)F (γ)µ∗(dγ) = (π∗µ
x,x)(F (γ))

The set of test functionals F that satisfy (2.18) is large enough to deduce the equality (2.14)

between measures.

From proposition 2.1 follows that

µx,x(·) =
∫ +∞

0
P
τxl
x (·)e−

l
G(x,x) dl

Applying (2.14) to the above disintegration, we get (2.15). �

Corollary 2.10. Let V be a positive continuous function on I. We consider a time change with

speed V : ds = V (x)dt. Then

(2.19) µ∗1
V
L
= SpeedV ∗µ

∗
L

Proof. By definition 2 and property 2.2 (vi):

µ 1
V
L(dγ) =

1

T (γ)

∫ T (γ)

0

V (γ(0))

V (γ(s))
ds SpeedV ∗(µL(dγ))

Applying corollary 2.8 we obtain:

dSpeedV ∗µL
dµ 1

V
L |π−1(BL∗ )

=

∫ 1
0 V

−1(γ(vT (γ))) dv

1
T (γ)

∫ T (γ)
0 V −1(γ(s)) ds

= 1

This concludes. �
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In dimension two, the time change covariance of the measure µ∗ on loops plays a key role

for the construction of the Conformal Loop Ensembles (CLE) using loop soups as in [21]: Let

D be an open domain of the complex plane, (Bt)0≤t<ζ the two-dimensional standard Brownian

motion in D killed when hitting ∂D and µ∗ the corresponding measure on loops. If f : D → D

is a conformal map, then (f(Bt))0≤t<ζ is a time changed Brownian motion. If we consider µ∗

not as a measure on loops parametrized by time but a measure on the geometrical drawings

of loops, then µ∗ is invariant by the transformation (γ(t))0≤t≤T (γ) 7→ (f(γ(t)))0≤t≤T (γ). This is

proved in [14].

Given that µ∗ is invariant through h-transforms and covariant with the change of scale and

change of time, if X is a recurrent diffusion, then up to a change of scale and time, µ∗ is the same

as for the Brownian motion on R, and if X is a transient diffusion, even if the killing measure k

is non-zero, then up to a change of scale and time, µ∗ is the same as for the Brownian motion

on a bounded interval, killed when it hits the boundary.

2.4. Multiple local times. In this subsection we define the multiple local time functional on

loops. Corollary 2.9 gives a link between the measure µ∗ and the measures (µx,x)x∈I . Using

multiple local time we will get a further relation between µ∗ and (µx,y)x,y∈I . This will allow

us to prove a converse to the property 2.6 (v): two diffusions that have the same measure on

unrooted loops are related trough an h-transform.

Definition 3. If (γ(t))0≤t≤T (γ) is a continuous path in I having a family of local times

(lxt (γ))x∈I,0≤t≤T (γ) relatively to the measure m(x) dx, we introduce multiple local times

ℓx1,x2,...,xn(γ) for x1, x2, ..., xn ∈ I:

ℓx1,x2,...,xn(γ) :=

∫

0≤t1≤t2≤...≤tn≤T (γ)
dt1ℓ

x1
t1
(γ) dt2ℓ

x2
t2
(γ)...dtnℓ

xn
tn
(γ)

If γ ∈ L and has local times, we introduce circular local times for γ:

ℓ∗x1,x2,...,xn(γ) :=
∑

c circular

permutation

of {1, 2, ..., n}

ℓxc(1),xc(2),...,xc(n)(γ)

ℓ∗x1,x2,...,xnbeing invariant under the transformations (shiftv)v∈[0,1], we see it as a functional

defined on L∗.

Multiple local times of the form lx,x,...,x(γ), called self intersection local times, were studied

by Dynkin in [7]. Circular local times were introduced by Le Jan in [10].

Let n ∈ N∗ and p ∈ {1, ..., n}. Let Shufflep,n be the set of permutations σ of {1, ..., n} such

that for all i ≤ j ∈ {1, ..., p}, σ(i) ≤ σ(j) and for all i ≤ j ∈ {p+ 1, ..., n}, σ(i) ≤ σ(j). Permu-

tations in Shufflep,n are obtained by shuffling two card decks {1, ..., p} and {p+ 1, ..., n}. Let

Shuffle′p,n be the permutations of {1, ..., n} of the form σ ◦ c where c is a circular permutation

of {p+ 1, ..., n} and σ ∈ Shufflep,n satisfies σ(1) = 1. One can check that

Property 2.11. For all x1, ..., xp, xp+1, ..., xn ∈ I:
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• (i)

ℓx1,...,xp(γ)ℓxp+1,...,xn(γ) =
∑

σ∈Shufflep,n
ℓxσ(1),...,xσ(p),xσ(p+1),...,xσ(n)(γ)

• (ii)

ℓ∗x1,...,xp(γ)ℓ∗xp+1,...,xn(γ) =
∑

σ′∈Shuffle′p,n

ℓxσ′(1),...,xσ′(p),xσ′(p+1),...,xσ′(n)(γ)

The equality 2.11 (ii) appears in [10]. It is also shown in [10] that for transient Markov jump

processes:

(2.20)

∫
ℓ∗x1,x2,...,xn(γ)µ(dγ) = G(x1, x2)× ...×G(xn−1, xn)×G(xn, x1)

It turns out that we have more: We consider L a generator of a diffusion on I of form

(1.3). If γi for i ∈ {1, 2, ..., n − 1} is a continuous path from xi to xi+1, then we can con-

catenate γ1, γ2, ..., γn−1 to obtain a continuous path γ1 � γ2 � ... � γn−1 from x1 to xn. Let

µx1,x2 � ...� µxn−1,xn be the image measure of µx1,x2 ⊗ ...⊗ µxn−1,xn by this concatenation pro-

cedure.

Proposition 2.12. The following absolute continuity relationships hold:

• (i) (µx1,x2 � ...� µxn−1,xn)(dγ) = ℓx2,...,xn−1(γ)µx1,xn(dγ)

• (ii) π∗(µx1,x2 � ...� µxn−1,xn � µxn,x1)(dγ) = ℓ∗x1,x2,...,xn(γ)µ∗(dγ)

Proof. (i): Let ((X
(i)
t )0≤t<ζi)0≤i≤n−1 be n − 1 independent diffusions of generator L, with

X
(i)
0 = xi. For l ≥ 0, let

τi,l := inf
{
ti ≥ 0|ℓxi+1

ti
(X(i)) > l

}

According to proposition 2.1, (µx1,x2 � ...� µxn−1,xn)(F (γ)) equals:

(2.21) E

[∫
1
li<l

xi+1
ζi

,1≤i≤n−1
F
(
(X

(1)
t )0≤t≤τ1,l1 � ...� (X

(n−1)
t )0≤t≤τn−1,ln−1

)
dl1...dln−1

]

Let (Xt)0≤t<ζ be an other diffusion of generator L. Let

τl1 := inf{t ≥ 0|lx2t (X) > l1}

and recursively defined:

τl1,...li−1,li := inf{t ≥ τl1,...li−1
|ℓxi+1
t (X) > li}

Then by strong Markov property, (2.21) equals

(2.22) E

[∫
1τl1,...,ln−1

≤ζF
(
(Xt)0≤t≤τl1,...,ln−1

)
dl1...dln−1

]

(2.22) in turn equals

(2.23) E

[∫
1∀i,ti<ζF

(
(Xt)0≤t≤tn−1

)
dℓx2t1 (X)...dℓxntn−1

(X)

]

By proposition 2.1, (2.23) equals
∫
ℓx1,...,xn−1(γ)F (γ)µx1,xn(dγ).
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(ii): According to the identity (i) and corollary 2.8, we have

(2.24) π∗(µ
x1,x2

� ...� µxn−1,xn
� µxn,x1)(dγ) =

(∫ 1

0
ℓx2,...,xn(shiftv(γ)) dv

)
π∗µ

x1,x1(dγ)

According to corollary 2.9:
(∫ 1

0
ℓx2,...,xn(shiftv(γ)) dv

)
π∗µ

x1,x1(dγ) = ℓx1(γ)

(∫ 1

0
ℓx2,...,xn(shiftv(γ)) dv

)
µ∗(dγ)

But

ℓx1(γ)

∫ 1

0
ℓx2,...,xn(shiftv(γ)) dv = ℓ∗x1,x2,...,xn(γ)

which ends the proof. �

The proposition 2.12 (ii) implies (2.20).

Proposition 2.13. If L and L′ are two generators of diffusions on I of the form (1.3) such that

µ∗L = µ∗L′, then there is a positive continuous function h on I such that
d2h

dx2
is a signed measure,

Lh a negative measure and L′ = Conj(h,L). If the diffusion of generator L is recurrent then

L′ = L.

Proof. Let m(x) dx be a speed measure for L and m′(x) dx be a speed measure for L′. First

let’s assume that both L and L′ are generators of transient diffusions. Let (G(x, y))x,y∈I be the

Green’s function of L relatively to the measure m(x) dx and (G′(x, y))x,y∈I be the Green’s func-

tion of L′ relatively to the measure m′(x) dx. Applying the identity (2.20) to
∫
L∗ ℓ

∗x,y(γ)µ∗(dγ)

we get that for all x, y ∈ I:

(2.25) G′(x, y)G′(y, x)m′(x)m′(y) = G(x, y)G(y, x)m(x)m(y)

and for all x, y, z ∈ I:

(2.26) G′(x, y)G′(y, z)G′(z, x)m′(x)m′(y)m′(z) = G(x, y)G(y, z)G(z, x)m(x)m(y)m(z)

Fix x0 ∈ I. Let h be

h(x) :=
G′(x0, x)m′(x)
G(x0, x)m(x)

h is positive and continuous.
1

h(x)
G(x, y)h(y)m(y) equals:

G(x0, x)G(x, y)G(y, x0)m(x0)m(x)m(y)

G′(x0, x)G′(x, y)G′(y, x0)m′(x0)m′(x)m′(y)

(2.27) × G′(x0, y)G′(y, x0)m′(x0)m′(y)
G(x0, y)G(y, x0)m(x0)m(y)

×G′(x, y)m′(y)

Applying (2.25) and (2.26) to (2.27) we get that

(2.28)
1

h(x)
G(x, y)h(y)m(y) = G′(x, y)m′(y)

Applying (2.28) once to (x, y) and once do (x, x) we get that

(2.29) h(y) = h(x)
G′(x, y)
G(x, y)

G(y, y)

G′(y, y)
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From (2.29) we deduce that
d2h

dx2
is a signed measure. From (2.28) we deduce that L′ = Conj(h,L).

−Lh is the killing measure of L′ and is positive.

If we no longer assume that L and L′ generate transient diffusions then consider λ > 0. Then

µ∗L−λ = µ∗L′−λ. According to the above, there is h positive continuous function on I such that

d2

dx2
is a signed measure and

L′ − λ = Conj(h,L− λ) = Conj(h,L)− λ

Then L′ = Conj(h,L) and necessarily Lh is a negative measure.

The class of recurrent diffusions is preserved by h-transforms. So if L is the generator of a

recurrent diffusion then so is L′, and thus h is bound to satisfy Lh = 0. But since the diffusion

of L is recurrent, the only solutions to Lh = 0 are constant functions. Thus L′ = L. �

2.5. A disintegration of µ∗ induced by the Vervaat’s transformation. By conditioning

the measure µ by the life-time of loops we get a sum of bridge measures. Vervaat in [24]

shows a relation between Brownian bridges and Brownian excursions. Using the Vervaat’s

transformation we will disintegrate the measure µ∗ as a measure on the minimal value of the

loop and its behaviour above this value. We will obtain a sum of excursion measures η>x.

Vervaat’s Transformation. Let (γ(s))0≤s≤t be a random path following the Brownian bridge

probability measure P
0,0
t,BM (·). Let smin := argmin γ. Then the path

s 7→ −min γ + (shift smin
t
γ)(s)

has the law of a positive Brownian excursion of life-time t.

In the sequel if η is a measure on paths and x ∈ R, we will write (x+η) for the image of η by

γ 7→ x+ γ. η>0
BM will be the Levy-Itô measure on positive Brownian excursions and η>0

t,BM the

probability measure on positive Brownian excursions of duration t. Given a continuous loop

(γt)0≤t≤T (γ) and t0 the first time γ hits min γ, let V(γ) be the transformation shift t0
T (γ)

. V is

BL-measurable.

Proposition 2.14. Let µ∗BM be the measure on loops associated to the Brownian motion on R.

Then:

(2.30) µ∗BM (dγ) = 2

∫

a∈R
π∗(a+ η>0

BM )(dγ) da

The measure on (min γ,max γ) induced by µ∗BM is 1a<b(b − a)−2 dx dy. Let a < b ∈ R and

ρ, ρ̃ two independent Bessel 3 processes starting from 0. Let Tb−a and T̃b−a be the first times ρ

respectively ρ̃ hit b− a. Let (βt)0≤t≤Tb−a+T̃b−a
be the path

βt :=

{
a+ ρt if t ≤ Tb−a
a+ ρ̃Tb−a+T̃b−a−t if t ≥ Tb−a

Then the law of (βt)0≤t≤Tb−a+T̃b−a
is the probability measure obtained by conditioning the mea-

sure µ∗BM by (min γ,max γ) = (a, b).



POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS 27

Proof. For the Brownian motion on R, µBM writes

µBM (·) =
∫

x∈R

∫

t>0
(x+ P

0,0
t,BM )(·) dt√

2πt3
dx

Let χ(a) da be the law of the minimum of the bridge under P
0,0
t,BM . Applying the Vervaat’s

transformation, we get that

(2.31) V∗µBM (·) =
∫

a∈R

∫

t>0

(∫

x>a

χ(x− a) dx

)
(a+ η>0

t,BM )(·) dt√
2πt3

da

Since
∫
x>a

χ(x− a) dx = 1, the right-hand side of (2.31) equals
∫

a∈R

∫

t>0
(a+ η>0

t,BM )(·) dt√
2πt3

da

But ∫

t>0
(a+ η>0

t,BM )(·) dt√
2πt3

= 2(a+ η>0
BM )(·)

The equality (2.30) follows. The rest of the proposition 2.14 is a consequence of the William’s

representation of Brownian excursions. �

Corollary 2.15. Let I be an open interval of R and λ ≥ 0. Let L be the generator
1

2

d2

dx2
− λ

on I with zero Dirichlet boundary conditions and µ∗ the associated measure on loops. Given a

loop (γ(t))0≤t≤T (γ), let R(γ) be the loop (max γ +min γ − γ(t))0≤t≤T (γ), that is the image of γ

through reflection relatively to
max γ +min γ

2
. Then

R∗µ
∗ = µ∗

Proof. It is enough to prove this in case λ = 0 and I = R. Otherwise we multiply the measure

µ∗BM by a density function that is left invariant by R. Then we use the description of the

measure µ∗BM conditioned by the value of (min γ,max γ) and the fact that if a > 0, (ρt)t≥ is a

Bessel 3 process starting from 0 and Tb is the first time it hits b, then (y− ρTb−t)0≤t≤Tb has the

same law as (ρt)0≤t≤Tb (see [19], chapter VII, §4). �

Now we consider that L is a generator of a diffusion on I of form (1.3). Given a point

x0 ∈ I, u+,x0 and u−,x0 will be the L-harmonic functions satisfying u+,x0(x0) = u−,x0(x0) = 0,
du+,x0

dx
(x+0 ) = 1 and

du−,x0

dx
(x−0 ) = −1. If x ≤ y ∈ I then

(2.32) w(y)u−,y(x) = w(x)u+,x(y)

Indeed, the Wronskian W (u−,y, u+,x) takes in x the value u−,y(x) and in y the value u+,x(y),

and the ratio
1

w(z)
W (u−,y, u+,x)(z) is constant. If ν = 0, then the both sides of (2.32) equal

∫ y
x
w(z) dz. u+,x0 is positive on I ∩ (x0,+∞) and u−,x0 is positive on I ∩ (−∞, x0). Let

L+,x0 be Conj(u+,x0 , L) restricted to I ∩ (x0,+∞) and L−,x0 be Conj(u−,x0 , L) restricted to

I ∩ (−∞, x0). L
+,x0 and L−,x0 are generators of transient diffusions without killing measures.

