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We study the almost sure convergence of the normalized columns in an infinite product of nonnegative matrices, and the almost sure rank one property of its limit points. Given a probability on the set of 2 × 2 nonnegative matrices, with finite support A = {A(0), . . . , A(s -1)}, and assuming that at least one of the A(k) is not diagonal, the normalized columns of the product matrix Pn = A(ω 1 ) . . . A(ωn) converge almost surely (for the product probability) with an exponential rate of convergence if and only if the Lyapunov exponents are almost surely distinct. If this condition is satisfied, given a nonnegative column vector V the column vector PnV PnV also converges almost surely with an exponential rate of convergence. On the other hand if we assume only that at least one of the A(k) do not have the form a 0 0 d , ad = 0, nor the form 0 b d 0 , bc = 0, the limit-points of the normalized product matrix Pn Pn have almost surely rank 1 -although the limits of the normalized columns can be distinct -and PnV PnV converges almost surely with a rate of convergence that can be exponential or not exponential.

Introduction

Given a finite set of nonnegative matrices A(0) = a(0) b(0) c(0) d(0) , . . . , A(s -1) = a(s -1) b(s -1) c(s -1) d(s -1)

we consider the product matrix

P n (ω) = A(ω 1 ) . . . A(ω n ) = α n (ω) β n (ω) γ n (ω) δ n (ω)
, ω = (ω n ) ∈ {0, 1, . . . , s} N and we are interested by the almost sure limit points of Pn Pn and the almost sure convergence of the normalized columns of P n . The set {0, . . . , s -1} N is endowed by the product probability, defined from p 0 , . . . , p s-1 > 0 with k p k = 1. This product is easily computable when all the matrices are upper triangular, or when all the matrices are lower triangular, and also when they are stochastic [START_REF] Thomas | Can an infinite left-product of nonnegative matrices be expressed in terms of infinite left-products of stochastic ones?[END_REF]Proposition 1.2]. The book of Bougerol and Lacroix, since its purpose is different, do not give any indication in the particular case that we study in this paper: indeed the hypothesis of contraction they make, for the almost sure convergence of PnV PnV ([1, Part A III Theorem 4.3]), is the existence -for any k ∈ N -of a matrix M k , product of matrices belonging to the set {A(0), . . . , A(s -1)}, such that M k M k converges to a rank 1 matrix when k → ∞ ([1, Part A III Definition 1.3]). On the other hand, the weak ergodicity defined in [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF]Definition 3.3] holds almost surely if and only if the product matrix P n is almost surely positive for n large enough. However the strong ergodicity ([4, Definition 3.4]) do not necessary hold, even if all the A(k) are positive. The outset of the present study is the following theorem. The norm we use is the norm-1, and we say that the normalized columns of P n (ω) converge if each column of P n (ω) divided by its norm-1 (if nonnull) converges in the usual sense. We say that the rate of convergence is exponential or geometric when the difference -between the entries of the normalized column and their limits -is less than Cr n with C > 0 and 0 < r < 1.

Theorem 1. Let A = {A(0), . . . , A(s -1)} be a finite set of nonnegative matrices such that at least one of the A(k) is not diagonal. (i) The normalized columns of P n converge almost surely with an exponential rate of convergence if and only if the singular values λ i (n) of P n satisfy almost surely

lim n→∞ (λ 1 (n)) 1 n = lim n→∞ (λ 2 (n)) 1 n . ( 1 
)
(ii) If ( 1) holds the limit-points of the normalized matrix Pn Pn have almost surely rank 1 and, given a nonnegative column vector V , the normalized column vector PnV PnV converges almost surely with an exponential rate of convergence.

(iii) Nevertheless the normalized matrix Pn

Pn diverges almost surely, except in the case where the matrices A(0), . . . , A(s -1) have a common left eigenvector.

The different cases are detailed below:

the case where at least one of the A(k) has rank one, in Remark 2 (i), the cases where all the A(k) have rank two and at least one of the A(k) has more than two nonnull entries in Sections 3 and 4, the cases where all the A(k) have rank two and two nonull entries in Section 5.

