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ALMOST SURE CONVERGENCE OF PRODUCTS OF 2× 2

NONNEGATIVE MATRICES

ALAIN THOMAS

Abstract. We study the almost sure convergence of the normalized columns
in an infinite product of nonnegative matrices, and the almost sure rank one
property of its limit points. Given a probability on the set of 2 × 2 nonneg-
ative matrices, with finite support A = {A(0), . . . , A(s − 1)}, and assuming
that at least one of the A(k) is not diagonal, the normalized columns of the
product matrix Pn = A(ω1) . . . A(ωn) converge almost surely (for the prod-
uct probability) with an exponential rate of convergence if and only if the
Lyapunov exponents are almost surely distinct. If this condition is satisfied,

given a nonnegative column vector V the column vector PnV

‖PnV ‖
also converges

almost surely with an exponential rate of convergence. On the other hand if

we assume only that at least one of the A(k) do not have the form

(

a 0
0 d

)

,

ad 6= 0, nor the form

(

0 b

d 0

)

, bc 6= 0, the limit-points of the normalized

product matrix Pn

‖Pn‖
have almost surely rank 1 – although the limits of the

normalized columns can be distinct – and PnV

‖PnV ‖
converges almost surely with

a rate of convergence that can be exponential or not exponential.

Introduction

Given a finite set of nonnegative matrices

A(0) =

(

a(0) b(0)
c(0) d(0)

)

, . . . , A(s− 1) =

(

a(s− 1) b(s− 1)
c(s− 1) d(s− 1)

)

we consider the product matrix

Pn(ω) = A(ω1) . . . A(ωn) =

(

αn(ω) βn(ω)
γn(ω) δn(ω)

)

, ω = (ωn) ∈ {0, 1, . . . , s}N

and we are interested by the almost sure limit points of Pn

‖Pn‖
and the almost sure

convergence of the normalized columns of Pn. The set {0, . . . , s − 1}N is endowed
by the product probability, defined from p0, . . . , ps−1 > 0 with

∑

k pk = 1. This
product is easily computable when all the matrices are upper triangular, or when all
the matrices are lower triangular, and also when they are stochastic [5, Proposition
1.2].
The book of Bougerol and Lacroix, since its purpose is different, do not give any
indication in the particular case that we study in this paper: indeed the hypothesis
of contraction they make, for the almost sure convergence of PnV

‖PnV ‖ ([1, Part A

III Theorem 4.3]), is the existence – for any k ∈ N – of a matrix Mk, product of
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2 A. THOMAS

matrices belonging to the set {A(0), . . . , A(s − 1)}, such that Mk

‖Mk‖
converges to a

rank 1 matrix when k → ∞ ([1, Part A III Definition 1.3]).
On the other hand, the weak ergodicity defined in [4, Definition 3.3] holds almost
surely if and only if the product matrix Pn is almost surely positive for n large
enough. However the strong ergodicity ([4, Definition 3.4]) do not necessary hold,
even if all the A(k) are positive.
The outset of the present study is the following theorem. The norm we use is the
norm-1, and we say that the normalized columns of Pn(ω) converge if each column
of Pn(ω) divided by its norm-1 (if nonnull) converges in the usual sense. We say that
the rate of convergence is exponential or geometric when the difference – between
the entries of the normalized column and their limits – is less than Crn with C > 0
and 0 < r < 1.

Theorem 1. Let A = {A(0), . . . , A(s− 1)} be a finite set of nonnegative matrices
such that at least one of the A(k) is not diagonal.
(i) The normalized columns of Pn converge almost surely with an exponential rate
of convergence if and only if the singular values λi(n) of Pn satisfy almost surely

lim
n→∞

(λ1(n))
1
n 6= lim

n→∞
(λ2(n))

1
n . (1)

(ii) If (1) holds the limit-points of the normalized matrix Pn

‖Pn‖
have almost surely

rank 1 and, given a nonnegative column vector V , the normalized column vector
PnV

‖PnV ‖ converges almost surely with an exponential rate of convergence.