If L is the generator of the Brownian motion on R, then L+,0 is just the generator of a Bessel

3 process. In general case, x0 is an entrance boundary for L+,x0 and L−,x0 , that is to say

a diffusion started from x 6= x0 will never reach the boundary at x0, and we can also start

this diffusions at the boundary point x0, in which case it will be immediately repelled away
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from x0. Let x ∈ I and (ρ+,xt )0≤t<ζ+,x be a diffusion of generator L+,x starting from x. Let

y ∈ I, y > x. Let T+,x
y be the first time ρ+,x hits y and T̂

+,x
y the last time it visits y. Then

(ρ+,x
T̂

+,x
y +t

)0≤t<ζ+,x−T̂+,x
y

is a diffusion of generator L+,y starting from y. Let (ρ−,yt )0≤t<ζ−,y be a

diffusion of generator L−,y starting from y and T−,y
x the first time it hits x. Then (ρ+,xt )0≤t≤T+,x

y

and (ρ−,y
T

−,y
x −t)0≤t≤T−,y

x
are equal in law: Indeed let C be the constant

C =
w(z)

W (u−,y, u+,x)(z)

The Green’s operator of ρ+,x killed in y is

((−L+,x
|(x,y))

−1f)(x′) = C

∫ y

x

u+,x(x′ ∧ y′)u−,y(x′ ∨ y′)u
+,x(y′)
u+,x(x′)

m(y′) dy′

and the Green’s operator of ρ−,y killed in x is

((−L−,y
|(x,y))

−1f)(x′) = C

∫ y

x

u+,x(x′ ∧ y′)u−,y(x′ ∨ y′)u
−,y(y′)
u−,y(x′)

m(y′) dy′

The potential measure of (ρ+,xt )0≤t≤T+,x
y

starting from x is

U(x′) dx′ = Cu+,x(x′)u−,y(x′)m(x′) dx′

and for any f, g bounded functions on (x, y)

(2.33)

∫ y

x

((−L+,x
|(x,y))

−1f)(x′)g(x′)U(x′) dx′ =
∫ y

x

f(x′)((−L−,y
|(x,y))

−1g)(x′)U(x′) dx′

The time reversal property for (ρ+,xt )0≤t≤T+,x
y

follows from the duality relation (2.33). See [19],

chapter VII, §4 for details on time reversal.

Corollary 2.16. If L is a generator of a diffusion on I of form (1.3), then

(2.34) µ∗(·) =
∫

a∈I
π∗η

>a(·)w(a) da

The measure on (min γ,max γ) induced by µ∗ is 1a<b∈I
da db

u+,a(b)u−,b(a)
. Let a < b ∈ I. Let

(ρ+,at )0≤t<ζ+,a and (ρ−,bt )0≤t<ζ−,b be two independent diffusion, the first of generator L+,a start-

ing from a and the second of generator L−,b starting from b. Let T+,a
b be the first time ρ+,a hits

b and T−,b
a the first time ρ−,b hits a. Let (βt)0≤t≤T+,a

b
+T−,b

a
be the path

βt :=

{
ρ
+,a
t if t ≤ T

+,a
b

ρ
−,b
t−T+,a

b

if t ≥ T
+,a
b

Then the law of (βt)0≤t≤T+,a
b

+T−,b
a

is the probability measure obtained by conditioning the mea-

sure µ∗ by (min γ,max γ) = (a, b).

Proof. Both sides of (2.34) are covariant by scale and time change. Moreover both sides satisfy

the property 2.6 (ii) for the restriction to a subinterval and the property 2.6 (iii) when adding

a killing measure.

Regarding the description of the measure on (min γ,max γ) and the probabilities obtained

after conditioning by (min γ,max γ) = (a, b), if L is a generator without killing measure (k = 0),
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then the result follows through a change of scale and time from the analogous description in

proposition 2.14. If k 6= 0, then we can take u a positive L-harmonic function and deduce the

result for L from the result for Conj(u,L) using the fact that µ∗L = µ∗
Conj(u,L). �

The relation between the measure on loops and the excursions measures in dimension 1

(identity (2.34)) is analogous to the relation between the measure on Brownian loops and the

so called bubble measures observed by Lawler and Werner in dimension 2. See propositions 7

and 8 in [14].

2.6. A generalization of the Vervaat’s transformation. In this subsection we will show a

conditioned version of the Vervaat’s transformation that holds for any one-dimensional diffusion

of form (1.3) and not just for the Brownian motion. L will be a generator of a diffusion on I of

form (1.3). From corollary 2.9 and identity (2.34) follows that for every x ∈ I:

(2.35)

∫

t>0
V∗P

t
x,x(dγ)pt(x, x)dt =

∫

a∈I,a<x
ℓx(γ)η>a(dγ)w(a) da

Let Ptx,x(dγ|min γ = a) be the bridge probability measure condition by the value of the min-

imum to equal a. Further we will show that there is a version that depends continuously on

(a, t). Let η>at the probability measure obtained from η>a by conditioning the excursion to

have a life-time t. The identity (2.35) suggests the following:

Proposition 2.17. For every a < x ∈ I and t > 0

(2.36) V∗P
t
x,x(dγ|min γ = a) =

ℓxt (γ)η
>a
t (dγ)

η>at (lxt (γ))

The distribution of min γ under Ptx,x equals

(2.37) w(a)η>at (ℓxt (γ))
1

pt(x, x)

η>a(T (γ) ∈ (t, t+ dt))

dt
da

where
η>a(T (γ) ∈ (t, t+ dt))

dt
is the density of the measure on the life-time of the excursion

induced by η>a. Given an excursion γ following the law
ℓxt (γ)η

>a
t (dγ)

η>at (ℓxt (γ))
, the local time in x is a

measure on {s ∈ [0, t]|γ(s) = x}. The transformation V sends the starting point of the bridge

to a point s ∈ [0, t] distributed conditionally on the excursion γ according the measure
dsℓ

x
s (γ)

ℓxt (γ)
.

Identities (2.36) and (2.37) can be viewed as a conditioned analogue of the Vervaat’s relation

between the Brownian bridge and the Brownian excursion. The latter can be deduced from

(2.36) and (2.37) using the translation invariance of the Brownian motion. From (2.35) we can

only deduce that (2.36) and (2.37) hold for Lebesgue almost all t and a. We need to show the

weak continuity in (a, t) of conditioned bridge probabilities and biased conditioned excursion

probabilities to conclude. It is enough to prove the proposition 2.17 for L not containing any

killing measure and such that for all a < x ∈ I, a diffusion starting from x reaches a almost

surely. Indeed, for a general generator, Conj(u↓, L) does satisfy the above constraints and if

the proposition 2.17 is true for Conj(u↓, L) then it is also for L. From now on we assume
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that L satisfies the above constraints. Next we give a more "constructive" description of the

conditioned bridges and biased conditioned excursions. We start with bridges.

Property 2.3 (iii) shows that the measure PTax � P̃T̃
a∧

x conditioned on Ta + T̃a = t is a version

of Ptx,x(dγ|min γ = a). Let p
(a)
t (x, y) be the transition density on I ∩ (a,+∞) relatively to

m(y) dy of the semi-group generated by L|I∩(a,+∞). Then p
(a)
t (x, a+) = 0. According to [15],

for all t > 0, y 7→ p
(a)
t (x, y) is C1. Let ∂2p

(a)
t (x, y) be the derivative relatively to y. It has a

positive limit ∂2p
(a)
t (x, a+) as y → a+. Extended in this way, the map (t, x, y) 7→ ∂2p

(a)
t (x, y)

is continuous on (0 +∞)× I ∩ (a,+∞)× I ∩ [a,+∞). The distribution of Ta under Px is (see

[7]):

1

w(a)
∂2p

(a)
t (x, a+) dt

Let P
(a),t
x,y be the bridge probability measures of L|I∩(a,+∞). It has a weak limit P

(a),t
x,a+

as y → a+.

Let Fs be the sigma-algebra generated by the restriction of a continuous path to the time interval

[0, s]. Let P+,a
a be the law of ρ+,a starting from a. For all s ∈ (0, t) we have the following absolute

continuity relations:

(2.38)
dP

(a),t
x,a+

dPx |Fs

= 1s<Ta
∂2p

(a)
t−s(Xs, a

+)

∂2p
(a)
t (x, a+)

and for the time reversed bridge

(2.39)
dP

(a),t∧
x,a+

dP
+,a
a |Fs

=
p
(a)
t−s(ρ

+,a
s , x)

∂2p
(a)
t (x, a+)

Using the absolute continuity relation (2.38) and (2.39) one can prove in a similar way as in

proposition 1.4 that the map (t, y) 7→ P
(a),t
x,a+

is continuous for the weak topology. The measure

PTax disintegrates as follows

(2.40) PTax (·) = 1

w(a)

∫

t>0
P
(a),t
x,a+

(·)∂2p(a)t (x, a+) dt

From the property 2.3 (iii) and (2.40) we get that

Property 2.18. The distribution of min γ under P tx,x is

(2.41)
da

w(a)pt(x, x)

∫ t

0
∂2p

(a)
s (x, a+)∂2p

(a)
t−s(x, a

+) ds

There is a version of Ptx,x(dγ|min γ = a) that disintegrates as

(2.42)

∫ t
0

(
P
(a),s
x,a+

� P
(a),t−s∧
x,a+

)
(dγ)∂2p

(a)
s (x, a+)∂2p

(a)
t−s(x, a

+) ds
∫ t
0 ∂2p

(a)
s (x, a+)∂2p

(a)
t−s(x, a

+) ds

Next we show that the probability measure given by (2.42) depends continuously on (a, t).

Lemma 2.19. The functions (x, a, t) 7→ p
(a)
t (x, a+) and (x, a, t) 7→ ∂2p

(a)
t (x, a+) are continuous

on {(x, a)|x > a ∈ I} × (0,+∞).
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Proof. As in [15], we can use the eigendifferential expansion of L to express p
(a)
t (x, a+) and

∂2p
(a)
t (x, a+). Let x0. For λ ∈ R consider e1(·, λ) and e2(·, λ) two solutions to Lu + λu = 0

with initial conditions

e1(x0, λ) = 1
∂e1

∂x
(x0, λ) = 0 e2(x0, λ) = 0

∂e2

∂x
(x0, λ) = 1

Let e(x, λ) be the 2-vector whose entries are e1(x, λ) and e2(x, λ). According to theorems 3.2

and 4.3 in [15], for all a ∈ I there is a Radon measure f(a) on (−∞, 0] with values in the space

of 2× 2 symmetric positive semi-definite matrices such that for all x ∈ I ∩ (a,+∞)

p
(a)
t (x, a+) =

∫ 0

−∞
etλ⊺e(x, λ)f(a)(dλ)e(a, λ)

∂2p
(a)
t (x, a+) =

∫ 0

−∞
etλ⊺e(x, λ)f(a)(dλ)

∂e

∂x
(a, λ)

Let x > a ∈ I. Consider a two sequences (xn)n≥0 and (an)n≥0 in I ∩ (−∞, x) converging

to x respectively a such that for all n ≥ 0, xn > an. Let (bj)j≥0 be an increasing sequence

in I ∩ (x, sup I) converging to sup I. Let fn,j be the 2 × 2-matrix valued measure on (−∞, 0]

corresponding to the eigendifferential expansion of L restricted to (an, bj). fn,j charges only a

discrete set of atoms. As shown in the proof of theorem 3.2 in [15], the total mass of the measures

1 ∧ |λ|−2‖fn,j‖(dλ), 1 ∧ |λ|−2‖f(an)‖(dλ) and 1 ∧ |λ|−2‖f(a)‖(dλ) is uniformly bounded. More-

over for a fixed n, as j → +∞, 1 ∧ |λ|−2fn,j(dλ) converges vaguely, that is against continuous

functions vanishing at infinity, to the measure 1 ∧ |λ|−2f(an)(dλ). Moreover, for any increas-

ing integer-valued sequence (jn)n≥0 converging to +∞, 1 ∧ |λ|−2fn,jn(dλ) converges vaguely

as n → +∞ to 1 ∧ |λ|−2f(a)(dλ). Since the sequence (jn)n≥0 is arbitrary, this implies that

1 ∧ |λ|−2f(an)(dλ) converges vaguely as n→ +∞ to 1 ∧ |λ|−2f(a)(dλ).

There are constants C, c′ > 0 such that for all λ ≤ 0 and n ≥ 0

(2.43) ‖e(xn, λ)‖ ≤ Cec
′
√

|λ| ‖e(an, λ)‖ ≤ Cec
′
√

|λ| ‖ ∂e
∂x

(an, λ)‖ ≤ Cec
′
√

|λ|

Let t > 0 and (tn)n≥0 a sequence of times converging to t. From (2.43) follows that

lim
λ→−∞

sup
n≥0

|λ|2etnλ‖e(xn, λ)‖ × ‖e(an, λ)‖ = 0

λ 7→ 1 ∨ |λ|2etnλ (e(xn, λ), ∂e(an, λ)) vanishes at infinity an converges uniformly on (−∞, 0] to

λ 7→ 1 ∨ |λ|2etλ (e(x, λ), e(a, λ)). The vague convergence of measures implies that

lim
n→+∞

∫ 0

−∞
etnλ⊺e(xn, λ)f

(an)(dλ)e(an, λ) =

∫ 0

−∞
etλ⊺e(x, λ)f(a)(dλ)e(a, λ)

Similarly ∂2p
(an)
tn

(xn, a
+
n ) converges to ∂2p

(a)
t (x, a+). �

Lemma 2.20. The map a 7→ P
+,a
a is weakly continuous.

Proof. Let a0 ∈ I. Consider the process (ρ+,a0t )t≥0 following the law P
+,a0
a0 . For a ∈ I∩(a0,+∞),

let T̂a be the last time ρ+,a0 visits a. Then (ρ+,a0
T̂a+t

)t≥0 follows the law P
+,a
a . The process valued

map a 7→ (ρ+,a0
T̂a+t

)t≥0 is almost surely continuous on I ∩ (a0,+∞) and thus the laws depend

weakly continuously on a. �
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Proposition 2.21. The version of Ptx,x(dγ|min γ = a) given by (2.42) is weakly continuous in

(a, t).

Proof. From the absolute continuity relations (2.38) for the bridge P
(a),t
x,a+

and (2.39) for its

time reversal, together with the continuity of the densities which follows from lemma 2.19,

and the weak continuity of a 7→ P
+,a
a , we can deduce in a very similar way as in proposition

1.4 that the map (a, t) 7→ P
(a),t
x,a+

is weakly continuous on (0,+∞) × I ∩ (−∞, x) and hence

(a, s, t) 7→ P
(a),s
x,a+

�P
(a),t−s∧
x,a+

is weakly continuous. Finally the densities that appear in expression

(2.42) are continuous with respect to (a, s, t). �

Next we will describe the measure η>a. ∂2p
(a)
t (x, a+) is C1 relatively to x and the derivative

∂1,2p
(a)
t (x, a+) has a positive limit ∂1,2p

(a)
t (a+, a+) as y → a+. Moreover t 7→ ∂1,2p

(a)
t (a+, a+)

is continuous. The measure on the life-time of the excursion induced by η>a is (see [20]):

1

w(a)2
∂1,2p

(a)
t (a+, a+) dt

Let s ∈ [0, t]. The measure η>at (·) disintegrates as (see [20]):

(2.44)

∫

x∈I,x>a

(
P
(a),s∧
x,a+

� P
(a),t−s
x,a+

)
(·)∂2p

(a)
s (x, a+)∂2p

(a)
t−s(x, a

+)m(y)

∂1,2p
(a)
t (a+, a+)

dy

For every s1 < s2 ∈ [0, s], under the bridge measure P
(a),s
y,z :

(2.45) P(a),t
y,z (ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

p
(a)
r (y, x)p

(a)
s−r(x, z)

p
(a)
s (y, z)

dr

and under the bridge measure P
(a),s
y,a+

:

(2.46) P
(a),t
y,a+

(ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

p
(a)
r (y, x)∂2p

(a)
s−r(x, a

+)

∂2p
(a)
s (y, a+)

dr

Combining (2.44) and (2.46) we get that for every s1 < s2 ∈ [0, s]:

(2.47) η>at (ℓxs2(γ)− ℓxs1(γ)) =

∫ s2

s1

∂2p
(a)
s (x, a+)∂2p

(a)
t−s(x, a

+)

∂1,2p
(a)
t (a+, a+)

ds

Proposition 2.22. Let F1 and F2 be two non-negative measurable functional on the paths with

variable life-time. Then

η>at

(∫ t

0
F1((γ(r))0≤r≤s)F2((γ(s + r))0≤r≤t−s) dsℓ

x
s (γ)

)
=

(2.48)

∫ t

0
P
(a),s∧
x,a+

(F1)P
(a),t−s
x,a+

(F2)
∂2p

(a)
s (x, a+)∂2p

(a)
t−s(x, a

+)

∂1,2p
(a)
t (a+, a+)

ds

In particular

(2.49) ℓxt (γ)η
>a
t (dγ) =

∫ t

0

(
P
(a),s∧
x,a+

� P
(a),t−s
x,a+

)
(dγ)

∂2p
(a)
s (x, a+)∂2p

(a)
t−s(x, a

+)

