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POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL
DIFFUSIONS

TITUS LUPU

Laboratoire de Mathématiques, Université Paris-Sud, Orsay

ABSTRACT. We study the analogue of Poissonian ensembles of Markov loops ("loop soups")
in the setting of one-dimensional diffusions. First we give a detailed description of the corre-
sponding intensity measure. Then we identify the law of the occupation field of the Poissonian
ensembles of loops. Finally we explain how to sample this Poissonian ensembles using two-
dimensional Markov processes. We also state and prove a Vervaat-like relation between bridges
conditioned by the value of their minimum and excursion that holds for all the diffusion we

consider and not just for the Brownian motion.
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INTRODUCTION

Lawler and Werner introduced in [I4] the notion of Poissonian ensemble of Markov loops
("loop soup") for two-dimensional conformal diffusions. In [21I] it was used by Sheffield and
Werner to construct the Conformal Loops Ensemble (CLE). Le Jan studied in [I0] the analogue
of the Poissonian ensembles of Markov loops in the setting of a symmetric Markov jump process
on a finite graph. In both cases one defines an infinite measure p* on time-parametrizes unrooted
loops (i.e. loops parametrized by a circle where it is not specified when the cut between the
beginning and the end occurs) and considers the Poisson point ensemble of intensity au®, o > 0,
denoted here L,. In both cases the ensemble £; (where o = 1) is related to the loops erased
during the loop-erasure procedure applied to Markovian sample path. In [10] Le Jan also studied
the occupation field of L, that is the sum of the occupation times in a given vertex of the graph
of individual loops. In case o = % he found that it the square of a Gaussian Free Field and
related it to the Dynkin’s Isomorphism ([6]).

The analogue of the measure p* can be defined for a much larger class of Markovian processes.
The aim of this paper is to study the measure p* and the Poissonian ensembles of Markov
loops in case of one-dimensional, not necessarily conservative, diffusion processes. The diffusion
processes we consider evolve on a subinterval I of R, are always killed et hitting a boundary point
of I, and may be killed by a killing measure on the interior of I. One can transform a diffusion
process into an other applying a change of scale, a random change of time, a restriction to a
subinterval, an increase of the killing measure or an h-transform. The measure p* is covariant
with all this transformations on Markovian processes. In other words the map diffusion to
measure on loops is a covariant functor. Moreover we will show that p* is invariant by h-
transform on underlying diffusions. We will also enlarge the scope of our study by associating
a measure on loops to "generators" which contain a creation of mass term: If L = L©) 4 p
where L(® is a second order differential operator on I and v is a signed measure, and if one sets
zero Dirichlet boundary conditions for L, one can define in a consistent way a measure on loops
related to L even in case the semi-group (e'X);>o does not make sense. This extended definition
of p* will be particularly handy for computing the exponential moments of the Poissonian
ensemble of Markov loops.

The layout of this paper is the following: In section 1 we will recall some facts on one-
dimensional diffusions and set important notation. We will further consider "generators" with
creation of mass term and characterize a class of such operators which up to an h-transform are
equivalent to the generators of diffusions. In section 2 we will define the measure p* and point
out different covariance and invariance properties. Further we will make a connection between
the Brownian measure on loops and the Levy-It6 measure on Brownian excursion using the
Vervaat’s bridge-to-excursion transformation. This in turn will lead us to a conditioned version
of Vervaat’s transformation that holds for every one-dimensional diffusions, that is an absolute
continuity relation between the bridge conditioned to have a given minimum and an excursion
of the same duration above this minimum. The Vervaat’s transformation is deeply related
to the measure on loops pu*: The loops are unrooted, so one can freely chose a moment to
separate the end from the start. If one chooses this moment uniformly over the life-time of



4 POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS

the loop, then the loop under the measure p* looks in some sense like a bridge. If one chooses
this moment when the loop hits its minimum, then it looks like an excursion. In section 3
we will study the occupation field of the Poissonian ensemble of Markov loops. Each loops is
endowed with a family of local times. The occupation field is the sum of local times over the
loops. We will identify its law as an non-homogeneous continuous state branching process with
immigration parametrised by the position points in /. In case a = % we will identify it as
the square of a Gaussian Free Field and show how it is possible to derive particular versions
of the Dynkin’s Isomorphism using this fact and Palm’s identity for Poissonian ensembles. In
section 4 we will explain how to sample the Poissonian ensembles of Markov loops using sample
paths of two-dimensional Markov processes. For the particular case o = 1, one can sample
L1 by slicing the sample path of an one-dimensional diffusion. This is the analogue in the
setting of one-dimensional diffusions of the relation between £ and the loop-erasure procedure
observed in the setting of the two-dimensional Brownian motion or of the symmetric Markov
jump processes on graphs. Results of sections 2 and 3 lead to an interpretation, in terms of
Poissonian ensembles of Markov loops, of the Ray-Knight theorem on the law of the local times

of a Brownian motion stopped at a first hitting time.

This paper contains definitions, propositions, lemmas, corollaries and properties. Properties
are non-proved statements that are either obvious or already known. Propositions, lemmas,
corollaries and properties have common counters which are restarted at the beginning of each

of four sections. Definitions are numbered separately.

1. PRELIMINARIES ON GENERATORS AND SEMI-GROUPS

1.1. A second order differential equation. Let I be an open interval of R and v a signed
measure on /. By signed measure we mean that the total variation |v| is a positive Radon
measure, but not necessarily finite, and v(dz) = e(x)|v|(dxz) where € takes values in {+1}. We
look for the solutions of the linear second order differential equation on I:

(1.1) dj—z+ud1/:0

In case v is a negative non-zero measure, the equation (L.I)) commonly appears when studying
the Brownian motion with a Killing measure. In this case the two-dimensional linear space
of solutions is spanned by two positive solutions u4+ and u, us being non-decreasing and u,
non-increasing. Given xg € I, we can construct uy as the limit when 1 — inf I of the unique
solution which equals 0 in z1 and 1 in z. For u we take the limit as 1 — sup . See [3],

section 16.11, or [19], Appendix 8, for more details. Here we are mostly interested in the less

du du
common case of a signed measure |v|. For a solution u to (L)) we will write — (z 1) and — (™)
x

for the right-hand side respectively left-hand side derivative of u at . The two are related by
d d

d—u(m+) - d—u(m*) = —u(z)v({z}). Next we give a Cauchy-Lipschitz principle for (I)):

x x

Proposition 1.1. If xg € I and up,vo € R, there is a unique solution u to (IL1l), continuous

on I, satisfying u(xg) = ug and —u(xaL) = 1.

dzx
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Proof. Let x1 € I, 1 > xo. Let J be the map from L>°([zg, x1]) to itself defined by

xT

(TV)(@) = vo — uo((z0,a]) - / v((y, 2))V (y)dy

xo
A continuous function u on [zg, 21] is solution to (LIl on [z, z1] with given initial values at
if and only if u(zg) = uy, % € L*°([zg, z1]) and g—z is a fixed point of J. Conversely if V' is a
fixed point of 7, then u(z) = ug + fxmo V(y)dy is solution to (L.
For V1, V5 € L*°([xg, z1]), T"(Va) — T (V1) equals

(—1)" / A D (Vala) = Vi) dr

v|([zo, 21])" (1 — 20)"
|

n
J" is contracting and thus J has a unique fixed point in L°([zg, z1]). This implies existence

The Lipschitz norm of J" is smaller or equal to . So for n large enough
and uniqueness of a solution to (II)) on [xg,z1]. The same is true if we take 21 < xo. By gluing
together solutions on different compact subintervals we get a solution on I. O

Let W (u1,us2)(x) be the wronskian of two functions u, us:

dUQ du1
W u,u)(z) == up () —=(z7) — ug(x)—(z™
(w1, u2)(2) := wi () —=(27) — ua(z) ——(27)
If uq,ug are both solutions to (LTI, W (uy,uz) is constant on I. Using this fact we get a results
which is similar to Sturm’s separation theorem for the case of a measure v with a continuous

density with respect to the Lebesgue measure (see theorem 7, section 2.6 in [2]):

Property 1.2. Let zo < x1 be two points in 1.

e (i) Let uy be a solution to (L)) satisfying ui(xzg) =0, %(m[{) > 0, and ug a solution
such that ug(xg) > 0. Assume that ug > 0 on [rg,x1]. Then uy >0 on (zg,x1].

o (ii) Let ui,ug be two solutions such that uy(zo) = ua(xg) > 0 and %(xg) > %(xa')
Assume that ug > 0 on [xg,x1]. Then uy > ug on (xg,x1].

o (iii) If there is a solution u to (ILI)) positive on (xg,x1) and zero at xo and x1 then any

other linearly independent solutions to (1) has exactly one zero in (xq,x1).

Next we prove a lemma that will be useful in the section 1.3.

Lemma 1.3. Let vy be the positive part of v. Let o < x1 € I. Let f be a continuous positive
function on [xo, x1] such that ming, .1 f > vy ([xo, 21])?. Then the equation

du
1.2 d— dv—ufdr =0
(1.2) T +udv — uf dz
has a positive solution that is non-decreasing on [xg,x1].

Proof. Set A := minp,, ., f. Let u be the solution to (L2) with the initial values u(xo) = 1,

du

d—(ﬂvéF ) = V/A. We will show that u is non-decreasing on [zg,z1]. Assume that this is not the
x

du
case. This means that d—(m*) takes negative values somewhere in [zg, z1]. Let
x

d
x9 = inf{x € [3607901]‘d_Z(35+) < 0}



6 POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS

du

1 du
Since d—(m*) is right-continuous,
x

(x;) <0. Let r(z) = m%(ﬁ) u is positive on

zo) = VA r is cadlag and satisfies the equation

/\&‘|Q~
SRS

[0, z2] hence r is defined [zg,x2]. r
dr = (f —r?)de —dv

Let 3 := sup{x € [0, 22]|r(x) > vV A}. We have
z2

rlaz) = rlaz) + [ (@) = @)z = v(las,aa)

z3

By construction r(x3) > v/A. By definition f —r2 >0 on (x3, z2].
Thus 7(z2) > VX — v([z3, 22]) > 0. It follows that r(x3) > 0, which is absurd. O

1.2. One-dimensional diffusions. In this subsection we will describe the king of linear dif-
fusion we are interested in, recall some facts and set notations to be used subsequently. For a

detailed presentation of one-dimensional diffusions see [9] and [3], chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We consider a
diffusion (Xi)y<, <c on I with generator

W= <w<1>%>

and Kkilled as it hits the boundary of I. In case I is unbounded, we also allow for X to blow up to

infinity in finite time. ¢(%) is the first time X either hits the boundary or blows up. For the sake

o0

i>(I), the space of functions on I that are bounded

dw
of simplicity we will assume that — € LL
on compact subintervals, although this condition is unimportant. Given such a diffusion, the
speed measure m(z) dr and the scale measure w(x) dzx are defined up to a positive multiplicative

constant, but the product mw is uniquely defined. A primitive S of w is a natural scale function
1

Brownian motion on S(I) killed when it first hits the boundary of S(I). For all f,g smooth,

compactly supported in I, [[(LO f)(z)g(x)m(z)dz = [, f(z)(LVg)(z)m(x) dz. The diffusion

X has a family of local times (£f(X))zecr+>0 with respect to the measure m(x)dz such that

of X. Consider the random time change df = (0 is a standard

(x,t) — £7(X) is continuous. We can further consider diffusions with killing measures. Let
k be a non-negative Radon measure on I. We kill X as soon as [; £7(X)m(x)dk(z) hits an
independent exponential time with parameter 1. The corresponding generator is

1 d 1 d
1.3 L= — — |-k
(13) m(z) dx <w(m) dw)
Let (X¢)o<t<¢ be the diffusion of generator (L3)), which is killed either by hitting 0I, or
through blowing up, or by the killing measure k. For « € I let n% and n5~ be the excursion

measures of X above and below the level x up to the last time X visits . The behaviour of X
from the first to the last time it visits = is a Poissonian point process with intensity n2% + n5Z,

¥ are obtained from the

parametrized by the local time at = up to the value EE(X ). nok and 7
Levy-It6 measure on Brownian excursions through scale change, time change and multiplication
by a density function accounting for the killing. See [20] for details on excursion measures in
case of recurrent diffusions.
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If X is transient the Green function of L,
Gz, y) = E[lf (X)]
is finite, continuous and symmetric. For z < y it can be written

G(z,y) = up(@)uy(y)
where us(x) and u(y) are positive , respectively non-decreasing and non-increasing solutions
to the equation Lu = 0, which through a change of scale reduces to an equation of form (LI).
If S is bounded from below, us(inf I1) = 0. If S is bounded from above, u (sup I~) = 0. us(z)
and u | (y) are each determined up to a multiplication by a positive constant, but when entering
the expression of G, the two constants are related. See [9] or [3], chapter 16 for details. Let
W (uy,uqy) be the Wronskian of u; and wuq:

W g, 1) (&) = g () S () — ) o )

This Wronskian is actually the density of the scale measure: W (uy,uy) = w.

If the killing measure k is non zero, then the probability that X, starting from x, gets killed
by k before reaching a boundary of I or blowing up to infinity equals [; G(z,y)m(y)k(dy).
Conditionally on this event, the distribution of X is:

G(z,z)m(2)k(dz)
Jr G, y)m(y)k(dy)

The semi-group of L has positive transition densities p;(z,y) with respect to the speed mea-

sure m(y) dy and (t,z,y) — pi(x,y) is continuous on (0,4o00) x I x I. McKean gives a proof
of this in [15] in case when the killing measure k has a continuous density with respect to the
Lebesgue measure. If this is not the case, we can take u a positive continuous solution to Lu = 0
and consider the h-transform of L by u: v~ Lu. The latter is the generator of a diffusion with-
out killing measure and by [15] this diffusion has continuous transition densities p;(x,y) with
respect to m(y) dy. Then u(m)ﬁt(az,y)@ are the transition densities of the semi-group of L.
Transition densities with respect to the speed measure are symmetric: p(z,y) = p(y, z). For

all z,y € I and t > 0 the following equality holds:
t
(14) BL{600) = [ pu(op)is
0

Newt we deal with bridge probability measures.

Proposition 1.4. The bridge probability measures ]P’;y(-) (bridge of X from x to y in time
t conditioned neither to die nor to explode in the interval) satisfy: for all x € I the map
(z,y,t) — IP’tLy(-) is continuous for the weak topology on probability measures on continuous

paths.

Proof. Our proof mainly relies on absolute continuity arguments of [16] and [4], and the time
reversal argument of [16]. [4] gives a proof of weak continuity of bridges for conservative Feller
cadlag processes on second countable locally compact spaces. But since the proof contains an
error and we do not restrict to conservative diffusions, we give here accurate arguments for the

weak continuity.
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First we can restrict to the case k = 0. Otherwise consider u a solution to Lu = 0, positive
on I. The generator of the h-transform of L by u is

u(w)?lm@c) i (1;(?)) %>

and does not contain any killing measure. The h-transform preserves the bridge measures and

1
changes the density functions with respect to m(x) dz to ﬁpt(az, y)u(y), and thus preserves
u(x

their continuity.

Then we normalise the length of bridges: if (ng’y’t))ogsgt is a path under the law P%,  (-), let
If”txy() be the law of (Xif’y’t))ogrgl. It is sufficient to prove that (z,y,t) — If”txy() is continuous.
For v € [0,1], let P4%(-) be the law of (Xﬁf’y’t))ogrgv. Let P5Y(-) be the law of the Markovian

path (X,¢)o<r<oy starting from z. For v € [0,1) we have the following absolute continuity
relationship:

p(lfv)t(th Y)

1.5 dPtv =1
(1:5) Y ST (2, y)

dPL?

Let (J,)n>0 be an increasing sequence of compact subintervals of I such that I = J,~q Jn.
Let T, be the first exit time from J,,. Let f,, be continuous compactly supported function on
I such that 0 < f, < 1 and f,;, = 1. We can further assume that the sequence (fy)n>0 is
non-decreasing. The map

(2,,8) = fu(sup X) fu(inf X)dPy"
[O,Uﬂ [Ovvt}
is weakly continuous. Let (z;,y;,tj);>0 be a sequence converging to (z,y,t). Let F' be a
continuous bounded functional on C([0,v]). Then applying (3] we get:

(1.6) Py, (fu(supy) falinf 1) F (7)) = B (fu(sup ) fu(inf 7)F(v)) =
[0,0] [0,0] [0,0] [0,0]

(1.7 B (w

pe(z,y) fn(?&l}j ) fn(inf 1) F (7))

(1.8) — Phv

T

= p(lfv)t(ry(v)a y) su in
(—pt(% ) fn([o’}):}) ) Fn(ink W)F(7)>

St v p(l_y)t-(’}/(v),yj) .
1.9 + Pl 2 fn(sup~y) frn(inf v)F (v
(1.9) : ( D () F )
) P(kv)t(’Y(U)ay) .
1.10 —IP’?. ———————————— fu(sup~y) fr(inf v) F (v
( ) ! < pe(z,y) ([o,v] ) ([O,U} JE)
. p(l—v)t(',y) . .
Since W is continuous and bounded on J,, (L1)— (L&) converges to 0. Moreover
[AC)
. Pa—v; (5Y5) Pa—v)(Y)
for j large enough, —————— is uniformly close on J,, to ——————. Thus (L9])— (LI0)
pe; (5, Y5) pe(,y)
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converges to 0 and finally (IL.6) converges to 0. Let ng € N and n > ny. Then

P, (1 — fa(supy) fu(inf 7)) = 1 = Py (fu(sup”) fu(inf 7)) <
[0,0] (0,9] [0,0] [0,0]
(1.11) 1= B, (Fo (SUDY) fing (inf 7)) — 1 = P (fy (sup ) frg (inf 7))
[0,0] (0] [0,0] [0,0]

From (LII) we deduce that

lim limsup By, (1 — fu(supy)fu(int 7)) = 0

o0 Gy too [0,9] [0,0]

It follows that
=t

lim P77, (F(v)) = P;’Z(F(V))

j—+o0
From this we get that the law of any finite-dimensional family of marginals of I@fv,y() depends
continuously on (x,y,t). To conclude we need a tightness result for (x,y,t) — ]f”fvy() We have
already tightness for (z,y,t) — P&} (-). The image of P% (-) through time reversal is P ().
So we also have tightness on intervals [1 — v/, 1] where v’ € (0,1). But if v + ¢’ > 1, tightness
on [0,v] and on [1 — ¢/, 1] implies tightness on [0,1]. This concludes. The article [4] contains
an error in the proof of the tightness of bridge measures in the neighbourhood of the ending
point. O

1.3. "Generators" with creation of mass. In this section we consider more general opera-
tors

12 b= i (aas)

with zero Dirichlet boundary conditions on 0I, where v is a signed measure on I which is no

longer assumed to be negative. We set
L=y

In the sequel we may call L "generator" even in case the semi-group (etL)tZO does not make
sense. Our main goal in this subsection is to characterize through a positivity condition the
subclass of operators of form ([LI2]) that are equivalent up to an h-transform to the generator

of a diffusion of form (L3).

We will consider several kinds of transformations on operators of the form (LI2). First, the
2

h-transform: Let h be a positive continuous function on I such that is a signed measure.

We call Conj(h, L) the operator

. 1 d (h(zx)? d
Conh 1) = ey (wiayae) 7 72

If f is smooth function compactly supported in I then

dz?

Conj(h,L)f = h™'L(hf)

We will call Conj(h, L) the h-transform of L by h even though h may not be harmonic (Lh = 0)
or sub-harmonic (Lh < 0) and L is not necessarily the generator of a diffusion.
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dA d*A
Second, the change of scale: If A is a C' function on I such that — > 0 and — € L% (1)

and (y(t))o<t<r a continuous path in I, then we will set Scale4(7) tg be the cor(ligfluousl;cath
(A(W(S)))og_tg_T in A(I). Let ScaleZ(L) be the operator on functions on A(I) with zero Dirichlet
boundary conditions induced by this change of scale:
1 d 1 d
ScaleZ(L) = 1) A1) da <7w S AT %> + A.v
where A,v is the push-forward of the measure v by A.
Third, the change of time: If V' is positive continuous on I then we can consider the change

of time ds = V(y(t))dt. Let Speedy be the corresponding transformation on paths. The
corresponding "generator" is VL.