Remark 2. (i) If one of the matrices A(k) has rank 1, the normalized columns of P n are almost surely constant and equal for n large enough, as well as PnV PnV for any nonnegative column vector V such that ∀n, P n V = 0. So we can suppose in the sequel that all the A(k) have rank 2.

(ii) If both normalized columns of P n converge (resp. converge exponentially) to the same limit, then for any nonnegative column vector V the normalized column PnV PnV is a nonnegative linear combination of them, so it converges (resp. it converges exponentially) to the same limit. The limit points of Pn Pn have rank 1. (iii) If Pn Pn converges (resp. converges exponentially), then for any nonnegative column vector V the normalized column PnV PnV converges (resp. converges exponentially) because it is Pn Pn V Pn Pn V .

Some triangular examples

A case where the normalized columns converge almost surely to the same limit with a convergence rate in 1 n . Suppose that

A(k) = 1 b(k) 0 1 and that ∃k 0 , b(k 0 ) = 0.
We have

P n = 1 n i=1 b(ω i ) 0 1 .
We obtain the normalized second column (resp. the normalized matrix) by dividing the second column of P n (resp. P n itself) by 1 + n i=1 b(ω i ). So both normalized columns converge almost surely to 1 0 , and the normalized matrix converges almost surely to 0 1 0 0 . Since the density of the set {i ;

ω i = k 0 } is alomst surely 1 s , n i=1 b(ω i )
has the order of growth of n. So the convergence rate of the second normalized column, and the one of the normalized matrix Pn Pn , have the order of 1 n . A case where the normalized columns converge almost surely to the same limit with an exponential convergence rate. Suppose that

A(k) = 2 b(k) 0 1
and that ∃k 0 , b(k 0 ) = 0. We have

P n = 2 n n i=1 2 i-1 b(ω i ) 0 1
so the normalized columns of P n converge almost surely to 1 0 and the limit points of the normalized matrix Pn Pn have the form

α 1 0 0 or 1 α 0 0 , α ∈ [0, 1].
A case where the normalized columns converge almost surely to two different limit with an exponential convergence rate. Suppose that

A(k) = 1 b(k) 0 2
, we have

P n = 1 n i=1 2 n-i b(ω i ) 0 2 n .
so the limit of the second normalized column is

s s+1 1 s+1 with s = ∞ i=1 2 -i b(ω i ).
Another case where the normalized columns converge almost surely to the same limit, but the convergence rate is non-exponential. Suppose that the alphabet has two elements, A(0) = 2 2 0 1 and A(1) = 1 1 0 2 , and that p 0 = p 1 = 1 2 . We have

P n = 2 k0(n) 2 k1(n) n i=1 2 k0(i)-k1(i) 0 2 k1(n) where k j (i) = #{i ′ ≤ i ; ω i ′ = j}.
By the well known recurrence property one has almost surely k 0 (i) = k 1 (i) for infinitely many i, so both normalized columns converge to 1 0 . The difference between this vector and the second column of P n has entries ±

1 1+ n i=1 2 k 0 (i)-k 1 (i) .
With probability 1, this difference do not converge exponentially to 0 because lim i→∞ k0(i)-k1(i) i = 0.

The singular values of P n

The singular values of P n = α n β n γ n δ n , let λ 1 (n) and λ 2 (n), are by definition the positive roots of the eigenvalues of t P n P n :

λ i (n) := α n 2 + β n 2 + γ n 2 + δ n 2 ± (α n 2 + β n 2 + γ n 2 + δ n 2 ) 2 -4(α n δ n -β n γ n ) 2 2 .
Now the Lyapunov exponents λ i := lim n→∞ 1 n log λ i (n) exist almost surely by the subadditive ergodic theorem [START_REF] Ruelle | Ergodic theory of differentiable dynamical systems[END_REF], and one has

λ 1 = lim n→∞ 1 2n log(α n 2 + β n 2 + γ n 2 + δ n 2 ) λ 2 = λ 1 + lim n→∞ 1 n log |α n δ n -β n γ n | α n 2 + β n 2 + γ n 2 + δ n . (2) 
Notice that λ 1 is finite if P n is not eventually the null matrix: denoting by α and β the smaller nonnull value and the greater value of the entries of the matrices 