∂1,2p
(a)
t (a+, a+)

ds
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Proof. It is enough to prove the result in case F1 and F2 are non-negative, continuous and

bounded. On top of that we may assume that there are smin < smax ∈ (0, t) such that F1

respectively F2 takes value 0 if the life-time of a path is smaller than smin respectively t−smax,
and that there is C ∈ I, C > a, such that F1 and F2 take value 0 if max γ > C. For j ≤ n ∈ N

set ∆sn := 1
n
(smax − smin) and sj,n := smin + j∆sn. Then almost surely

∫ t

0
F1((γ(r))0≤r≤s)F2((γ(s + r))0≤r≤t−s) dsℓ

x
s(γ) =

(2.50) lim
n→+∞

n−1∑

j=0

F1((γ(r))0≤r≤sj,n)(ℓ
x
sj+1,n

(γ)− ℓxsj,n(γ))F2((γ(sj+1,n + r))0≤r≤t−sj+1,n)

Moreover the right-hand side of (2.50) is dominated by lxt (γ)‖F1‖∞‖F2‖∞. Thus the η>at -

expectation converges too. Applying (2.44) and (2.45) we get

η>at

(
F1((γ(r))0≤r≤sj,n)(ℓ

x
sj+1,n

(γ)− ℓxsj,n(γ))F2((γ(sj+1,n + r))0≤r≤t−sj+1,n)
)
=

∫ ∆sn

0

∫

(a,C)2
P
(a),sj,n∧
y,a+

(F1)P
(a),t−sj+1,n

z,a+
(F2)qn(r, y, z)m(y)dy m(z)dz dr

where

qn(r, y, z) =
∂2p

(a)
sj,n(y, a

+)∂2p
(a)
t−sj+1,n

(z, a+)

∂1,2p
(a)
t (a+, a+)

p(a)r (y, x)p
(a)
∆sn−r(x, z)

The measure 1y,z>a∈I,
1

∆sn

∫ ∆sn
0 qn(r, y, z) dr dy dz converges weakly as n→ +∞ to δ(x,x). The

maps (s, y) 7→ ∂2p
(a)
s (x, a+) and (s, y) 7→ P

(a),y,a+

s (·) are continuous. Moreover

∂2p
(a)
sj,n(y, a

+)∂2p
(a)
t−sj+1,n

(z, a+) is uniformly bounded for j ≤ n ∈ N and y, z ∈ (a,C]. All this

ensures that the η>at -expectation of the right-hand side of (2.50) converges as n→ +∞ to the

right-hand side of (2.48). �

Now we need only to match the preceding descriptions to prove proposition 2.17. (2.42) and

(2.49) imply (2.36). (2.41) and (2.47) imply (2.37). The fact that the point where the excursion

is split is distributed according to
dsℓ

x
s (γ)

ℓxt (γ)
follows from (2.48).

2.7. Restricting loops to a discrete subset. Let L be the generator of a diffusion on I of

form (1.3) and (Xt)0≤t<ζ be the corresponding diffusion. Let J be a countable discrete subset

of I. A Markov jump process to the nearest neighbours on J is naturally embedded in the

diffusion X. In this subsection we will show that, given any x, y ∈ J, the image of the measure

µ
x,y
L through the restriction application that sends a sample paths of the diffusion (Xt)0≤t<ζ to

a sample path of a Markov jump process on J is a measure on J-valued paths that follows the

pattern (2.2). From this we will deduce that the image of the measure µ∗L through the restriction

to J is a measure on J-valued loops following the pattern (2.1) and which was studied in [10].

This property will be used in section 3.2 to express the law of finite-dimensional marginals of

the occupation field of a Possonian ensemble of intensity αµ∗L.
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For a continuous path (γ(t))0≤t≤T (γ) in I, endowed with continuous local times, let

IJ
t (γ) :=

∑

x∈J
ℓxt (γ)m(x)

For s ≥ 0, we introduce the stopping time

τ Js (γ) := inf{t ≥ 0|IJ
t (γ) ≥ s}

We write γJ for the path (γ(τ Js ))0≤s≤IJ

T (γ)
(γ)

on J. Let mJ be the measure

mJ :=
∑

x∈J
m(x)δx

The occupation measure of γJ is ∑

x∈J
ℓx(γ)m(x)δx

and (lx(γ))x∈J are also occupation densities of the restricted path γJ relatively to mJ.

The restricted diffusion XJ is a Markov jump process to nearest neighbours on J, potentially

with killing. If x0 < x1 are two consecutive points in J, the jump rate from x0 to x1 is
1

m(x0)w(x0)

1

u+,x0(x1)
and the jump rate from x1 to x0 is

1

m(x1)w(x1)

1

u−,x1(x0)
. If x0 < x1 <

x2 are three consecutive points in J, then the rate of killing while in x1 is

1

m(x1)w(x1)

(
W (u−,x2 , u+,x0)(x1)
u−,x2(x1)u+,x0(x1)

− 1

u−,x1(x0)
− 1

u+,x1(x2)

)

If J has a minimum x0 and x1 is the second lowest point in J, then the killing rate while in x0

is
1

m(x0)w(x0)

(
W (u−,x1 , u↑)(x0)

u−,x1(x0)u↑(x0)
− 1

u+,x0(x1)

)

An analogous expression holds for the killing rate while in a possible maximum of J. XJ is

transient if and only if X is. Let LJ be the generator of XJ. LJ is symmetric relatively to

mJ. Its Green’s function relatively to mJ is (G(x, y))x,y∈I , that is the restriction of the Green’s

function of L to J × J. XJ may not be conservative even if the diffusion X is. In case if J is

not finite, XJ may blow up performing an infinite number of jumps in finite time. Measures

(µx,yL )x,y∈I , µL and µ∗L have discrete space analogues (µx,yLJ
)x,y∈J, µLJ

and µ∗LJ
as defined in [10],

that follow the patterns (2.2) and (2.1).

Proposition 2.23. Let x, y ∈ J. Then γ 7→ γJ transforms µx,yL in µ
x,y
LJ

and µ∗L in µ∗LJ
.

Proof. The representation (2.3) also holds for µx,yLJ
. For l > 0, let

τ
y
l := inf{t ≥ 0|ℓyt (X) > l}

and

τ
y,J
l := inf{s ≥ 0|ℓys(XJ) > l}

Then for any non-negative measurable functional F

µ
x,y
LJ

(F (γ)) =

∫ +∞

0
dlEx

[
1
τ
y,J
l
<IJ

ζ

F ((XJ
s )0≤s≤τy,J

l

)

]
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But (XJ
s )0≤s≤τy,Jλ

is the image of (Xt)0≤t≤τy
λ

by the map γ 7→ γJ and τ
y,J
l < IJ

ζ if and only if

τ
y
l < ζ. Thus µx,yLJ

is the image of µx,yL through the restriction on path to J. The second part of

the proposition can be deduced from that for any x ∈ J

ℓx(γ)µ∗L(dγ) = π∗µ
x,x
L (dγ)

and as noticed in [10]

ℓx(γ)µ∗LJ
(dγJ) = π∗µ

x,x
LJ

(dγJ)

�

2.8. Measure on loops associated to a "generator" with creation of mass. We can

further extend the definition of the measures µx,y on paths and µ and µ∗ on loops to the case

of L being a "generator" on I containing a creation of mass term as in (1.12). Doing so will

enable us to emphasize further the h-transform invariance of the measure on loops and will be

useful in section 3.2 to compute the exponential moments of the occupation field of Poissonian

ensembles of Markov loops.

Let ν be signed measure on I. Let L(0) :=
1

m(x)

d

dx

(
1

w(x)

d

dx

)
and L := L(0) + ν.

Definition 4. • µ
x,y
L (dγ) := exp

(∫
I
lx(γ)m(x) ν(dx)

)
µ
x,y

L(0)(dγ)

• µL(dγ) := exp
(∫
I
lx(γ)m(x) ν(dx)

)
µL(0)(dγ)

• µ∗L := π∗µL

Definition 4 is consistent with properties 2.2 (iv) and 2.6 (iii). If ν̃ is any other signed measure

on I, then

(2.51) µ
x,y
L+ν̃(dγ) := exp

(∫

I

lx(γ)m(x) ν̃(dx)

)
µ
x,y
L (dγ)

Same holds for µ and µ∗. Under the extended definition, the measures µx,y still satisfy properties

2.2 (ii), (iii), (v) and (vi). Proposition 2.5 remains true. µ still satisfies properties 2.6 (i), (ii)

and (iv). Proposition 2.7 and corollary 2.8 still hold. The identities (2.14) and (2.19) remain

true for µ∗. Concerning the h-transforms, we have:

Proposition 2.24. Let h be a continuous positive function on I such that
d2h

dx2
is a signed mea-

sure. h2mdx is a speed measure for Conj(h,L). Then for all x, y ∈ I, µx,y
Conj(h,L) =

1

h(x)h(y)
µ
x,y
L ,

and µConj(h,L) = µL. Conversely, if L and L′ are two "generators" with or without creation of

mass such that µL = µL′ then there is a positive continuous function h on I such that
d2h

dx2
is a

signed measure and L′ = Conj(h,L).

Proof. There is a positive Radon measure k̃ on I such that both L − k̃ and Conj(h,L) − k̃

are generators of (killed) diffusions. But Conj(h,L) − k̃ = Conj(h,L − k̃). It follows that

µ
x,y

Conj(h,L)−k̃ =
1

h(x)h(y)
µ
x,y

L−k̃ and µ
Conj(h,L)−k̃ = µ

L−k̃. Applying (2.51) we get the result.

If µL = µL′ , we can again consider k̃ a positive Radon measure on I such that both L− k̃ and

L′−k̃ are generators of (killed) diffusions. Then according to proposition 2.13, there is a positive
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continuous function h on I such that
d2h

dx2
is a signed measure and L′ − k̃ = Conj(h,L − k̃).

Then L′ = Conj(h,L). �

As for generators of diffusions is subsection 2.5, one can consider L-harmonic functions u−,x

and u+,x in case of L containing creation of mass. If L ∈ D+, then u−,x respectively u+,x is

not necessarily positive on I ∩ (−∞, x) respectively I ∩ (x,+∞). Let

M(x) := sup{y ∈ I, y ≥ x|∀z ∈ (x, y), u+,x(z) > 0} ∈ I ∪ {sup I}

If L ∈ D0,− then for all x ∈ I, M(x) = sup I. Let y ∈ I, y > x. If y < M(x), then L|(x,y) ∈ D−.

If y = M(x), then L|(x,y) ∈ D0. If y > M(x), then L|(x,y) ∈ D+. The diffusion ρ+,x of

generator L+,x = Conj(u+,x, L+,x
|(x,M(x))) is defined on (x,M(x)). Similarly for ρ−,y. Moreover

if If M(x) ∈ I, then L+,x
|(x,M(x)) = L

−,M(x)
|(x,M(x)).

If L ∈ D0,−, the description of the measure on (min γ,max γ) induced by µ∗ as well as of the

probability measures obtained by conditioning µ∗ by the value of (min γ,max γ) is the same

as given by corollary 2.16, with the same formal expressions. Next we state what happens if

L ∈ D+:

Proposition 2.25. Let L ∈ D+. The measure on (min γ,max γ) induced by µ∗ and restricted to

the set {a ∈ I, b ∈ (a,M(a))} is 1a∈I,b∈(a,M(a))
da db

u+,a(b)u−,b(a)
. If a < b < M(a), then the proba-

bility measure obtained through conditioning by (min γ,max γ) = (a, b) has the same description

as in corollary 2.16. Outside the set {a ∈ I, b ∈ (a,M(a))}, the measure on (min γ,max γ) is

not locally finite. That is to say that, if a < b ∈ I and b ≥M(a), then for all ε > 0.

(2.52) µ∗({min γ ∈ (a, a+ ε),max γ ∈ (b− ε, b)}) = +∞

Proof. For the behaviour on {a ∈ I, b ∈ (a,M(a))}: There is a countable collection (Ij)j≥0 of

open subintervals of I such that

{a ∈ I, b ∈ (a,M(a))} =
⋃

j≥0

{x < y ∈ Ij}

Since for all j, L|Ij ∈ D0,−, corollary 2.16 applies to L|Ij . Combining the descriptions on

different {a < b ∈ Ij}, we get the description on {a ∈ I, b ∈ (a,M(a))}.
For the behaviour outside {a ∈ I, b ∈ (a,M(a))}: Let A < B ∈ R. Then

(2.53) µ∗BM ({min γ < A,max γ > B}) =
∫ +∞

B

∫ A

−∞

da db

(b− a)2
= +∞

If a < b ∈ I and M(a) = b, then 1a<γ<bµ
∗ is the image of µ∗BM through a change of scale and

time. In this case (2.52) follows from (2.53). If b > M(a), then L|(a,b) ∈ D+. According to

proposition 1.7 (iv), there is a positive measure Radon measure k on (a, b) such that L|(a,b)−k ∈
D0. From what precedes, (2.52) holds for µ∗L|(a,b)−k. Moreover, µ∗L|(a,b)

≥ µ∗L|(a,b)−k. So (2.52)

holds for µ∗L|(a,b)
. �
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3. Occupation fields of the Poissonian ensembles of Markov loops

3.1. Inhomogeneous continuous state branching processes with immigration. We will

identify the occupation fields of the Poissonian ensembles of Markov loops as inhomogeneous

continuous state branching processes with immigration. In this subsection we give the basic

properties of such processes.

Let I be an open interval of R. We will consider stochastic processes where x ∈ I is the

evolution variable. We do not call it time because in the sequel it will rather represent a space

variable. Let (Bx)x∈R be a standard Brownian motion. Consider the following SDE:

(3.1) dZ̃x = σ(x)

√
Z̃x dBx + b(x)Z̃x dx

(3.2) dZx = σ(x)
√
Zx dBx + b(x)Zx dx+ c(x) dx

For our needs we will assume that σ is positive and continuous on I, that b and c are only

locally bounded and that c is non negative. In this case existence and pathwise uniqueness

holds for (3.1) and (3.2) (see [19], chapter IX, §3), and Z̃ and Z take values in R+. 0 is an

absorbing state for Z̃.

(3.1) satisfies the branching property: if Z̃(1) and Z̃(2) are two independent processes solutions

in law to (3.1), defined on I∩ [x0,+∞), then Z̃(1)+ Z̃(2) is a solution in law to (3.1). If Z̃ and Z

are two independent processes, Z̃ solution in law to (3.1) and Z solution in law to (3.2), defined

on I∩ [x0,+∞), then Z+ Z̃ is a solution in law to (3.2). Solutions to (3.2) are (inhomogeneous)

continuous state branching processes with immigration. The branching mechanism is given by

(3.1) and the immigration measure is c(x) dx. The homogeneous case (σ, b and c constant) was

extensively studied. See [12].

The case of inhomogeneous branching without immigration reduces to the homogeneous case

as follows: Let x0 ∈ I and let

C(x) := exp

(
−
∫ x

x0

b(y) dy

)

A(x) :=

∫ x

x0

σ(y)2C(y)2 dy

If (Z̃x)x∈I is a solution to (3.1), then (C(A−1(a))Z̃A−1(a))a∈A(I) is a solution in law to

dZ̃a = 2

√
Z̃a dBa

Let Z̃ be a solution to (3.1) defined on I ∩ [x0,+∞), starting at x0 with the initial condition

Z̃x0 = z0 ≥ 0. Then, for λ ≥ 0 and x ∈ I, x ≥ x0:

EZ̃x0=z0

[
e−λZ̃x

]
= e−z0ψ(x0,x,λ)

ψ(x0, x, λ) depends continuously on (x0, x, λ). If x = x0 then

(3.3) ψ(x0, x0, λ) = λ

If x0 ≤ x1 ≤ x2 ∈ I then

ψ(x0, x2, λ) = ψ(x0, x1, ψ(x1, x2, λ))
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ψ satisfies the differential equation

(3.4)
∂ψ

∂x0
(x0, x, λ) =

σ(x0)
2

2
ψ(x0, x, λ)

2 − b(x0)ψ(x0, x, λ)

If b is not continuous, equation (3.4) should be understand in the weak sense. If be is continuous,

then (3.4) satisfies the Cauchy-Lipschitz conditions, and ψ is uniquely determined by (3.4) and

the initial condition (3.3). This is also the case even if b is not continuous. Indeed, by considering

C(x)Z̃x rather than Z̃x, that is to say considering
C(x)

C(x0)
ψ(x0, x, λ) rather than ψ(x0, x, λ), we

get rid of b.