Finally, the restriction: if I is an open subinterval of I then set L); be the operator L acting
on functions supported in I and with zero Dirichlet conditions on d1.

For the analysis of L we will use a bit of spectral theory: If [xg, x1] is a compact interval of R

- " . : d 1 d
and 7, W are positive continuous functions on [z, x1], then the operator — — | ——
m(z)dx \w(z) dx
with zero Dirichlet boundary conditions has a discrete spectrum of negative eigenvalues. Let
—X1 be the first eigenvalue. It is simple. According to Sturm-Liouville theory (see for instance

[23], section 5.5) we have the following picture:

Property 1.5. Let A > 0 and u a solution to

1 1
1d (—i> +Au =0

mdr \wdx
with initial conditions u(xp) =0, d—u(xo) > 0.
x

e (i) If u is positive on (xg,z1) and u(x1) = 0 then X\ = Ay and u is the fundamental
etgenfunction.

e (i) If u is positive on (xg,z1] then A < A

e (iii) If u changes sign on (xo,x1) then A > A

Next we state and prove the main result of this section.

Proposition 1.6. The following two conditions are equivalent:
e (i) There is a positive continuous function u on I satisfying Lu = 0.
e (ii) For any f smooth compactly supported in I

(1.13) / (O F)() (2)m(z) da + / f(@)?m(z)v(dz) <0

I

Proof. (i) implies (ii): First observe that the equation Lu = 0 reduces through a change of scale
to an equation of the form (II)). Let u be given by condition (i). Let L := Conj(u, L). Since
Lu =0, L is a generator of a diffusion without killing measure. Let (z) := u?(z)m(x). Then
for all g smooth compactly supported in I, fl(f/g)grhdx < 0. But

/ (Lg)g i dz = / (2O (ug)) (ug) m dz + / (ug)? mu(dz)

1 1 1
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Thus (LI3) holds for all f positive compactly supported in I such that u~!f is smooth. By
density arguments, this holds for general smooth f.

(ii) implies (i): First we will show that for every compact subinterval J of I there is a
positive continuous function wy on J satisfying Luy = 0 on J. Let J be such an interval. By
lemma [[3] there is A > 0 and u) positive continuous on J satisfying Luy — Auy = 0 on J. Let

Ly = C’onj(uA,L‘j). Then
1 d (u*d
Ly=———|(—— A
AT wmda < > +

Let L(AO) = Ly — X\. LO ig the generator of a diffusion on J. We can apply the standard

) )

spectral theorem to Lg\o . Let —\1 be its fundamental eigenvalue. Lg\o 4+ A = L, is a non-

positive operator because it is an h-transform of L|; which satisfies condition (ii). This implies

that A < A;. Let @ be a solution to Lg\o)ﬁ + A = 0 with initial conditions #(min J) = 0 and

du .
d—(min J) > 0. Since A < Ay, according to property [[5] @ is positive on J. We set uy := u)a.
x

Then uy is positive continuous on J and satisfies Lu 7 = 0. This finishes the proof of the first

step.

Now consider a fixed point x¢ in I and (J,,),>0 an increasing sequence of compact subintervals
of I such that xg € jo and UnZO Jn = 1. Let uy, be a positive L-harmonic function on Jn

d
We may assume that wj,(z9) = 1. The sequence < ZJ” (zd )> is bounded from below.
x n>0

Otherwise some of the 1, would change sign on I N (g, +00). Similarly, since none of the u,

u
changes sign on I N (—o0,xy), d‘]" (zg) is bounded from above. Let v be an accumulation
x

d
value of the sequence <%($3 )) . Then the L-harmonic function satisfying the initial
x

n>0
du

diti =1and —(zf) =
conditions u(z) and —— (zg)

= v is positive on I. U
We will divide the operators of the form (LIZ) in two sets: D%~ for those that satisfies
either of the constraints of the proposition and ®71 for those that don’t. ®%~ is made
exactly of operators that are equivalent up to an h-transform to the generator of a diffusion.
We will subdivide the set ®%~ in two: ©~ for the operators that are an h-transform of the
generator of a transient diffusion and ©° for those that are an h-transform of the generator
of a recurrent diffusion. These two subclasses are well defined since a transient diffusion can
not be an h-transform of a recurrent one. Observe that each of L € ®~, ®° and ©7 is stable
under h-transforms, changes of scale and of speed. Operators in ®~ and D% do not need to be
generators of transient or recurrent diffusions themselves. For instance consider on R
1 d?
T 2da?
where a;,a_ > 0. If 3a; —a_ > 0then L € ®*,if3a; —a_ =0 then L € ®°,if 3a; —a_ <0
then L € ®~.

If L € %, the semi-group (etL)tzo is well defined. Indeed, let X be the diffusion on I
of generator L(® and ¢ the first time it hits the boundary of I or blows up to infinity. Let

+ a+51 — a_5_1

u be a positive L-harmonic function and L := Conj(u,L). L is the generator of a diffusion
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X on I without killing measure. Let ¢ be the first time X hits the boundary of I or blows
up to infinity. Then for any f positive bounded compactly supported in I, z € I and ¢t > 0,
Ey [Licc exp([; l/m(y)v(dy)) f(X¢)] < 400 and we have the equality:

ﬁﬂix 1, cu(%) £(%0)]

Identity (ILI4) can be proved using Girsanov’s theorem. If L € ®7, let (G(z,y))syer be the

Green function of L relatively to the measure u(z)?m(z)dz. Then L has a Green function

L4y E, [1t<<exp< / e%<X>m<y>u<dy>>f<Xt>] -

(G(x,y))z,yer that equals
G(z,y) =E,; [exp(/l EfAC(X)m(z)V(dz))E%AC(X)} = u(w)u(y)é(x7y)

For z <y € I, G(z,y) = @ (2)iy(y) where @ and @ are L-harmonic. Then we set up := il
and u| := ut. uy and u| are L-harmonic and for x < y € I, G(z,y) = up(z)uy(y). But
contrary to 4 respectively |, us respectively v is not necessarily non-decreasing respectively
non-increasing.

The discrete analogue of the sets ®~, D% and DT are symmetric matrices with non-negative
off-diagonal coefficients inducing a connected transition graph, with the highest eigenvalue that
is respectively negative, zero and positive. However in continuous case the sets L € ®~, ®° and
DT can not be defined spectrally because for operators from L € ®~ and ®T the maximum of
the spectrum can also equal zero. However the next result shows that the sets ®~ and DT are

stable under small perturbations of the measure v and that ©° is not.

Proposition 1.7. o (i) If L € ®° and k is a non-zero positive Radon measure on I then
L-ke® and L+keDT.

(i) If L € ©~ and J is a compact subinterval of I then there is K > 0 such that for
any positive measure k supported in J satisfying k(J) < K we have L+ k € ©~.

(iii) If L € D7 then there is K > 0 such that for any positive finite measure k satisfying
k(I) < K we have L —k € DT,

(iv) If L € ®%, there is a positive Radon measure k on I such that L — k € ©°.

(v) Let L € @ and 29 < w1 € I. Then Ly(zo,21) € DY if and only if there is an
L-harmonic function u positive on (xg,x1) and zero in xo and x1.

Proof. (i): Consider h positive continuous on I such that Conj(h, L) is the generator of a
recurrent diffusion. Since Conj(h,L — k) = Conj(h,L) — k, Conj(h,L — k) is the generator
of a diffusion killed at rate k and thus L — k € ©~. Similarly we can not have L + k € D%~
because this would mean L = (L+ k) —k € D~.

(ii): Without loss of generality we may assume that L is the generator of a transient diffusion

1

and that it is at natural scale, that is L = ———~——. Since the diffusion is transient, I # R.
m(x) dz

We may assume that zo := inf I > —oo. Write J = [z1,x3]. Let k be a positive measure

supported in [x1,x3]. Let u be the solution to Lu + udk = 0 with the initial conditions

u(zg) = O,ﬁ(m{{) = 1. w is affine on [zg,z1] and on [x9,supl). On [z1,x2] u is bounded
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MiNg, 2] M

(z2 — o)
hence positive. This implies that L + k € D%~. By the point (i) of current proposition, if
MU [y ] T -
——r= then L+ ke ®D.

(w2 — o)
(iii): By definition there is f smooth compactly supported in I such that (LI3]) does not hold

for f. Let U be the value of the left-hand side in (LI3). U > 0. If k is a positive finite measure

U
< then if we replace v by v — k in (ILI3)), keeping the
1£113 maxgupp s m ’
same function f, we still get something positive. Thus L —k € D7.

(iv): Let f be a smooth function compactly supported in I such that (II3]) does not hold
for f. Let J be a compact subinterval of I containing the support of f. The set

from above by x9 — z¢. Thus, if k([z1,z2]) < then w is non-decreasing on I and

k([x1, 22]) <

on I satisfying k([I)

{se0,1]|L —vy +sljvy €D}

is not empty because it contains 0, and open by proposition [T (ii). Let sy,4, by its supre-
mum. Then s, < 1 and L — vy + Spaz 1yv. € D0, Then k := lpgvs + (1 — Smaz)1lyvy is
appropriate.

(v): First assume that there is such a function w. Then by definition Ly, .,y € D%
C’onj(u,LKmm)) does not have any killing measure and the derivative of its natural scale
function is % It is not integrable in the neighbourhood of xy or x1. Thus the corresponding

U
diffusion never hits zg or z1. This means that it is recurrent. Conversely, assume that L 2,) €

d
D0, Let u be a solution to Lu = 0 satisfying u(zo) = 0 and d—u(xar) > 0. If u changed its sign
T
on (xg,z1) then according to the preceding we would have Ly, ) € DT, If u were positive on

an interval larger that (x¢, 1) we would have Ly € ©7. The only possibility is that u is

x0,x1)

positive on (xg,z1) and zero in z. O

2. MEASURE ON LOOPS, INVARIANCE, COVARIANCE AND DISINTEGRATION PROPERTIES

2.1. Spaces of loops. In this subsection we introduce the spaces of paths and loops on witch
will be defined the measures we will consider throughout the paper. First we will consider
continuous, time parametrized, paths on R, (v(t))o<¢<7(y), with finite life-time 7T'(y) € (0, +00).
Given two such paths (v(t))o<t<r(y) and (7/'(£))o<¢<7(y/), @ natural distance between them is

Opaths(7,7) = [1og(T'(7)) — log(T'(7'))| + Dnax, (T (7)) =+ (T ()]

A rooted loop in R will be a continuous finite life-time path ((t))o<;<7(y) such that v(T'(v)) =
7(0) and we will write £ for the space of such loops. £ endowed with the metric dpemns is a
Polish space. In the sequel we will use the corresponding Borel o-algebra, Bga, for the definition
of measures on £. For v € [0,1] we define a parametrisation shift transformation shift, on £:
shift,(y) =4 where T'(§) = T'(y) and

S(t) = YT (7) +1) if t<(1—=v)T(y)

V(=1 =0)T()) if t=(1—-v)T(y)
We introduce an equivalence relation on £: v ~ v if T'(7/) = T'(y) and there is v € [0,1] such
that v/ = shift,(y). We call the quotient space £/N the space of unrooted loops, or just loops,
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and write it £*. Let 7 be the projection 7 : £ — £*. There is a natural metric dex on £*:

dex (m(7), m(v")) == Ug(i]nl] Opaths (shifty(7),7")

(£*,9¢+) is a Polish space and 7 is continuous. For defining measures on £* we will use its
Borel o-algebra, Be«. m~(Bg+), the inverse image of Be+ by T, is a sub-algebra of Bq.

In the sequel we will consider paths and loops that have a continuous family of local times
(6 (7)) zer,0<t<T(y) relatively to a measure m(x) dx such that for any positive measurable func-
tion f on R and any t € [0,T(y

/f )ds = [ 6 )miz) da

We will simply write ¢*(v) for KT(V) ().

In the sequel we will also consider transformations on paths and loops and the images of
different measures by these transformation. We will use everywhere the following notation: If
& and & are two measurable spaces, ¢ : £ — £’ a measurable map and 7 a positive measure on
&, @.«n will be the measure on &£ obtained as the image of 7 trough ¢

2.2. Measures ™Y on finite life-time paths. First we recall the framework that Le Jan
used in [I0]: G = (V, E) is a finite connected graph. Lg is the generator of a symmetric Markov
jump process with killing on G. mg is the duality measure for Lg. (pF(2,9))zyevi>o is the
family of transition densities of the jump process and (P 7y( ))ayeve>o the family of bridge

probability measures. The measure on rooted loops associated with Lg is

dt
(2.1) fire (- / > BT (z, 2)me(x) —
>0 eV t

K1 1s the image of pur by the projection on unrooted loops. The definition of u7  is the exact
formal analogue of the definition used in [I4] for the loops of the two-dimensional Brownian

motion. In [I0] also appear variable life-time bridge measures (,Uig)x,yev which are related to

Pl
e G,t G
Z, s

(2.2) W20 = [ O a
In this subsection we will define and give the important properties of the formal analogue of
the measures ,uig in case of one-dimensional diffusions. In the next subsection 2.3 we will do
the same with the measure on loops u7j .

I is an open interval of R. (X;)o<¢<¢ is a diffusion on I with a generator L of the form (L3]).
We use the notations of the section 1.2. Let x,y € I. Following the pattern of ([2.2)) we define:

Definition 1.
—+o0
1y () ::/0 P, , (pi(z, y)dt

We will write p™Y instead of p7Y whenever there is no ambiguity on L. The definition of
u*Y depends on the choice of m, but m(y)u™? does not. Measures p*¥ were first introduced
by Dynkin in [5] and enter the expression of Dynkin’s isomorphism between the Gaussian Free
Field and the local times of random paths. Pitman and Yor studied this measures in [I7] in the
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setting of one-dimensional diffusions without killing measure (k = 0). Next we give a handy
representation of u®Y in the setting of one-dimensional diffusions. It was observed and proved

by Pitman and Yor in case kK = 0. We consider the general case.

Proposition 2.1. Let F' be a non-negative measurable functional on the space of variable life-

time paths starting from x. Then

rr¢
(2.3 pIEO) = | [ F(ocicdt ()
Equivalently
[ rel(x)
HEE) =B | [ F<<X3>ogsgﬁy>dl]
where _

/= 1inf{t > 0[¢; (X) > I}

Proof. 1t is enough to prove this for F' non-negative continuous bounded functional witch takes
value 0 if either the life-time of the paths exceeds some value t,,,, < 400 or of it is inferior to
some value t,,;, or if the end point of the path lies out of a compact subinterval [z1, z5] of
(with y € (21, 22)). For j <n €N, set t;, = tmin + M and At,, := tmaz—tmin - Almost
surely foc F((Xs)o<s<t)dil{ is a limit as n — 400 of

n—1

(2.4 S (X ooty M, pcX0) — 8 (X))

=0
Moreover (24) is dominated by [|Flsl] ac- It follows that the expectations converge too.
Using the Markov property and (L4)), we get that the expectation of (24) equals

n—1 Atn,
(2.5) >/ ; | B (P(XKozast, ) 2o 9) dr ()

Using the fact that p,(-,-) is symmetric, we can rewrite (2.5) as

29 n—l ’ 1 Atn
(2.6) / Z At, IP’I;{’Q (F((Xs)ogsgtm)) Pt; (z,z) A / pr(y, z) drm(z) dz
z j=0 n JO

1

As n — 400 the measure ALtn OAt" pr(y, z) dr m(z) dz converges weakly to d,. Using the weak

continuity of bridge probabilities (proposition [[4]) we get that (2.6) converges to

/t N Py (F((Xs)o<s<e)) pe(, y)dt

min

O

Proposition 2.1] also holds in case of a Markov jump processes on a graph, where the local
time is replaced by the occupation time in a vertex dived by its weight. Proposition 2.1 shows
that we can consider ;™Y as a measure on paths (v(t))o<¢<7() endowed with continuous occu-
pation density functions (¢ (7)).cr0<t<r(y)- Next we state several properties that follow almost
immediately either from the definition 1 or proposition 2.Tt
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Property 2.2. e (i) The total mass of the measure p™Y is finite if and only if X is
transient and then it equals G(z,y).

e (ii) The measure p¥* is image of the measure p™Y by time reversal.
o (iii) If I is an open subinterval of I then
T,y _ = ,5Y
ML‘I-(d’y) - 1'\/containedinl My, (d’}/)
e (i) If k is a positive Radon measure on I then
el =exp (- [ Flmha) ) w@n)
e (v) If A is a change of scale function then
A 7A b
sc(Zz)ei,(Ly ‘=5 cale sy’
e (vi) If V is a positive continuous function on I then for the time changed diffusion of
generator %L:
/f';yL = Speedy,pi7"”
2
e (vii) If h is a positive continuous function on I such that pre s a signed measure and
x

Lu is a megative measure then

Mz,y ) = ;:U'%y
Conj(hL) ~ To(z)h(y) '

Previous equalities depend on a particular choice of the speed measure for the modified

generator. For (iv) we keep the measure m(y)dy. For (iii) we restrict m(y)dy to I. For (v)
dA - 1
we choose | — o A1 mo A~tda. For (vi) we choose ——
dz V(y)
h(y)*m(y) dy. Property (i) follows from that p;(x,y) = p;(y,2) and P! ,(-) is the image of
P ,(-) by time reversal. Property (vi) is not immediate from definition 1 because fixed times

m(y)dy. For (vii) we choose

are transformed by time change in random times, but follows from proposition 2.1l Property

(vii) follows from that an h-transform does not change bridge probability measures and changes

the semi-group (p(z, y)m(y) dy)ezo.zer to (yiype(z, y)u(y)m(y) dy)isoer-

Next we state different representations for the measures p*¥

Property 2.3. o (i) Assume k # 0. Let Py(-) be the law of (X¢)o<t<c where X(0) = 0.
Then

/efﬂ’”’y(-)m(y)k(dy) = Lx kittedby k Pz (")

o (ii) Assume that X is transient. Then m/ﬁ’x is the law of X, starting from X (0) = z,
up to the last time it visits x. m/ﬁ’y is the law of X, starting from X (0) = z, con-
ditioned to visit y before , up to the last time it visits y.

o (iii) Let X and X be two independent Markovian paths of generator L starting from
X(0) =z and X(0) = y. For a < x Ay, we introduce T, and T, the first time X
respectively X hits a. Let PTa be the law of X up to time T,, conditioned by the event

T, < ¢. Let I@Za be the analogue for X. Let I@’Za/\ be the image of I@Z‘l through time
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reversal and PTe < [@ZBA the image of Ple @ ]TDZGA through concatenation at a of two

paths, one ending and the other starting in a. Then
= [ T < OBy < O (P 9B (u(a)da
acl,a<zNy

Property 23] (i) was noticed by Dynkin in [5]. Properties 23] (ii) and (iii) were proved by
Pitman and Yor in case k = 0. See [I7]. The case k # 0 can be obtained through h-transforms.
Indeed, and h-transform does not change the law of a diffusion from the first to the last time it

visits a point z, and does not change the measures PZe ().

Next we study the continuity of (z,y) — u*v.