A(k) one has log α ≤ λ 1 ≤ log(2β). As for λ 2 , it belongs to [-∞, λ 1 ]. For instance if P n0 has rank 1, λ 2 = λ 2 (n) = -∞ for n ≥ n 0 .
2 + c 2 , so d H (M ) ≥ |ad-bc| a 2 +b 2 +c 2 +d 2 . On the other side d ∞ (M ) = |ad-bc| ab+ad+bc+cd ≥ |ad-bc| a 2 +b 2 +c 2 +d 2 because 2(a 2 +b 2 +c 2 +d 2 ) = (a 2 +b 2 )+(a 2 +d 2 )+(b 2 +c 2 )+(c 2 +d 2 ) ≥ 2ab+2ad+2bc+2cd. Corollary 4. If d H (P n ) or d ∞ (P n ) converges
exponentially to 0, the normalized columns of P n converge exponentially to the same limit and λ 2 < λ 1 .

Proof. Let p, q ≥ n. The Hilbert distance between the i th column of P p and the j th column of P q is d H (P n P n,p,q ), where P n,p,q is the matrix whose columns are the i th column of A(ω n+1 ) . . . A(ω p ) and the j th column of A(ω n+1 ) . . . A(ω q ). By the well known property of the Birkhoff coefficient τ B ([4, Section 3]) this distance is at most d H (P n )τ B (P n,p,q ) ≤ d H (P n ), so it converge exponentially to 0. By the obvious inequality d ∞ (M ) ≤ d H (M ) the norm-infinite distance between the i th normalized column of P p and the j th normalized column of P q (i = j or i = j) converges exponentially to 0, so both normalized columns are Cauchy and converge exponentially to the same limit when n tends to infinity, and λ 2 < λ 1 by (2) and Proposition 3. deduce from (4) that -replacing eventually κ by a smallest constant and K by a greater constant

κ p n q n (1 -ε) n ≤ s n (ω) and, if p ≥ q, s n (ω) ≤ K p n q n (1 + ε) n . ( 5 
)
Theorem 6. Suppose that A * is upper triangular not diagonal, and that all the A(k) have rank 2. Then P n has almost surely the following properties:

(i) If p ≥ q, PnV PnV converges to 1 0 for any nonnegative column vector V , and the limit points of Pn Pn have rank 1. The rate of convergence of PnV PnV is exponential if and only if p > q, and one has λ 2 < λ 1 if and only if p > q.

(ii) If p < q, setting s(ω) = lim n→∞ s n (ω), PnV PnV converges exponentially to

s(ω) s(ω)+1 1 s(ω)+1
if and only if the second entry of V is nonnull. The normalized product matrix Pn Pn converges exponentially to

0 s(ω) s(ω)+1 0 1 s(ω)+1 and λ 2 < λ 1 . Proof. (i) If p ≥ q one has almost surely lim n→∞ s n (ω) = ∞ because, among the indexes i such that b i (ω) = 0, one has αi-1(ω)
δi-1(ω) ≥ 1 infinitely many times. The difference between 1 0 and the second normalized column of P n is

1 sn(ω)+1 1 -1
, so it tends almost surely to 0 by [START_REF] Thomas | Can an infinite left-product of nonnegative matrices be expressed in terms of infinite left-products of stochastic ones?[END_REF], with an exponential rate of convergence if and only if p > q. We conclude about PnV PnV and Pn Pn , by using Remark 2 (ii). If p > q one has almost surely, from ( 2) and ( 4), λ 2 ≤ λ 1 +lim n→∞ 1 n log δn(ω) αn(ω) < λ 1 . If p = q, (2), ( 4) and ( 5) imply almost surely λ 1 = λ 2 . (ii) If p < q, the almost sure exponential convergence of PnV

PnV and Pn

Pn is due to the fact that s(ω)s n (ω) tends exponentially to 0 from (4). The almost sure inequality λ 2 < λ 1 is due to λ 2 ≤ λ 1 + lim n→∞ 1 n log αn(ω) δn(ω) .