Inhomogeneous branching processes are related to the local times of general one-dimensional

diffusions:

Proposition 3.1. Let x0 ∈ I and let (Xt)0≤t<ζ be a diffusion on I of generator L of form (1.3)

starting from x0. Let z0 > 0 and

τx0z0 := inf{t ≥ 0|ℓx0t (X) > z0}

Then conditionally on τx0z0 < ζ, (ℓx
τ
x0
z0

(X))x∈I,x≥x0 is a solution in law to the SDE:

(3.5) dZ̃x =
√

2w(x)

√
Z̃x dBx + 2

d log u↓
dx

(x)Z̃x dx

Proof. If X is the Brownian motion on R, then w ≡ 2 and u↓ is constant. In this case the

assertion is the second Ray-Knight theorem. See [19], chapter XI, §2. The equation (3.5) is

then the equation of a square of Bessel 0 process. If xmin < x0 and X is the Brownian motion

on (xmin,+∞) killed in xmin then the law of (ℓx
τ
x0
z0

(X))x∈I,x≥x0 conditionally on τx0z0 < ζ does

not depend on xmin and is the same as in case of the Brownian motion on R. Equation (3.5) is

still satisfied.

If X is a diffusion on I that satisfies that for all x > a ∈ I, starting from x, X reaches almost

surly a, which is equivalent to u↓ being constant, then through a change of scale and time X

is the Brownian motion on some (xmin,+∞) where xmin ∈ [−∞,+∞). Time change does not

change the local times because we defined them relatively to the speed measure. Only the change

of scale matters. If S is a primitive of w, then conditionally on τx0z0 < ζ, (ℓ
S−1(2y)

τ
x0
z0

(X))y≥ 1
2
S(x0)

is a square of Bessel 0 process. The equation (3.5) follows from the equation of the square of

Bessel 0 process by deterministic change of variable dy := 1
2w(x) dx.

Now the general case: let (X̃t)0≤t<ζ̃ be the diffusion of generator Conj(u↓, L).
w(x)

u↓(x)2
dx is

the natural scale measure of X̃ and u↓(x)2m(x) dx is its speed measure. We assume that both

X and X̃ start from x0. The law of X̃ up to the last time it visits x0 is the same as for X. Let

τ̃ := inf

{
t ≥ 0|ℓx0t (X̃) >

1

u↓(x0)2
z0

}

Then the law of (ℓx
τ
x0
z0

(X))x∈I,x≥x0 conditionally on τx0z0 < ζ is the same as the law of

(u↓(x)2ℓxτ̃ (X̃))x∈I,x≥x0 conditionally on τ̃ < ζ̃. The factor u↓(x)2 comes from the fact that
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performing an h-transform we change the measure relatively to which the local times are defined.

For any a < x0 ∈ I, X̃ reaches a a.s. Thus (ℓxτ̃ (X̃))x∈I,x≥x0 satisfies the SDE

dZ̃x =

√
2w(x)

u↓(x)

√
Z̃x dBx

and (u↓(x)2ℓxτ̃x0z0

(X̃))x∈I,x≥x0 satisfies (3.5). �

If there is immigration: Let Z be a solution to (3.2) defined on I ∩ [x0,+∞), starting at x0

with the initial condition Zx0 = z0 ≥ 0. Then, for λ ≥ 0 and x ∈ I, x ≥ x0:

(3.6) EZx0=z0

[
e−λZx

]
= exp

(
−z0ψ(x0, x, λ) −

∫ x

x0

ψ(y, x, λ)c(y) dy

)

3.2. Occupation field. Let L be the generator of a diffusion on I of form (1.3). Let Lα,L
be a Poissonian ensemble of intensity αµ∗L. Lα,L is a random infinite countable collection of

unrooted loops supported in I. It is sometimes called "loop soup".

Definition 5. The occupation field of Lα,L is (L̂xα,L)x∈I where

L̂xα,L :=
∑

γ∈Lα,L

ℓx(γ)

We will drop out the subscript L whenever there is no ambiguity on L. In this subsection

we will identify the law of (L̂xα)x∈I as an inhomogeneous continuous state branching process

with immigration. If J is a discrete subset of I, then applying proposition 2.23 we deduce that

(L̂xα)x∈J is the occupation field of the Poisson ensemble of discrete loops of intensity αµ∗LJ
as

defined in [10], chapter 4. This fact allows us to apply the results of [10] in order to describe

the finite-dimensional marginals of the occupation field. If the diffusion is recurrent, then for

all x ∈ I, L̂xα = +∞ a.s. If the diffusion is transient, then for all x ∈ I, L̂xα < +∞ a.s. Next we

state how does the occupation field behave if we apply various transformations on L.

Property 3.2. Let L be the generator of a transient diffusion.

• (i) If A is a change of scale function, then

L̂A(x)
α,Scale

†
AL

= L̂xα,L

• (ii) If V is a positive continuous function on I, then

L̂x
α, 1

V
L
= L̂xα,L

• (iii) If h is a positive continuous function on I such that Lh is a negative measure, then

L̂xα,Conj(h,L) =
1

h(x)2
L̂xα,L

Previous equalities depend on a particular choice of the speed measure for the modification

of L. For (i) we choose

(
dA

dx
◦A−1

)−1

m ◦ A−1 da. For (ii) we choose
1

V (x)
m(x) dx. For (iii)

we choose h(x)2m(x) dx. The fact that L̂x
α,Conj(h,L) 6= L̂xα,L despite Lα,Conj(h,L) = Lα,L comes

from a change of speed measure.
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Next we characterize the finite-dimensional marginals of the occupation field by stating the

results that appear in [10], chapter 4.

Property 3.3. The distribution of L̂xα is

(G(x, x))α

Γ(α)
lα−1 exp

(
− l

G(x, x)

)
1l>0 dl

Let x1, x2, ..., xn ∈ I and λ1, λ2, ..., λn ≥ 0. Let (G̃(x, y))x,y∈I be the Green’s function of

L−∑n
i=1 λiδxi. Then

(3.7) E

[
exp

(
−

n∑

i=1

λiL̂xiα

)]
=

(
det(G̃(xi, xj))1≤i,j≤n
det(G(xi, xj))1≤i,j≤n

)α

The moment E
[
L̂x1α L̂x2α ...L̂xnα

]
is an α-permanent:

E
[
L̂x1α L̂x2α ...L̂xnα

]
=
∑

σ∈Sn

α♯ cycles of σ
n∏

i=1

G(xi, xσ(i))

If J is a discrete subset of I, then (L̂xα)x∈J, viewed as a stochastic process that evolves when

x increases, is an inhomogeneous continuous state branching process with immigration defined

on the discrete set J. In particular, for any x1 ≤ x2 ≤ ... ≤ xn ∈ I and p ∈ {1, 2, ..., n},(
L̂x1α , L̂x2α , ...L̂

xp
α

)
and

(
L̂xpα , L̂xp+1

α , ...L̂xnα
)

are independent conditionally on L̂xpα .

Next we show that the processes x 7→ L̂xα parametrized by x ∈ I, where x is assumed to

increase, is an inhomogeneous branching process with immigration of form (3.2). In particular,

it has a continuous version and is inhomogeneous Markov.

Proposition 3.4. (L̂xα)x∈I has the same finite-dimensional marginals as a solution to the sto-

chastic differential equation

(3.8) dZx =
√
2w(x)

√
Zx dBx + 2

d log u↓
dx

(x)Zx dx+ αw(x) dx

If L is the generator of a Brownian motion on (0,+∞) killed when it hits 0, then (L̂xα)x>0 has

the same law as the square of a Bessel process of dimension 2α starting from 0 at x = 0. If

L is the generator of a Brownian motion on (0, xmax), killed when hitting the boundary, then

(L̂xα)0<x<xmax has the same law as the square of a Bessel bridge of dimension 2α from 0 at

x = 0 to 0 at x = xmax.

Proof. Let x0 < x ∈ I and λ0, λ ≥ 0. Applying the identity (3.7) to the case of two points, we

get that

(3.9) E
[
exp

(
−λ0L̂x0α − λL̂xα

)]
=
(
(1 + λ0G(x0, x0))(1 + λG(x, x)) − λ0λ(G(x0, x))

2
)−α

Let

Λ(x0, λ0) := E
[
e−λ0L̂

x0
α

]
=

(
G(x0, x0)

G(x0, x0) + λ0

)α

For y ≤ x, let

ψ(y, x, λ) :=
G(x, y)G(y, x)λ

G(y, y)(G(y, y) + λdety,xG)
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ϕ(y, x, λ) := − log

(
G(y, y)

G(y, y) + λdety,xG

)

One can check that the right-hand side of (3.9) equals

Λ(x0, λ0 + ψ(x0, x, λ)) exp(−αϕ(x0, x, λ))

In particular for the conditional Laplace transform:

(3.10) E
[
exp

(
−λL̂xα

)
|L̂x0α

]
= exp

(
−L̂x0α ψ(x0, x, λ)

)
exp(−αϕ(x0, x, λ)) a.s.

Moreover
∂ψ

∂y
(y, x, λ) =W (u↓, u↑)(y)ψ(y, x, λ)

2 − 2

u↓(y)

du↓
dy

(y)ψ(y, x, λ)

= w(y)ψ(y, x, λ)2 − 2
d log u↓
dy

(y)ψ(y, x, λ)

and
∂ϕ

∂y
(y, x, λ) = −W (u↓, u↑)(y)ψ(y, x, λ) = −w(y)ψ(y, x, λ)

and we have the initial conditions ψ(x, x, λ) = λ and ϕ(x, x, λ) = 0. Thus (3.10) has the

same form as (3.6) where c(y) = αw(y). Let (Zy)y∈I,y≥x0 be a solution to (3.8) with the

initial condition Zx0 being a gamma random variable of parameter α with mean αG(x0, x0). It

follows from what precedes that (L̂x0α , L̂xα) has the same law as (Zx0 , Zx). Using the conditional

independence satisfied by the occupation field, we deduce that (L̂yα)y∈I,y≥x0 has the same finite-

dimensional marginals as (Zy)y∈I,y≥x0 . Making x0 converge to inf I along a countable subset, we

get a consistent family of continuous stochastic processes, which induces a continuous stochastic

process (Zy)y∈I defined on whole I. It satisfies (3.8) and has the same finite-dimensional

marginals as (L̂yα)y∈I .
In case of a Brownian motion in (0,+∞) killed in 0, the equation (3.8) becomes

dZx = 2
√
Zx Bx + 2α dx

which is the SDE satisfied by the square of a Bessel process of dimension 2α. Moreover (L̂xα)x>0

has the same one-dimensional marginals as the latter, more precisely L̂xα is a gamma r.v. of

parameter α with mean 2αx. This shows the equality in law.

In case of a Brownian motion in (0, xmax) killed in 0 and xmax the equation (3.8) becomes

dZx = 2
√
Zx Bx +

1

xmax − x
Zx dx+ 2α dx

which is the SDE satisfied by the square of a Bessel bridge of dimension 2α from 0 at x = 0 to

0 at x = xmax. Moreover the latter process and (L̂xα)0<x<xmax have the same one-dimensional

marginals, more precisely gamma r.v. of parameter α with mean 2α(xmax − x)
x

xmax
. Thus the

two have the same law. �

We showed that (L̂xα)x∈I has the same finite-dimensional marginals as a continuous stochastic

process. We will assume in the sequel and prove in section 4.2 that one can couple the Poissonian

ensemble Lα and a continuous version of its occupation field (L̂xα)x∈I on the same probability

space. This does not follow trivially from the fact that the process (L̂xα)x∈I has a continuous

version. Consider the following counterexample: Let U be an uniform r.v. on (0, 1). Let E be
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a countable random set of Brownian excursions defined as follows: conditionally on U E is a

Poissonian ensemble with intensity η>UBM +η<UBM . Let (Êx)x∈R be the occupation field of E . Then

Ê is continuous on (−∞, U) and (U,+∞) but not at U . Indeed ÊU = 0 and

lim
x→U−

Êx = lim
x→U−

Êx = 1

Let (Ê ′
x)x∈R be the field defined by: Ê ′

x = Êx if x 6= U and Ê ′
U = 1. (Ê ′

x)x∈R is continuous and

for any fixed x ∈ R Ê ′
x = Êx a.s. Thus (Ê ′

x)x∈R is a continuous version of the process (Êx)x∈R
but it can not be implemented as a sum of local time across the excursions in E . As we will

show in section 4.2, such a difficulty does not arise in case of Lα.
(L̂xα)x∈I is an inhomogeneous continuous state branching with immigration. The branching

mechanism is the same as for the local times of the diffusion X, given by (3.5). The immigration

measure is αw(x) dx. The interpretation is the following: given a loop in Lα, its family of local

times performs a branching according to the mechanism (3.5), independently from the other

loops. The immigration between x and x+∆x comes from the loops whose minima belong to

(x, x +∆x). It is remarkable that although the immigration measure is absolutely continuous

with respect to Lebesgue measure, there is only a countable number of moments at which

immigration occurs. These are the positions of the minima of loops in Lα. Moreover the local

time of each loop at its minimum is zero. For x > a ∈ I, let

L̂(a),x
α :=

∑

γ ∈ Lα

min γ > a

ℓx(γ)

Let a < b ∈ I. For j ≤ n ∈ N, let ∆xn :=
1

n
(b − a) and let xj,n := a + j∆xn. Then

(
L̂(xj−1),xj
α

)
1≤j≤n

is a sequence of independent gamma r.v. of parameter α and the mean of

L̂(xj−1),xj
α is α

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)
. For n large

G(xj , xj)−
G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)
= w(xj−1)∆xn + o(∆xn)

and o(∆xn) is uniform in j. Thus

lim
n→+∞

E
[ n∑

j=1

L̂(xj−1),xj
α

]
= lim

n→+∞
α

n∑

j=1

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)
= α

∫ b

a

w(x) dx

and

lim
n→+∞

V ar
( n∑

j=1

L̂(xj−1),xj
α

)
= lim

n→+∞
α

n∑

j=1

(
G(xj , xj)−

G(xj−1, xj)G(xj , xj−1)

G(xj−1, xj−1)

)2

= 0

It follows that
∑n

j=1 L̂
(xj−1),xj
α converges in probability to α

∫ b
a
w(x) dx. This is consistent with

our interpretation of immigration.

Next proposition deals with the zeroes of the occupation field.

Proposition 3.5. Let x0 ∈ I. If
∫ x0
inf I w(x) dx < +∞ then

lim
x→inf I

L̂xα = 0
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Analogous result holds if
∫ sup I
x0

w(x) dx < +∞.

If α ≥ 1, then the continuous process (L̂xα)x∈I stays almost surely positive on I. If α < 1

then (L̂xα)x∈I hits 0 infinitely many times on I.

Proof. If
∫ x0
inf I w(x) dx < +∞, then L + k, where k is the killing measure of L, is also the

generator of a transient diffusion. We can couple (L̂xα,L)x∈I and (L̂xα,L+k)x∈I on the same

probability space such that a.s. for all x ∈ I, L̂xα,L ≤ L̂xα,L+k. But according to property 3.2

(i), (L̂xα,L+k)x∈I is just a scale changed square of Bessel process starting from 0 or square of a

Bessel bridge from 0 to 0. Thus

lim
x→inf I

L̂xα,L ≤ lim
x→inf I

L̂xα,L+k = 0

Regarding the number of zeros of (L̂xα)x∈I on I, property 3.2 ensures that it remains un-

changed if we apply scale, time changes and h-transforms to L. Since any generator of a

transient diffusion is equivalent through latter transformation to the generator of a Brown-

ian motion on (0,+∞) killed in 0, the result on the number of zeros of (L̂xα)x∈I follows from

standard properties of Bessel processes. �

In [21] respectively [11] are studied the clusters of loops induced by a Poisson ensemble of

loops in the setting of conformal diffusions respectively Markovian jump processes on graphs. In

our setting of one dimensional diffusions the description of such clusters is simple and is related

to the zeros of the occupation field. We introduce an equivalence relation on the loops of Lα: γ
is in the same class as γ′ if there is a chain of loops γ0, γ1, ..., γn in Lα such that γ0 = γ, γn = γ′

and for all i ∈ {0, 1, ..., n − 1}, γi([0, T (γi)]) ∩ γi+1([0, T (γi+1)]) 6= ∅. A cluster is the union of

all γ([0, T (γ)]) where the loops γ belong to the same equivalence class. It is a subinterval of I.

By definition clusters corresponding to different equivalence classes are disjoint.

Proposition 3.6. Let L be the generator of a transient diffusion on I. If α ≥ 1, the loops in Lα
form a single cluster: I. If α ∈ (0, 1), there are infinitely many clusters. These are the maximal

open intervals on which (L̂xα)x∈I is positive. In case of the Brownian motion on (0,+∞) killed

at 0, the clusters correspond to the jumps of a stable subordinator with index 1− α. In case of

a general diffusion, by performing a change of scale of derivative
1

2

w

u2↓
, we reduce the problem

to the previous case.