Lemma 2.4. Let J be a compact subinterval of I. Then the family of local times of X satisfies:
for every e >0

(2.7) lim supP, supf?AC(X) >e| =0
t—=0T zeJ yel

Proof. 1t is enough to prove it in case the killing measure k is zero because adding a killing

Yy
tAC

is on its natural scale, that is to say w = 2. Then X is just a time changed Brownian motion

measure only lowers ¢7 .(X). Without loss of generality we may also assume that the diffusion

on some open subinterval of R. For a Brownian motion (By);>o (27) is clear. In this case

P, (supyeR E?AC(B) > 6) does not depend on z and for a given x
lim P, [ sup#?, .(B) >¢| =0
t—0+ “ (yé[g t/\C( ) )
Otherwise let .
7, = / m(X,)ds
0
Then given the time change that transforms X into a Brownian motion B, we have

(¢ (X) = {7,(B)

Let J = [xg,z1]. Let zpin € I, Tpin < 2o and ey € I, Tmae > 1. Let Ty, . 2. the first
s
time X hits either ., or Tmee. Let s >0,e >0and z € J. If t < then on
max[mminyxmaz}
the event T . ... > 1, 1; is less or equal to s. So for ¢ small enough

P, (sup K?AC(X) > €> <P, <sup (B) > 8) + Py (Tpin man < t)
yel

yeR
But
Po (Teppim zmae < 1) = Pag (Trpinzmar <) + Py (Tipin wmas < 1)
and
lim sup Py (Ti,,.;0 amee <t) =0
t=0F zc g
Thus

lim sup sup P, Supf?AC(X) >¢c | <P(supl¥(B)>¢
t—=0+ zeJ yel yeR

Letting s go to 0 we get (2.7). O
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Proposition 2.5. Let tpa: > 0. Let F be a bounded functional on finite life-time paths
endowed with continuous local times that depends continuously on the path (’Yt)ogth(y) and
on (l%ﬁm (7))zer where we take the topology of uniform convergence for the occupation den-
sities on I. On top of that we assume that F is zero if T(y) > tmaz. Then the function
(z,y) — u™Y(F(v)) is continuous on I x I.

Proof. If we had assumed that F' does only depend on the path regardless to its occupation
field then the continuity of (x,y) — pu®Y(F()) would just be a consequence of the continuity of
transition densities and of the weak continuity of bridge probability measures. For our proof we
further assume that L does not contain any killing measure. If this is not the case, then we can
consider a continuous positive L-harmonic function u. Then Conj(u, L) does not contain any
killing measure and up to a continuous factor u(z)u(y) gives the same measure pu®¥ (property
2.2] (vii)). We will mainly rely on the representation given by proposition 211

Let x,y € I and (z;,y;) ;>0 a sequence in I x I converging to (z,y). Without loss of generality
we assume that (z;);>0 is increasing. We consider sample paths (X¢)o<i<¢ and (Xt(j))ogtqj
of the diffusion of generator L starting from x and each of z;, coupled on a same probability
space in the following way: First we sample X starting from z. Then we sample X©) starting
from zg. It starts independently from X until the first time Xt(o) = X;. After that time X ()
sticks to X. This two paths may never meet if one of them dies to early. If X, X(© .. x0)
are already sampled, we start XU*1 from xj41 independently from the preceding sample paths
until it meets one of them. After that time XU*Y sticks to the path it has met. Let

T0) .= inf{t > 0| X = X,}

If X&) does not meet X, we set TU) = +0o. By construction, (T(j))jzo is a non-increasing
sequence. Here we use that there is no killing measure. T is equal in law to the first time two
independent sample paths of the diffusion, one starting from x and the other from x;, meet.
Thus the sequence (T(j))jzo converges to 0 in probability. Since it is decreasing, it converges

almost surely to 0.

We use reduction to absurdity. The sequence (p®¥i(F(y)));>0 is bounded because F
is bounded and zero on paths with life-time greater then t,,,,. Assume that it does not
converge to u™Y(F(v)). Then there is a subsequence that converges to a value other than
poY(F(v)). We may as well assume that the whole sequence (u*°%(F(7))) >0 converges to a
value v # p®Y(F(v)). According to lemma [2.4] the sequence of occupation density functions
(%) (X)),er)j>0 converges in probability to the null function. Thus there is an extracted

subsequence ((£Z, (X)), cr)n>0 that converges almost surely uniformly to the null function.

T(n)
We will show that (p®*inYin (F(7)))n>0 converges to u™Y(F(y)) and obtain a contradiction.

For z € I and [ > 0 let
11 = inf{t > 0|¢;(X) > I}
and

7 o= inf{t > 0[¢; (X)) > 1}
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Then according to proposition 2.1t

WY(F(7)) = E

éfmaz/\g(X)
/ F((X.)oser?) dl
0

[’:J' e (X
pYi(F(y)) =E / ’ P((XP)o<s<T )dl]
0
For any z € I, if 77, € [T, ¢;) then
T =T

where
V=140 (X) = Gy (X))

Along the subset of indices (jy)n>0, T ”} converges to Tl for every [ € (0, ly( )) except possibly

the countable set of values of [ where l— 7' ; jumps. For any [ such that Ty“; converges to 7/,

the path (X U )) vin converges to the path (Xs)o<s<T. Moreover for such [ the occupation
n,l

0<s<r
densities (1%, (X(]n)))zej converge uniformly to (I7,(X)).er. Indeed
Tinil g

o, (X0V) = 205, (X) = G (X) + £ (XO)

gnsl Tin,l

Thus for all [ € (O,EE{(X )), except possibly countably many,

lim F((XY")ocse?) = F((X5)o<s<T)

n—-+0o0o Jns

For n large enough, (; = ¢ and Ei/i:lz ¢ (XUn)) converges to ¢7 (X). It follows that the

following almost sure convergence holds
gfrﬂ:amc (xUn))
(2.8) lim "

n—-+o0o 0

Yy
ltmaz/\C(X)
PO oueriyal = [ P Jozuert) d
0

The absolute value of the left-hand side of (2.8) is bounded by HFH+Oo€ZJn oG (X0n)). In order

to conclude that the almost sure convergence (2.8 is also an L' convergence we need only to
show that

(2.9) E(l7n e, (X9 = (X)]] =0

tmaz /G in

We already know that gtyﬂmg

tmaz
E (A, (X0)] = /0 Pe( g2 Y )

(XUn)) converges almost surely to b ¢ (X). Moreover

and

B[ nc0)] = [ o)

It follows that the expectations converge. By Scheffe’s lemma, the L' convergence (Z.9) holds.

Finally there is a subsequence (u%n¥%n (F()))n>0 that converges to p™¥(F(y)) which con-
tradict the convergence of (u*% (F(7))) >0 to a different value. O
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z,x

2.3. The measure p* on unrooted loops. The measure ™% can be seen as a measure on

the space of rooted loops £. Next we define a natural measure uj on £* following the pattern

@I0):

Definition 2. Let up be the following measure on £:

a1 v
L(d) />0/mel ()i, 2)m(a ”‘”E?:W/M“L (dy)m(z) dx

W] = T fir, 1S @ measure on £,

We will drop the subscript L whenever there is no ambiguity on L. The definition 2 does not
depend on the choice of the speed measure m(z)dz. The measures p and p* are o-finite but

not finite. They satisfy the following elementary properties:

Property 2.6. e (i) p is invariant by time reversal.
e (ii) If I is an open subinterval of I then

’U'L\f(d’y) = 1fycontainedinl~luL(d7)

e (iii) If k is a positive Radon measure on I then

g 4(00) =0 (~ [ FQImERE) ) sla)

e (i) If A is a change of scale function then

= Scale
’u'ScaleLL AxlL

2

2 1 a signed measure and

e (v) If h is a positive continuous function on I such that

Lu is a megative measure then
KConj(h,L) = KL
Same properties hold for p*.

The measures p and p* contain some information on the diffusion X but the invariance by
h-transforms (property (v)) shows that they do not capture its asymptotic behaviour. In
the subsection 2.4 we will prove a converse to the property property (v). In our setting,

most important examples of h-transforms are:

e The Bessel 3 process on (0, +00) is an h-transform of the Brownian motion on (0, +00),
killed when hitting 0, through the function z + .

e The Brownian motion on R killed with uniform rate kdx (i.e. k constant) is an h-
transform of the drifted Brownian motion on R with constant drift \/ﬁ, through the

function x — e~ V2ke,

In the sequel we will be interested mostly in p* and not u. As it will be clear from the next

propositions, the measure u* has some nice features that p does not.
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Proposition 2.7. Let v € [0,1]. Then

shiftop = p

In particular
(2.10) = / dv shi ftysp
[0,1]

Proof. For a rooted loop = of life-time T'(+y) we will introduce ; the path restricted to time in-
terval [0, vT'(y)] and 72 the path restricted to [vT'(y),T'(7y)]. By bridge decomposition property,
the measure p(dvy;,dys) equals

@i [ R o i) dy (o) do

In (21I0)) v, and ~, play symmetric roles, so changing the order of «; and ~2 does not change

the measure pu. O

Formula (Z.I0]) shows that we can get back to the measure u from the measure p* by cutting
the circle parametrizing a loop in £* in a point chosen uniformly on this circle, in order to

separate the start from the end.

Corollary 2.8. Let F' be a positive measurable functional on £. Then v — fol F(shifty(y))dv

is ™~ (Bex)-measurable and

d(F(y)m) N )
= Fehir o)

Proof. We need only to show that for every F’ measurable functional on £*:

(2.12) | POt = // (shi fto(3)F" ((2)pa(d) dv

From proposition 2.7 follows that for every v € [0, 1]:
(2.13) /2 F(y)F' (n(7)u(dy) = /2 F(shi fty(7)) F'(x(7))u(d)

Integrating (2.I3) on [0,1] leads to (ZI2]). O

The next identity appears in [10] in the setting of Markov jump processes on graphs. We will
give a proof for that suits our framework.

Corollary 2.9. Let x € I. Then

(2.14) () (dy) = mp™*(dy)

Forl >0, let IP’;ZI(-) be the law of the sample paths of a diffusion X of generator L, started from
x, until the time 7" when €§(X) hits I, conditioned by 1 < (. Then

oo 1l
(2'15) 1y visits x,U'*(d'Y) = / TPy (d'y)e G(z,z) 7
0

Conventionally we set G(x,x) = +o0 if X is recurrent.
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Proof. Let e > 0 such that [z —e,x +¢] C I. Let Tj;_. ,4-(7) be the time a loop v spends in
[ — e,z + ¢]|. From the identity (2.I0]) follows that

T[x—e,x-i—e} (7) % o 1 /x-i-e

) " (dv) = o) T (dy)m(2) dz

—€

and simplifying T'(v):

r+e
(2.16) T corai (@) = [ ms(d)m(e) dz
Tr—E&
Using local times we rewrite (2.10) as
Sl 2 (y)m(z) dz 1 vt
2.17 r—e *(d :—/ Tt F (dy)m(z) dz
(2.17) [T m(z) d p(dy) T () de Joe p=* (dy)m(z)

Let g9 > 0 such that [z — g9,z + &9] C I. Let F be a continuous bounded functional on loops
endowed with continuous local times such that F' is zero if the life-time of the loop exceeds
tmaz > 0 and if sup,cpy_ oo pie0 I7(7) exceeds lpaz. According to the proposition 2.5 the
right-hand side of (2I7)) applied to F' converges as ¢ — 0 to (m.u™)(F(7y)). By dominated
convergence it follows that the left-hand side of (2I7) applied to F' converges as e — 0 to

| Erouw @

Thus we have the equality

(2.18) / EEME (dy) = (mep™) (F(v))

The set of test functionals F' that satisfy (28] is large enough to deduce the equality (2.14)

between measures.

From proposition 2.1] follows that
+oo T _ l
por() = / Py (-)e o) dl
0
Applying (2.I4]) to the above disintegration, we get (2.15)). O

Corollary 2.10. Let V' be a positive continuous function on I. We consider a time change with

speed V: ds =V (x)dt. Then

(2.19) ph = Speedy.u,

*
1
1%
Proof. By definition 2 and property (vi):

1 [TV (y(0)
M%L(dw)_T(v)/o V(7(s))

Applying corollary 2.8 we obtain:
dSpeedy . jir, B fol V(T (v))) dv
e i el at] = = -
Wit sy Tl V() ds

This concludes. O

ds Speedy (g (dv))

=1
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In dimension two, the time change covariance of the measure p* on loops plays a key role
for the construction of the Conformal Loop Ensembles (CLE) using loop soups as in [2I]: Let
D be an open domain of the complex plane, (B;)o<¢<¢ the two-dimensional standard Brownian
motion in D killed when hitting 0D and p* the corresponding measure on loops. If f: D — D
is a conformal map, then (f(B;))o<t<¢ is a time changed Brownian motion. If we consider u*
not as a measure on loops parametrized by time but a measure on the geometrical drawings
of loops, then p* is invariant by the transformation (v(t))o<i<7(y) = (f(7(t)))o<t<7(y)- This is
proved in [14].

Given that p* is invariant through h-transforms and covariant with the change of scale and
change of time, if X is a recurrent diffusion, then up to a change of scale and time, u* is the same
as for the Brownian motion on R, and if X is a transient diffusion, even if the killing measure k
is non-zero, then up to a change of scale and time, p* is the same as for the Brownian motion

on a bounded interval, killed when it hits the boundary.

2.4. Multiple local times. In this subsection we define the multiple local time functional on
loops. Corollary 2.9 gives a link between the measure p* and the measures (u™*)zecr. Using
multiple local time we will get a further relation between p* and (u*¥)gyer. This will allow
us to prove a converse to the property (v): two diffusions that have the same measure on

unrooted loops are related trough an h-transform.

Definition 3. If (v(t))o<t<r(y) s @ continuous path in I having a family of local times
(If (V) wer0<t<T(y) Telatively to the measure m(x) dx, we introduce multiple local times
(FVT2 T () for @y, Tgy ey Ty, € ©:

gz (y) = ) (1) oy () £ ()

/osmgms...gtngT(v)

If v € £ and has local times, we introduce circular local times for ~:

[T () = Z (Fe(1)Te(2) e Te(n) (=)

ccircular

permutation

of{1,2,...,n}

£rrLeeetn being dnvariant under the transformations (shifty),cjo1), we see it as a functional

defined on £*.

Multiple local times of the form [*%%(y), called self intersection local times, were studied

by Dynkin in [7]. Circular local times were introduced by Le Jan in [10].

Let n € N* and p € {1,...,n}. Let Shuf fley ,, be the set of permutations o of {1,...,n} such
that for all i < j € {1,...,p}, 0(i) < o(j) and for all i < j € {p+1,...,n}, 0(i) < o(j). Permu-
tations in Shuf fle,, are obtained by shuffling two card decks {1,...,p} and {p+1,...,n}. Let
Shuffle;m be the permutations of {1,...,n} of the form o o ¢ where ¢ is a circular permutation
of {p+1,...,n} and o € Shuf fle,,, satisfies o(1) = 1. One can check that

Property 2.11. For all x1,...,Tp, Tpy1, ..., Ty € I:
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* (i)

[TLeTp (,y)gxp+17...7mn (’Y) _ Z [ (1) %o (p)Ta(p+1)sTa(n) (7)
oceShuf flep.n

o (ii)
FFTLTp (7)£*$p+1,...,$n(,}/) — Z [T (1)5%a! (p) Tl (p1) % o (n) (,}/)
o'eShuffle, ,

The equality 2111 (ii) appears in [10]. It is also shown in [I0] that for transient Markov jump

processes:

(2.20) / ezt () u(dn) = G(@1,@2) X oo X G-, 30) X G(wn, 1)

It turns out that we have more: We consider L a generator of a diffusion on I of form
([@T3). If ~; for i € {1,2,...,n — 1} is a continuous path from z; to x;y1, then we can con-
catenate v1,72, ..., YTn—1 to obtain a continuous path vy < y2 < ... < yp—1 from z; to x,. Let
w2 g pr=b%n he the image measure of p**2? ® ... ® u*»~1*" by this concatenation pro-
cedure.

Proposition 2.12. The following absolute continuity relationships hold:

o (1) (™ <ttt (dy) = £t ()t (dy)
° (ZZ) ﬂ.*(uzvl,:vg g...4 an_l,xn < M:Bn,xl)(d,y) — g*ml,xg,,xn(,y)lu*(d,y)

Proof. (i): Let ((Xt(i))ogtqi)ogign—l be n — 1 independent diffusions of generator L, with
X\ = z;. For 1 >0, let

7; 1 := inf {ti > wai”l (X@) > l}
According to proposition 1] (p™*2 < ... < p*n=1%)(F(y)) equals:
(2.21) E [/ Lzt 1igna P ((Xfl))ogt@,zl Q.4 (Xt("fl))oggrnfl,zn_l) dll...dlnl]
Let (X¢)o<t<¢ be an other diffusion of generator L. Let
7, = 1nf{t > 0[l*(X) > I;}
and recursively defined:
Thy,dioy g o= E{E >y g 6N (X) > 1Y

Then by strong Markov property, (221)) equals

(2.22) E [ / Ly <6 F (Xosisny, ) dll...dlnl}
222) in turn equals
(223) E |:/ 1Vi,ti<CF ((Xt)OStStn—l) waf(X)d&iZI (X):|

By proposition 2] (2:23)) equals [ £51%n=1(y) F () u®* (dry).
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(ii): According to the identity (i) and corollary 28] we have

1
(224) W*(Mxl,mg 9.4 Mxnfl,xn < Mzn’xl)(d’}/) — (/ €$2""’x”(5hiftv(’)/))d’v> W*MZ‘I,Z‘I (d’)/)
0

According to corollary

(/ e (shifty () ) mrn (i) =) g (ohi ity () @) ()
But

) [ g (shifty (7)) do = (T )
which ends the proof. ' O
The proposition (ii) implies (2:20]).
Proposition 2.13. If L and L' are two generators of diffusions on I of the form (L3)) such that
Wy, = W, then there is a positive continuous function h on I such that % s a signed measure,
Lh a negative measure and L' = Conj(h,L). If the diffusion of generator L is recurrent then
L'=1L.

Proof. Let m(x)dz be a speed measure for L and m/(z)dx be a speed measure for L’. First
let’s assume that both L and L’ are generators of transient diffusions. Let (G(z,y))zyer be the
Green’s function of L relatively to the measure m(x) dz and (G'(x,y))s,yer be the Green’s func-
tion of L' relatively to the measure m/(z) dz. Applying the identity Z20) to [q. £ (y)u*(d)
we get that for all z,y € I:

(2:25) G (2, y)G'(y, )m’ (x)m’(y) = G(x, y) Gy, 2)m(z)m(y)

and for all z,y,z € I:

(2.26)  G'(z,y)G'(y, 2)G (2, 2)m (x)m(y)m' (2) = G(2,y)G(y, 2)G (2, x)m(z)m(y)m(z)

Fix x¢g € I. Let h be

1
h is positive and continuous. mG(x, y)h(y)m(y) equals:
x

G (20, 2)G(x,y)G(y, xo)m(xo)m(x)m(y)
G' (20, 2)G" (z,y)G" (y, zo)m' (x0)m’ (x)m/ (y)

G'(z0,y)G' (y, xo)m' (x0)m/ (y)
G(z0,y)G(y, wo)m(zo)m(y)

Applying ([2.25]) and (220) to (227) we get that

(2.28) ﬁew,y)h(y)m(y) = G (z,y)m!(y)

Applying ([2.28)) once to (x,y) and once do (z,x) we get that

G'(z,y) G(y,y)
G(z,y) G'(y,y)

(2.27) x G'(z,y)m/ (y)

(2.29) hy) = hiz)
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d*h
From (2:29]) we deduce that ) is a signed measure. From (2.28)) we deduce that L' = Conj(h, L).
x

—Lh is the killing measure of L' and is positive.

If we no longer assume that L and L’ generate transient diffusions then consider A > 0. Then

uz{ \» = M7/_y- According to the above, there is h positive continuous function on I such that

is a signed measure and

dz?
L' =X = Conj(h,L —X) = Conj(h,L) — X

Then L' = Conj(h, L) and necessarily Lh is a negative measure.

The class of recurrent diffusions is preserved by h-transforms. So if L is the generator of a
recurrent diffusion then so is L', and thus A is bound to satisfy Lh = 0. But since the diffusion

of L is recurrent, the only solutions to Lh = 0 are constant functions. Thus L' = L. U

2.5. A disintegration of y* induced by the Vervaat’s transformation. By conditioning
the measure p by the life-time of loops we get a sum of bridge measures. Vervaat in [24]
shows a relation between Brownian bridges and Brownian excursions. Using the Vervaat’s
transformation we will disintegrate the measure p* as a measure on the minimal value of the

loop and its behaviour above this value. We will obtain a sum of excursion measures 7”%.

