
HAL Id: hal-00788744
https://hal.science/hal-00788744v1

Preprint submitted on 15 Feb 2013 (v1), last revised 26 Apr 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Context-Freeness Problem for Vector Addition
Systems

Jérôme Leroux, Vincent Penelle, Grégoire Sutre

To cite this version:
Jérôme Leroux, Vincent Penelle, Grégoire Sutre. On the Context-Freeness Problem for Vector Addi-
tion Systems. 2013. �hal-00788744v1�

https://hal.science/hal-00788744v1
https://hal.archives-ouvertes.fr

On the Context-Freeness Problem for Vector
Addition Systems

Jérôme Leroux
LaBRI, UMR CNRS 5800

University of Bordeaux
Talence, France

Vincent Penelle
LIGM, UMR CNRS 8049

University of Paris Est
Marne-la-Vallée, France

Grégoire Sutre
LaBRI, UMR CNRS 5800

University of Bordeaux
Talence, France

Abstract—Petri nets, or equivalently vector addition systems
(VAS), are widely recognized as a central model for concurrent
systems. Many interesting properties are decidable for this class,
such as boundedness, reachability, regularity, as well as context-
freeness, which is the focus of this paper. The context-freeness
problem asks whether the trace language of a given VAS is
context-free. This problem was shown to be decidable by Schwer
in 1992, but the proof is very complex and intricate. The resulting
decision procedure relies on five technical conditions over a
customized coverability graph. These five conditions are shown
to be necessary, but the proof that they are sufficient is only
sketched. In this paper, we revisit the context-freeness problem
for VAS, and give a simpler proof of decidability. Our approach
is based on witnesses of non-context-freeness, that are bounded
regular languages satisfying a nesting condition. As a corollary,
we obtain that the trace language of a VAS is context-free if,
and only if, it has a context-free intersection with every bounded
regular language.

I. INTRODUCTION

Petri nets, or equivalently vectors addition systems (VAS), is
arguably one of the most studied formalisms for the modeling
and analysis of concurrent systems. Despite their fairly large
expressive power, many verification problems are decidable for
VAS: boundedness, reachability, liveness, regularity, etc. [5].
A large subset of these decidable problems can be solved
using the Karp & Miller coverability graph [11]. For instance,
regularity can be solved by checking that no cycle of the
coverability graph has a negative component [16]. The cov-
erability graph may have an Ackermannian size [12], but
most properties that are solvable using the coverability graph
can also be decided in exponential space, using Rackoff’s
technique [14], [2].

From a language viewpoint, VAS languages contain regular
languages as well as bounded context-free languages, but they
are incomparable with context-free languages [13]. The char-
acterization of the VAS languages that are context-free was
left open in [13]. In this paper, we focus on trace languages
of VAS, that is, without acceptance condition nor labeling.
Schwer showed in [15] that context-freeness is decidable for
trace languages of VAS. However, the proof is long (almost 50
pages), very complex and intricate, and the resulting decision
procedure is based on five technical conditions on an unfolding
of the coverability graph that guarantees the “iterability” of
loops (see also [17]). These five conditions are shown to

be necessary, but the proof that they are sufficient is only
sketched.

Contribution. This paper revisits the context-freeness problem
for trace languages of VAS (hereafter called the context-
freeness problem for VAS). Our approach is based on bounded
languages. Recall that a language L is said to be bounded if
L ⊆ σ∗1 · · ·σ∗k for some words σ1, . . . , σk. We introduce a
decidable sufficient condition, called witness of non-context-
freeness, that guarantees that the trace language of a VAS
intersected with σ∗1 · · ·σ∗k is not context-free.

The context-freeness problem for VAS is shown decidable
thanks to vector pushdown-automata PW that simulate the
behavior of VAS; Vector pushdown automata is an extension
of the pushdown automata that simplifies the simulation. PW
is parameterized by a finite prefix closed language W and
two sink states ⊥ and are introduced to model failures
of the simulation. When these states are not reachable in
PW the simulation succeeds and a pushdown automaton
recognizing the trace language is effectively computable from
PW . When the simulation fails and reaches the state , we
extract a witness of non-context-freeness from a run reaching
this failure state (thus, proving that the trace language is not
context-free). We show that the state ⊥ is reachable only when
W is not large enough. Since there exist finite prefix-closed
languages W such that ⊥ is not reachable in PW , we may
just refine our simulation with another W .