Proof. Assume that Lα and a continuous version of (L̂xα)x∈I are defined on the same probability

space. Almost surely the following holds

• Given γ 6= γ′ ∈ Lα, min γ 6= max γ′ and max γ 6= min γ′.

• For all γ ∈ Lα, ℓminγ(γ) = ℓmax γ(γ) = 0 and ℓx(γ) is positive for x ∈ (min γ,max γ).

Whenever the above two conditions hold it follows deterministically that the clusters are the

intervals on which (L̂xα)x∈I stays positive. We deduce then the number of clusters from propo-

sition 3.5.
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If L is the generator of the Brownian motion on (0,+∞) killed at 0, then (L̂xα)x∈I is the

square of a Bessel process of dimension 2α and its excursions correspond to the jumps of a

stable subordinator with index 1− α. �

The clusters coalesce when α increases and fragment when α decreases. Some information on

the coalescence of clusters delimited by the zeroes of Bessel processes is given in [1], section 3.

This clusters can be obtained as a limit of clusters of discrete loops on discrete subsets. In case

of a symmetric jump process to the nearest neighbours on εN, if α > 1, there are finitely many

clusters, and if α ∈ (0, 1), there are infinitely many clusters and these clusters are given by the

holding times of a renewal process, which suitable normalized converges in law as ε → 0+ to

the inverse of a stable subordinator with index 1− α. See remark 3.3 in [11].

We can consider the occupation field (L̂xα,L)x∈I if L is not the generator of a diffusion but

contains creation of mass as in (1.12). In this setting, if h is a positive continuous function on

I such that
d2h

dx2
is a signed measure, then for all x ∈ I

L̂xα,Conj(h,L) =
1

h(x)2
L̂xα,L

It follows that if L ∈ D− then for all x ∈ I, L̂xα,L < +∞ a.s. and if L ∈ D0 then for all x ∈ I,

L̂xα,L = +∞ a.s. If L ∈ D+, then according to proposition 1.7 (iv), there is a positive Radon

measure k̃ such that L − k̃ ∈ D0. Then for all x ∈ I, L̂xα,L ≥ L̂x
α,L−k̃ = +∞. If L ∈ D−,

then properties 3.2 (i) and (ii) are still hold. The description given by the property 3.3 of the

finite-dimensional marginals of (L̂xα)x∈I is still true, although the case of creation of mass wasn’t

considered in [10]. (L̂xα)x∈I still satisfies the SDE (3.8).

Proposition 3.7. Let L ∈ D− and ν̃ a finite signed measure with compact support in I. Then

there is equivalence between

• (i) E
[
exp

(∫
I
L̂xα,L ν̃(dx)

)]
< +∞

• (ii) L+ ν̃ ∈ D−

If L+ ν̃ ∈ D−, let for s ∈ [0, 1] Gsν̃ be the Green function of L+ sν̃. Then

(3.11) E

[
exp

(∫

I

L̂xα,L ν̃(dx)
)]

= exp

(
α

∫ 1

0

∫

I

Gsν̃(x, x) ν̃(dx) ds

)

Proof. First observe that
∫
I
L̂xα,L |ν̃|(dx) is almost surely finite because |ν̃| is finite and has

compact support and (L̂xα,L)x∈I is continuous. Also observe that D− is convex. So if L+ν̃ ∈ D−,

then for all s ∈ [0, 1], L+ sν̃ ∈ D−.

(i) implies (ii): Let PLα,L
be the law of Lα,L and PLα,L+ν̃

be the law of Lα,L+ν̃. There is an

absolute continuity relation between the intensity measures:

µL+ν̃(dγ) = exp

(∫

I

ℓx(γ)

)
µL(dγ)
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In case (i) is true PLα,L+ν̃
is absolutely continuous with respect to PLα,L

and

(3.12) dPLα,L+ν̃
=

exp
(∫

I
L̂xα,L ν̃(dx)

)

E
[
exp

(∫
I
L̂xα,L ν̃(dx)

)] dPLα,L

But this can not be if L+ ν̃ 6∈ D− because then for any x ∈ I, L̂xα,L < +∞ and L̂xα,L+ν̃ = +∞.

Thus necessarily L+ ν̃ ∈ D−.

(ii) implies (i): We first assume that ν̃ is a positive measure and L+ ν̃ ∈ D−. Then PLα,L
is

absolutely continuous with respect to PLα,L+ν̃
and

dPLα,L
=

exp
(
−
∫
I
L̂xα,L+ν̃ ν̃(dx)

)

E
[
exp

(
−
∫
I
L̂xα,L+ν̃ ν̃(dx)

)] dPLα,L+ν̃

Inverting the above absolute continuity relation, we get that

E

[
exp

(∫

I

L̂xα,L ν̃(dx)
)]

= E

[
exp

(
−
∫

I

L̂xα,L+ν̃ ν̃(dx)
)]−1

< +∞

If ν̃ is not positive, let ν̃+ and −ν̃− be its positive respectively negative part. Then

E

[
exp

(∫

I

L̂xα,L ν̃(dx)
)]

= E

[
exp

(∫

I

L̂xα,L−ν̃− ν̃+(dx)
)]

E

[
exp

(
−
∫

I

L̂xα,L ν̃−(dx)
)]

=
E
[
exp

(
−
∫
I
L̂xα,L ν̃−(dx)

)]

E
[
exp

(
−
∫
I
L̂xα,L+ν̃ ν̃+(dx)

)] < +∞

For the expression (3.11) of exponential moments:

(3.13)
d

ds
E

[
exp

(
s

∫

I

L̂xα,L ν̃(dx)
)]

= E

[∫

I

L̂xα,L ν̃(dx) exp
(
s

∫

I

L̂xα,L ν̃(dx)
)]

From the absolute continuity relation (3.12) follows that the right-hand side of (3.13) equals

α

∫

I

Gsν̃(x, x)ν̃(dx) E

[
exp

(
s

∫

I

L̂xα,L ν̃(dx)
)]

This implies (3.11) �

As in discrete space case, the above exponential moments can be expressed using determi-

nants. On the complex Hilbert space L2(d|ν̃|) define for s ∈ [0, 1] the operators

(Gsν̃f)(x) :=

∫

I

Gsν̃(x, y)f(y) ν̃(dy)

(|Gsν̃ |f)(x) :=
∫

I

Gsν̃(x, y)f(y) |ν̃|(dy)

The operator |Gsν̃ | is self-adjoint, positive semi-definite with continuous kernel function, and

according to [22], theorem 2.12, it is trace class. Since trace class operators form a two-sided

ideal in the algebra of bounded operators, Gsν̃ is also trace class. Moreover

(3.14) Tr(Gsν̃) =

∫

I

Gsν̃(x, x) ν̃(dx)
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The determinant det(Id+Gsν̃) is well defined as a converging product of eigenvalues (see [22],

chapter 3). For any s 6= s′ ∈ [0, 1], the following resolvent identity holds

(3.15) Gsν̃Gs′ν̃ = Gs′ν̃Gsν̃ =
1

s′ − s
(Gs′ν̃ −Gsν̃)

Proposition 3.8.

exp

(
α

∫ 1

0

∫

I

Gsν̃(x, x) ν̃(dx) ds

)
= (det(Id+Gν̃))

α

Proof. Gν̃ has only real eigenvalues. Indeed, let λ be such an eigenvalue and f a non zero

eigenfunction for λ. Let sgn(ν̃) be the {−1,+1}-valued function defined d|ν̃| almost everywhere.

Then

(3.16)

∫

I

(sgn(ν̃)f̄)|Gν̃ |(sgn(ν̃)f)(x)|ν̃|(dx) = λ

∫

I

|f |2(x)ν̃(dx)

The left-hand side of (3.16) is non-negative. If the right-hand side of (3.16) is non-zero, then λ

is real. If it is zero, consider fε := f + ε sgn(ν̃)f . Then

λ = lim
ε→0+

1

2ε

(∫

I

(sgn(ν̃)f̄ε)|Gν̃ |(sgn(ν̃)fε)(x)|ν̃|(dx)
)(∫

I

|f |2(x)|ν̃|(dx)
)−1

and thus λ is real.

The operators Gsν̃ are compact and the characteristic space corresponding to each of their

non-zero eigenvalue is of finite dimension. Let (λi)i≥0 be the non-increasing sequence of positive

eigenvalues of Gν̃ . Each eigenvalue λi appears as many times as the dimension of its charac-

teristic space ker(Gν̃ − λiId)
n (n large enough). Similarly let (−λ̃j)j≥0 be the non-decreasing

sequence of the negative eigenvalues of Gν̃ . Let s ∈ [0, 1]. Since Gν̃ and Gsν̃ commute, these

operators have common characteristic spaces. From (3.15) follows that
( λi

1 + (1− s)λi

)
i≥0

is

a non-increasing sequence of positive eigenvalues of Gsν̃ . If
−1

1− s
is not an eigenvalue of Gν̃ ,

then
( −λ̃j
1− (1− s)λ̃j

)
j≥0

is also a sequence of eigenvalues of Gsν̃ . But the family of operators

(Gsν̃)s∈[0,1] is bounded. Thus none of
−λ̃j

1− (1− s)λ̃j
can blow up when s varies. So it turns out

that Gν̃ has no eigenvalues in (−∞,−1]. From (3.14) we get

∫

I

Gsν̃(x, x) ν̃(dx) =
∑

i≥0

λi

1 + (1− s)λi
−
∑

j≥0

λ̃j

1− (1− s)λ̃j

The above sum is absolutely convergent, uniformly for s ∈ [0, 1]. Integrating over [0, 1] yields

∫ 1

0

∫

I

Gsν̃(x, x) ν̃(dx) ds =
∑

i≥0

log(1 + λi) +
∑

j≥0

log(1− λ̃j)

This concludes the proof. �
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3.3. Dynkin’s isomorphism. In this subsection we recall the equality in law observed in [10]

between the occupation field (L̂x1
2

)x∈I and the square of a Gaussian Free Field and show how

to derive from this particular versions of Dynkin’s isomorphism.

Let L be a generator of a transient diffusion on I of form (1.3). Let (φx)x∈I be a centred

Gaussian process with variance-covariance function:

E[φxφy] = G(x, y)

(φx)x∈I is the Gaussian Free Field associated to L. Let S̃ be a primitive of
w

u2↓
. Then

S̃(sup I) = +∞. Moreover S̃(inf I) > −∞ because L is the generator of a transient diffu-

sion.
(

1
u↓(S̃−1(a))

φS̃−1(a)

)

a∈S̃(I)
is a standard Brownian motion starting from 0 at S̃(inf I). In

particular (φx)x∈I is inhomogeneous Markov and has continuous sample paths.

It was shown in [10], chapter 5, that when α = 1
2 (L̂x1

2

)x∈I has the same law as (12φ
2
x)x∈I .

In case of a Brownian motion on (0,+∞) killed in 0, (L̂x1
2

)x>0 is the square of a standard

Brownian motion starting from 0. In case of a Brownian motion on (0, xmax) killed in 0 and

xmax, (L̂x1
2

)0<x<xmax is the square of a standard Brownian bridge on [0, xmax] from 0 to 0.

In case of a Brownian motion on R with constant killing rate k, (L̂x1
2

)x∈R is the square of a

stationary Ornstein–Uhlenbeck process.

The relation between the occupation field of a Poissonian ensemble of Markov loops and the

square of a Gaussian Fee Field extends the Dynkin’s isomorphism which we state below (see [5]

and [7]):

Dynkin’s Isomorphism. Let x1, x2, ..., x2n ∈ I. Then for any non-negative measurable func-

tional F on continuous paths on I,

(3.17) Eφ

[
2n∏

i=1

φxiF ((
1

2
φ2x)x∈I)

]
=

∑

pairings

∫
Eφ


F ((1

2
φ2x +

n∑

j=1

ℓx(γj))x∈I)



∏

pairs

µyj ,zj (dγj)

where
∑

pairings means that the n pairs {yj, zj} are formed with all 2n points xi in all
(2n)!

2nn!
possible ways.

Next we will show that in case xi = xi+n, for i ∈ {1, ..., n} , i.e.
∏2n
i=1 φxi is a product

of squares
∏n
i=1 φ

2
xi

, one can deduce the Dynkin’s isomorphism from the relation between the

square of the Gaussian Free Field and the occupation field using a somewhat extended version

of Palm’s identity for Poisson ensembles and the result of proposition 2.12 (ii).

Lemma 3.9. Let E be an abstract Polish space. Let M(E) be the space of locally finite measures

on E and let M ∈ M(E). Let Φ be a Poisson random measure of intensity M. Let H be a

positive measurable function on M(E) × En. Let Pn be the set of partitions of {1, ..., n}. If

P ∈ Pn and i ∈ {1, ..., n}, then P(i) will be the equivalence class of i under P. The following

identity holds:

E

[∫

En

H(Φ, q1, ..., qn)

n∏

i=1

Φ(dqi)

]
=
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(3.18)
∑

P∈Pn

∫

E♯P

E

[
H(Φ +

∑

c∈P
δqc , qP(1), ..., qP(n))

]
∏

c∈P
M(dqc)

Proof. We will make a recurrence over n. If n = 1, (3.18) is the Palm’s identity for Poisson

random measures. Assume that n ≥ 2 and that (3.18) holds for n− 1. We set

H̃(Φ, q1, ..., qn−1) :=

∫

E
H(Φ, q1, ..., qn−1, qn)Φ(dqn)

Then

E

[∫

En

H(Φ, q1, ..., qn−1, qn)

n∏

i=1

Φ(dqi)

]
= E

[∫

En−1

H̃(Φ, q1, ..., qn−1)

n−1∏

i=1

Φ(dqi)

]
=

(3.19)
∑

P ′∈Pn−1

∫

E♯P′
E

[∫

E
H(Φ+

∑

c′∈P ′

δqc′ , qP ′(1), ..., qP ′(n−1), qn)(Φ(dqn)+
∑

c′∈P ′

δqc′ (dqn))

]
∏

c′∈P ′

M(dqc′)

Given a partition P ′ ∈ Pn−1, one can extend it to a partition of {1, ..., n − 1, n} either by

deciding that n is single in its equivalence class or by choosing an equivalence class c′ ∈ P ′

and adjoining n to it. In the identity (3.19) the first case corresponds to the integration with

respect to Φ(dqn), and according to Palm’s identity

E

[∫

E
H(Φ +

∑

c′∈P ′

δqc′ , qP ′(1), ..., qP ′(n−1), qn)Φ(dqn)

]
=

∫

E
E

[
H(Φ +

∑

c′∈P ′

δqc′ , qP ′(1), ..., qP ′(n−1), qn)

]
M(dqn)

The second case corresponds to the integration with respect to δqc′ (dqn). Thus the right-hand

side of (3.19) equals the right-hand side of (3.18). �

Next we show how derive a particular case of Dynkin’s isomorphism using the above extended

Palm’s formula. Since (L̂x1
2

)x∈I and (12φ
2
x)x∈I are equal in law:

Eφ

[
n∏

i=1

φ2xiF ((
1

2
φ2x)x∈I)

]
= 2nEL 1

2

[
n∏

i=1

L̂xi1
2

F ((L̂x1
2
)x∈I)

]

Applying lemma 3.9 we get that

EL 1
2

[
n∏

i=1

L̂xi1
2

F ((L̂x1
2
)x∈I)

]
=
∑

P∈Pn

∫ n∏

i=1

ℓxi(γP(i))E

[
F ((L̂x1

2
+
∑

c∈P
ℓx(γc))x∈I)

]
∏

c∈P

1

2
µ∗(dγc)

Let Sn(P) be all the permutations σ of {1, ..., n} such that the classes of the partition P are

the supports of the disjoint cycles of σ. Given a class c ∈ P, let jc be its smallest element.

From property 2.11 (ii) follows that

n∏

i=1

ℓxi(γP(i)) =
∑

σ∈Sn(P)

∏

c∈P
ℓ
∗xjc ,xσ(jc),...,xσ|c|(jc)(γc)

Proposition 2.12 (ii) states that

ℓ
∗xjc ,xσ(jc),...,xσ|c|(jc)(γc)µ

∗(dγc) =
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π∗(µ
jc,σ(jc)(dγ̃jc)� ...� µσ

|c|−1(jc),σ|c|(jc)(dγ̃σ|c|−1(jc))� µσ
|c|(jc),jc(dγ̃σ|c|(jc)))

and if the loop γc is a concatenation of paths γ̃jc , ..., γ̃σ|c|−1(jc), γ̃σ|c|(jc) then

ℓx(γc) = ℓx(γ̃jc) + ...+ ℓx(γ̃σ|c|−1(jc)
) + ℓx(γ̃σ|c|(jc))

It follows that

(3.20)

2nEL 1
2

[
n∏

i=1

L̂xi1
2

F ((L̂x1
2
)x∈I)

]
=
∑

σ∈Sn

2n−♯cycles of σ
∫

EL 1
2

[
F ((L̂x1

2
+

n∑

i=1

ℓx(γ̃i))x∈I)

]
n∏

i=1

µi,σ(i)(dγ̃i)

But the right-hand side of (3.20) is just the same as the right-hand side of (3.17) in the

specific case when for all i ∈ {1, ..., n}, xi+n = xi. This finishes the derivation of the Dynkin’s

isomorphism for this case.