Vervaat’s Transformation. Let (y(s))o<s<t be a random path following the Brownian bridge

probability measure IP’?’%M(-). Let sppin := argmin~y. Then the path

s+ —miny + (shiftsminy)(s)
t

has the law of a positive Brownian excursion of life-time t.

In the sequel if 7 is a measure on paths and x € R, we will write (z+n) for the image of n by
Y=+ . ngg/l will be the Levy-It6 measure on positive Brownian excursions and n; Jg A the
probability measure on positive Brownian excursions of duration ¢. Given a continuous loop
(v)o<t<T(v) and to the first time v hits min-~y, let V() be the transformation shift « . V is

T(v)
Bg-measurable.

Proposition 2.14. Let uy,, be the measure on loops associated to the Brownian motion on R.
Then:

(2.30) Wipna(dy) = 2 / (o) () da

The measure on (min~y, max~y) induced by iy, is lacp(b — a) 2 dzdy. Let a < b € R and
p, p two independent Bessel 3 processes starting from 0. Let Ty, and Ty—q be the first times p

respectively p hit b — a. Let (5t)0<t<Tb, 7, , be the path
5‘ a+ py Z.ftSbea
¢ = - .
a+ pr—a"’Tb—a_t Zf L Z Tbia

Then the law of (5t)0<t<Tb, Vi, 18 the probability measure obtained by conditioning the mea-
sure iy, by (miny, maxy) = (a,b).
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Proof. For the Brownian motion on R, upys writes

dt
BM( z+P dx
a /xER />0 tBM)( )\/27Tt

Let x(a)da be the law of the minimum of the bridge under IP’t sy Applying the Vervaat’s

transformation, we get that

v~ [ (] )it g

Since [, x(z — a)dx =1, the right-hand side of [2.31I)) equals

/ / (a+npn) () — dt da
a€eR Jt>0 tBM V27t3

But
dt

/t>o<a+m>,gM><-> S = a0

The equality (230) follows. The rest of the proposition [Z14] is a consequence of the William’s

representation of Brownian excursions. O

~
w

2
Corollary 2.15. Let I be an open interval of R and X > 0. Let L be the generator — 5T A
on I with zero Dirichlet boundary conditions and u* the associated measure on loops. Given a
loop (v(t))o<t<T(y), let R(7) be the loop (max~y + miny — y(t))o<i<7(y), that is the image of 7

through reflection relatively to w Then

Proof. 1t is enough to prove this in case A = 0 and I = R. Otherwise we multiply the measure
Wiy by a density function that is left invariant by R. Then we use the description of the
measure p;,,; conditioned by the value of (min~y, max~) and the fact that if a > 0, (p¢)¢> is a
Bessel 3 process starting from 0 and 7 is the first time it hits b, then (y — pr, —¢)o<t<7, has the
same law as (pt)o<t<T, (see [19], chapter VII, §4). O

Now we consider that L is a generator of a diffusion on I of form ([3)). Given a point

zo € I, uH® and u=* will be the L-harmonic functions satisfying ™% (z¢) = v (z) = 0,

duT:%o du %0
ud (zd) =1 and “
x

(2.32) w(y)u? (@) = w(z)u™*(y)
Indeed, the Wronskian W (u™¥ u™*) takes in = the value v™¥(z) and in y the value u™?(y),

1
)W(u*’y,qu’m)(z) is constant. If v = 0, then the both sides of ([2.32]) equal
z

(zy) =—1. If 2 <y € I then

and the ratio
w

[P w(z)dz. wh™ is positive on I N (zg,+00) and u ™™ is positive on I N (—oo,20). Let
L% be Conj(u™", L) restricted to I N (zg,+0oc) and L™ be Conj(u~"°, L) restricted to
I'N(—o0,z0). LT* and L™>* are generators of transient diffusions without killing measures.
If L is the generator of the Brownian motion on R, then L10 is just the generator of a Bessel

—T0

3 process. In general case, zg is an entrance boundary for L™% and L%, that is to say
a diffusion started from x # o will never reach the boundary at xg, and we can also start

this diffusions at the boundary point zg, in which case it will be immediately repelled away
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from zg. Let x € I and (p;L’x)OSKﬁ,x be a diffusion of generator L% starting from x. Let

yel, y>ax Let T;’x be the first time p™% hits y and TJ’I the last time it visits y. Then

+,x

(pTA+7x+t)0<t<c+@—T+’z is a diffusion of generator LY starting from y. Let (p, "¥)o<icc-w be a
Yy — Yy >

diffusion of generator L—¥ starting from y and T}, *¥ the first time it hits . Then (,0;L v
and (p_,

)ogth;“x

T y t)0<t<T » are equal in law: Indeed let C' be the constant
w(z)

W(u=v, ut?®)(z)

The Green’s operator of p™ killed in y is

C:

+ z )l y u T (y) INEW,
(L) Nl Ay (2! \/y)mm(y)dy
and the Green’s operator of p™¥ killed in x is
Y !
_70Y -y u (y) / !
(G / @Ay )y @V ) =g m ) dy

The potential measure of (p; ")o<teqt= starting from x is
Stsly
U(z")dz' = Cu™* (2" )u™Y (2" Ym(2') do’

and for any f, g bounded functions on (z,y)
e3) [ (L) D@ i = [ L2, e

The time reversal property for (p;* follows from the duality relation ([2.33]). See [19],

)ogth;“’”
chapter VII, §4 for details on time reversal.

Corollary 2.16. If L is a generator of a diffusion on I of form ([L3]), then

(2.34) o= | () w(a) da

da db
The measure on (min-~y, max-y) induced by pu* is 1 —————— . Leta<bel Let
(min v, max ) Y1 Lacher oy
(,OZL’Q)OSKU,(; and (p;’b)OSKC_,b be two independent diffusion, the first of generator L% start-
ing from a and the second of generator L= starting from b. Let Tb+’a be the first time p™® hits

b and Ty " the first time p~° hits a. Let (Bt)g<ycqrtoa g be the path
U1y, a

3 { pitift<T
t = —7b . +7a
pt_TbJF,a if t>1T,

Then the law of (Bt)ogth;“’“+
sure p* by (min~y, max-y) = (a,b).

b 8 the probability measure obtained by conditioning the mea-

Proof. Both sides of (2.34]) are covariant by scale and time change. Moreover both sides satisfy
the property (ii) for the restriction to a subinterval and the property (iii) when adding

a killing measure.

Regarding the description of the measure on (min~, max~) and the probabilities obtained
after conditioning by (min~y, max ) = (a,b), if L is a generator without killing measure (k = 0),
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then the result follows through a change of scale and time from the analogous description in
proposition 214l If k£ # 0, then we can take u a positive L-harmonic function and deduce the

result for L from the result for Conj(u, L) using the fact that pj = ,u*Conj( U

U,L) ’

The relation between the measure on loops and the excursions measures in dimension 1
(identity (2Z:34))) is analogous to the relation between the measure on Brownian loops and the
so called bubble measures observed by Lawler and Werner in dimension 2. See propositions 7
and 8 in [14].

2.6. A generalization of the Vervaat’s transformation. In this subsection we will show a
conditioned version of the Vervaat’s transformation that holds for any one-dimensional diffusion
of form (L3]) and not just for the Brownian motion. L will be a generator of a diffusion on I of
form (L3). From corollary 2.9 and identity (2.34)) follows that for every x € I:

(23) VL (@poaldt = [ ) dula) da
t>0 a€l,a<lx

Let P ,(dy|min~y = a) be the bridge probability measure condition by the value of the min-

imum to equal a. Further we will show that there is a version that depends continuously on

(a,t). Let n;® the probability measure obtained from 7n~% by conditioning the excursion to

have a life-time ¢. The identity (2.35]) suggests the following:

Proposition 2.17. For everya <z € I andt >0

(2.36) VP, ,(dy|miny = a) = %

t

The distribution of min~y under P, . equals

1 n7%T(y) € (t,t + dt))

d
pe(z, x) dt “

(2.37) w(a)n;* (6 (7))

" (T(y) € (t,t +dt))
dt

induced by n~%. Given an excursion v following the law

where is the density of the measure on the life-time of the excursion

) * (d)

;" (6 (7))
measure on {s € [0,t]|y(s) = x}. The transformation V sends the starting point of the bridge

dsts(v)
)
Identities (2.36) and (237) can be viewed as a conditioned analogue of the Vervaat’s relation
between the Brownian bridge and the Brownian excursion. The latter can be deduced from
[230) and (237)) using the translation invariance of the Brownian motion. From (2:35) we can
only deduce that (2.36) and (2.37) hold for Lebesgue almost all ¢ and a. We need to show the
weak continuity in (a,t) of conditioned bridge probabilities and biased conditioned excursion

, the local time in x is a

to a point s € [0,t] distributed conditionally on the excursion vy according the measure

probabilities to conclude. It is enough to prove the proposition [Z17] for L not containing any
killing measure and such that for all a < x € I, a diffusion starting from x reaches a almost
surely. Indeed, for a general generator, Conj(u, L) does satisfy the above constraints and if
the proposition 217 is true for Conj(uy, L) then it is also for L. From now on we assume
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that L satisfies the above constraints. Next we give a more "constructive" description of the
conditioned bridges and biased conditioned excursions. We start with bridges.

Property 23] (iii) shows that the measure PZe I@fa/\ conditioned on T}, + T, =t is a version

of P!, .(dy|miny = a). Let pga) (z,y) be the transition density on I N (a,+o0) relatively to

m(y) dy of the semi-group generated by Lj;n(s,4+o0)- Then pga) (x,a™) = 0. According to [15],
forall t > 0, y — pga) (z,y) is C'. Let (92p§a) (z,y) be the derivative relatively to y. It has a
positive limit (92p§a) (x,a™) as y — a’. Extended in this way, the map (¢,z,y) — (92p§a) (z,9)
is continuous on (0 + co) x I N (a,+o0) X I N ]a,+00). The distribution of T, under P, is (see
I7):

1 (@) +
w(a)a2pt (x’a )dt

Let ]P’gf)’t be the bridge probability measures of L|rn(q,100)- It has a weak limit P;a()li asy —a’.

Let F; be the sigma-algebra generated by the restriction of a continuous path to the time interval
[0, 5]. Let PF® be the law of pt@ starting from a. For all s € (0,t) we have the following absolute

continuity relations:

a),t a
dpz(v,i"' B 82])1%7)3 (X, a+)
(238) P = 1s<T, T
dPy |7, Oop; (x,a™)

and for the time reversed bridge
(a)tA
dPx,aﬁ pgg)s (p;r,a, x)

AP | Fs a 82]9,@ (z,a™)

(2.39)

Using the absolute continuity relation (2Z38) and (2.39) one can prove in a similar way as in
proposition [[L4] that the map (¢,y) — Pt

+ o+ 18 continuous for the weak topology. The measure

PZa disintegrates as follows

1 a), a
(2.40) P = s [ B0l @)
>

From the property 2.3 (iii) and (2.40]) we get that
Property 2.18. The distribution of min~y under Pg’;x 18

da

(2.41) 7?1}(61)]915(1', 2)

t
| 2w a0, 0% ds
0
There is a version of IP);w(dﬂ min~y = a) that disintegrates as

t—s

Ji 0ol (2, at ) dopl®), (2, at) ds

t—s

(2.42) Jy (BL2 QO (@) 00pl”) (2,0 0pi?, () ds
2.42 ’ ’

Next we show that the probability measure given by (2.42]) depends continuously on (a,t).

Lemma 2.19. The functions (x,a,t) — pga) (x,a™) and (x,a,t) — 62p§“) (z,a™) are continuous

on {(z,a)|lzr >a e I} x (0,+00).
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(a)

Proof. As in [I5], we can use the eigendifferential expansion of L to express p,” (x,a™) and
agpta) (x,a™). Let xyg. For A € R consider e;(-,\) and ea(-, A) two solutions to Lu + Au = 0
with initial conditions

61(1'0,)\) =1 %(1‘0,)\) =0 62(1'0,)\) =0 %(1‘0,)\) =1
Let e(x,\) be the 2-vector whose entries are ej(z, ) and ea(z, A). According to theorems 3.2
and 4.3 in [I5], for all @ € I there is a Radon measure §(*) on (—00,0] with values in the space
of 2 X 2 symmetric positive semi-definite matrices such that for all x € I N (a,+00)

0
P (2, a") = / eMTe(z, X)f@ (dN)e(a, A)

(a) + 0 %) (a) e
00" (wat) = [ Vel N (@050,

Let z > a € I. Consider a two sequences (Z)n>0 and (ap)p>o0 in I N (—oo,x) converging
to x respectively a such that for all n > 0, x, > a,. Let (bj);>0 be an increasing sequence
in I N (z,supI) converging to sup /. Let f, ; be the 2 x 2-matrix valued measure on (—o0,0]
corresponding to the eigendifferential expansion of L restricted to (an,b;). fn,; charges only a
discrete set of atoms. As shown in the proof of theorem 3.2 in [15], the total mass of the measures
LA NT2[fa il (dN), 1A 7259 |[(dN) and 1 A JA[72])§@)]|(d)) is uniformly bounded. More-
over for a fixed n, as j — 400, 1 A [A|72f,;(d\) converges vaguely, that is against continuous
functions vanishing at infinity, to the measure 1 A |A|~2f(®)(d)). Moreover, for any increas-
ing integer-valued sequence (j,)n>0 converging to +o0o, 1 A|A[72f, ;. (d\) converges vaguely
as n — +00 to 1A [N72f@(d)\). Since the sequence (j,)n>o is arbitrary, this implies that
1 AN 72§(@n) (d)) converges vaguely as n — 400 to 1 A [A| 72§ (d)).
There are constants C, ¢ > 0 such that for all A < 0 and n > 0

/ / a /
(2.43) le(zn, M| < Ce" VI le(an, A)|| < CeVIA Ha—e(an,A)H < CetVIN
T
Let t > 0 and (t,)n>0 a sequence of times converging to ¢. From (2.43) follows that

lim  sup |A%e||e(zn, N)|| X |[e(an, M| =0
A——00 n>0
A= 1V A2t (e(zn, M), De(an, \)) vanishes at infinity an converges uniformly on (—oc,0] to
A= 1V A|2e (e(, N), e(a, A)). The vague convergence of measures implies that
0 0
lim e e(z, A)F) (dN)e(an, A) = / e Te(z, NF Y (dN)e(a, \)

n—-+o00o — 0

+

Similarly agpt:")(:cn, a;") converges to (92p§a) (x,a™). O

Lemma 2.20. The map a — PH® 4s weakly continuous.

Proof. Let ag € I. Consider the process (p;"")s>o following the law Pd;*. For a € IN(ag, +00),
let T, be the last time p% visits a. Then (p;’iot)tzo follows the law P *®. The process valued
map a — (pJT”jft) >0 is almost surely continuous on I N (ag,+00) and thus the laws depend

weakly continuously on a. O



32 POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS

Proposition 2.21. The version of P, ,(dy|miny = a) given by 2.42) is weakly continuous in

(a,t).

Proof. From the absolute continuity relations (238) for the bridge P;a()li and (2.39) for its
time reversal, together with the continuity of the densities which follows from lemma 2.19]
and the weak continuity of a — P7"®, we can deduce in a very similar way as in proposition
L4 that the map (a,t) — ]P’;azl’i is weakly continuous on (0,400) x I N (—o0,z) and hence

(a,s,t) — Piﬁi’f QP;?iﬁfsA is weakly continuous. Finally the densities that appear in expression
[2:42)) are continuous with respect to (a, s, t). O

(a)

Next we will describe the measure 7%, dop,” (z,a™) is C! relatively to = and the derivative
al,ng‘” (z,a™) has a positive limit 8172p§a) (at,at) as y — a*. Moreover t > 61,2p§“>(a+,a+)
is continuous. The measure on the life-time of the excursion induced by n~% is (see [20]):

L (@) + +
w(a)Qal,gpt (@",a™)dt

Let s € [0,t]. The measure n;(-) disintegrates as (see [20]):

2,a")0yp\, (2, a)m(y)

O1.0p\” (at, at)

For every s1 < s9 € [0, s|, under the bridge measure ]P’z(fg’sz

&

a),s a —S a
(2.44) /1 <piﬁiﬁ<}[@;7iﬁ )(,) HD d
x€l,x>a

s2 (@) (a)
(2:45) B 0) - 50 = [ BT g,
; s1 Ds (y’z)

and under the bridge measure P(a)’f:
y7a

s2 (@) (a) +
a > (y,%)0p, L, (2,a7)
(2.40) PO ) - 5,00 = [ ar
e o o (y,at)

Combining (Z44]) and ([2:46) we get that for every s1 < s9 € [0, s]:

2 opl” (2, 0" ) Dop?, ()
(2.47) w0 - 0 = | :
! 2 ! 51 3172]9,@ (at,at)

ds

Proposition 2.22. Let I and Fy be two non-negative measurable functional on the paths with

variable life-time. Then

7 ([ B0z Pl + Phacretca) dutz () =

0

anga) (1’, a+)32p((1) (.%', aJr)

t—s

@ ds
31721% (a+7 a+)

t
(2.48) PO FR (R

In particular

0op” (z, a*)0ap ), (x, a™)

t—s

O1.0p (at, at)

¢ (a),sA (a),t—s
@49 G = [ (PO <P @) ds
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Proof. 1t is enough to prove the result in case F; and Fb» are non-negative, continuous and
bounded. On top of that we may assume that there are S;in < Smaz € (0,t) such that Fy
respectively Fy takes value 0 if the life-time of a path is smaller than s,,;, respectively t — s;qaz,
and that there is C € I, C' > a, such that F; and F> take value 0 if max~vy > C. For j <n €N

set As, = %(smax — Smin) and S; = Smin + jAS,. Then almost surely

/0 B ((v()orea) Fal (15 + 1))orer—s) dulE(7) =

n—

1
(2.50) im > Fi((v(r)ogr<s; o) (€550, (V) = €5, (V) E2((V(Sjt1n + 7))osr<t—s;41.0)
0

n—+00 4
]:

Moreover the right-hand side of (250) is dominated by ¥(7)||F1|col/F2llcc- Thus the ;-
expectation converges too. Applying (2.44) and ([2.45]) we get

1 (B0 osr030) (6, 0) = 6, O FA( 500+ Posrsiss ) =

Asp , e
/0 /( C)2 Pz(jzfj,n/\(Fl)P;C)Lﬁ Jj+1,n (Fg)qn(r, Y, Z) m(y)dy m(Z)dZ d?"

where
32p§92n(y,a+)32p§(i) (20T
n(r,y,2) = — TR P (g, 2)p%) _ (2,2)
1
The measure 1y’z>aeI’A— fOAS" qn(r,y, 2) dr dy dz converges weakly as n — +00 to d(, ;). The
Sn

maps (s,y) — Bap® (x,a™) and (s,y) — Pﬁ“)’y’“(-) are continuous. Moreover

agpg(;?n (v, a+)82p§i)sj+l n(z,a+) is uniformly bounded for j <n € N and y, z € (a,C]. All this
ensures that the n;%expectation of the right-hand side of (250) converges as n — +o00 to the

right-hand side of (2.48]). O

Now we need only to match the preceding descriptions to prove proposition 217 (2.42]) and

2:49) imply (230). (241) and 247) imply (2.37). The fact that the point where the excursion

dsts(v)
5 follows from (2.48)).
()

is split is distributed according to

2.7. Restricting loops to a discrete subset. Let L be the generator of a diffusion on I of
form (L3) and (X¢)o<t<¢ be the corresponding diffusion. Let J be a countable discrete subset
of I. A Markov jump process to the nearest neighbours on J is naturally embedded in the
diffusion X. In this subsection we will show that, given any z,y € J, the image of the measure
uf’y through the restriction application that sends a sample paths of the diffusion (X;)o<t<¢ to
a sample path of a Markov jump process on J is a measure on J-valued paths that follows the
pattern (2.2)). From this we will deduce that the image of the measure pj through the restriction
to J is a measure on J-valued loops following the pattern (2.I) and which was studied in [10].
This property will be used in section 3.2 to express the law of finite-dimensional marginals of
the occupation field of a Possonian ensemble of intensity auj .
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For a continuous path (y(t))o<¢<7(y) in I, endowed with continuous local times, let

T (y) = )t (v)ml(x)

ze]

For s > 0, we introduce the stopping time

73(7) == inf{t > 0|/ () > s}

S

We write 77 for the path (v(77))

0<s<Zd () on J. Let my be the measure
my = Z m(z)dy

zel]

The occupation measure of 77 is
> (m(x)s,
z€]J
and (I%(7))zey are also occupation densities of the restricted path 47 relatively to my.
The restricted diffusion X7 is a Markov jump process to nearest neighbours on J, potentially

with killing. If xg < x; are two consecutive points in J, the jump rate from xzy to zp is
1 1

m(zo)w(zo) ut*0(21) m(z)w(z1) u™* (zo)
xo are three consecutive points in J, then the rate of killing while in x is

1 <W(u_’x2,u+7$°)(x1) 1 1 )

m(zn)w(z) \ w® (z)utro(z1)  u ()  wh(zs)

and the jump rate from x; to xq is Mrg <o <

If J has a minimum x¢ and x7 is the second lowest point in J, then the killing rate while in xg

is

1 W (u™" uy) (o) 1
m(xzo)w(zo) ( u= (zo)up(zo) u+’“’“(9€1)>

An analogous expression holds for the killing rate while in a possible maximum of J. X7 is

transient if and only if X is. Let Ly be the generator of XJ. Lj is symmetric relatively to

my. Its Green’s function relatively to my is (G(x,y))szyer, that is the restriction of the Green’s

function of L to J x J. X? may not be conservative even if the diffusion X is. In case if J is

not finite, X? may blow up performing an infinite number of jumps in finite time. Measures

(W7 )z yer, i and p} have discrete space analogues (,uz’ﬂy)x,yej, pry and py - as defined in [10],
that follow the patterns (2.2) and (2.)).