(iii) Nevertheless the normalized matrix Pn

‖Pn‖
diverges almost surely, except in the

case where the matrices A(0), . . . , A(s− 1) have a common left eigenvector.

The different cases are detailed below:
the case where at least one of the A(k) has rank one, in Remark 2 (i),
the cases where all the A(k) have rank two and at least one of the A(k) has more

than two nonnull entries in Sections 3 and 4,
the cases where all the A(k) have rank two and two nonull entries in Section 5.

Remark 2. (i) If one of the matrices A(k) has rank 1, the normalized columns of
Pn are almost surely constant and equal for n large enough, as well as PnV

‖PnV ‖ for

any nonnegative column vector V such that ∀n, PnV 6= 0. So we can suppose in the
sequel that all the A(k) have rank 2.
(ii) If both normalized columns of Pn converge (resp. converge exponentially) to the
same limit, then for any nonnegative column vector V the normalized column PnV

‖PnV ‖

is a nonnegative linear combination of them, so it converges (resp. it converges
exponentially) to the same limit. The limit points of Pn

‖Pn‖
have rank 1.

(iii) If Pn

‖Pn‖
converges (resp. converges exponentially), then for any nonnegative

column vector V the normalized column PnV
‖PnV ‖ converges (resp. converges exponen-

tially) because it is
Pn

‖Pn‖V

‖ Pn

‖Pn‖
V ‖

.

1. Some triangular examples

A case where the normalized columns converge almost surely to the same limit with

a convergence rate in 1
n . Suppose that A(k) =

(

1 b(k)
0 1

)

and that ∃k0, b(k0) 6= 0.
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We have

Pn =

(

1
∑n

i=1 b(ωi)
0 1

)

.

We obtain the normalized second column (resp. the normalized matrix) by dividing
the second column of Pn (resp. Pn itself) by 1 +

∑n
i=1 b(ωi). So both normalized

columns converge almost surely to

(

1
0

)

, and the normalized matrix converges al-

most surely to

(

0 1
0 0

)

. Since the density of the set {i ; ωi = k0} is alomst surely

1
s ,
∑n

i=1 b(ωi) has the order of growth of n. So the convergence rate of the second

normalized column, and the one of the normalized matrix Pn

‖Pn‖
, have the order of 1

n .

A case where the normalized columns converge almost surely to the same limit

with an exponential convergence rate. Suppose that A(k) =

(

2 b(k)
0 1

)

and that

∃k0, b(k0) 6= 0. We have

Pn =

(

2n
∑n

i=1 2
i−1b(ωi)

0 1

)

so the normalized columns of Pn converge almost surely to

(

1
0

)

and the limit points

of the normalized matrix Pn

‖Pn‖
have the form

(

α 1
0 0

)

or

(

1 α

0 0

)

, α ∈ [0, 1].

A case where the normalized columns converge almost surely to two different limit

with an exponential convergence rate. Suppose that A(k) =

(

1 b(k)
0 2

)

, we have

Pn =

(

1
∑n

i=1 2
n−ib(ωi)

0 2n

)

.

so the limit of the second normalized column is

( s
s+1
1

s+1

)

with s =
∑∞

i=1 2
−ib(ωi).

Another case where the normalized columns converge almost surely to the same
limit, but the convergence rate is non-exponential. Suppose that the alphabet has

two elements, A(0) =

(

2 2
0 1

)

and A(1) =

(

1 1
0 2

)

, and that p0 = p1 = 1
2 . We have

Pn =

(

2k0(n) 2k1(n)
∑n

i=1 2
k0(i)−k1(i)

0 2k1(n)

)

where kj(i) = #{i′ ≤ i ; ωi′ = j}.

By the well known recurrence property one has almost surely k0(i) = k1(i) for

infinitely many i, so both normalized columns converge to

(

1
0

)

. The difference be-

tween this vector and the second column of Pn has entries ± 1
1+

∑
n

i=1 2k0(i)−k1(i) .