4. Poissonian loops rooted at their minimum and ordered by their minimum

4.1. Glueing together excursions ordered by their minimum. Let L be the generator

of a diffusion on I of form (1.3). A loop of Lα,L rooted at its minimal point is a positive

excursion. For a given x0 ∈ I, we will consider the loops γ ∈ Lα,L such that min γ ∈ (inf I, x0].

We will root this loops at their minimum then order the obtained excursions in the decreasing

sense of their minima. Then we will glue all this excursions together and obtain a continuous

paths ξα,L. The law of this path can be described as a one-dimensional projection of a two-

dimensional Markov process. Moreover this paths contains all the information on the ensemble

of loops Lα,L ∩ {γ ∈ L∗|min γ < x0}. So this is a way to sample the latter ensemble of loops.

In the particular case of α = 1, ξ1,L is the sample paths of a one-dimensional diffusion. This is

analogue of the link between L1 and the loop-erasure procedure already observed in [14] and in

[10], chapter 8. Moreover this will give an interpretation of a Ray-Knight theorem in terms of

Possonian ensemble of Markov loops. In the subsection 4.1 we will consider generalities about

glueing together excursions ordered by their minimum and probability laws will be involved.

In the subsection 4.2 we will deal with ξα,L and identify its law. In the subsection 4.3 we will

consider the case of L containing a creation of mass term as in (1.12). We will observe that if

L ∈ D+ then one can no longer construct ξα,L and show what one can construct instead.

Let x0 ∈ R and let Q be a countable everywhere dense subset of (−∞, x0). We consider a

deterministic collection of excursions (eq)q∈Q where (eq(t))0≤t≤T (eq) is a continuous excursion

above 0, T (eq) > 0 and

eq(0) = eq(T (eq)) = 0

∀t ∈ (0, T (eq)), eq(t) > 0

We also assume that for all C > 0 and a < x0, there are only finitely many q ∈ Q∩ (a, x0) such

that max eq > C and that for all a < x0

(4.1)
∑

q∈Q∩(a,x0)
T (eq) < +∞
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Let T (y) be the function defined on [0,+∞) by

T (y) :=
∑

q∈Q∩(x0−y,x0)
T (eq)

T is a non-decreasing function. Since Q is everywhere dense, T is increasing. T is right-

continuous and jumps when x0 − y ∈ Q. The height of the jump is then T (e−y).

Let Tmax := T (+∞) ∈ (0,+∞]. For t ∈ [0, Tmax) we define

θ(t) := x0 − sup{y ∈ [0,+∞)|T (y) > t}

θ is a non-increasing function from [0, Tmax) to (−∞, x0]. Since T is increasing, θ is continuous.

We define

b−(t) = inf{s ∈ [0, Tmax)|θ(s) = θ(t)}

b+(t) = sup{s ∈ [0, Tmax)|θ(s) = θ(t)}
b−(t) < b+(t) if and only if θ(t) ∈ Q and then b+(t)− b−(t) = T (eθ(t)). We introduce the set

b− := {t ∈ [0, Tmax)|θ(t) ∈ Q, b−(t) = θ(t)}

b− is in one to one correspondence with Q by t 7→ θ(t).

Finally we define on [0, Tmax) the function ξ:

ξ(t) :=

{
θ(t) if θ(t) 6∈ Q
θ(t) + eθ(t)(t− b−(t)) if θ(t) ∈ Q

Intuitively ξ is the function obtained by gluing together the excursions (q + eq)q∈Q ordered in

decreasing sense of their minimum. See figure 1 for an example of ξ and θ.

Proposition 4.1. ξ is continuous. For all t ∈ [0, Tmax)

(4.2) θ(t) = inf
[0,t]

ξ

The set b− can be recovered from ξ as follows:

(4.3) b− = {t ∈ [0, Tmax)|ξ(t) = inf
[0,t]

ξ and ∃ε > 0,∀s ∈ (0, ε), ξ(t+ s) > ξ(t)}

If t0 ∈ b− then

(4.4) b+(t0) = inf{t ∈ [t0, Tmax]|ξ(t) < ξ(t0)}

Proof. Let t ∈ [0, Tmax). To prove the continuity of ξ at t we distinguish three case: the first

case is when θ(t) ∈ Q and b−(t) < t < b+(t), the second case is when θ(t) 6∈ Q and the third

case is when θ(t) ∈ Q and either b−(t) = t or b+(t) = t.

In the first case, for all s ∈ (b−(t), b+(t)),

ξ(s) = θ(t) + eθ(t)(s− b−(t))

eθ(t) being continuous, we get the continuity of ξ at t.

In the second case we consider a sequence (tn)n≥0 in [0, Tmax) converging to t. Let C > 0.

There are only finitely many q ∈ Q such that there is n ≥ 0 such that θ(tn) = q and max eq > C.
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Moreover for any q ∈ Q, there are only finitely many n ≥ 0 such that θ(tn) = q. Thus there

are only finitely many n ≥ 0 such that θ(tn) ∈ Q and max eθ(tn) > C. So for n large enough

(4.5) θ(tn) ≤ ξ(tn) ≤ θ(tn) + C

But ξ(t) = θ(t) and θ(tn) converges to θ(t). Since we may take C arbitrarily small, (4.5) implies

that ξ(tn) converges to θ(t).

Regarding the third case, assume for instance that θ(t) ∈ Q and t = b−(t). The right-

continuity of ξ at t follows from the same argument as in the first case and left-continuity from

the same argument as in the second case.

By definition, for all t ∈ [0, Tmax), θ(t) ≤ ξ(t). θ being non-increasing, for all t ∈ [0, Tmax)

θ(t) ≤ inf
[0,t]

ξ

For the converse inequality, we have

θ(t) = ξ(b−(t)) ≥ inf
[0,t]

ξ

Regarding (4.3) and (4.4) we have the following disjunction: if θ(t) ∈ Q and b−(t) < t < b+(t)

then ξ(t) > θ(t). If θ(t) ∈ Q and t = b−(t) then for all s ∈ (0, b+(t) − b−(t)), ξ(t + s) > ξ(t).

If either θ(t) ∈ Q and t = b+(t) or θ(t) 6∈ Q then ξ(t) = θ(t) and there is a positive sequence

(sn)n≥0 decreasing to 0 such that θ(t+ sn) 6∈ Q and ξ(t+ sn) = θ(t+ sn) < θ(t). �

t0b−(t0) b+(t0) t

Tmax

x0 ξ(t)

θ(t)

Fig. 1 - Drawing of ξ (full line) and θ (dashed line).

Previous proposition shows that one can reconstruct Q and the family of excursions (eq)q∈Q
only knowing ξ. (4.2) shows how to recover θ from ξ. (4.3) and (4.4) show how to recover the

left and the right time boundaries of the excursions of ξ above θ. Also observe that the set

defined by the right-hand side of (4.3) is countable whatever the continuous function ξ is, even

if it is not obtained by glueing together excursions.

Lemma 4.2. Let (Qn)n≥0 be an increasing sequence of subsets of Q such that every Qn is

everywhere dense in (−∞, x0] and such that

(4.6)
⋃

n≥0

Qn = Q

Let

Tn,max :=
∑

q∈Qn

T (eq)

Let ξn be the function on [0, Tn,max) defined analogously to ξ by gluing together the excursion

(q+eq)q∈Qn . Then Tn,max converges to Tmax and ξn converges to ξ uniformly on every compact

subset of [0, Tmax).
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Proof. It is obvious that Tn,max converges to Tmax. For t ∈ [0, Tmax) let

fn(t) :=

∫ t

0
1θ(s)6∈Q\Qn

ds

fn maps [0, Tmax) to [0, Tn,max). For t ∈ [0, Tn,max) let

hn(t) := inf{s ∈ [0, Tmax)|fn(s) > t}

hn is increasing and right-continuous. Its jumps correspond to q ∈ Q \ Qn an their height is

T (eq). (4.6) implies that fn converges uniformly on compact subsets of [0, Tmax) to the identity

function and so does its right-continuous inverse hn. Moreover

ξn = ξ ◦ hn

which implies the convergence of ξn to ξ. �

4.2. Recovering the Poissonian ensembles of loops from Markovian sample paths.

Let α > 0 and Lα,BM the Poisson ensemble of loops of intensity αµ∗BM where µ∗BM is the

measure on loops associated to the Brownian motion on R. Let x0 ∈ R. We consider the

random countable set Q:

Q := {min γ|γ ∈ Lα,BM} ∩ (−∞, x0)

Almost surely Q is everywhere dense in (−∞, x0) and for every q ∈ Q there is only one

γ ∈ Lα,BM such that min γ = q. Almost surely γ ∈ Lα,BM reaches its minimum at one single

moment. Given q ∈ Q and γ ∈ Lα,BM such that min γ = q we consider eq to be the excursion

above 0 equal to γ− q where we root the unrooted loop γ at argmin γ. Then the random set of

excursions (eq)q∈Q almost surely satisfies the assumptions of the subsection 4.1. In particular

the condition (4.1) follows from the fact that, according to (2.30),

∫

L∗

1 ∧ T (γ)1min γ∈(a,x0) µ
∗
BM (dγ) = (x0 − a)

∫ +∞

0

t ∧ 1√
2πt

dt < +∞

Thus we can consider the random continuous function (ξα,BM (t))t≥0 constructed by glueing

together the excursions (q + eq)q∈Q in the way described in subsection 4.1. Let

θα,BM (t) = inf
[0,t]

ξα,BM

Ξα,BM (t) := (ξα,BM (t), θα,BM (t))

Next we will describe the law of the two-dimensional process (Ξα,BM (t))t≥0.

Proposition 4.3. Let (B̃t)t≥0 be a standard Brownian motion on R starting from 0. (Ξα,BM (t))t≥0

has the same law as (
x0 + |B̃t| −

1

α
ℓ0t (B̃), x0 −

1

α
ℓ0t (B̃)

)

t≥0

In particular for α = 1, (ξ1,BM (t))t≤0 has the same law as a Brownian motion starting from

x0.
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Proof. For a < x0 let Ta be the first time θα,BM hits a. For l > 0 let

τ̃0l := inf{t > 0|ℓ0t (B̃) > l}

According to the disintegration (2.30) of the measure µ∗BM in the proposition 2.14, for all a < x0

the family (eq)q∈Q∩(a,x0) of excursions above 0 is a Poissonian point process of intensity 2αη>0
BM .

This implies the following equality in law

(4.7) (ξα,BM (t)− θα,BM (t))0≤t≤Ta
(law)
= (|B̃t|)0≤t≤τ̃0

α(x0−a)

Since (4.7) holds for all a < x0, we have the following equality in law

(4.8) (ξα,BM (t)− θα,BM (t), α(x0 − θα,BM (t)))t≥0
(law)
= (|B̃t|, ℓ0t (B̃))t≥0

(4.8) is exactly the equality in law we needed. The fact that for α = 1, (x0 + |B̃t| − ℓ0t (B̃))t≥0

has the law of a Brownian motion starting from x0 is well known. See [19], chapter VI, §2. �

Assume that x0 > 0. Let (Bt)t≥0 be a Brownian sample paths. Let T0 be the first time

it hits 0. Then according to the first Ray-Knight theorem, (ℓxT0(Bt))0≤x≤x0 is the square of a

Bessel 2 process starting from 0 at 0, restricted to the interval [0, x0] (see theorem 2.2 in [19],

chapter XI, §2). But from proposition 4.3 follows that the path (Bt)0≤t≤T0 can be sliced into a

Poissonian ensemble of Brownian loops of parameter α = 1. The fact that its occupation field

on [0, x0] is the square of a Bessel 2 process starting from 0 at 0 is given by the proposition 3.4.

From proposition 4.3 follows in particular that (Ξα,BM (t))t≥0 is a sample path of a two-

dimensional Feller process. Let

DR := {(x, a) ∈ R2|x ≥ a}

Diag(R2) := {(x, x)|x ∈ R}
For (x0, a0) ∈ DR we define the process

(Ξx0,a0α,BM (t))t≥0 = (ξx0,a0α,BM (t), θx0,a0α,BM (t))t≥0

(4.9) :=

(
a0 + |x0 − a0 + B̃t| −

1

α
ℓa0−x0t (B̃), a0 −

1

α
ℓa0−x0t (B̃)

)

t≥0

where (B̃t)t≥0 is a Brownian motion starting from 0. Ξx0,x0α,BM has the same law as Ξα,BM

starting from x0. The family of paths (Ξx0,a0α,BM )x0≥a0 are the sample paths of the same Feller

semi-group on DR starting from all possible positions. Next we describe this semi-group in

terms of generator and domain. Let f be a continuous function on DR, C2 on the interior of

DR, such that all its second order derivatives extend continuously to Diag(R2). This implies in

particular that the first order derivatives also extend continuously to Diag(R2). We write ∂1f ,

∂2f and ∂1,1f for the first order derivative relatively to the first variable, the second variable

and the second order derivative relatively the first variable. Applying Itô-Tanaka’s formula we

get

f(Ξx0,a0α,BM (t)) = f(x0, a0) +

∫ t

0
∂1f(Ξ

x0,a0
α,BM (s))sgn(x0 − a0 + B̃s) dB̃s

+

∫ t

0

((
1− 1

α

)
∂1 −

1

α
∂2

)
f(Ξx0,a0α,BM(s)) dsℓ

a0−x0
s (B̃) +

1

2

∫ t

0
∂1,1f(Ξ

x0,a0
α,BM(s)) ds
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Let Dα,BM be the set of continuous functions f on DR, C2 on the interior of DR, such that

all the second order derivatives extend continuously to Diag(R2) and that moreover satisfy the

following constraints: f and ∂1,1f are uniformly continuous and bounded (which also implies

that ∂1f is bounded by the inequality ‖∂1f‖∞ ≤ 2
√

‖f‖∞‖∂1,1f‖∞) and on Diag(R2) the

following equality holds: ((
1− 1

α

)
∂1 −

1

α
∂2

)
f(x, x) = 0

If f ∈ Dα,BM then
1

t

(
E
[
f(Ξx0,a0α,BM (t))

]
− f(x0, a0)

)
converges as t → 0+ to

1

2
∂1,1f(x0, a0)

uniformly for (x0, a0) ∈ DR. Moreover Dα,BM is a core for
1

2
∂1,1 in the space of continuous

bounded function on DR.

Next we describe what we obtain if we glue together the loops, seen as excursion, ordered in

the decreasing sense of their minimum, where instead of Lα,BM we use the Poissonian ensemble

of Markov loops associated to a general generator of form (1.3). Let I be an open interval of R

and L̃ a generator on I of form

L̃ =
1

m̃(x)

d

dx

(
1

w̃(x)

d

dx

)

with zero Dirichlet boundary conditions which satisfies the assumptions of the section 1.2. Let

S̃ be a primitive of w̃(x). We assume that S̃(sup I) = +∞. Let

DI := {(x, a) ∈ I2|x ≥ a}

Diag(I2) := {(x, x)|x ∈ I}

Let D̂I be the closure of DI in (inf I, sup I]2.

Given any x′0 ≥ a′0 >
1
2 S̃(inf I) let ζ̃α be the first time Ξ

x′0,a
′
0

α,BM hits 1
2 S̃(inf I). Let

Ĩt :=

∫ t

0

1

m̃
(S̃−1(2 ξ

x′0,a
′
0

α,BM (s))) ds

Let (Ĩ−1
t )0≤t<Ĩ

ζ̃α

be the inverse function of (Ĩt)0≤t<ζ̃α . It is a family of stopping times for

Ξ
x′0,a

′
0

α,BM . For x0 ≥ a0 ∈ I and t < Ĩ
ζ̃α

let

Ξx0,a0
α,L̃

(t) = (ξx0,a0
α,L̃

(t), θx0,a0
α,L̃

(t)) := Ξ
S̃(2x0),S̃(2a0)
α,BM (Ĩ−1

t )

If α = 1 then ξx0,a0
α,L̃

is just the sample paths starting x0 of a diffusion of generator L̃. Let D̂α,L̃

be the space of continuous functions f on DI satisfying

• f◦S̃−1 is C2 on the interior ofDI and all the second order derivatives extend continuously

to Diag(I2).