Proposition 2.23. Let z,y € J. Then v+~ transforms u7? in uz’ﬂy and py, in p .
Proof. The representation (2.3)) also holds for ,uﬁy. For [ > 0, let
7= inf{t > O¢}(X) > I}

and
= inf{s > 0/¢¥(X7) > I}

Then for any non-negative measurable functional F

“+oo
D = [ A 1 g P
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But (X{)cge v

7 < (. Thus uﬁy is the image of 7" through the restriction on path to J. The second part of

is the image of (Xt)OStSTf\’ by the map v — ~J and le’J < Ig if and only if

the proposition can be deduced from that for any x € J

(M (dy) = mapy” (dy)
and as noticed in [10]
i, (') = mopp (dy?)
U

2.8. Measure on loops associated to a "generator" with creation of mass. We can
further extend the definition of the measures p*¥ on paths and g and p* on loops to the case
of L being a "generator" on I containing a creation of mass term as in (LI2). Doing so will
enable us to emphasize further the h-transform invariance of the measure on loops and will be
useful in section 3.2 to compute the exponential moments of the occupation field of Poissonian

ensembles of Markov loops.

Let v be signed measure on I. Let L(®) := L 4/ 1 d and L := LO) 4.
m(x) dr \w(z) dx
Definition 4. o u7Y(dy) = exp ([; 1*(v)m(z) v(dz)) 1176 (d)

o pr(dy) = exp ([ 1*(v)m(z) v(dz)) pro (dy)
® L] =Tl

Definition 4 is consistent with properties[2.2] (iv) and 2.6 (iii). If 7 is any other signed measure
on I, then

(2.51) WY (dy) = exp ( [E@me ﬂ(dm) W2 (dy)

Same holds for p and p*. Under the extended definition, the measures p*¥ still satisfy properties
2.2 (ii), (iii), (v) and (vi). Proposition 2.5 remains true. p still satisfies properties (1), (ii)
and (iv). Proposition 2.7 and corollary 2.8 still hold. The identities (2I4]) and (2.I9) remain
true for p*. Concerning the h-transforms, we have:

2

Proposition 2.24. Let h be a continuous positive function on I such that ) s a signed mea-
x
1

sure. h®>mdx is a speed measure for Conj(h, L). Then for allz,y € I, Mé,gnj(h = m#%y;
bl x y

and ficonjh,r) = pr- Conversely, if L and L' are two "generators” with or without creation of
2

mass such that puy, = prs then there is a positive continuous function h on I such that ) 5 a
x
signed measure and L' = Conj(h,L).

Proof. There is a positive Radon measure k on I such that both L — k and Conj (h,L) — k

are generators of (killed) diffusions. But Conj(h,L) —k = Conj(h,L — k). It follows that

1
x,y _ x,Y JUp— ~ 1
ucgnj(th)_]; = 7h(x)h(y)’uL—f€ and HConi(hL)—k = i Applying (2.51)) we get the result.

If up, = pur, we can again consider k a positive Radon measure on I such that both L —k and
L' —k are generators of (killed) diffusions. Then according to proposition 2.13] there is a positive
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2
continuous function h on I such that — is a signed measure and L' — k = Conj(h, L — k).

dx?
Then L' = Conj(h, L).

As for generators of diffusions is subsection 2.5, one can consider L-harmonic functions u ™"

T

and u™% in case of L containing creation of mass. If L € DT, then u ™% respectively u? is

not necessarily positive on I N (—oo, x) respectively I N (x,4+00). Let
M(z) :==sup{y € I,y > z|Vz € (z,y), u™"(2) >0} € IU{supI}

If L €% thenforallz € I, M(x) =supl. Lety € I,y > x. If y < M(x), then Ly, ) € D~.
If y = M(x), then Ly, € D0 If y > M(z), then Lizy) € DF. The diffusion p™® of

generator L% = C’onj(u+’x,L‘JEg’CmM($))) is defined on (x, M (x)). Similarly for p=¥%. Moreover
. “+,x _ 7,M(:B)
if If M (z) € I, then Ly = L@y

If L € ®%~, the description of the measure on (min~, max ) induced by p* as well as of the
probability measures obtained by conditioning p* by the value of (min~, max-y) is the same
as given by corollary [Z16] with the same formal expressions. Next we state what happens if
Ledt:

Proposition 2.25. Let L € ®T. The measure on (min vy, max~y) induced by u* and restricted to

da db
m. Ifa < b < M(a), then the pT’ObU/-

bility measure obtained through conditioning by (min -y, max ) = (a,b) has the same description
as in corollary [216. Outside the set {a € I,b € (a,M(a))}, the measure on (min-~y, max-y) is

not locally finite. That is to say that, if a < b € I and b > M(a), then for all ¢ > 0.

the set {a € 1,b € (a, M(a))} is lacs be(a,M(a))

(2.52) p({min~y € (a,a +¢),maxy € (b—¢,b)}) = 00

Proof. For the behaviour on {a € I,b € (a,M(a))}: There is a countable collection (/;);>0 of

open subintervals of I such that
{acLbe (a, M)} = {zr<yel}
Jj=0

Since for all j, L. € D%~ corollary applies to Lj;,. Combining the descriptions on
different {a < b € I;}, we get the description on {a € I,b € (a,M(a))}.

For the behaviour outside {a € I,b € (a,M(a))}: Let A < B € R. Then

too A dadb
(2.53) wiy({miny < A;max~y > B}) = / / CEE = +00
B —0o0 -

If a <beland M(a) =0, then 1, <pu* is the image of u%,, through a change of scale and
time. In this case ([Z352) follows from ([253). If b > M(a), then Lj,; € D, According to
proposition [L7] (iv), there is a positive measure Radon measure k on (a, b) such that L, —k €
D0 From what precedes, (2.52)) holds for Mz\(a,b)—k' Moreover, uz‘(a’b) > ,uz‘(a’b)_k. So (252)
holds for uz‘(mb). O
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3. OCCUPATION FIELDS OF THE POISSONIAN ENSEMBLES OF MARKOV LOOPS

3.1. Inhomogeneous continuous state branching processes with immigration. We will
identify the occupation fields of the Poissonian ensembles of Markov loops as inhomogeneous
continuous state branching processes with immigration. In this subsection we give the basic
properties of such processes.

Let I be an open interval of R. We will consider stochastic processes where x € I is the
evolution variable. We do not call it time because in the sequel it will rather represent a space
variable. Let (B;).,er be a standard Brownian motion. Consider the following SDE:

(3.1) dZ, = a(m)\/Z dB, + b(z)Z, dx
(3.2) dZy = 0(2)\/ Zy dBy + b(x) Zy dz: + c(z) da

For our needs we will assume that ¢ is positive and continuous on I, that b and ¢ are only

locally bounded and that ¢ is non negative. In this case existence and pathwise uniqueness
holds for (B1) and (32) (see [19], chapter IX, §3), and Z and Z take values in Ry. 0 is an
absorbing state for Z.

(B-1)) satisfies the branching property: if ZW and Z® are two independent processes solutions
in law to (&I, defined on IN[xg, +00), then Z() + Z?) is a solution in law to BI). If Z and Z
are two independent processes, Z solution in law to (1) and Z solution in law to (3.2)), defined
on IN[xzg,4+00), then Z+ Z is a solution in law to [3:2). Solutions to ([3-2) are (inhomogeneous)
continuous state branching processes with immigration. The branching mechanism is given by
(B1) and the immigration measure is ¢(z) dz. The homogeneous case (o, b and ¢ constant) was

extensively studied. See [12].

The case of inhomogeneous branching without immigration reduces to the homogeneous case

as follows: Let x¢ € I and let
C(z) :=exp (—/ b(y) dy)
xo

Aw) = [ otw2C)ay

0

If (Z4)zer is a solution to (3]), then (C(A_l(a))ZA_1(a))a€A(1) is a solution in law to

dZ, = 21/ 2, dB,

Let Z be a solution to (3] defined on I N [zg,400), starting at o with the initial condition
Zm:,zozo. Then, for A\> 0 and z € I, z > xq:

¥ (xg, 2z, \) depends continuously on (xg,z, A). If x =z then

(3.3) P(xo, 0, A) = A
If zg < 21 < 29 € I then
Y(xo, w2, N) = (20, 21, (21, 22, N))
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1) satisfies the differential equation

(3.4) 8—¢(x0,x, A) = 0(20)2

83;0 ¢($07$,A)2 — b($0)¢(x0,x’A)

If b is not continuous, equation (3.4)) should be understand in the weak sense. If be is continuous,

then (3.4) satisfies the Cauchy-Lipschitz conditions, and 1) is uniquely determined by (3.4 and

the initial condition ([B.3]). This is also the case even if b is not continuous. Indeed, by considering
Clz)

C(z)Z, rather than Z,, that is to say considering m (g, x, A) rather than i (xg,x,\), we
Zo

get rid of b.

Inhomogeneous branching processes are related to the local times of general one-dimensional

diffusions:

Proposition 3.1. Let zg € I and let (X;)o<i<¢ be a diffusion on I of generator L of form (L3)
starting from xqo. Let zg > 0 and

720 = inf{t > 0[4°(X) > 20}

20

Then conditionally on 720 < ¢, ({229 (X))acr,a>a0 s a solution in law to the SDE:
ED) -

. - dl _
(3.5) dZy = /2w(@)\| Zy dB, + 2 (;iW (2)Zy dz

Proof. If X is the Brownian motion on R, then w = 2 and w is constant. In this case the
assertion is the second Ray-Knight theorem. See [19], chapter XI, §2. The equation (3.0 is
then the equation of a square of Bessel 0 process. If xy,, < x¢p and X is the Brownian motion
on (Zmin, +00) killed in @, then the law of (Ef:é) (X))zer,z>z, conditionally on 720 < ¢ does
not depend on z;,;, and is the same as in case of the Brownian motion on R. Equation (3.3 is
still satisfied.

If X is a diffusion on I that satisfies that for all z > a € I, starting from z, X reaches almost
surly a, which is equivalent to u| being constant, then through a change of scale and time X
is the Brownian motion on some (&, +00) where Z,;, € [—00,+00). Time change does not
change the local times because we defined them relatively to the speed measure. Only the change
of scale matters. If S is a primitive of w, then conditionally on 72° < (, (67‘201 (2v) (X)) v>15(z0)
is a square of Bessel 0 process. The equation ([B.5) follows from the equation of the square of

Bessel 0 process by deterministic change of variable dy := %w(x) dx.

Now the general case: let (X;) » be the diffusion of generator Conj(uy, L). dz is

0<t<(¢ U¢($)2

the natural scale measure of X and u(x)?m(z) dz is its speed measure. We assume that both
X and X start from zo. The law of X up to the last time it visits x¢ is the same as for X. Let

- 1
ri=inf <t > 0]4°(X) > ——
Fomint {12 06°(0) > iy}
Then the law of (%2 (X))zer,2>2, conditionally on 7% < ( is the same as the law of
£

(uy (2)%02(X))zer o>z, conditionally on 7 < (. The factor uy(z)? comes from the fact that



POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS 39

performing an h-transform we change the measure relatively to which the local times are defined.
For any a < 2 € I, X reaches a a.s. Thus (¢2(X))zerz>x, satisfies the SDE

- Vaw(z) /-
dZ, = Y——\/Z, dB,
uy(z)
and (uy ()20% (X)) wer >, satisfies (E3). O
TZO -

If there is immigration: Let Z be a solution to ([8:2)) defined on I N [zg,+00), starting at xg
with the initial condition Z,, = 29 > 0. Then, for A > 0 and z € I, x > x¢:

(3.0 B rymeo o] =0 (—sotan ) = [ v el ay

3.2. Occupation field. Let L be the generator of a diffusion on I of form (L3). Let L, 1
be a Poissonian ensemble of intensity auj. L, is a random infinite countable collection of
unrooted loops supported in I. It is sometimes called "loop soup".

~

Definition 5. The occupation field of L1 is (L ;)zer where

Con= > 1700

'YELQ,L

We will drop out the subscript L whenever there is no ambiguity on L. In this subsection
we will identify the law of (Eg)xe 7 as an inhomogeneous continuous state branching process
with immigration. If J is a discrete subset of I, then applying proposition 2.23] we deduce that
(Eg)xej is the occupation field of the Poisson ensemble of discrete loops of intensity OCMEJ as
defined in [10], chapter 4. This fact allows us to apply the results of [10] in order to describe
the finite-dimensional marginals of the occupation field. If the diffusion is recurrent, then for
all x € 1, Eﬁ = +o00 a.s. If the diffusion is transient, then for all x € I, Eg < 400 a.s. Next we

state how does the occupation field behave if we apply various transformations on L.

Property 3.2. Let L be the generator of a transient diffusion.

e (i) If A is a change of scale function, then

PA(T)

a,ScaleLL oL

e (ii) If V is a positive continuous function on I, then

ﬁZ%L = Loz
e (iii) If h is a positive continuous function on I such that Lh is a negative measure, then

1 ~r
h(:ﬂ)z ﬁa,L

rz
£a,Conj (h,L)

Previous equalities depend on a particular choice of the speed measure for the modification

dA -
of L. For (i) we choose (d— o A_1> mo A~ da. For (ii) we choose
x

1
V(x)m(x) dx. For (iii)
we choose h(x)?m(x)dz. The fact that Eiconj(h,m # L7, , despite Lo, conj(h,L) = La,1 comes
from a change of speed measure.
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Next we characterize the finite-dimensional marginals of the occupation field by stating the
results that appear in [10], chapter 4.

Property 3.3. The distribution of Eg 18

(Clee) o (]
Ma) | p( G(x,m)l”“dl

Let x1,20,...,2n € I and A, Ag,..; 0y > 0. Let (G(,Y))ayer be the Green’s function of
L= Xidg,. Then

n . det(G TiyTj))1<ij<n ’
eS| ()

The moment E [ﬁglﬁg?.ﬁg”} 1S an a-permanent:

n
E [221222...22"} = Z aﬁcyclesofoHG(x“xo(i))
o6y i=1
If J is a discrete subset of I, then (Eg)xej, viewed as a stochastic process that evolves when
T increases, 18 an inhomogeneous continuous state branching process with immigration defined
on the discrete set J. In particular, for any x1 < x9 < ... < x, € I and p € {1,2,...,n},
<EA§1,£A§2, Eff) and <Z§”,£A§f’“, /33") are independent conditionally on Zﬁp.

Next we show that the processes z — L parametrized by z € I, where z is assumed to
increase, is an inhomogeneous branching process with immigration of form ([B.2)). In particular,
it has a continuous version and is inhomogeneous Markov.

~

Proposition 3.4. (£).cr has the same finite-dimensional marginals as a solution to the sto-

chastic differential equation

dl
(3.8) dZy = \/2w(x)\/ Zy dB, + 2 (c)lg U () Zy dx + aw(x) dx

i

If L is the generator of a Brownian motion on (0,+00) killed when it hits 0, then (Eg)wo has
the same law as the square of a Bessel process of dimension 2« starting from 0 at x = 0. If
L is the generator of a Brownian motion on (0, Zmaz), killed when hitting the boundary, then
(E§)0<x<mmaz has the same law as the square of a Bessel bridge of dimension 2« from 0 at

=010 at * = Tmaz-

Proof. Let zg < x € I and Ag, A > 0. Applying the identity (3.7 to the case of two points, we
get that

(39 E [exp (—)\0520 — )\Egﬂ = ((1 + MG (20, 10))(1 + AG(z, 7)) — AOA(G(xO,x))2)_a

Let
B a2l _ [ Gl(wo,mo) ’
A(zo, Ao) :=E [e ] B <G(:co,~’60) + AO)
For Yy < z, let

B )
YN = G (Gl + X detyo G)
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G(y,y)
= —1
oy, z, A) og (G(y,y) T Adot, . G

One can check that the right-hand side of ([3.9) equals

A(zo, Ao + (g, 2, \)) exp(—ap(xg, 2, N))

In particular for the conditional Laplace transform:

(3.10) E [exp (—AE@) |E§f’] = exp (—Egow(xo,x, A)) exp(—ap(xg, x,\)) a.s.

Moreover
o

a_y(y’ xz, >‘) = W(ui’ u¢)(y)¢(y, z, >‘)2 - u——(y)w(ya z, )‘)

dlogu
= w(y)(y, =, \)? — 2———*

W)Yy, z,\)

and 3

a—j(y,x, ) = =W(up, ur)(y)(y, z,A) = —w(y)d(y, z,\)

and we have the initial conditions ¢ (x,z,\) = X and ¢(x,z,\) = 0. Thus ([B.I0) has the
same form as ([B.6) where c(y) = aw(y). Let (Zy)yery>z, be a solution to (B.8) with the
initial condition Z,, being a gamma random variable of parameter o with mean aG(xg,z¢). It
follows from what precedes that (£20, L) has the same law as (Zy,, Z,). Using the conditional
independence satisfied by the occupation field, we deduce that (Eg)ye I,y>x, has the same finite-
dimensional marginals as (Zy)yer,y>z,- Making o converge to inf I along a countable subset, we
get a consistent family of continuous stochastic processes, which induces a continuous stochastic
process (Zy)ycr defined on whole I. It satisfies (B.8) and has the same finite-dimensional
marginals as (£Y)yer.

In case of a Brownian motion in (0, +o00) killed in 0, the equation (3.8)) becomes

dZy =27/ Z; B, + 2adx

which is the SDE satisfied by the square of a Bessel process of dimension 2a. Moreover (LZ);>0
has the same one-dimensional marginals as the latter, more precisely £ is a gamma r.v. of
parameter o with mean 2ax. This shows the equality in law.