As main contribution of the paper, we obtain a simple and
complete proof that the context-freeness problem for VAS
is decidable. Compared to [15], our approach does not use
Ogden’s Lemma, but is solely based on a characterization
by Ginsburg of context-free bounded languages [7]. This
allows us to work with vectors of numbers instead of words.
Moreover, as a corollary, we obtain that the trace language
of a VAS is context-free if, and only if, it has a context-free
intersection with every bounded regular language.

Related Work. The main source of inspiration for this work
is Schwer’s article [15], where it is shown that the context-
freeness problem for VAS is decidable. The complexity of this
problem is still open.

Close to our work is also the regularity problem for VAS,
that asks whether the trace language of a given VAS is
regular. This problem was shown to be decidable in [16],

[9]. Recently, an EXPSPACE upper-bound was established
for this problem in [3], [2]. This upper bound was obtained
through witnesses of non-regularity of the form u1σ

∗
1 · · ·ukσ∗k.

Our research follows a similar approach, but for the context-
freeness problem.

The class of bounded languages provides a powerful tool for
under-approximating complex languages. In [6] it is proved
that from any context-free language L we can effectively
compute a bounded context-free language L′ ⊆ L with the
same Parikh image. More recently, in [4], bounded languages
are shown to be central in many other verification techniques.

In [1], the regularity of well-structured transition systems
(VAS are in this class) is studied. For labeled VAS, the trace
language is the image under a morphism (derived from the
labeling function) of the unlabeled trace language. The regu-
larity problem for labeled VAS was proved to be undecidable
in [10]. The same article shows that the question whether the
trace language of a given labeled VAS coincides with a given
regular language, is decidable.

Outline. The paper is organized as follows. Section II defines
vector addition systems and introduces the context-freeness
problem for VAS. We recall Ginsburg’s characterization of
context-free bounded languages in Section III. Section IV
presents some results on the problem of approximating the
sum of two vectors by a multiple of these vectors. The
material introduced in this section is used in Section V to
define witnesses of non-context-freeness. In Section VI, we
introduce the class of vector pushdown automata, an extension
of pushdown automata that proves to be convenient to simulate
the behavior of VAS. In Section VII, we define the vector
pushdown automata PW associated with a VAS. Finally, in
Section VIII the reachability of the failure states ⊥ or is
shown to be decidable. We conclude with an algorithm solving
the context-freeness problem for VAS.

II. VECTOR ADDITION SYSTEMS

We let N, Z, and Q denote the usual sets of natural numbers,
integers, and rational numbers, respectively. For every X ∈
{N, Z,Q} and # ∈ {<,≤,≥, >}, we write X#0 = {x ∈
X | x# 0}. Vectors (of rational numbers) and sets of vectors
are typeset in bold face. The ith component of a vector v is
written v(i). We let ei denote the ith unit vector, defined by
ei(i) = 1 and ei(j) = 0 for every index j 6= i. Given a vector
v, we write ‖v‖+ and ‖v‖− for the sets of indexes i such that
v(i) > 0 and v(i) < 0, respectively. The displacement of a
word σ = v1 . . .vk of vectors vj ∈ Qd is the sum

∑k
j=1 vj ,

denoted by ∆(σ).

We now recall the main concepts of vector addition systems.
Consider a dimension d ∈ N, with d > 0. A configuration is a
vector c ∈ Nd, and an action is a vector a ∈ Zd. Informally,
a vector addition system moves from one configuration to
the next by adding an action. In particular, an action a is
enabled in a configuration c if, and only if, c + a ≥ 0. This
operational semantics is formalized by the labeled transition
relation → ⊆ Nd×Zd×Nd defined by c a−→ c′ if c′ = c+a.

A run is a finite, alternating sequence (c0,a1, c1, . . . ,an, cn)
of configurations and actions, satisfying ci−1

ai−→ ci for all i.
The word a1 · · ·an is called the label of the run. A trace from
a configuration c is the label of some run that starts with c.
Given an initial configuration cinit ∈ Nd, we let T (cinit) denote
the set of all traces from cinit.