• f(x, a) and
1

m̃(x)
∂1

(
1

w̃(x)
∂1f(x, a)

)
are bounded on DI and extend continuously to

D̂I .

• f(x, a) and
1

m̃(x)
∂1

(
1

w̃(x)
∂1f(x, a)

)
converge to 0 as a converges to inf I uniformly in

x.
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• On Diag(I2) the following equality holds:

(4.10)

((
1− 1

α

)
∂1 −

1

α
∂2

)
f(x, x) = 0

Lemma 4.4. (Ξx0,a0
α,L̃

)x0≥a0∈I is a family of sample path starting from all possible positions of

the same Markovian or sub-Markovian semi-group on DI . The law of the path Ξx0,a0
α,L̃

depends

weakly continuously on the starting point (x0, a0). The domain of the generator of this semi-

group contains D̂α,L̃, and on this space the generator equals

1

m̃(x)
∂1

(
1

w̃(x)
∂1

)

Moreover there is only one Markovian or sub-Markovian semi-group with such generator on

D̂α,L̃.

Proof. Since a change of scale does not alter the validity of the above statement, we can assume

that w̃ ≡ 2. Then sup I = +∞. (Ξx0,a0
α,L̃

(t))0≤t≤Ĩ
ζ̃α

is then obtained from (Ξx0,a0α,BM (t))0≤t<ζ̃α by

a random time change. The Markov property and the continuous dependence on the starting

point for Ξx0,a0
α,L̃

follows from analogous properties for Ξx0,a0α,BM . If f ∈ D̂α,L̃ then

(
f(Ξx0,a0α,BM (Ĩ−1

t ∧ ζ̃α))−
1

2

∫ Ĩ−1
t ∧ζ̃α

0
∂1,1f(Ξ

x0,a0
α,BM(s)) ds

)

t≥0

is a local martingale. We can rewrite it as
(
f(Ξx0,a0

α,L̃
(t ∧ Ĩ

ζ̃α
))−

∫ t

0

1

2m̃(ξx0,a0
α,L̃

(s))
∂1,1f(Ξ

x0,a0

α,L̃
(s)) 1s<Ĩ

ζ̃α

ds

)

t≥0

The above local martingale is bounded on all finite time intervals and thus is a true martingale.

Since
1

2m̃(x)
∂1,1f(x, a) converges to 0 as a converges to inf I, uniformly in x, it follows that

f(Ξx0,a0
α,L̃

(t ∧ Ĩ
ζ̃α
)) = 1t<Ĩ

ζ̃α

f(Ξx0,a0
α,L̃

(t))

Thus

lim
t→0+

1

t

(
E
[
1t<Ĩ

ζ̃α

f(Ξx0,a0
α,L̃

(t))
]
− f(x0, a0)

)
=

1

2m̃(x0)
∂1,1f(x0, a0)

Moreover the above convergence is uniform in (x0, a0) because
1

2m̃(x)
∂1,1f(x, a) extends con-

tinuously to D̂I .

To prove the uniqueness of the semi-group we need to show that there is λ > 0 such that
(

1

2m̃(x)
∂1,1 − λ

)
(D̂α,L̃)

is sufficiently large, for instance that it contains all functions with compact support in DI . Let

g be such a function and λ > 0. Consider the equation

(4.11)
1

2m̃(x)
∂1,1f(x, a)− λf(x, a) = g(x, a)
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Let ũλ,↓ be a positive decreasing solution to

1

2m̃(x)

d2u

dx2
(x)− λu(x) = 0

Let

f0(x, a) := ũλ,↓(x)
∫ +∞

x

∫ +∞

y

2m̃(z)g(z, a)ũλ,↓(z) dz
dy

ũλ,↓(y)2

Then f0 is a solution to (4.11) and it is compactly supported in DI . We look for the solutions

to (4.11) of form

f(x, a) = f0(x, a) + C(a)ũλ,↓(x)

f satisfies the constraint (4.10) if and only if C satisfies

− 1

α
ũλ,↓(a)

dC

da
(a) +

(
1− 1

α

)
dũλ,↓
dx

(a)C(a) + h(a) = 0

where

h(a) =

((
1− 1

α

)
∂1 −

1

α
∂2

)
f0(a, a)

h is compactly supported in I. We can set

C(a) = ũλ,↓(a)
α−1

∫ x

inf I

h(y)

ũλ,↓(y)α
dy

C is zero in the neighbourhood of inf I. Moreover ũλ,↓ has a limit at +∞. It follows that

f ∈ D̂α,L̃. �

Let L be the generator of a diffusion on I of form (1.3). Let x0 ∈ I. Consider the loops γ in

Lα,L such that min γ < x0, rooted at argmin γ, seen as excursions. Let (ξα,L(t))0≤t<ζα be the

path on I obtained by glueing together this excursions ordered in the decreasing sense of their

minimum. Let

θα,L(t) := min
[0,t]

ξα,L

Ξα,L := (ξα,L, θα,L)

Proposition 4.5. Let L̃ := Conj(u↓, L). Then (Ξα,L(t))0≤t<ζα has the same law as

(Ξx0,x0
α,L̃

(t))0≤t<ζ̃α . So it is a sample path of a two-dimensional Feller process. In particular for

α = 1, ξ1,L is the sample path of a diffusion of generator L̃. For all α > 0

lim inf
t→ζα

ξα,L(t) = inf I

If L is the generator of a recurrent diffusion then

lim sup
t→ζα

ξα,L(t) = sup I

Otherwise

lim sup
t→ζα

ξα,L(t) = inf I
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Proof. First notice that if L is the generator of a recurrent diffusion then L̃ = L. Otherwise a

diffusion of generator L̃ = L is, put informally, a diffusion of generator L conditioned to converge

to inf I (informally because this may occur with zero probability). From h-transform invariance

of the measure on loops follows that Lα,L = Lα,L̃. From property 2.6 (iv) and corollary 2.10

follows that Ξα,L is obtained from Ξα,BM by scale and time change in the same way as Ξx0,x0
α,L̃

and thus Ξα,L and Ξx0,x0
α,L̃

have the same law. Regarding the limits of ξα,L at ζα, we need just

to observe that they hold if L is the generator of the Brownian motion on an interval of form

(a,+∞), a ∈ [−∞,+∞), and by time and scale change they hold in general. �

As explained in the proposition 4.1, the knowledge of the path (ξα,L(t))0≤t<ζα alone is enough

to reconstruct Lα,L ∩ {γ ∈ L∗|min γ < x0}. From this we deduce the following

Corollary 4.6. If L is the generator of a transient diffusion, it is possible to construct on the

same probability space Lα,L and a continuous version of the occupation field (L̂xα,L)x∈I .

Proof. By scale and time change covariance and h-transform invariance of the Poisson ensembles

of loops, it is enough to prove the proposition in case of a Brownian motion on (0,+∞) killed

in 0. Let (xn)n≥0 be an increasing sequence in (0,+∞) converging to +∞. We consider a

sequence of independent paths (ξxn,xnα,BM )n≥0 defined by (4.9). Let

Tn,xn−1 := inf{t ≥ 0|ξxn,xnα,BM (t) = xn−1}
where conventionally we set x−1 := 0. From the restricted path (ξxn,xnα,BM (t))0≤t<Tn,xn−1

we can

reconstruct a family of loops γ such that min γ ∈ (xn−1, xn): there is a random countable set

Jn of disjoint compact subintervals [b−, b+] of [0, Tn,xn−1 ] such that

{(ξxn,xnα,BM (b− + t))0≤t≤b+−b− |[b−, b+] ∈ Jn} = Lα,BM ∩ {γ ∈ L∗|min γ ∈ (xn−1, xn)}
(see (4.3)). The union of all previous families of loops for n ≥ 0 is a Poissonian ensemble of

loops Lα,BM ∩ {γ ∈ L∗|min γ > 0}.
Each of ξxn,xnα,BM is a semi-martingale and its quadratic variation is

〈ξxn,xnα,BM , ξ
xn,xn
α,BM 〉t = t

Moreover for all x ∈ R
∫ t

0
1ξxn,xn

α,BM =x dξ
xn,xn
α,BM (s) =

(
1− 1

α

)∫ t

0
1ℓ0s(B̃)=αx dsℓ

0
s(B̃) = 0

From theorems 1.1 and 1.7 in [19], chapter VI, §1, follows that we can construct on the same

probability space ξxn,xnα,BM and a space-time continuous version (ℓxt (ξ
xn,xn
α,BM ))x∈R,t≥0 of local times

of ξxn,xnα,BM relatively to the Lebesgue measure. In particular x 7→ ℓxTn,xn−1
(ξxn,xnα,BM ) is continu-

ous. If [b−, b+] ∈ Jn, then (ℓx
b+
(ξxn,xnα,BM ) − ℓx

b−
(ξxn,xnα,BM ))x>0 is the occupation field of the loop

corresponding to the time interval [b−, b+]. We need to check that

(4.12) A.s. ∀x > 0, ℓxTn,xn−1
(ξxn,xnα,BM ) =

∑

[b−,b+]∈Jn

ℓxb+(ξ
xn,xn
α,BM )− ℓxb−(ξ

xn,xn
α,BM )

For x > 0, consider the random set of times

(4.13) {t ∈ [0, Tn,xn−1 ]|ξxn,xnα,BM (t) = x} \
⋃

[b−,b+]∈Jn

[b−, b+]
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If x is a minimum of a loop embedded in (ξxn,xnα,BM (t))0≤t<Tn,xn−1
or if x 6∈ (xn−1, xn) then the

set (4.13) is empty. Otherwise it is reduce to one point: the first hitting time of the level x.

Almost surely, for all x > 0, the measure dtℓ
x
t (ξ

xn,xn
α,BM ) is supported in {t ≥ 0|ξxn,xnα,BM (t) = x} and

has no atoms. This implies (4.12). Finally we can conclude that (ℓxTn,xn−1
(ξxn,xnα,BM ))x>0 is the

occupation field of Lα,BM ∩ {γ ∈ L∗|min γ ∈ (xn−1, xn)}.
The occupation field of Lα,BM ∩ {γ ∈ L∗|min γ > 0} is

(∑

n≥0

ℓxTn,xn−1
(ξxn,xnα,BM )

)

x>0

The above sum is locally finite and thus varies continuously with x. �

Similarly to ordering the loops of Lα,L∩{γ ∈ L∗|min γ < x0} in the decreasing sense of their

minimum, we can order the loops in Lα,L ∩ {γ ∈ L∗|min γ > x0}, rooted in their minimum, in

the increasing sense of their minimum. Let (ξ̂α,L(t))0≤t<ζ̂α be the path obtained by glueing this

loops-excursion ordered this way. For t < ζ̂α let

θ̂α,L(t) := inf
[t,ζ̂α)

ξ̂α,L

The ensemble of loops Lα,L ∩ {γ ∈ L∗|min γ > x0} is invariant in law through time reversal.

Thus, if x1 ∈ I, x1 > x0, then what we obtain by time-reversing the path ξ̂α,L, run until

the last time it visits x1, equals in law the path ξ
x1,x1
α,L run until the first time it hits x0.

Both paths are obtained by glueing together the loops in Lα,L ∩ {γ ∈ L∗|x0 < min γ < x1}
rooted at their minimum. In particular if L is the generator of a Brownian motion on R then

(ξ̂α,BM (t), θ̂α,BM (t))t≥0 has the same law as
(
x0 + |B̃t|+

1

α
ℓ0t (B̃), x0 +

1

α
ℓ0t (B̃)

)

t≥0

where B̃ is a standard Brownian motion starting from 0. If α = 1 then (ξ̂1,BM (t)− x0)t≥0 is a

Bessel 3 process starting from 0. In general (ξ̂α,L, θ̂α,L) is the sample path of a two-dimensional

Feller Markovian or sub-Markovian process on DR. Stated informally, its generator acts on

sufficiently smooth function f on DR satisfying on Diag(I2) the constraint
((

1 +
1

α

)
∂1 +

1

α
∂2

)
f(x, x) = 0

Given such a function f , one applies the second order differential operator L+,x0 to the first

variable, the second one being fixed. If α = 1 then the path ξ̂1,L is Markovian and has the same

law as ρ+,x0 started from x0.

It is significant that for α = 1 the Poissonian ensemble of loops L1,L can be recovered from

sample paths of one-dimensional diffusions. A similar property was observed for loops of the

two-dimensional Brownian Motion and of Markov jump processes on graphs. In [10], chapter

8, it is shown that by launching consecutively symmetric Markov jump processes from different

vertices of a finite graph and applying the Wilson’s algorithm ([18]), one can simultaneously

construct a uniform spanning tree of the graph with prescribed weights on the edges and an

independent Poissonian ensemble of Markov loops of parameter α = 1. If D is a simply-

connected open domain of C other than C, it was shown in [25] that one can couple a Brownian
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motion on D, killed when hitting ∂D, and a simple curve with same extremal points such that

the latter appears as the loop-erasure of the first. It is conjectured that given this loop-erased

Brownian motion and an independent Poissonien ensemble of Brownian loops of parameter 1,

by attaching to the simple curve the loops that cross it one reconstructs a Brownian sample

path. See [14], conjecture 1, and [13], theorem 7.3.

For one-dimensional diffusions one can partially recover L1,L from Markovian sample paths

otherwise than slicing ξ1,L in excursions. The next result has an analogue for loops of Markov

jump processes on graphs. See [10], remark 21.

Proposition 4.7. Assume that L is the generator of a transient diffusion. Let x ∈ I. Let

(Xt)0≤t<ζ be the sample path of a diffusion of generator L started from x. Let T̂x the last time

X visits x. For l ≥ 0 let

τxl := {t ≥ 0|ℓxt (X) > l}

Let (Yj)j∈N be a Poisson-Dirichlet partition of [0, 1], independent from X, ordered in an arbitrary

way. Let

lj := ℓxζ (X)
∑

i≥j
Yi

The family of bridges ((Xt)τxlj−1
≤t≤τxlj

)j≥0 has, up to unrooting, the same law as the loops in

L1,L ∩ {γ ∈ L∗|x ∈ γ([0, T (γ)])}

In particular (Xt)0≤t≤T̂x0
can be obtained through sticking together all the loops in Lα,L that

visit x.

Proof. According to corollary 2.9, (ℓx(γ))γ∈Lα,L, γ visits x is a Poissonian ensemble of intensity

e
− l

G(x,x)
dl

l

Thus L̂xα,L is an exponential r.v. with mean G(x, x) and has the same law as ℓxζ (X). More-

over the Poissonian ensemble (ℓx(γ))γ∈Lα,L, γ visits x has up to reordering the same law as

(lj − lj−1)j≥0. Almost surely l 7→ τxl does not jump at any lj . Conditionally on (lj)j≥0,

((Xt)τx
lj−1

≤t≤τx
lj
)j≥0 is an independent family of bridges and (Xt)τx

lj−1
≤t≤τx

lj
has the same law

as (Xt)0≤t≤τxlj−lj−1
. We conclude using identity (2.15) and the theory of marked Poissonian

ensembles. �

Assume that L is the generator of a transient diffusion. Let x > y ∈ I. Let (Xx,y
t )0≤t≤ζx,y

be the path on I following the law 1
G(x,y)µ

x,y. Let T x,yy be the first time Xx,y hits y. Then

(Xx,y
t )0≤t≤Tx,y

y
has the same law as ξ1,L̃ run until hitting y, where L̃ = Conj(u↓, L).

(Xx,y

T
x,y
y +s

)0≤s≤ζx,y−Tx,y
y

has the same law as a diffusion of generator L, starting from y, run until

the last time it visits y. By slicing (Xx,y
t )0≤t≤Tx,y

y
in excursion and (Xx,y

T
x,y
y +s

)0≤s≤ζx,y−Tx,y
y

in

bridges from y to y as in proposition 4.7, we obtain the Poissonian ensemble of loops

L1,L ∩ {γ ∈ L∗|min γ < x,max γ > y}
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4.3. The case of "generators" with creation of mass. Now we consider that L is a "gener-

ator" on I that contains a creation of mass term as in (1.12). We study the problem of glueing

together the loops in Lα,L, rooted at their minimum and ordered in the decreasing sense of

the minimum. If L ∈ D0,−, the situation is the same as for the generators of diffusions: if

L̃ = Conj(u↓, L) and x0 ∈ I, then ξ
x0,x0

α,L̃
is the continuous path obtained by glueing together

the loops γ ∈ Lα,L such that min γ < x0. This can not be done any longer if L ∈ D+. Indeed,

according to proposition 2.25, if x ∈ I is sufficiently low and y ∈ I sufficiently high, there are

infinitely many loops γ ∈ Lα,L such that min γ < x and max γ > y. However one can consider

a continuous function H : I → I such that for all x ∈ I, H(x) > x and L|(x,H(x)) ∈ D− (see

figure 2). We will show that one can glue together the loops γ ∈ Lα,L such that min γ < x0

and max(γ) < H(min γ), rooted in argmin γ, ordered according to the decreasing sense of their

minima, and obtain a continuous path (ξα,L,H(t))0≤t<ζα . We will further identify the law of

this path.

a

b

H(a)

Fig. 2 - The measure on (min γ,max γ) induced by
µ∗
L(dγ) is not locally finite in the dashed region.