With probability 1, this difference do not converge exponentially to 0 because

limi→∞
k0(i)−k1(i)

i = 0.
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2. The singular values of Pn

The singular values of Pn =

(

αn βn

γn δn

)

, let λ1(n) and λ2(n), are by definition the

positive roots of the eigenvalues of tPnPn:

λi(n) :=

√

√

√

√αn
2 + βn

2 + γn2 + δn
2 ±

√

(αn
2 + βn

2 + γn2 + δn
2)2 − 4(αnδn − βnγn)2

2
.

Now the Lyapunov exponents λi := limn→∞
1
n logλi(n) exist almost surely by the

subadditive ergodic theorem [3], and one has

λ1 = lim
n→∞

1

2n
log(αn

2 + βn
2 + γn

2 + δn
2)

λ2 = λ1 + lim
n→∞

1

n
log

|αnδn − βnγn|

αn
2 + βn

2 + γn2 + δn
2 . (2)

Notice that λ1 is finite if Pn is not eventually the null matrix: denoting by α and β

the smaller nonnull value and the greater value of the entries of the matrices A(k)
one has

logα ≤ λ1 ≤ log(2β).

As for λ2, it belongs to [−∞, λ1]. For instance if Pn0 has rank 1, λ2 = λ2(n) = −∞
for n ≥ n0.

For any nonnegative matrixM =

(

a b

c d

)

we denote by dH(M) the Hilbert distance

between the columns of M and by d∞(M) the norm-infinite distance between the
normalized columns of M :

dH(M) :=

∣

∣

∣

∣

log
ad

bc

∣

∣

∣

∣

and d∞(M) =

∣

∣

∣

∣

a

a+ c
−

b

b+ d

∣

∣

∣

∣

.

Proposition 3. dH(M) and d∞(M) are at least equal to |ad−bc|
a2+b2+c2+d2 .

Proof. By the classical inequality | log t| ≥ 2|t−1|
t+1 one has dH(M) ≥ 2|ad−bc|

ad+bc . Now

ad ≤ a2 + d2 and bc ≤ b2 + c2, so dH(M) ≥ |ad−bc|
a2+b2+c2+d2 .

On the other side d∞(M) = |ad−bc|
ab+ad+bc+cd ≥ |ad−bc|

a2+b2+c2+d2 because

2(a2+b2+c2+d2) = (a2+b2)+(a2+d2)+(b2+c2)+(c2+d2) ≥ 2ab+2ad+2bc+2cd.

�

Corollary 4. If dH(Pn) or d∞(Pn) converges exponentially to 0, the normalized
columns of Pn converge exponentially to the same limit and λ2 < λ1.

Proof. Let p, q ≥ n. The Hilbert distance between the ith column of Pp and the jth

column of Pq is dH(PnPn,p,q), where Pn,p,q is the matrix whose columns are the
ith column of A(ωn+1) . . . A(ωp) and the jth column of A(ωn+1) . . . A(ωq). By the
well known property of the Birkhoff coefficient τB ([4, Section 3]) this distance is
at most dH(Pn)τB(Pn,p,q) ≤ dH(Pn), so it converge exponentially to 0.
By the obvious inequality d∞(M) ≤ dH(M) the norm-infinite distance between the
ith normalized column of Pp and the jth normalized column of Pq (i = j or i 6= j)
converges exponentially to 0, so both normalized columns are Cauchy and converge
exponentially to the same limit when n tends to infinity, and λ2 < λ1 by (2) and
Proposition 3. �
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3. The case where Pn is almost surely positive for n large enough

Theorem 5. Suppose that A∗ =
∑

k A(k) is not triangular and that at least one of
the A(k) has more than two nonnull entries. Then, with probability 1, the normalized
columns of Pn converge exponentially to the same limit, as well as PnV

‖PnV ‖ for any

nonnegative column vector V , and λ2 < λ1; the limit points of Pn

‖Pn‖
have rank 1;

the weak ergogdicity, in the sense of [4, Definition 3.3], holds.