Remark II.1. A word a1 · · ·an ∈ (Zd)∗ is a trace from a con-
figuration c ∈ Nd if, and only if, it holds that c+

∑h
i=1 ai ≥ 0

for every h ∈ {1, . . . , n}.
A vector addition system, shortly called VAS, is a pair

〈A, cinit〉 where A is a finite subset of Zd and cinit ∈ Nd is an
initial configuration. Its operational semantics is obtained by
restricting the labeled transition relation → to actions in A.
Accordingly, a trace of a VAS 〈A, cinit〉 is a trace from cinit that
is contained in A∗. The set of all traces of 〈A, cinit〉, written
T (A, cinit) = T (cinit) ∩ A∗, is called the trace language of
〈A, cinit〉. The context-freeness problem for VAS asks whether
the trace language of a given VAS is context-free.

This problem was shown to be decidable by Schwer in [15],
but the proof is very complex and intricate. In this paper,
we revisit the context-freeness problem for VAS. Our main
contribution is a new, simpler proof of the following theorem.

Theorem II.2 ([15]). The context-freeness problem for VAS
is decidable.

First, we recall a characterization by Ginsburg of context-
free bounded languages [7].

III. BOUNDED CONTEXT-FREE LANGUAGES

In this section, we consider words over a finite alphabet
Σ. A language L ⊆ Σ∗ is bounded if L ⊆ σ∗1 · · ·σ∗k for
some words σ1, . . . , σk in Σ∗. In his book [7], Ginsburg
characterizes those bounded languages that are context-free, in
terms of semilinear sets. Our analysis of the context-freeness
problem for VAS builds upon this characterization, so we
briefly present it in this section. The reader is referred to [7]
for further details.

First, we recall the notion of semilinear sets. A periodic
set is a subset P of Nk such that 0 ∈ P and P + P ⊆ P .
Given a finite set G ⊆ Nk of generators, the periodic set
generated by G is the least periodic set containing G. Put
differently, the periodic set generated by {g1, . . . , gn} is equal
to Ng1 + · · ·+Ngn. A linear set is a subset of Nk of the form
b + P , where b ∈ Nk and P ⊆ Nk is a finitely-generated
periodic set. A semilinear set is a finite union of linear sets. Let
us recall that semilinear sets coincide with the sets definable
in FO (N,+), also known as Presburger arithmetic [8].

Ginsburg’s characterization of context-free bounded lan-
guages is expressed by a “stratification” requirement on the
generators of periodic sets. A binary relation R on {1, . . . , k}
is called nested if it satisfies the two following conditions:

(s, t) ∈ R ⇒ s ≤ t (1)
(r, t) ∈ R ∧ (s, u) ∈ R ⇒ ¬(r < s < t < u) (2)

2

Definition III.1. A finite set G ⊆ Nk is stratified if there
exists a nested relation R on {1, . . . , k} such that G ⊆⋃

(s,t)∈R Nes + Net.

We call a periodic set P stratifiable when it is generated
by a finite stratified set. By extension, a linear set b + P
is stratifiable if P is stratifiable1. We are now ready to
present Ginsburg’s characterization of context-free bounded
languages.

Theorem III.2 ([7, p. 162]). Consider a language L ⊆
σ∗1 · · ·σ∗k, where each σi ∈ Σ∗. Then L is context-free if, and
only if, the set {(n1, . . . , nk) ∈ Nk | σn1

1 · · ·σ
nk

k ∈ L} is a
finite union of stratifiable linear sets.

Example III.3. Take Σ = {a, b, c}. The language {anbmcn |
n,m ∈ N} is context-free since the set {(n1, n2, n3) ∈ N3 |
n1 = n3} is the periodic set generated by {(1, 0, 1), (0, 1, 0)},
and the latter is stratified.
Remark III.4. Deciding whether a given semilinear set can be
decomposed into a finite union of stratifiable linear sets is, to
our knowledge, still open [7, p. 163].

IV. MATCHING PAIRS AND ITERABLE PAIRS

A pair (v1,v2) of vectors in Qd such that v1 ≥ 0 and v2 6≥
0 is called a matching pair. An iterable pair is a matching
pair (v1,v2) such that ‖v2‖− ⊆ ‖v1‖+. In this section we
consider the problem of approximating the sum v1 + v2 of a
matching pair (v1,v2) by a vector m ∈ [0, 1] ·v1 ∪ [0, 1] ·v2

in such a way that r = v1 + v2 −m is a vector in Nd.