In case of a Brownian motion in (0, Z;,4,) killed in 0 and 2,4, the equation (3.8]) becomes

1
dZ, =2/ Z,; B, + —————Z,. dx + 2acdx
Tmar — T
which is the SDE satisfied by the square of a Bessel bridge of dimension 2« from 0 at z = 0 to

0 at & = Tyqee. Moreover the latter process and (L£2)o<z<z,.,, have the same one-dimensional
. Thus the

marginals, more precisely gamma r.v. of parameter a with mean 2a(xq, — )
Tmax
two have the same law. (]

We showed that (Zg)xe 1 has the same finite-dimensional marginals as a continuous stochastic
process. We will assume in the sequel and prove in section 4.2 that one can couple the Poissonian
ensemble £, and a continuous version of its occupation field (Eg)xe 7 on the same probability
space. This does not follow trivially from the fact that the process (Eg)we 7 has a continuous

version. Consider the following counterexample: Let U be an uniform r.v. on (0,1). Let £ be
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a countable random set of Brownian excursions defined as follows: conditionally on U £ is a
Poissonian ensemble with intensity 77511\]/[ + 775]1\]4. Let (SAJC)xeR be the occupation field of £. Then
& is continuous on (—oo,U) and (U, +00) but not at U. Indeed & = 0 and

lim & = lim & =1
z—=U~ z—=U—

Let (E])zer be the field defined by: &, = &, if # # U and ‘E:\I/J = 1. (€))zer is continuous and
for any fixed z € R &, = &, a.s. Thus (€.)zer is a continuous version of the process (£, )zcr
but it can not be implemented as a sum of local time across the excursions in £. As we will
show in section 4.2, such a difficulty does not arise in case of L.

(Eﬁ)me 7 is an inhomogeneous continuous state branching with immigration. The branching
mechanism is the same as for the local times of the diffusion X, given by (8.5). The immigration
measure is aw(z) dz. The interpretation is the following: given a loop in L, its family of local
times performs a branching according to the mechanism (B.5]), independently from the other
loops. The immigration between x and x + Ax comes from the loops whose minima belong to
(z,z + Az). It is remarkable that although the immigration measure is absolutely continuous
with respect to Lebesgue measure, there is only a countable number of moments at which
immigration occurs. These are the positions of the minima of loops in £,. Moreover the local

time of each loop at its minimum is zero. For z > a € I, let

Lsi= 3 )

v € La

minvy > a

1
Let a < b el Forj<mneN,let Az, := —(b—a) and let z;, = a + jAz,. Then
n

<ﬂ;j*1)’mj )1< iy is a sequence of independent gamma r.v. of parameter o and the mean of
<j<n
Tj—1),T5 . G(zj-1,2;)G(xj, 25—
L7 4 a(G(xj,wj) - (xjgl(xx,])l f]l? 1)>- For n large
J—1Lj—
G(zj-1,2;)G(xj,xj—1)
Glzi,x;) — I 1 =w(zi_1)Az, + o(Ax,
( J J) G(xj—l,ﬁﬂj—l) ( J 1) ( )

and o(Ax,,) is uniform in j. Thus
n

n

) . o b
lim E[ E(axj’l)’mj] = lim « (G(xj,xj) — G(x]_l’xj)G(%’xj_l)> :a/ w(x) dx

n——+00 e n——+00 = G(Jﬂjfl, xjfl)
and
n n 9
Azi1) Gz 2)Gs T
lim Var(ZE((f]’l)’xJ> = lim « Glxj,z;) — (zj-1,25)G(x),zj-1) —0
n—~+00 e n——+00 = G(xjfl, xjfl)

It follows that 377 L85 converges in probability to a f; w(x) dr. This is consistent with

our interpretation of immigration.
Next proposition deals with the zeroes of the occupation field.
Proposition 3.5. Let zg € I. If [}, w(z) dz < 400 then
lim £ =0

r—inf
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sup I

Analogous result holds sz (x)dzr < 400.

If a > 1, then the continuous process (ﬁg)mel stays almost surely positive on I. If a < 1
then (Eg)xel hits 0 infinitely many times on I.

Proof. If fmf[w x)dxr < +oo, then L + k, where k is the killing measure of L, is also the
generator of a transient diffusion. We can couple (Ex 1 )zer and (Ea Lix)wver on the same
probability space such that a.s. for all x € I, Eg < e oLtk But according to property
(1), (Eg Ler)zel is just a scale changed square of Bessel process starting from 0 or square of a
Bessel bridge from 0 to 0. Thus

lim Ex < lim L* =0
r—inf I L r—inf I o, Ltk

Regarding the number of zeros of (E Jzer on I, property 3.2 ensures that it remains un-
changed if we apply scale, time changes and h-transforms to L. Since any generator of a
transient diffusion is equivalent through latter transformation to the generator of a Brown-
ian motion on (0,4o00) killed in 0, the result on the number of zeros of (E )zer follows from

standard properties of Bessel processes. O

In [21] respectively [II] are studied the clusters of loops induced by a Poisson ensemble of
loops in the setting of conformal diffusions respectively Markovian jump processes on graphs. In
our setting of one dimensional diffusions the description of such clusters is simple and is related
to the zeros of the occupation field. We introduce an equivalence relation on the loops of L4: 7y
is in the same class as 7/ if there is a chain of loops Yo, V1, ..., Vn in L4 such that vo = 7, 7, =/
and for all 7 € {0,1,....,n — 1}, % ([0, T(7:)]) N Yit1([0, T (vix1)]) # 0. A cluster is the union of
all v([0,T(7)]) where the loops 7 belong to the same equivalence class. It is a subinterval of I.
By definition clusters corresponding to different equivalence classes are disjoint.

Proposition 3.6. Let L be the generator of a transient diffusion on I. If a > 1, the loops in L,
form a single cluster: 1. If a« € (0,1), there are infinitely many clusters. These are the maximal
open intervals on which (E )zer 1S positive. In case of the Brownian motion on (0,+00) killed

at 0, the clusters correspond to the jumps of a stable subordinator with index 1 — «. In case of

1
a general diffusion, by performing a change of scale of derivative 53 we reduce the problem

27
. "
to the previous case.

Proof. Assume that L, and a continuous version of (E )zer are defined on the same probability
space. Almost surely the following holds

e Given v # v € L,, miny # max~’ and max~y # min~’.
e For all 7y € L, /™17 (y) = /M3 (y) = 0 and £*(7) is positive for x € (min vy, max ).

Whenever the above two conditions hold it follows deterministically that the clusters are the
intervals on which (E )zer stays positive. We deduce then the number of clusters from propo-

sition [B.5]
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If L is the generator of the Brownian motion on (0,+00) killed at 0, then (£Z)yc; is the
square of a Bessel process of dimension 2o and its excursions correspond to the jumps of a

stable subordinator with index 1 — a. O

The clusters coalesce when « increases and fragment when « decreases. Some information on
the coalescence of clusters delimited by the zeroes of Bessel processes is given in [I], section 3.
This clusters can be obtained as a limit of clusters of discrete loops on discrete subsets. In case
of a symmetric jump process to the nearest neighbours on €N, if o > 1, there are finitely many
clusters, and if « € (0, 1), there are infinitely many clusters and these clusters are given by the
holding times of a renewal process, which suitable normalized converges in law as ¢ — 07 to

the inverse of a stable subordinator with index 1 — . See remark 3.3 in [11].

We can consider the occupation field (Ea 1)zer if L is not the generator of a diffusion but

contains creation of mass as in (LI2). In this setting, if A is a positive continuous function on
2

I such that pre is a signed measure, then for all x €
x

1 ~r

L3 conjth,L) = Wﬁa,L

It follows that if L € ©~ then for all z € I, EgL < 400 a.s. and if L € D0 then for all z € I,
Ang = +oo a.s. If L € DT, then according to proposition [[7 (iv), there is a positive Radon
measure k such that L —k € DY, Then for all z € I, L£r, > Ez{ ;_p = oo fLe®,
then properties (i) and (ii) are still hold. The description given by the property B3] of the
finite-dimensional marginals of (Zg)we 1 is still true, although the case of creation of mass wasn’t

considered in [10]. (Eﬁ)mel still satisfies the SDE (B.8).

Proposition 3.7. Let L € ®~ and U a finite signed measure with compact support in I. Then

there is equivalence between
o (i)E [exp <f12§’L ﬁ(d:c))} < 400
o (i) L+veD™

IfL+ve®, let for s € [0,1] Gy be the Green function of L + sv. Then

sa sfen ([ Estan)] <o (o [ [utnmriia)

Proof. First observe that f 1 £4.11P|(dz) is almost surely finite because |7| is finite and has
compact support and (E L)xe 7 is continuous. Also observe that © 7~ is convex. Soif L+0 € ©7,
then for all s € [0,1], L +sv € ©.

(i) implies (ii): Let P, , be the law of L, 1 and Pr
absolute continuity relation between the intensity measures:

o Iis be the law of L, r+5. There is an

pr+o(dy) = exp </1 51(7)) pr(dy)
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In case (i) is true P, ; , is absolutely continuous with respect to P, and

exp (f; £2, 7(dw))
E {exp (f[ Eg,L ﬂ(dm))}

But this can not be if L + 7 ¢ ©~ because then for any x € I, Eg ; < +oo and Eﬁ Ly = to0.
Thus necessarily L +7 € 7.

(3.12) dP. dPr, 1

a, L+

(ii) implies (i): We first assume that © is a positive measure and L +7 € ©~. Then P, , is

o, L+0 a‘nd

dP, = P (_ Ji Eg,LH/ 5(d$))
Lo = E [exp (_ I; EQM_D 17(d:v))]

Inverting the above absolute continuity relation, we get that

E [exp ( /1 Y ﬁ(dx)ﬂ _E [exp <— /1 £ ﬂ(d:c)ﬂ .

If 7 is not positive, let 7T and —&~ be its positive respectively negative part. Then

o )] - o [ o )

_ E {exp <— I Eng ﬂ‘(dm))] e

E[exp (= J; £2 1157 (d)) |

For the expression (3.11]) of exponential moments:

(3.13) d%E [exp <5 /I Lz, ﬂ(dm))] =K [ /I L2, (dz) exp <5 /I Lz, ﬂ(dm))]

From the absolute continuity relation (B.I12]) follows that the right-hand side of (8.13) equals

/Gsyxx (dz) E [exp(/ﬁaLde)>]

This implies ([B.11) O

absolutely continuous with respect to P,

APy

a,L+v

As in discrete space case, the above exponential moments can be expressed using determi-

nants. On the complex Hilbert space I.2(d|7|) define for s € [0,1] the operators

(60 /) (a / Goo(,9)f (y) #dy)

(16.511)( /way ) 17](dy)

The operator |Bg;| is self-adjoint, positive semi-definite with continuous kernel function, and
according to [22], theorem 2.12, it is trace class. Since trace class operators form a two-sided

ideal in the algebra of bounded operators, & is also trace class. Moreover

(3.14) Tr(Bgp) = /IGSg(x,x)ﬂ(dx)
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The determinant det(Id + &) is well defined as a converging product of eigenvalues (see [22],
chapter 3). For any s # s’ € [0, 1], the following resolvent identity holds
1

s —s

(315) 681768/17 = 68/176817 = (65/9 - 6517)

Proposition 3.8.
1
exp <a/ /Gs,;(x,x) v(dx) ds) = (det(Id + &)
0 I

Proof. &; has only real eigenvalues. Indeed, let A be such an eigenvalue and f a non zero
eigenfunction for \. Let sgn(7) be the {—1, +1}-valued function defined d|| almost everywhere.
Then

(3.16) / (59n(9) )| 85| (sgn(7) £) ()17 (dr) = A / 2 (@) (de)

The left-hand side of (8.10) is non-negative. If the right-hand side of (3.16]) is non-zero, then A
is real. If it is zero, consider f. := f +esgn(v)f. Then

N L (/I(sgn(ﬁ)fa),%,(sgn(g)fa)(x)yﬁ\(dx)> (/I\f\z(x)\ﬁ!(dm)>—1

e—0+ 2

and thus A\ is real.

The operators &g are compact and the characteristic space corresponding to each of their
non-zero eigenvalue is of finite dimension. Let (\;);>0 be the non-increasing sequence of positive
eigenvalues of &;. Each eigenvalue \; appears as many times as the dimension of its charac-

teristic space ker(&; — A\;Id)™ (n large enough). Similarly let (—\;);>0 be the non-decreasing

sequence of the negative eigenvalues of &;. Let s € [0,1]. Since &; and B, commute, these
Ai :
1+(1- S))\Z’>z‘20 .

is not an eigenvalue of &;,

operators have common characteristic spaces. From (B.I5) follows that <

a non-increasing sequence of positive eigenvalues of &g;. If 1

-5
—\
then <—]~> is also a sequence of eigenvalues of &,;. But the family of operators
1-— (1 — S))\j Jj=0

iy
——J __ can blow up when s varies. So it turns out
1-— (1 - S))\j
that &, has no eigenvalues in (—oo, —1]. From (BI4) we get

~ )\Z 5\
/IGSD@,:C) v(de) =3 T+ (-9 2 m

i>0 §>0

(Bs5)sef0,1] is bounded. Thus none of

The above sum is absolutely convergent, uniformly for s € [0, 1]. Integrating over [0, 1] yields

1
/0 /IGS,;(:U,:U) v(dx)ds = Zlog(l + i) + Zlog(l —\)

i>0 §>0

This concludes the proof. O
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3.3. Dynkin’s isomorphism. In this subsection we recall the equality in law observed in [10]

between the occupation field (£7)zer and the square of a Gaussian Free Field and show how

2
to derive from this particular versions of Dynkin’s isomorphism.

Let L be a generator of a transient diffusion on I of form (L3]). Let (¢;).cr be a centred

Gaussian process with variance-covariance function:

E[¢$¢y] = G(xvy)
(¢z)zer is the Gaussian Free Field associated to L. Let S be a primitive of % Then
U
. . 1
S(supl) = +oo. Moreover S(inf ) > —oo because L is the generator of a transient diffu-

sion. <m¢g_l(“)>ae§(z) is a standard Brownian motion starting from 0 at S(inf I). In
particular (¢;)zer is inhomogeneous Markov and has continuous sample paths.

It was shown in [10], chapter 5, that when o = 1 (E”i )zer has the same law as (3¢2).er.
2

~

In case of a Brownian motion on (0,4o00) killed in 0, (£%)z>0 is the square of a standard

2
Brownian motion starting from 0. In case of a Brownian motion on (0, Z;4,) killed in 0 and

Tonaz (E§)0<x<xmw is the square of a standard Brownian bridge on [0, Zy4.] from 0 to 0.

~

In case of a Brownian motion on R with constant killing rate k, (£%)ger is the square of a
2
stationary Ornstein—Uhlenbeck process.
The relation between the occupation field of a Poissonian ensemble of Markov loops and the

square of a Gaussian Fee Field extends the Dynkin’s isomorphism which we state below (see [5]
and [7]):

Dynkin’s Isomorphism. Let x1,xs,...,x2, € I. Then for any non-negative measurable func-

tional F' on continuous paths on I,

2n n
1 1 o
(3.17) Eg |]] 00 F((562)zer)| = Ey |F((505+ > €°(v)))eer) p#7% (dyj)
2 2
=1 pairings 7j=1 pairs
h hat th : d with all 2n poi n il 2
where Zpairmgs means that the n pairs {yj,zj} are formed with all 2n points x; in a o]

possible ways.

Next we will show that in case x; = iy, for i € {1,....,n} , ie. H@QZ1 ¢z, is a product
of squares [, qﬁiz, one can deduce the Dynkin’s isomorphism from the relation between the
square of the Gaussian Free Field and the occupation field using a somewhat extended version

of Palm’s identity for Poisson ensembles and the result of proposition 212] (ii).

Lemma 3.9. Let £ be an abstract Polish space. Let MM(E) be the space of locally finite measures
on &€ and let M € M(E). Let ® be a Poisson random measure of intensity M. Let H be a
positive measurable function on M(E) x E™. Let P, be the set of partitions of {1,...,n}. If
P eP, and i € {1,...,n}, then P(i) will be the equivalence class of i under P. The following
identity holds:

n

IE[ : H(®,q1,....q0) [ [ 2(das) | =
" i=1



48 POISSONIAN ENSEMBLES OF LOOPS OF ONE-DIMENSIONAL DIFFUSIONS

(3.18) > /gm

PePn

(I)+Z(5q07QP < 4P (n) ] HM qu

ceP ceP

Proof. We will make a recurrence over n. If n = 1, (8I8)) is the Palm’s identity for Poisson
random measures. Assume that n > 2 and that (BI8]) holds for n — 1. We set

ﬁ(¢7q17"'7qn—1) ::/H(®7Q17"'7Q7L—17qn)(b(dQ7l)
&

Then
n _ n—1
E [ . H((ba q1, "'7qn—17qn) H (b(dql) =E en-1 H((ba q1, "'7qn—1) H (I)(d%)] -
" i=1 " i=1
(3.19)
Z / , /H CI)"" Z 5q,7Q73’ (1)s -+ 4P’ (n—1)> Qn dQn + Z 5q/ dQn ] H M dQC
Prep,_1” € cep cep deP

Given a partition P’ € 9B,,_1, one can extend it to a partition of {1,...,n — 1,n} either by
deciding that n is single in its equivalence class or by choosing an equivalence class ¢ € P’
and adjoining n to it. In the identity (B.19) the first case corresponds to the integration with
respect to ®(dg, ), and according to Palm’s identity

/H (®+ D Gqr@pr(1)s oonr TP/ (n—1); qn)<1>(dqn)] =
c'ep’!
/ E H(¢ + Z 5qcl ) q’P’(l)a ceey Q'P’(n—l)a Qn)] M(dQn)
€ cepP’
The second case corresponds to the integration with respect to g, (dgy). Thus the right-hand
side of ([3.19) equals the right-hand side of (3.I]]). O

Next we show how derive a particular case of Dynkin’s isomorphism using the above extended
Palm’s formula. Since ([Zm )wer and (3¢2)zer are equal in law:

H¢ :rel)] =2"Er,

Applying lemma B9 we get that

Ellnﬁx' (( gmg] Z/Hﬁ (vp(:) E

R e Pepn” i=
Let &,,(P) be all the permutations o of {1,...,n} such that the classes of the partition P are
the supports of the disjoint cycles of . Given a class ¢ € P, let j. be its smallest element.
From property 2.17] (ii) follows that

n

12072

i=1

):BEI)]

w\»—'ﬂ

((EJ:% + ng(’)’c))arel)] H %M*(dVC)

ceP ceP

n

[[eopap = > TIe™ 00" ()

i=1 7€G,(P) ceP
Proposition 212 (ii) states that

e*m]'c710(16)""710‘0‘(10) (’Yc)/i* (d’YC) -
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jc,0(Je Y olel=1 jc olel jc Y olel jc)yJe -y
(170 (d35,) o T U0 (A 1o y) < I (dF e )
and if the loop . is a concatenation of paths 7;_, ooy Valel=1(jo)s Volel (o) then
0 (ye) = (%) + ... + @x(:ya\c\—l(jc)) + 5 (Fglel ()

It follows that
(3.20)

n
- ~ vl
QNEE% [1—[1 ﬁé F(( 2)3661)] — Z gn—feyc esofo/EE%
1=

Ueen

F((LE + Y 6 Giaen) | [T (d7:)
i=1 i=1

But the right-hand side of ([3.20]) is just the same as the right-hand side of ([B.I7) in the
specific case when for all i € {1,...,n}, x;y, = x;. This finishes the derivation of the Dynkin’s

isomorphism for this case.

4. POISSONIAN LOOPS ROOTED AT THEIR MINIMUM AND ORDERED BY THEIR MINIMUM

4.1. Glueing together excursions ordered by their minimum. Let L be the generator
of a diffusion on I of form (L3). A loop of L, 1 rooted at its minimal point is a positive
excursion. For a given zg € I, we will consider the loops v € L,,1, such that min~y € (inf I, zg].
We will root this loops at their minimum then order the obtained excursions in the decreasing
sense of their minima. Then we will glue all this excursions together and obtain a continuous
paths &, . The law of this path can be described as a one-dimensional projection of a two-
dimensional Markov process. Moreover this paths contains all the information on the ensemble
of loops Lo, N {y € £|miny < zp}. So this is a way to sample the latter ensemble of loops.
In the particular case of o = 1, & 1, is the sample paths of a one-dimensional diffusion. This is
analogue of the link between £1 and the loop-erasure procedure already observed in [14] and in
[10], chapter 8. Moreover this will give an interpretation of a Ray-Knight theorem in terms of
Possonian ensemble of Markov loops. In the subsection 4.1 we will consider generalities about
glueing together excursions ordered by their minimum and probability laws will be involved.
In the subsection 4.2 we will deal with &, 7 and identify its law. In the subsection 4.3 we will
consider the case of L containing a creation of mass term as in (LI2]). We will observe that if

L € D" then one can no longer construct &, , and show what one can construct instead.