Lemma 4.8. For all J compact subinterval of I,

(4.14)
∑

γ ∈ Lα,L,min γ ∈ J

max γ < H(min γ)

T (γ) < +∞ a.s.

Proof. For every a ∈ I, there is ε(a) > 0 and H̃(a) ∈ I such that for all a′ ∈ (a−ε(a), a+ε(a)),
H̃(a) > H(a′) and L|(a−ε(a),H̃(a)) ∈ D−. The set

{(x, a)|a ∈ J, x ∈ [a,H(a)]}

is compact and hence there is a finite family (a1, ..., aN ) ∈ I such that the preceding set is

contained in
N⋃

i=1

(ai − ε(ai), H̃(ai))× (ai − ε(ai), ai + ε(ai))

But

(4.15)

N∑

i=1

∑

γ ∈ Lα,L

min γ ∈ (ai − ε(ai), ai + ε(ai))

max γ < H̃(ai)

T (γ) < +∞ a.s.
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(4.15) implies (4.14). �

Preceding lemma ensures the existence of the continuous path (ξα,L,H(t))0≤t<ζα . For t ∈ [0, ζα),

let

θα,L,H(t) := min
[0,t]

ξα,L,H

We will show that (ξα,L,H , θα,L,H) is the sample path of a two-dimensional Markovian or sub-

Markovian process. Next we introduce what will be its domain and generator. Next we will

apply the Hille-Yosida’s theorem to show that actually there is a Markovian or sub-Markovian

process with such a domain and generator. Finally we will show that (ξα,L,H , θα,L,H) is indeed

its sample path.

Let

DI,H := {(x, a) ∈ I2|a ≤ x < H(a)}
First observe the following: Assume that x0 ∈ I and h is a C1 function on I. If there is an

L-harmonic function u that is positive in the neighbourhood of x such that
u2

w

dh

dx
is C1 in the

neighbourhood of x0, then for any other L-harmonic function ũ positive in the neighbourhood

of x0,
ũ2

w

dh

dx
is C1 in the neighbourhood of x0. Indeed the quotient

ũ

u
is C1 on I. We define on

DI,H the function uH(x, a) as follows:

uH(x, a) :=
u−,H(a)(x)

u−,H(a)(a)

u is positive and continuous on DI,H and by definition equals 1 on Diag(I2). For all a ∈ I,

x 7→ uH(x, a) is L-harmonic and

lim
x→H(a)

uH(x, a) = 0

We will consider functions f(x, a) such that for all a ∈ I, x 7→ f(x, a) is C1 and for every

x0 ≥ a ∈ I, and u L-harmonic function positive in the neighbourhood of x0, x 7→ u(x)2

w(x)
∂1(x, a)

is C1 in the neighbourhood of x0. For such functions we can define the second order partial

differential operator

LH,1f(x, a) =
1

uH(x, a)2m(x)
∂1

(
uH(x, a)

2

w(x)
∂1f(x, a)

)

For â ∈ I, let

DI,H,â := DI,H ∩ (inf I, â]2

D̂I,H,â := {(x, a) ∈ I2|a ≤ â, a ≤ x ≤ H(a)}
Let Ĉ0(DI,H,â) be the space of continuous bounded functions f on DI,H,â that extend contin-

uously to D̂I,H,â and such that f(x, a) converges to 0 as a converges to inf I, uniformly in x.

Let D̂α,L,H,â be the subspace of function f ∈ Ĉ0(DI,H,â) satisfying the following constraints:

• f is C1 on the interior of DI,H and all the first order derivatives extend continuously to

Diag(I2).

• LH,1f is well defined and in Ĉ0(DI,H,â).

• On Diag(I2) f satisfies the equation (4.10).
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We are interested in Markovian or sub-Markovian processes on DI,H,â with domain D̂α,L,H,â

and generator LH,1. We will show that this â-parametrized family of semi-groups is consistent

in the following way: if â′ > â ∈ I then any sample path for the semi-group generated by

(LH,1, D̂α,L,H,â) onDI,H,â is also a sample path for the semi-group generated by (LH,1, D̂α,L,H,â′)

on DI,H,â′ .

Lemma 4.9. D̂α,L,H,â is dense in Ĉ0(DI,H,â) for the uniform topology.

Proof. Let D̂′
α,L,H,â be the sub-space of functions f ∈ Dα,L,H satisfying the following additional

constraint: ∂1f(x, a) and
1

m(x)w(x)
∂1f(x, a) are in Ĉ0(DI,H,â). It is enough to show that

D̂′
α,L,H,â is dense. D̂′

α,L,H,â is a non-unitary algebra. If f, g ∈ D̂′
α,L,H,â then

LH,1(fg)(x, a) = (LH,1f)g(x, a) + f(LH,1g)(x, a) +
2

m(x)w(x)
(∂1f∂1g)(x, a)

Thus LH,1(fg) ∈ Ĉ0(DI,H,â). Let D̂I,H,â ∪ {†} be the one point compactification of D̂I,H,â.

Any function in Ĉ0(DI,H,â) extends continuously to D̂I,H,â ∪ {†} and takes value 0 at †. The

space R ⊕ D̂′
α,L,H,â, spanned by the constant function and D̂′

α,L,H,â, is a unitary sub-algebra

C(D̂I,H,â ∪ {†}) of continuous functions on D̂I,H,â ∪ {†}. Lets show that this sub-algebra is

separating.

The main point here is to show that for every (x0, x0) ∈ Diag(I2) ∩ D̂I,H,â and ε > 0, there

is a function f ∈ D̂′
α,L,H,â such that f(x0, x0) > 0 and f vanishes outside an ε-neighbourhood

of (x0, x0). Similar property for other points in D̂I,H,â ∪ {†} is trivial. Let ε > 0. There is

ε′ ∈ (0, ε) such that u−,H(x0) is positive on (x0 − ε′,H(x0)) and inf(x0−ε′,x0+ε′)H > x0 + 2ε′.

Let h be a smooth non-negative function on I such that h(x0) > 0 and h vanishes outside

(x0 − ε′, x0 + ε′). Let

g(x, a) := h(a) +
1

α

dh

da
(a)

u−,H(x0)(a)2

w(a)

∫ x

a

w(y)

u−,H(x0)(y)2
dy

If a < x0 − ε′, we set g(x, a) = 0. LH,1g is continuous and g satisfies (4.10). g(x0, x0) = h(x0).

Let χ defined on R be a cut-off function: χ is smooth, equals 1 on (−∞, 1] and 0 on [2,+∞).

Let

f(x, a) := g(x, a) χ


2

∫ x

x0

w(y)

u−,H(x0)(y)2
dy

(∫ x0+2ε′

x0

w(y)

u−,H(x0)(y)2
dy

)−1



Then f ∈ D̂′
α,L,H,â, f vanishes outside (x0 − ε′, x0 + 2ε′) × (x0 − ε′, x0 + ε′), and f(x0, x0) =

h(x0) > 0.

According to Stone-Weierstrass theorem R ⊕ D̂′
α,L,H,â is dense in C(D̂I,H,â ∪ {†}). Conse-

quently D̂′
α,L,H,â is dense in Ĉ0(DI,H,â). �

Proposition 4.10. For every â ∈ I, there is a continuous positive contraction semi-group on

Ĉ0(DI,H,â) such that D̂α,L,H,â is a core of the domain of its generator and the generator on

D̂α,L,H,â is LH,1. Stated otherwise, there is a Feller semi-group on C(D̂I,H,â ∪ {†}) such that

R⊕ D̂α,L,H,â is a core and the generator values LH,1 on D̂α,L,H,â and 0 on constant functions.
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Moreover if â′ > â ∈ I, any sample path for the semi-group generated by (LH,1, D̂α,L,H,â) on

DI,H,â is also a sample path for the semi-group generated by (LH,1, D̂α,L,H,â′) on DI,H,â′.

Proof. Let â ∈ I. According to Hille-Yosida theorem (see theorem 2.2, section 4.2 in [8]), we

need to check that

• (i) D̂α,L,H,â is dense in Ĉ0(DI,H,â).

• (ii) There is λ > 0 such that (LH,1 − λ)(D̂α,L,H,â) is dense in Ĉ0(DI,H,â).

• (iii) Maximum principle: if f ∈ D̂α,L,H,â, f(x0, a0) = max f and f(x0, a0) ≥ 0 then

LH,1f(x0, a0) ≤ 0.

Condition (i) is given by lemma 4.9. Regarding the condition (iii), if (x0, a0) 6∈ Diag(I2)

the maximum principle is obvious. If x0 = a0, then for ε small enough, (x0 + ε, x0) ∈ Dα,L,H,â

and necessarily ∂1f(x0, x0) ≤ 0. For ε small enough, (x0 − ε, x0 − ε) ∈ Dα,L,H,â and necessarily

−∂1f(x1, x1)− ∂2f(x1, x1) ≤ 0. Together with (4.10) this implies that −α∂1f(x0, x0) ≤ 0.

Thus ∂1f(x0, x0) = 0. Using again the fact that for ε small enough f(x0 − ε, x0) ≤ f(x0, x0),

we get that LH,1f(x0, x0) ≤ 0.

Next we check the condition (ii). Let λ > 0 and g ∈ D̂α,L,H,â such that g(x, a) = 0 for a

close enough to inf I. Consider the equation on DI,H,â

(4.16) LH,1f − λf = g

Let ũH,λ(x, a) be the function on DI,H satisfying the equation LH,1ũH,λ − λũH,λ = 0 and the

border conditions ũH,λ(a, a) = 1 and ũH,λ(H(a), a) = 0. ũH,λ is C1 and positive. Let

(4.17) f0(x, a) := ũH,λ(x, a)

∫ H(a)

x

∫ H(a)

y

m(z)w(y)g(z, a)ũH,λ(z, a)
uH (z, a)2

uH (y, a)2
dz

dy

ũH,λ(y, a)2

The right-hand side of (4.17) is integrable: uH(y, a)
−2ũH,λ(y, a)

−2 diverges in the neighbour-

hood of H(a) like (H(a)−y)−4. ũH,λ(z, a)uH (z, a)2 is equivalent in the neighbourhood of H(a)

to (H(a) − z)3. All other factors are bounded. Moreover
∫ H(a)

x

∫ H(a)

y

(H(a)− z)3 dz
dy

(H(a)− y)4
< +∞

f0 ∈ D̂α,L,H,â and satisfies the equation (4.16), but in general does not satisfy the constraint

(4.10). We look for a solution of (4.16) of form f0(x, a)+C(a)ũH,λ(x, a). For it to satisfy (4.10),

we need that

(4.18) − 1

α

dC

da
(a)ũH,λ(a, a) + C(a)

((
1− 1

α

)
∂1 −

1

α
∂2

)
ũH,λ(a, a) + h(a) = 0

where

h(a) =

((
1− 1

α

)
∂1 −

1

α
∂2

)
f0(a, a)

using the fact that ũH,λ(a, a) ≡ 1, (4.18) becomes

(4.19) − 1

α

dC

da
(a) + C(a)∂1ũH,λ(a, a) + h(a) = 0

Let U be a primitive of a 7→ ∂1ũH,λ(a, a). Then

C(a) := exp(αU(a))

∫ a

inf I
h(y) exp(−αU(y)) dy
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is a solution to (4.19). C(a) vanishes for a small enough. f0(x, a)+C(a)ũH,λ(x, a) is in D̂α,L,H,â.

The condition (ii) follows and hence the existence of a continuous positive contraction semi-

group on Ĉ0(DI,H,â).

Let â′ > â ∈ I. Let (Ξ(t))0≤t<ζα be a sample path for the semi-group generated by

(LH,1, D̂α,L,H,â) on DI,H,â. Let f ∈ D̂α,L,H,â′ . Then f restricted to DI,H,â is in D̂α,L,H,â

and (
f(Ξ(t ∧ ζα))−

∫ t∧ζα

0
LH,1f(Ξ(s)) ds

)

t≥0

is a martingale. This implies that (Ξ(t))0≤t<ζα is also a sample path for the semi-group generated

by (LH,1, D̂α,L,H,â′) on DI,H,â′ (see theorem 4.1 in [8], section 4.4). �

Proposition 4.11. Let x0 ∈ I. The path (ξα,L,H(t), θα,L,H(t))0≤t<ζα starting from (x0, x0)

obtained by glueing together the loops γ ∈ Lα,L such that min γ < x0 and max γ < H(min γ) is

a sample path for the semi-group generated by (LH,1, D̂α,L,H,â), for any â ∈ I, â ≥ x0.

Proof. We need only to show that given â ∈ I, â ≥ x0, and f ∈ D̂α,L,H,â, then (Yt)t≥0, defined

by

(Yt)t≥0 :=

(
f(ξα,L,H(t ∧ ζα), θα,L,H(t ∧ ζα))−

∫ t∧ζα

0
LH,1f(ξα,L,H(s), θα,L,H(s)) ds

)

t≥0

is a martingale. For this we will use an approximation of H from below by step functions.

Consider f fixed. For n ∈ N, we define function the Hn equal to

Hn(a) := inf

{
H(a′)|x0 −

1

2n
(1 + ⌊2n(x0 − a)⌋) ≤ a′ ≤ x0 −

1

2n
⌊2n(x0 − a)⌋

}

Let uHn(x, a) be

uHn(x, a) :=
u−,Hn(a)(x)

u−,Hn(a)(a)

uHn(x, a) may be discontinuous at points where a is of form x0 −
j

2n
. Let LHn,1 be the second

order partial differential operator

LHn,1 :=
1

uHn(x, a)
2m(x)

∂1

(
uHn(x, a)

2

w(x)
∂1

)

LHn,1f(x, a) may be discontinuous at points where a is of form x0 −
j

2n
. LHn,1f converges

uniformly on compact subsets of DI,H,â to LH,1f .

Let (ξα,L,Hn(t))0≤t<ζn,α be the path obtained by glueing together the loops in γ ∈ Lα such

that min γ < x0 and max γ < Hn(min γ), rooted at their minimum and ordered in the decreasing

sense of their minimum. Let

θα,L,Hn(t) := inf
[0,t]

ξα,L,Hn

Let

(Yn,t)0≤t<ζn,α :=

(
f(ξα,L,Hn(t), θα,L,Hn(t))−

∫ t

0
LHn,1f(ξα,L,Hn(s), θα,L,Hn(s)) ds

)

0≤t<ζn,α
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Let Tn,x0−j2−n be the first time ξα,L,Hn hits x0 −
j

2n
. The loops making up the path

(Yn,t)0≤t<Tn,x0−(j+1)2−n−Tn,x0−j2−n are the loops in γ ∈ Lα such that

min γ ∈ (x0 − j2−n, x0 − (j + 1)2−n)

It follows from proposition 4.5 that for Tn,x0−(j+1)2−n < ζn,α, (Yn,(T
n,x0−j2−n+t)∧Tn,x0−(j+1)2−n

)t≥0

is a martingale. This implies that for Tn,x0−j2−n < ζn,α, (Yn,t∧Tn,x0−(j+1)2−n )t≥0 is a martingale.

For j ∈ N∗, let

Kj :=

{
(x, a) ∈ DI,H |(1−

1

j
) sup I +

a0

j
≤ a ≤ a0, a ≤ x0 ≤ (1− 1

j
)H(a) +

a

j

}

(Kj)j≥1 is an increasing sequence of compact subsets of DI,H,a0 containing (x0, x0) and

DI,H,a0 =
⋃

j≥0

K̊j

Let

Tn,Kj
:= inf{t ≥ 0|ξα,L,Hn(t) 6∈ Kj}

TKj
:= inf{t ≥ 0|ξα,L,H(t) 6∈ Kj}

Then (Yn,t∧Tn,Kj
)t≥0 is a martingale. From lemma 4.2 follows that ξα,L,Hn converges uni-

formly on compact time intervals to ξα,L,H and then that (Yn,t∧Tn,Kj
)t≥0 converges uniformly to

(Yt∧TKj
)t≥0. Thus (Yt∧TKj

)t≥0 is a martingale. Since limj→+∞ TKj
= ζα, it follows that (Yt)t≥0

is a martingale. �
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