Proof. By the hypotheses either one of the A(k) is positive, or one of the A(k) is
(

a(k) b(k)
c(k) 0

)

(its square is positive), or one of the A(k) is triangular with three

nonnull entries and another A(k′) is such that A(k) + A(k′) > 0. In this last case
A(k)A(k′)A(k) is positive. So in all cases there exist k, k′ such that A(k)A(k′)A(k)
is positive and, denoting by k(n) the number of occurences of the word kk′k in

ω1 . . . ωn, the limit of k(n)
n is almost surely s−3.

Clearly the Hilbert distance dH and the Birkhoff coefficient τB ([4, Section 3]) have
the following property:

dH(M1 . . .Mi) ≤ dH(M1)τB(M2) . . . τB(Mi)

where dH means the distance between the rows (or the columns) of M .
Now we split the product matrix Pn in the following way:

Pn = M1 . . .Mk where Mi = A(ωni−1+1) . . . A(ωni
), n0 = 0 < n1 < · · · < nk,

the indexes n1, n3, . . . corresponding to the disjoint occurrences of A(k)A(k′)A(k):

M1 = A(ω1) . . . A(ωn1−3)A(k)A(k
′)A(k) and M3 = M5 = · · · = A(k)A(k′)A(k).

Let C = dH(M1) < ∞, r = τB(A(k)A(k
′)A(k)) < 1 and r′ ∈]rs

−3/3, 1[. We have for
n large enough

dH(Pn) ≤ Cτ(A(ωn1+1) . . . A(ωn)) ≤ Crk(n)/3−1 ≤ Cr′n

and we conclude with Corollary 4 and [4, Lemma 3.3]. �

4. The case where A∗ =
∑

k A(k) is triangular not diagonal

Assuming for instance that A∗ is upper triangular not diagonal, we have

Pn(ω) =

(

αn(ω) δn(ω)sn(ω)
0 δn(ω)

)

with sn(ω) =

n
∑

i=1

αi−1(ω)

δi−1(ω)

b(ωi)

d(ωi)
.

To know if limn→∞ sn(ω) is finite or infinite, and to know the rate of convergence,
we use the exponentials of the expected values of log a(·) and log d(·):

p := a(0)p0 . . . a(s− 1)ps−1 and q := d(0)p0 . . . d(s− 1)ps−1 . (3)

By the law of large numbers, for any ε > 0 we have almost surely for any integer
n ≥ 0

κ
pn

qn
(1− ε)n ≤

αn(ω)

δn(ω)
≤ K

pn

qn
(1 + ε)n (κ,K constants). (4)

On the other side, since A∗ is not diagonal, the set of the integers n such that
b(ωn) 6= 0 has almost surely the positive density 1

s#{k ; b(k) 6= 0}. Given ε > 0,
for n large enough this set has a nonempty intersection with [n(1 − ε), n]. So we
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deduce from (4) that – replacing eventually κ by a smallest constant and K by a
greater constant

κ
pn

qn
(1− ε)n ≤ sn(ω) and, if p ≥ q, sn(ω) ≤ K

pn

qn
(1 + ε)n. (5)

Theorem 6. Suppose that A∗ is upper triangular not diagonal, and that all the
A(k) have rank 2. Then Pn has almost surely the following properties:

(i) If p ≥ q, PnV
‖PnV ‖ converges to

(

1
0

)

for any nonnegative column vector V , and the

limit points of Pn

‖Pn‖
have rank 1. The rate of convergence of PnV

‖PnV ‖ is exponential

if and only if p > q, and one has λ2 < λ1 if and only if p > q.
(ii) If p < q, setting s(ω) = limn→∞ sn(ω),

PnV
‖PnV ‖ converges exponentially to

(

s(ω)
s(ω)+1

1
s(ω)+1

)

if and only if the second entry of V is nonnull. The normalized product

matrix Pn

‖Pn‖
converges exponentially to

(

0 s(ω)
s(ω)+1

0 1
s(ω)+1

)

and λ2 < λ1.