Let o € R and let Q be a countable everywhere dense subset of (—oo,zy). We consider a

deterministic collection of excursions (eq)seq Where (eq(t))o<i<7(e,) is @ continuous excursion
above 0, T'(eq) > 0 and

eq(0) = e¢(T(eq)) =0
Vt € (0,T(eq)), eq(t) >0

We also assume that for all C' > 0 and a < z, there are only finitely many ¢ € QN (a, z¢) such
that maxe, > C and that for all a < xg

(4.1) > T(eg) < +o0

qc Qﬂ(a,mo)
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Let T (y) be the function defined on [0, +00) by
T(y) == > T(ey)
g€ QN (zo—y,z0)

T is a non-decreasing function. Since Q is everywhere dense, T is increasing. 7T is right-

continuous and jumps when zg —y € Q. The height of the jump is then T'(e_,).
Let Thae == T (+00) € (0,400]. For t € [0, Tynar) we define
0(t) := zo — sup{y € [0, +00)[T (y) > t}

6 is a non-increasing function from [0, T},,4,) to (—00, o). Since 7 is increasing, € is continuous.
We define

b () = inf{s € [0, Tonas)0(5) = 0(1)}
b (t) = sup{s € [0, Trnaz)|0(s) = (1)}
b~ (t) < b*(t) if and only if #(t) € Q and then b* (t) — b~ (t) = T'(eq()). We introduce the set
b™ = {t € [0, Trnaz)|0(t) € Q, b7 (1) = 0(t)}
b~ is in one to one correspondence with Q by ¢ +— 0(t).
Finally we define on [0, T},4,) the function &:
€)= { 70 g
0(t) +egry(t —b7 (1)) if 0(t) € Q
Intuitively £ is the function obtained by gluing together the excursions (q + e4)qco ordered in

decreasing sense of their minimum. See figure 1 for an example of ¢ and 6.

Proposition 4.1. £ is continuous. For all t € [0, Trnaz)

(4.2) o(t) = int ¢

The set b~ can be recovered from & as follows:

(4.3) b~ ={t € [0, Traz)|E(t) = [1515{ and Je > 0,Vs € (0,¢), {(t +5) > E(t)}

Ifto € b~ then
(4.4) b+(t0) = inf{t € [thTmam”g(t) < f(to)}

Proof. Let t € [0, T)qz). To prove the continuity of ¢ at ¢t we distinguish three case: the first
case is when 0(t) € Q and b~ (¢) < ¢t < b™(t), the second case is when 6(¢) € Q and the third
case is when 0(t) € Q and either b~ (t) =t or b (¢) = t.

In the first case, for all s € (b~ (t),b™ (¢)),
E(s) = 0(t) + egqry(s — 07 (1))

eg() being continuous, we get the continuity of £ at ¢.

In the second case we consider a sequence (t,)n>0 in [0, Tinae) converging to t. Let C' > 0.
There are only finitely many ¢ € Q such that there is n > 0 such that 6(¢,) = ¢ and maxe, > C.
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Moreover for any ¢ € Q, there are only finitely many n > 0 such that 6(¢,) = gq. Thus there
are only finitely many n > 0 such that 0(t,) € Q and maxeg(,) > C. So for n large enough

(45) (1) < E(tn) < O(tn) + C
But £(t) = 6(t) and 6(t,,) converges to §(t). Since we may take C arbitrarily small, (£5)) implies

that &(t,,) converges to 6(t).
Regarding the third case, assume for instance that 0(t) € Q and t = b~ (¢). The right-

continuity of £ at ¢ follows from the same argument as in the first case and left-continuity from

the same argument as in the second case.

By definition, for all ¢ € [0, Thaz), 6(t) < £(t). 0 being non-increasing, for all ¢ € [0, Tz )

( ) [0,
For the converse inequality, we have

O(t) =¢&(b™ (t)) > inf¢

(o]
Regarding ([{3]) and (4] we have the following disjunction: if §(t) € Q and b (t) < t < b (¢)

then £(t) > 0(t). If O(t) € Q and t = b~ (t) then for all s € (0,b1(t) — b (t)), £(t + s) > £(2).
If either (t) € Q and t = b™(t) or O(t) & Q then £(¢) = 6(t) and there is a positive sequence

(Sn)n>0 decreasing to 0 such that 6(t + s,) & Q and &(t + sp,) = 0(t + s,) < 0(1). O
To 1 — — — — D N/ f(f)
Cot) Y- 2D '~ Thas
——— 4w |
b~ (to) to b (to) AN t

Fig. 1 - Drawing of £ (full line) and 6 (dashed line).

Previous proposition shows that one can reconstruct Q and the family of excursions (eq)4c0
only knowing &. (42]) shows how to recover 6 from &. (A3]) and (£4]) show how to recover the
left and the right time boundaries of the excursions of £ above 6. Also observe that the set
defined by the right-hand side of (43]) is countable whatever the continuous function £ is, even

if it is not obtained by glueing together excursions.

Lemma 4.2. Let (Q,)n>0 be an increasing sequence of subsets of Q such that every Q, is
everywhere dense in (—oo,xg| and such that

n>0
Let
Tomaz = ) T(eq)
q€Qn
Let &, be the function on [0,T}, maz) defined analogously to & by gluing together the excursion

(g+eq)gec0,- Then Ty maz converges to Tia, and &, converges to & uniformly on every compact
subset of [0, Thnaz)-
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Proof. It is obvious that T}, pay converges to Trnqq. For t € [0, Tinas) let

t
fa(t) ::/0 Los)zo\0, ds
fn maps [0, Trnaz) to [0, Ty maz)- For t € [0, T} mag) let
hp(t) := inf{s € [0, Thnaz)| fn(s) > t}

hy, is increasing and right-continuous. Its jumps correspond to ¢ € Q \ Q, an their height is
T'(eq). (A0) implies that f,, converges uniformly on compact subsets of [0, T},qz) to the identity
function and so does its right-continuous inverse h,. Moreover

En=2Eohy,

which implies the convergence of &, to &. O

4.2. Recovering the Poissonian ensembles of loops from Markovian sample paths.
Let a« > 0 and L, gm the Poisson ensemble of loops of intensity aup,, where pp,, is the
measure on loops associated to the Brownian motion on R. Let zyp € R. We consider the

random countable set Q:
Q = {min~|y € Lo,m} N (—00, x0)

Almost surely Q is everywhere dense in (—oo,z() and for every ¢ € Q there is only one
v € Lo M such that miny = ¢. Almost surely v € L, puy reaches its minimum at one single
moment. Given ¢ € Q and v € L, gy such that miny = ¢ we consider e, to be the excursion
above 0 equal to v — g where we root the unrooted loop v at argmin~. Then the random set of

excursions (eq)gco almost surely satisfies the assumptions of the subsection 4.1. In particular
the condition (4.]) follows from the fact that, according to (2.30]),

. tooral
. 1A T(V)lmin'ye(a,mo) MBM(d’Y) = (xO - CL) dt < +o0

0 V27t

Thus we can consider the random continuous function (&, B (t))t>0 constructed by glueing
together the excursions (¢ + e4)qeco in the way described in subsection 4.1. Let

0. t) = inf &,
,BM() [lé}ﬂﬁ ,BM

E@BM(t) = (fa,BM(t)y 0,501 ()

Next we will describe the law of the two-dimensional process (Zq, g (t))i>0-

Proposition 4.3. Let (By;);>0 be a standard Brownian motion on R starting from 0. (Za 5 (t))i>0
has the same law as
- 1 4 ~ 1 4 ~
(104 1B~ 8(B), 0~ L))
o) o) >0
In particular for o = 1, (&1,BMm(t))i<o has the same law as a Brownian motion starting from

Q-
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Proof. For a < zg let T, be the first time 6, pys hits a. For [ > 0 let
7= inf{t > 0|¢)(B) > 1}

According to the disintegration (230)) of the measure 7, in the proposition 2.14] for all a < x

the family (eq)qum( ) of excursions above 0 is a Poissonian point process of intensity 20[17;%/1

a,ro
This implies the following equality in law

(law) ,, ~
(4.7) (Ea,par(t) = Oapar ())ose<r, =" (IBiloce<ro
Since (A1) holds for all a < zp, we have the following equality in law

(law)

(4.8) (om0 (1) — B, 2r (1), (w0 — B s (D)0 = (| Bil, £2(B)) o
([ES) is exactly the equality in law we needed. The fact that for a = 1, (xg + | Bt| — £2(B))>0

has the law of a Brownian motion starting from xzq is well known. See [19], chapter VI, §2. O

Assume that g > 0. Let (B;);>p be a Brownian sample paths. Let Tp be the first time
it hits 0. Then according to the first Ray-Knight theorem, (¢, (Bt))o<z<z, is the square of a
Bessel 2 process starting from 0 at 0, restricted to the interval [0, zp] (see theorem 2.2 in [19],
chapter XI, §2). But from proposition F.3 follows that the path (B;)o<t<7, can be sliced into a
Poissonian ensemble of Brownian loops of parameter o« = 1. The fact that its occupation field
on [0, 2] is the square of a Bessel 2 process starting from 0 at 0 is given by the proposition 3.4

From proposition B3] follows in particular that (24 gar(t))i>0 is a sample path of a two-
dimensional Feller process. Let

Dg := {(z,a) € R*|z > a}
Diag(R?) := {(z,z)|z € R}

For (zg,ap) € Dr we define the process
(Earbar ()0 = (€758, (1): 03 50 (1)) 0

1 1 -
(4.9) = (ao + |zg — ag + By| — £“° *0(B), ag — —@f@“(B))

o >0

where (Bi)i>0 is a Brownian motion starting from 0. EZ‘?EJ]‘S/[ has the same law as Z, gy

starting from xg. The family of paths (”Zogg/f)xpao are the sample paths of the same Feller
semi-group on Dy starting from all possible positions. Next we describe this semi-group in
terms of generator and domain. Let f be a continuous function on Dg, C? on the interior of
Dg, such that all its second order derivatives extend continuously to Diag(R?). This implies in
particular that the first order derivatives also extend continuously to Diag(R?). We write Jy f,
O>f and 0y 1f for the first order derivative relatively to the first variable, the second variable
and the second order derivative relatively the first variable. Applying [t6-Tanaka’s formula we

get
JEZ8,(0) = f (w0, a0 /@f = isha(5))son(wo — a0 + By) dB

t
+/0 ((1 - 5) N _82> FEDER () dotso™™0( / D11 f(E259,(s)) ds
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Let Do,y be the set of continuous functions f on Dg, C? on the interior of Dg, such that
all the second order derivatives extend continuously to Diag(R?) and that moreover satisfy the
following constraints: f and 0;,f are uniformly continuous and bounded (which also implies
that 01 f is bounded by the inequality [|01f|lcc < 2v/[fllccllO1.1f]loc) and on Diag(R?) the

following equality holds:
1
<<1——>51——32>f( z) =0
e

1 1
If f € Do pm then ;(E[f(Eg?gX/[(t))] — f(zo,a0)) converges as t — 07 to 5(9171]‘(:60,&0)

uniformly for (xg,ap) € Dgr. Moreover D, gy is a core for %(91,1 in the space of continuous
bounded function on Dg.

Next we describe what we obtain if we glue together the loops, seen as excursion, ordered in
the decreasing sense of their minimum, where instead of £, gys we use the Poissonian ensemble

of Markov loops associated to a general generator of form (IL3]). Let I be an open interval of R

L= fnzx)% (w(i)%)

with zero Dirichlet boundary conditions which satisfies the assumptions of the section 1.2. Let
S be a primitive of w(x). We assume that S(sup I) = 4-oco. Let

and L a generator on I of form

Dy :={(z,a) € I*|x > a}

Diag(I?) := {(z,z)|z € T}
Let D; be the closure of Dy in (inf I, sup I]2.
Given any x( > af > %g(inf I) let {, be the first time Ez{{)gg\’/l hits %S(inf I). Let

B [ =G Rekh ) ds

Let (I;1)

/ /
Zg,a0

EmBM. For xg > ap € I and t < 1:<~a let

0<t<T:. be the inverse function of (jt)0§t<§a' It is a family of stopping times for

—T0,0 0,a x0,a . =S 2a
B0 (1) = (7080 (1), 67077 (1)) o= Ea ) PO (I

If @« =1 then £m°’a° is just the sample paths starting z( of a diffusion of generator L. Let D

be the space of continuous functions f on Dy satisfying

e foS~1isC? on the interior of D; and all the second order derivatives extend continuously
to Diag(I?).

e f(z,a) and

1 1
——01 | ——=01f(x,a) | are bounded on D; and extend continuously to
m(z)  \w(z)
Dy.

1
e f(z,a) and ——0; < o f(z, a)> converge to 0 as a converges to inf I uniformly in
m( ) \u(z)
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e On Diag(I?) the following equality holds:

10 (1= 1) 2a) e o

Lemma 4.4. ("Zoio)xoz,me] is a family of sample path starting from all possible positions of

the same Markovian or sub-Markovian semi-group on Dy. The law of the path ”mO’Lao depends
weakly continuously on the starting point (xg,ag). The domain of the generator of this semi-

group contains ﬁm 7, and on this space the generator equals

Moreover there is only one Markovian or sub-Markovian semi-group with such generator on

~

a, L’

Proof. Since a change of scale does not alter the validity of the above statement, we can assume
that @w = 2. Then sup I = +oo. (:Z?’Lao (t))0<t<1< is then obtained from (Z°53/(t))o<,oc, DY
a random time change. The Markov property and the continuous dependence on the starting

=0, —Z0,a0

point for = Lao follows from analogous properties for = o BM- If fe Da’ 7 then

a,

=1z
—=Z0,a0 I _ 1 Iy AGa b —=Z0,20 d
f( « BM( /\ COé)) 2 171f(‘—‘a,BM(s)) S
0 >0

is a local martingale. We can rewrite it as

=T0,00 ' 1 Zr0,%0 I
<f( o L (t A\ ICa)) — A mal7lf(‘—‘a,i (S)) 18<I<~a ds) 0

a,L

The above local martingale is bounded on all finite time intervals and thus is a true martingale.

1
Since ———01,1 f(z,a) converges to 0 as a converges to inf I, uniformly in z, it follows that

2m(x)
FES AT ) = 1,07, FE ()

Thus

tim (B [1,_ FE20)] ~ fwo,a0)) = 501 (w0, a0)

t—0+ t 2m(xo)

Moreover the above convergence is uniform in (xg, ag) because O11f(x,a) extends con-

1
2m(x)
tinuously to Dj.

To prove the uniqueness of the semi-group we need to show that there is A > 0 such that

1 ~
——011—A| (D, ;5
<2m(x) 171 > ( Oz,L)
is sufficiently large, for instance that it contains all functions with compact support in D;. Let

g be such a function and A > 0. Consider the equation

1
2m(x)

(4.11) O f(z,a) — Af(z,a) = g(z,q)
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Let 1y | be a positive decreasing solution to

2u
2fn1(96) %(95) — Au(z) =0
Let
=y (x o +Oofnz z,a)uy (2 ZL
) =n@) [ [ omEe i) b

Then fj is a solution to (AI1]) and it is compactly supported in D;. We look for the solutions

to (A1) of form
f(x,a) = fo(x,a) + Cla)ix(z)
f satisfies the constraint (AI0) if and only if C' satisfies

Qo da o dz

h(a) = <<1 - é) o1 — é@) fola.a)

h is compactly supported in I. We can set

L@+ (1 _ l) YL () C(a) + h(a) = 0

where

C(a) = ﬁ)@(a)a_l /ini] 7ﬂ>\h¢((yy))a dy

C' is zero in the neighbourhood of inf I. Moreover ) has a limit at +oo. It follows that
fe D oL ]

Let L be the generator of a diffusion on I of form (L3]). Let xo € I. Consider the loops v in
L1, such that miny < xg, rooted at argmin -y, seen as excursions. Let (a,r(t))o<t<c, be the
path on I obtained by glueing together this excursions ordered in the decreasing sense of their

minimum. Let

aa,L(t) = I[Iol}tI}l Sa,L

Ea,L = (ga,Laaa,L)

Proposition 4.5. Let L := Conj(uy, L). Then (Za,1(t))o<t<c. has the same law as

(EZO’EO (t))o<i<i, - So it is a sample path of a two-dimensional Feller process. In particular for

a =1, &1 is the sample path of a diffusion of generator L. Foralla >0

liminf &, 1(t) = inf I

t—Ca

If L is the generator of a recurrent diffusion then

limsup &,,1,(t) = sup I

t—Ca
Otherwise

limsup &,,7,(t) = inf I

t—Ca
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Proof. First notice that if L is the generator of a recurrent diffusion then L = L. Otherwise a
diffusion of generator L = L is, put informally, a diffusion of generator L conditioned to converge
to inf I (informally because this may occur with zero probability). From h-transform invariance
of the measure on loops follows that Lo = L i From property 2.6] (iv) and corollary 2.10]

—=Z0,T0
a,L

)

follows that =, 1, is obtained from =, gy by scale and time change in the same way as =

mO’LmO have the same law. Regarding the limits of &, 1 at (,, we need just

and thus 2, 7 and
to observe that they hold if L is the generator of the Brownian motion on an interval of form

(a,4+), a € [—00,+00), and by time and scale change they hold in general. O

As explained in the proposition 1] the knowledge of the path (£a,r.(t))o<t<¢, alone is enough
to reconstruct Lo 1, N {y € £|miny < zp}. From this we deduce the following

Corollary 4.6. If L is the generator of a transient diffusion, it is possible to construct on the

same probability space L, 1, and a continuous version of the occupation field (Ea 1)zel-

Proof. By scale and time change covariance and h-transform invariance of the Poisson ensembles
of loops, it is enough to prove the proposition in case of a Brownian motion on (0, +0o0) killed
in 0. Let (x,)n>0 be an increasing sequence in (0,+00) converging to +o0o. We consider a
sequence of independent paths (52”1’333\'}[)”20 defined by (49]). Let

Ty = Inf{t > 0163 537 (£) = 2n1}

where conventionally we set x_; := 0. From the restricted path (52"53&(t))0<t<q~n v, We can

reconstruct a family of loops v such that min~y € (x,,—1,x,): there is a random countable set
Ty of disjoint compact subintervals [b~,b"] of 0,7}, 5, ,] such that

{05 (07 + D)ose<er—o-|[07,07] € Tn} = Lo,y N {y € £ miny € (z-1,20)}

(see ([@3). The union of all previous families of loops for n > 0 is a Poissonian ensemble of
loops Lo, v N {7y € £ min~y > 0}.
Each of §x”l’3€(}[ is a semi-martingale and its quadratic variation is
(Calbar SalBar)t = ¢
Moreover for all x € R
t 1 t 0,5

Tn,Tn
/ grngim =y A€ Br (8) = <1 - a) /O Lyo(fy=aq dsls(B) =0

From theorems 1.1 and 1.7 in [19], chapter VI, §1, follows that we can construct on the same
probability space £° a"]’3 1 and a space-time continuous version (ﬁf(fgném]\’}f))weﬂg,tzo of local times

of 51"’1" relatively to the Lebesgue measure. In particular z — (7 )

ous. If [b7,b7] € Jn, then (6, (§"5hr) — €5 (§a"5ar))a>0 is the occupation field of the loop
corresponding to the time interval [b~,b"]. We need to check that

(4.12) As >0, 64, (€5 = Y G5 — G- (EE)
b~ bT]€Tn

(&5 is continu-

For z > 0, consider the random set of times

(4.13) {t € [0, T, JlE s =2\ 7.7
b= b+]ETn
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If 2 is a minimum of a loop embedded in (57 (£))o<t<T,,, , or if & (z"~', 2,) then the
set (LI3) is empty. Otherwise it is reduce to one point: the first hitting time of the level x.
Almost surely, for all x > 0, the measure d;¢¥ (527]’;]\}) is supported in {t > O|£§j’]’3€(}[ (t) =z} and
has no atoms. This implies (£I2]). Finally we can conclude that (ﬁffn,xn,l (§§7é3§\’}[))x>0 is the
occupation field of Lo gy N {7y € £|min~y € (xp_1,2,)}.