The case where all the A(k) have only two nonnull entries

We assume that the A(k) have rank 2, so the normalized columns of P n are 1 0 and 0 1 .

Suppose first that all the A(k) are diagonal with two nonnul entries. If the constants p and q defined in (3) are distinct, then with probability 1 one has λ 2 < λ 1 , the normalized column vector PnV PnV converges exponentially for any nonnegative vector V , as well as the normalized matrix Pn Pn . If p = q, then with probability 1 we have λ 1 = λ 2 the normalized column matrix PnV PnV do not necessarily converge, and the limit points of the normalized matrix Pn Pn have the form

α 0 0 1 or 1 0 0 α , α ∈ [0, 1].
Suppose now that at least one of the A(k) has the form 0

b(k) c(k) 0 , b(k)c(k) = 0.
Let i 1 , i 2 , . . . be the indexes such that A(ω i ) has this form. For any n ∈ N the product matrix P n or P n 0 1 1 0 has the diagonal form α n 0 0 δ n with

α n = a(ω 1 ) . . . a(ω i1-1 )b(ω i1 )d(ω i1+1 ) . . . d(ω i2-1 )c(ω i2 ) . . . δ n = d(ω 1 ) . . . d(ω i1-1 )c(ω i1 )a(ω i1+1 ) . . . a(ω i2-1 )b(ω i2
) . . . . Clearly, the first as well as the second normalized column diverge. With probability 1 the limit points of the normalized matrix Pn Pn have the form ..An A1...An converges, the matrices A such that A n = A for infinitely many n have a common left-eigenvector, which is a row of the limit matrix. (ii) Given a set A = {A(0), . . . , A(s -1)} of complex-valued d × d matrices without common left-eigenvector, a positive probability vector (p 0 , . . . , p s-1 ) and the product probability on {0, . . . , s-1} N , the sequence of the normalized matrices A(ω1)...A(ωn) A(ω1).. = lim k→∞ λ n k , and the equality (6) becomes P A = P A P . Since the matrix P , of norm 1, has at least one row with a nonnull entry, this row is a left-eigenvector of A related to the eigenvalue P A . (ii) Given A ∈ A and n 0 ∈ N, the set of the sequences (ω n ) such that A(ω n ) ∈ A \ {A} for any n ≥ n 0 has probability 0. Hence, with probability 1, the sequence (A(ω n )) has infinitely many occurrences of each of the matrices of A and, by (i), A(ω1)...A(ωn) A(ω1)...A(ωn) diverges almost surely.

α 0 0 1 , 0 α 1 0 , 0 1 α 0 or 1 0 0 α , α ∈ [0,

The rank one property of the infinite products of matrices

Here is a general result, deduced from [START_REF] Oseledets | A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems[END_REF].

Theorem 8. Let (A n ) be a sequence of complex-valued d × d matrices, we denote by P n their normalized product with respect to the euclidean norm:

P n := A 1 . . . A n A 1 . . . A n 2 .
There exists a sequence (Q n ) of matrices of rank 1 such that

lim n→∞ P n -Q n 2 = 0
if and only if i 1 (n) = 1 for n large enough and lim n→∞ λ2(n) λ1(n) = 0, where the i j (n) and the λ j (n) arise from the singular values decomposition:

P n = U    λ 1 (n)I i1(n) . . . 0 . . . . . . . . . 0 . . . λ δ (n)I i δ (n)    V with λ 1 (n) > λ 2 (n) > • • • > λ δ (n).
Proof. Denoting by C i the columns of U , by R i the rows of V , and denoting by

s j (n) the sum i 1 (n) + • • • + i j (n) we have P n = 0<i≤s1(n) C i (n)R i (n) + λ 2 (n) λ 1 (n) s1(n)<i≤s2(n) C i (n)R i (n) + . . . (7) 
so the converse implication of the theorem holds with

Q n := C 1 (n)R 1 (n).
To prove the direct implication we need the following lemma:

Lemma 9. Any matrix A of the form A = r i=1 C i R i , where the nonnull columns C i are orthogonal as well as the nonnull rows R i , has rank r.