Proof. (i) If p ≥ q one has almost surely limn→∞ sn(ω) = ∞ because, among the

indexes i such that bi(ω) 6= 0, one has αi−1(ω)
δi−1(ω) ≥ 1 infinitely many times. The

difference between

(

1
0

)

and the second normalized column of Pn is 1
sn(ω)+1

(

1
−1

)

,

so it tends almost surely to 0 by (5), with an exponential rate of convergence if and
only if p > q. We conclude about PnV

‖PnV ‖ and Pn

‖Pn‖
, by using Remark 2 (ii).

If p > q one has almost surely, from (2) and (4), λ2 ≤ λ1+limn→∞
1
n log δn(ω)

αn(ω) < λ1.

If p = q, (2), (4) and (5) imply almost surely λ1 = λ2.
(ii) If p < q, the almost sure exponential convergence of PnV

‖PnV ‖ and Pn

‖Pn‖
is due

to the fact that s(ω) − sn(ω) tends exponentially to 0 from (4). The almost sure

inequality λ2 < λ1 is due to λ2 ≤ λ1 + limn→∞
1
n log αn(ω)

δn(ω) . �

5. The case where all the A(k) have only two nonnull entries

We assume that the A(k) have rank 2, so the normalized columns of Pn are

(

1
0

)

and

(

0
1

)

.

Suppose first that all the A(k) are diagonal with two nonnul entries. If the constants
p and q defined in (3) are distinct, then with probability 1 one has λ2 < λ1, the
normalized column vector PnV

‖PnV ‖ converges exponentially for any nonnegative vector

V , as well as the normalized matrix Pn

‖Pn‖
. If p = q, then with probability 1 we have

λ1 = λ2, the normalized column matrix PnV
‖PnV ‖ do not necessarily converge, and

the limit points of the normalized matrix Pn

‖Pn‖
have the form

(

α 0
0 1

)

or

(

1 0
0 α

)

,

α ∈ [0, 1].

Suppose now that at least one of the A(k) has the form

(

0 b(k)
c(k) 0

)

, b(k)c(k) 6= 0.

Let i1, i2, . . . be the indexes such that A(ωi) has this form. For any n ∈ N the
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product matrix Pn or Pn

(

0 1
1 0

)

has the diagonal form

(

αn 0
0 δn

)

with

αn = a(ω1) . . . a(ωi1−1)b(ωi1)d(ωi1+1) . . . d(ωi2−1)c(ωi2) . . .

δn = d(ω1) . . . d(ωi1−1)c(ωi1)a(ωi1+1) . . . a(ωi2−1)b(ωi2) . . . .

Clearly, the first as well as the second normalized column diverge.With probability 1

the limit points of the normalized matrix Pn

‖Pn‖
have the form

(

α 0
0 1

)

,

(

0 α

1 0

)

,
(

0 1
α 0

)

or

(

1 0
0 α

)

, α ∈ [0, 1], and λ1 = λ2.

6. The almost sure divergence of Pn

‖Pn‖

It remains to prove the last item of Theorem 1, and more generally the following

Proposition 7. (i) Let (An) be a sequence of complex-valued d × d matrices. If
the sequence of normalized matrices A1...An

‖A1...An‖
converges, the matrices A such that

An = A for infinitely many n have a common left-eigenvector, which is a row of
the limit matrix.
(ii) Given a set A = {A(0), . . . , A(s− 1)} of complex-valued d× d matrices without
common left-eigenvector, a positive probability vector (p0, . . . , ps−1) and the product

probability on {0, . . . , s−1}N, the sequence of the normalized matrices A(ω1)...A(ωn)
‖A(ω1)...A(ωn)‖

diverges for almost all sequence (ωn)n∈N ∈ {0, . . . , s− 1}N.