The occupation field of L, gy N {7y € £*|minvy > 0} is

(.. )
x>0

n>0

The above sum is locally finite and thus varies continuously with z. U

Similarly to ordering the loops of L, 1, N{y € £*|min~y < z¢} in the decreasing sense of their
minimum, we can order the loops in L, 1 N {vy € £|min~y > x}, rooted in their minimum, in

the increasing sense of their minimum. Let (éa () be the path obtained by glueing this

. 0<t<la
loops-excursion ordered this way. For ¢ < (, let
éa7L(t) = inf éa,L
[t:Car)

The ensemble of loops L, N{y € £*|miny > z¢} is invariant in law through time reversal.

Thus, if 1 € I,21 > =z, then what we obtain by time-reversing the path éa,L, run until

the last time it visits x1, equals in law the path 52715“ run until the first time it hits xg.

Both paths are obtained by glueing together the loops in Lo N{y € £*|zg < miny < z;}

rooted at their minimum. In particular if L is the generator of a Brownian motion on R then
(éa,BM(t), éa,BM(t))tzo has the same law as

<x0 1B+ L0(B), xo0 + leg(g)>

e e >0

where B is a standard Brownian motion starting from 0. If v = 1 then (&1 g (t) — x0)s>0 is a

Bessel 3 process starting from 0. In general (éa, Ls éa, 1) is the sample path of a two-dimensional

Feller Markovian or sub-Markovian process on Dgr. Stated informally, its generator acts on
sufficiently smooth function f on Dg satisfying on Diag(I?) the constraint

((1 + é) o + é@) F@,z) =0

Given such a function f, one applies the second order differential operator L™%° to the first
variable, the second one being fixed. If @ = 1 then the path 517 1, is Markovian and has the same

law as p™%0 started from .

It is significant that for = 1 the Poissonian ensemble of loops £ ; can be recovered from
sample paths of one-dimensional diffusions. A similar property was observed for loops of the
two-dimensional Brownian Motion and of Markov jump processes on graphs. In [10], chapter
8, it is shown that by launching consecutively symmetric Markov jump processes from different
vertices of a finite graph and applying the Wilson’s algorithm (|I8]), one can simultaneously
construct a uniform spanning tree of the graph with prescribed weights on the edges and an
independent Poissonian ensemble of Markov loops of parameter o = 1. If D is a simply-
connected open domain of C other than C, it was shown in [25] that one can couple a Brownian
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motion on D, killed when hitting 0D, and a simple curve with same extremal points such that
the latter appears as the loop-erasure of the first. It is conjectured that given this loop-erased
Brownian motion and an independent Poissonien ensemble of Brownian loops of parameter 1,
by attaching to the simple curve the loops that cross it one reconstructs a Brownian sample
path. See [14], conjecture 1, and [13], theorem 7.3.

For one-dimensional diffusions one can partially recover £; ;, from Markovian sample paths
otherwise than slicing &; 7, in excursions. The next result has an analogue for loops of Markov

jump processes on graphs. See [10], remark 21.

Proposition 4.7. Assume that L is the generator of a transient diffusion. Let x € I. Let
(Xt)o<t<c be the sample path of a diffusion of generator L started from x. Let T, the last time
X wvisits x. Forl >0 let

= {t >0/ (X) > 1}

Let (Yj)jen be a Poisson-Dirichlet partition of [0, 1], independent from X, ordered in an arbitrary
way. Let
L =CE(X)) Y
i>]

The family of bridges ((Xt)rlgj,ilﬁtSTf; )j>0 has, up to unrooting, the same law as the loops in

L1 0 {y € £z ey([0,T()])}

In particular (Xy) can be obtained through sticking together all the loops in L, 1 that

0<t<Ty,
msit x.

Proof. According to corollary 2.9 (€*(7))yec, 1, visits = is @ Poissonian ensemble of intensity

L _dl
e Gl@z) —

Thus EQL is an exponential r.v. with mean G(z,z) and has the same law as £¢(X). More-
over the Poissonian ensemble (gm(V)MGLa,L,v visits  has up to reordering the same law as
(l;; = lj—1)j>0. Almost surely | + 7 does not jump at any l;. Conditionally on (I;);>0,
((Xt)Tf;,lStSTz? )j>0 is an independent family of bridges and (Xt)ﬁ?,lﬁtﬁﬁi has the same law
as (Xt)OStSTf;—LJ-_l' We conclude using identity (2ZI5) and the theory of marked Poissonian
ensembles. O

Assume that L is the generator of a transient diffusion. Let z > y € I. Let (X;"Y)o<t<cew
be the path on I following the law m;ﬂ”y. Let T,V be the first time X*¥ hits y. Then
(X7)o<t<rew has the same law as &, ; run until hitting y, where L = Congj(uy, L).
(X%%JFS)OSSSCW—TZ*’ has the same law as a diffusion of generator L, starting from ¥, run until
the last time it visits y. By slicing (X;"¥)o<;<7ev in excursion and (X%Z{yﬁ)ogsg(x,y,j«;,y in

bridges from ¥ to y as in proposition .7, we obtain the Poissonian ensemble of loops

L1 N{y € £ miny < z, maxy > y}
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4.3. The case of "generators" with creation of mass. Now we consider that L is a "gener-
ator" on I that contains a creation of mass term as in (LI2). We study the problem of glueing
together the loops in L, 1, rooted at their minimum and ordered in the decreasing sense of
the minimum. If L € ©%~, the situation is the same as for the generators of diffusions: if
L = Conj (uy, L) and xg € I, then {2?560 is the continuous path obtained by glueing together
the loops v € L, 1, such that min~y < x. This can not be done any longer if L € ®". Indeed,
according to proposition 228] if 2 € I is sufficiently low and y € I sufficiently high, there are
infinitely many loops v € L, 1, such that miny < x and max~y > y. However one can consider
a continuous function H : I — I such that for all z € I, H(z) > z and L, p(.)) € D~ (see
figure 2). We will show that one can glue together the loops v € L, 1, such that miny < xg
and max(y) < H(min~), rooted in argmin -y, ordered according to the decreasing sense of their
minima, and obtain a continuous path ({1, (t))o<t<c,- We will further identify the law of
this path.

Fig. 2 - The measure on (min-~y, max~y) induced by
17, (dv) is not locally finite in the dashed region.

Lemma 4.8. For all J compact subinterval of I,

(4.14) Z T(y) < +0 a.s.

v € La,L,miny € J
maxy < H(min~)

Proof. For every a € I, there is e(a) > 0 and H(a) € I such that for all o’ € (a —e(a), a+¢e(a)),

H(a) > H(a') and L € ©. The set

|(a—=(a), A (a)
{(z,a)la € J,x € [a, H(a)]}

is compact and hence there is a finite family (aj,...,an) € I such that the preceding set is

contained in

N
U(ai —e(a;), H(as)) x (a; — e(as), a; + £(a;))

i=1

But

(4.15) > T(y) <+ a.s.

=1 i eLa,L

miny € (a; — (a;), a; +£(a;))
max -y < H(ai)
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(AI5) implies (E14). O

Preceding lemma ensures the existence of the continuous path (§a,r,#(t))o<t<¢,- Fort € [0,(a),
let

Oa,r,0(t) :=minéy . x
[0,¢]

We will show that (£a,1,1, 00,1, ) is the sample path of a two-dimensional Markovian or sub-
Markovian process. Next we introduce what will be its domain and generator. Next we will
apply the Hille-Yosida’s theorem to show that actually there is a Markovian or sub-Markovian
process with such a domain and generator. Finally we will show that ({..r,#, 0,1, /) is indeed
its sample path.

Let
Dry = {(z,a) € I*|la <z < H(a)}

First observe the following: Assume that zop € I and h is a C! function on I. If there is an
2

u® dh
L-harmonic function u that is positive in the neighbourhood of x such that ——— is C! in the

w dz
neighbourhood of zg, then for any other L-harmonic function % positive in the neighbourhood

% dh U

of xg, v dn is C! in the neighbourhood of zg. Indeed the quotient l is C! on I. We define on
w dx U

D; p the function uy(x,a) as follows:

u_vH(a’) (gj)

w0 4) = S )

u is positive and continuous on Dy and by definition equals 1 on Diag(I?). For all a € I,
x — ug(z,a) is L-harmonic and

lim wup(z,a) =0
x—H(a)

We will consider functions f(z,a) such that for all @ € I, x — f(z,a) is C' and for every

2
zg > a € I, and v L-harmonic function positive in the neighbourhood of xg, x — u(zn)) 01(x,a)
w(x

is C! in the neighbourhood of z(. For such functions we can define the second order partial

differential operator

u xz,a 2
Lyif(z,a) = 12m(;c)81< (@, a) 31f(907a)>

up(z,a) w(z)
For a € I, let
Dr.ya = DryN(inf I,a)

lA?I,H@ = {(z,a) € I*|la < G,a <z < H(a)}

Let é\o(DL H,a) be the space of continuous bounded functions f on Dy g4 that extend contin-
uously to ﬁI,H,& and such that f(z,a) converges to 0 as a converges to inf I, uniformly in z.

Let ﬁa,L,H@ be the subspace of function f € é\o(D[,H@) satisfying the following constraints:

e fis C! on the interior of D 1,1 and all the first order derivatives extend continuously to
Diag(I?).

o Lp1f is well defined and in CAO(DI,H@).

e On Diag(I?) f satisfies the equation (ZI0).
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We are interested in Markovian or sub-Markovian processes on Dy g4 with domain 730,7 L.H,a
and generator Ly 1. We will show that this a-parametrized family of semi-groups is consistent
in the following way: if @’ > a € I then any sample path for the semi-group generated by

(Lu,1,Da,r1,H,a) on Dr 4 is also a sample path for the semi-group generated by (L1, Do, 1, 1,a’)
on DI,H,&’-

Lemma 4.9. 73a,L,H,a is dense in CAO(DLH,d) for the uniform topology.

Proof. Let ﬁfx 1 m.a be the sub-space of functions f € D, 1 g satisfying the following additional

1 ~
constraint: 0 f(z,a) and ——————0; f(x,a) are in Co(Dy g 4). It is enough to show that
m(x)w(x) i
Dy, 1114 is dense. Dy, | 1 is a non-unitary algebra. If f,g € D], ; , then
2
Lua(f9)(x,a) = (Luaf)g(z,a) + f(Luag)(z,a) + W@lf@lg)(% a)

Thus Ly 1(fg) € é\o(Dj,H@). Let BI,H,& U {f} be the one point compactification of ﬁI,H@.
Any function in (?O(DI, H,a) extends continuously to ZA)L ma U {f} and takes value 0 at . The
space R ¢ 75; L.Ha spanned by the constant function and 75; L.Ha is a unitary sub-algebra
C(IA?I, ma U {T}) of continuous functions on lA?I, ma U {T}. Lets show that this sub-algebra is
separating.

The main point here is to show that for every (xg,z0) € Diag(I?) N lA?I,H@ and € > 0, there
is a function f € 75(’1 .14 Such that f(zg,xz9) > 0 and f vanishes outside an e-neighbourhood
of (zg,zp). Similar property for other points in ﬁI,H@ U {f} is trivial. Let € > 0. There is
' € (0,¢) such that u—(®) is positive on (zg — ¢/, H(z¢)) and inf (30 —cr wotery H > w0 + 2¢”.
Let h be a smooth non-negative function on I such that h(xg) > 0 and h vanishes outside
(xog — €', xo+€'). Let

w—H @) ()2 w
9(x,a) :== h(a) + i%(a) w(a)( | /a uﬂ(g))(y)2 W

If a <xg—¢', weset g(x,a) =0. L9 is continuous and g satisfies [{I0). g(xo,z0) = h(zo).
Let x defined on R be a cut-off function: y is smooth, equals 1 on (—oo, 1] and 0 on [2, +00).

Let
T xo+2¢’ -1
)= gt x 2 [y (/ #y))(y)ady)

zo 0

Then f € YSALH&, f vanishes outside (zg — &', 20 + 2&') X (xg — &', 20 + €'), and f(xg,20) =
h(.%'o) > 0.
According to Stone-Weierstrass theorem R & ﬁ; 1 g is dense in C (]3[, maU{t}). Conse-

quently ﬁ; L 1.4 1s dense in E(](DI,H@). O

Proposition 4.10. For every a € I, there is a continuous positive contraction semi-group on
é\O(D[,H@) such that ﬁa,L,H@ is a core of the domain of its generator and the generator on
ﬁa,L,H@ is Lp,. Stated otherwise, there is a Feller semi-group on C(ZA)LH,d U{t}) such that
R & ﬁa,L,H@ is a core and the generator values Ly on ﬁa,L,H@ and 0 on constant functions.
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~

Moreover if @ > a € I, any sample path for the semi-group generated by (L1, Da.1,ma) on

Dy is also a sample path for the semi-group generated by (LH,laﬁa,L,H,d/) on Dy gar
Proof. Let a € I. According to Hille-Yosida theorem (see theorem 2.2, section 4.2 in [§]), we
need to check that

e (i) ﬁa,L,H,d is dense in (?O(DI,H,&)-

e (ii) There is A > 0 such that (Lg; — )\)(ﬁa,L,H@) is dense in (?O(DI,H@).

e (iii) Maximum principle: if f € ﬁa,L,H,&» f(xg,a9) = max f and f(xg,ap) > 0 then
Ly f(xo,a0) <0.

Condition (4) is given by lemma B9 Regarding the condition (iii), if (x9,ag) € Diag(I?)
the maximum principle is obvious. If g = ag, then for € small enough, (z¢ +¢,20) € Do, 14
and necessarily 01 f(zo,z0) < 0. For ¢ small enough, (zo —¢,20 —¢€) € Dq, 1, 1,4 and necessarily
—01f(x1,21) — Oaf (x1,21) < 0. Together with (£I0) this implies that —ad; f(xo,z9) < 0.
Thus 01 f(xg,xg) = 0. Using again the fact that for ¢ small enough f(z¢ — e, 29) < f(z0,x0),
we get that L 1 f(zo,20) <O0.

Next we check the condition (ii). Let A > 0 and g € ﬁa,L,H@ such that g(z,a) = 0 for a

close enough to inf I. Consider the equation on Dy 54

(4.16) Laaf—Af=g

Let g x(x,a) be the function on Dy g satisfying the equation Ly 1lg ) — Mg,y = 0 and the
border conditions @y (a,a) =1 and @y (H(a),a) = 0. g is C! and positive. Let

H(a) pH(a) up (2 a)2 dy
m(z)w z,a)u Z, @ ) dz 2
/y (2)w(y)g(z, a)im( )uH(y,a)2 U (Y, a)?

(4.17)  fo(x,a) := &HA(x,a)/

x
The right-hand side of (£I7) is integrable: up(y,a) 2dg x(y,a) 2 diverges in the neighbour-
hood of H(a) like (H(a) —y)™*. Gm (2, a)un(z,a)? is equivalent in the neighbourhood of H(a)
to (H(a) — z)3. All other factors are bounded. Moreover

H(a) H(a) d
/m /y (H(a) — 2)3 dz 7(H(a)y— e < 400

fo € ﬁa, 1, H, and satisfies the equation (EI6]), but in general does not satisfy the constraint
(#I0). We look for a solution of ([EI6]) of form fy(z,a)+C(a)tm \(z,a). For it to satisfy ([I0),
we need that

(4.18) _ LG i a(a, @) + Cla) (<1 _ l) oy — é@) ia(a, @) + h(a) = 0

o da «

h(a) = ((1 - é) o1 — é@) fola.a)

using the fact that 4 (a,a) =1, [@I8) becomes
1dC _
(4.19) — a%(a) + C(a)Otumgr(a,a) +h(a) =0

Let U be a primitive of a — 01tp x(a,a). Then

where

a

C(a) := exp(ali(a)) / ) exp(—aU () dy
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is a solution to (419). C(a) vanishes for a small enough. fo(x,a)+C(a)tum \(z,a) is in ﬁa,L,H@.
The condition (ii) follows and hence the existence of a continuous positive contraction semi-
group on é\o(D[,H@).

Let ¢/ > a € I. Let (2(t))o<t<c, be a sample path for the semi-group generated by
(L, Daraa) on Drga. Let f € Do ma. Then f restricted to Dy g is in Do ma
and

(f(E(t ACa)) — /0 O L f(E) ds>

is a martingale. This implies that (2(t))o<¢t<¢, is also a sample path for the semi-group generated

t>0

~

by (Lu,1,Da,r.ma) on Dr i a (see theorem 4.1 in [§], section 4.4). O

Proposition 4.11. Let z9 € I. The path ({a,1,0(t),00,1,H(t))o<t<c, Starting from (xq,xo)
obtained by glueing together the loops v € Ly 1, such that miny < xy and max~y < H(min~y) is

~

a sample path for the semi-group generated by (Lp 1, Do r1,H,a), for any a € I, a > xy.

Proof. We need only to show that given @ € I, @ > g, and f € YSOQL’H@, then (Y;)¢>0, defined
by

tACa
(Yi)izo0 = <f(£a,L,H(t A Ca)sbaLm(tACa)) — /0 Ly1f(€a,,u(s),00,0,u(5)) dS)
t>0

is a martingale. For this we will use an approximation of H from below by step functions.
Consider f fixed. For n € N, we define function the H,, equal to

H,(a) :=inf {H(a')]mo — 2in(l + [2"(wp —a)]) < d’ <o — 2%@"(350 - a)J}
Let ug, (x,a) be
u (@) (g
ug, (z,a) == MTW)L;

ug, (z,a) may be discontinuous at points where a is of form xy — 2”7—” Let Ly, 1 be the second

order partial differential operator

2

ug, (z,a)?m(x) w(x)

Ly, 1f(xz,a) may be discontinuous at points where a is of form z¢ — 2‘7—n Ly, 1f converges

uniformly on compact subsets of Dy 4 to Ly 1f.

Let (§a,z,m, (t))o<t<¢,. be the path obtained by glueing together the loops in v € L, such
that miny < zp and max~y < H,(min ), rooted at their minimum and ordered in the decreasing

sense of their minimum. Let

Oa t) := inf &,
L, (t) [lg}t]ﬁ L H,

Let

t
(Yot)o<t<tno = (f(fa,L,Hn(t%Ha,L,Hn(t)) —/O LHmlf(gmL,Hn(s)a6047L7Hn(3))ds)

0<t<Cn 0
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Let T;, 5,—j2-~ be the first time &4 1 g, hits zg — ;—n The loops making up the path

(Yn’t)0§t<Tn,zof(j+l)2*n_Tn,zofj2*n are the loops in v € L, such that

miny € (zo — j27 ", 0 — (j +1)27")

It follows from proposition L5l that for T, 5, (j+1)2-n < Cnias (Yo7 >0

n,xo—jQ_”+t)/\Tn,x0—(j+1)2_")
is a martingale. This implies that for T, , _jo-n < (nar (Yngar o )e>0 is a martingale.

n,zg—(j+1)
For j € N*, let

1 1
K; = {(w,a) € Dryl(1—=)supl+ 2 <a<ap, a<z<(1--)H(a)+ 3}
J J J J

(K)j>1 is an increasing sequence of compact subsets of Dy 4, containing (zg,zo) and

Drua = JK;
>0

Let
To i, = inf{t > 060 11, (t) & K;}
Tk, == inf{t > 0|&a,,u(t) & K;}
Then (Yn,t/\Tn,Kj)tZO is a martingale. From lemma follows that &, 1 m, converges uni-
formly on compact time intervals to £, 1 i and then that (Yn,t/\Tn, K )t>0 converges uniformly to

(Y;f/\TKj )t>0. Thus (Y;f/\TKj )t>0 is a martingale. Since lim;_, 4o Tk, = Ca, it follows that (Y2)t>0
is a martingale. U
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