Proof. We complete {R 1 , . . . , R r } to a orthogonal base. The rank of A is the rank of the family {AR i * }, but AR i * = C i (i ≤ r) 0 (i > r) and consequently this family has rank r. Now using the compacity of the set of vectors of norm 1, there exists at least one increasing sequence of integers (n k ) such that the columns C i (n k ), the rows R i (n k ), the reals λi(n) λ1(n) and the integers s j (n k ) converge. Let C i , R i , α i and s j be their respective limits, one deduce from (7) that (P n k ) converge and lim k→∞

P n k = 0<i≤s1(n) C i R i + α 2 s1<i≤s2 C i R i + . . . .
If i 1 (n) = 1 for infinitely many n, or if λ2(n) λ1(n) do not converge to 0, we can choose the sequence (n k ) such that i 1 ≥ 2 or α 2 = 0. Consequently -from Lemma 9lim k→∞ P n k has rank at least 2, so it is not possible that lim n→∞ P n -Q n 2 = 0 with Q n of rank 1.

For

  any nonnegative matrix M = a b c d we denote by d H (M ) the Hilbert distance between the columns of M and by d ∞ (M ) the norm-infinite distance between the normalized columns of M : d H (M ) := log ad bc and d ∞ (M ) = a a + c -b b + d . Proposition 3. d H (M ) and d ∞ (M ) are at least equal to |ad-bc| a 2 +b 2 +c 2 +d 2 . Proof. By the classical inequality | log t| ≥ 2|t-1| t+1 one has d H (M ) ≥ 2|ad-bc| ad+bc . Now ad ≤ a 2 + d 2 and bc ≤ b

1 ], and λ 1 = λ 2 . 6 .

 1126 The almost sure divergence of Pn Pn It remains to prove the last item of Theorem 1, and more generally the following Proposition 7. (i) Let (A n ) be a sequence of complex-valued d × d matrices. If the sequence of normalized matrices A1.

- 1 Pn k - 1 A

 11 .A(ωn) diverges for almost all sequence (ω n ) n∈N ∈ {0, . . . , s -1} N . Proof. (i) Let P n = A 1 . . . A n , we suppose that the limit P = lim n→∞ Pn Pn exists and we denote λ n = Pn Pn-1 . If A n = A for n = n 1 , n 2 , . . . with n 1 < n 2 < . . . one has P A = lim k→∞ Pn k = lim k→∞ λ n k Pn k Pn k . (6) One deduce P A = lim k→∞ λ n k Pn k Pn k
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3.

The case where P n is almost surely positive for n large enough Theorem 5. Suppose that A * = k A(k) is not triangular and that at least one of the A(k) has more than two nonnull entries. Then, with probability 1, the normalized columns of P n converge exponentially to the same limit, as well as PnV PnV for any nonnegative column vector V , and λ 2 < λ 1 ; the limit points of 

is positive and, denoting by k(n) the number of occurences of the word kk ′ k in ω 1 . . . n , the limit of k(n) n is almost surely s -3 . Clearly the Hilbert distance d H and the Birkhoff coefficient τ B ([4, Section 3]) have the following property:

where d H means the distance between the rows (or the columns) of M . Now we split the product matrix P n in the following way: 

The case where A

Assuming for instance that A * is upper triangular not diagonal, we have

To know if lim n→∞ s n (ω) is finite or infinite, and to know the rate of convergence, we use the exponentials of the expected values of log a(•) and log d(•):

p := a(0) p0 . . . a(s -1) ps-1 and q := d(0) p0 . . . d(s -1) ps-1 .

By the law of large numbers, for any ε > 0 we have almost surely for any integer n ≥ 0

On the other side, since A * is not diagonal, the set of the integers n such that b(ω n ) = 0 has almost surely the positive density 1 s #{k ; b(k) = 0}. Given ε > 0, for n large enough this set has a nonempty intersection with [n(1ε), n]. So we