Proof. (i) Let Pn = A1 . . . An, we suppose that the limit P = limn→∞
Pn

‖Pn‖
exists

and we denote λn = ‖Pn‖
‖Pn−1‖

. If An = A for n = n1, n2, . . . with n1 < n2 < . . . one

has

PA = limk→∞
Pnk−1

‖Pnk−1‖
A

= limk→∞ λnk

Pnk

‖Pnk
‖ .

(6)

One deduce ‖PA‖ = limk→∞

∥

∥

∥λnk

Pnk

‖Pnk
‖

∥

∥

∥ = limk→∞ λnk
, and the equality (6)

becomes PA = ‖PA‖P . Since the matrix P , of norm 1, has at least one row with
a nonnull entry, this row is a left-eigenvector of A related to the eigenvalue ‖PA‖.
(ii) Given A ∈ A and n0 ∈ N, the set of the sequences (ωn) such that A(ωn) ∈
A \ {A} for any n ≥ n0 has probability 0. Hence, with probability 1, the sequence
(A(ωn)) has infinitely many occurrences of each of the matrices of A and, by (i),
A(ω1)...A(ωn)

‖A(ω1)...A(ωn)‖
diverges almost surely. �

7. The rank one property of the infinite products of matrices

Here is a general result, deduced from [2].

Theorem 8. Let (An) be a sequence of complex-valued d× d matrices, we denote
by Pn their normalized product with respect to the euclidean norm:

Pn :=
A1 . . . An

‖A1 . . . An‖2
.

There exists a sequence (Qn) of matrices of rank 1 such that

lim
n→∞

‖Pn −Qn‖2 = 0
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if and only if i1(n) = 1 for n large enough and limn→∞
λ2(n)
λ1(n)

= 0, where the ij(n)

and the λj(n) arise from the singular values decomposition:

Pn = U







λ1(n)Ii1(n) . . . 0
...

. . .
...

0 . . . λδ(n)Iiδ(n)






V with λ1(n) > λ2(n) > · · · > λδ(n).

Proof. Denoting by Ci the columns of U , by Ri the rows of V , and denoting by
sj(n) the sum i1(n) + · · ·+ ij(n) we have

Pn =
∑

0<i≤s1(n)

Ci(n)Ri(n) +
λ2(n)

λ1(n)

∑

s1(n)<i≤s2(n)

Ci(n)Ri(n) + . . . (7)

so the converse implication of the theorem holds with Qn := C1(n)R1(n).
To prove the direct implication we need the following lemma:

Lemma 9. Any matrix A of the form A =
∑r

i=1 CiRi, where the nonnull columns
Ci are orthogonal as well as the nonnull rows Ri, has rank r.

Proof. We complete {R1, . . . , Rr} to a orthogonal base. The rank of A is the rank

of the family {ARi
∗}, but ARi

∗ =

{

Ci (i ≤ r)
0 (i > r)

and consequently this family

has rank r. �

Now using the compacity of the set of vectors of norm 1, there exists at least
one increasing sequence of integers (nk) such that the columns Ci(nk), the rows

Ri(nk), the reals λi(n)
λ1(n)

and the integers sj(nk) converge. Let Ci, Ri, αi and sj be

their respective limits, one deduce from (7) that (Pnk
) converge and

lim
k→∞

Pnk
=

∑

0<i≤s1(n)

CiRi + α2

∑

s1<i≤s2

CiRi + . . . .

If i1(n) 6= 1 for infinitely many n, or if λ2(n)
λ1(n)

do not converge to 0, we can choose

the sequence (nk) such that i1 ≥ 2 or α2 6= 0. Consequently – from Lemma 9 –
limk→∞ Pnk

has rank at least 2, so it is not possible that limn→∞ ‖Pn −Qn‖2 = 0
with Qn of rank 1. �
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