For every matching pair (v1,v2), there exists a maximal
non-negative rational number λ ≥ 0 such that v1 + λv2 ≥ 0.
We call this rational number the ratio of the matching pair
(v1,v2), and we denote it by rat(v1,v2). Observe that a
matching pair (v1,v2) is an iterable pair if, and only if,
rat(v1,v2) > 0.

We introduce the following vector called the matching sum
of (v1,v2) where λ = rat(v1,v2):

mat(v1,v2) =

®
(1− λ) · v2 if λ < 1

(1− 1
λ) · v1 if λ ≥ 1

The following equalities shows that v1 + v2 ≥ mat(v1,v2):

v1 + v2 −mat(v1,v2) =

®
v1 + λ · v2 if λ < 1
1
λ · (v1 + λ · v2) if λ ≥ 1

We introduce the vector rem(v1,v2) called the remainder of
(v1,v2) and defined by:

rem(v1,v2) = v1 + v2 −mat(v1,v2)

Note that rem(v1,v2) ≥ 0.
Example IV.1. Let v1 = (1, 2, 1) and v2 = (−1,−3, 2).
We have rat(v1,v2) = 2

3 , mat(v1,v2) = 1
3 · v2, and

rem(v1,v2) = (1
3 , 0,

7
3).

1Observe that a linear subset of Nk admits a unique decomposition of the
form b+ P .

V. WITNESS OF NON-CONTEXT-FREENESS

Given a sequence (σ1, . . . , σk) of words in A∗ (implicit in
the sequel), a pair (s, t) of indexes 1 ≤ s < t ≤ k is said
to be matching (resp. iterable) if the pair (∆(σs),∆(σt)) is
matching (resp. iterable). A matching scheme (resp. an iterable
scheme) is a nested relation R over {1, . . . , k} such that every
pair (s, t) ∈ R is matching (resp. iterable). The following set
is called the excess vector of the matching scheme R:

exc(R) =
∑

(s,t)∈R

∆(σs) + rat(s, t)∆(σt)

where rat(s, t) simply denotes rat(∆(σs),∆(σt)).

Definition V.1. A witness of non-context-freeness for a VAS
〈A, cinit〉 is a tuple (σ, . . . , σk, U) where U is a matching
scheme such that:

σ1 . . . σk is a trace of 〈A, cinit〉 (3)
∅ 6= ‖∆(σk)‖− ⊆ ‖exc(U)‖+ (4)

For all (s, t) ∈ U with t < k there exists an
iterable pair (s′, t) ∈ U with s′ ≤ s (5)

In this section we prove the following proposition (other
results proved in this section are not used in the sequel):

Proposition V.2. If there exists a witness of non-context-
freeness (σ1, . . . , σk, U) for a VAS 〈A, cinit〉 then the trace
language T (cinit) ∩ σ∗1 . . . σ∗k is not context-free.

We consider a sequence (σ1, . . . , σk) of words in A∗ such
that σ1 . . . σk is a trace from cinit and such that T (cinit) ∩
σ∗1 . . . σ

∗
k is context-free.

We introduce the set X of vectors (x1, . . . , xk) ∈ Qk≥0

such that x1∆(σ1) + · · ·+xj∆(σj) ≥ 0 for every 1 ≤ j ≤ k.
Vectors in X can be decomposed in a nested way as follows.
Given a matching pair r = (s, t), we introduce the vector mr

defined by:
mr = es + rat(s, t)et

Observe that mr ∈ X . The following lemma provides a
decomposition of vectors in X thanks to iterable schemes.

Lemma V.3. For every x ∈X there exists an iterable scheme
R such that:

x ∈
∑

j|∆(σj)≥0

Q≥0ej +
∑
r∈R

Q≥0mr

Proof. Theorem III.2 shows that

N = {(n1, . . . , nk) ∈ Nk | σn1
1 · · ·σ

nk

k ∈ T (cinit)}

is a finite union of stratifiable linear sets.
Let us consider x = (x1, . . . , xk) ∈ X . By multiplying x

by a positive natural number, we can assume that x ∈ Nk.
Since σ1 . . . σk is a trace from cinit, by monotony we deduce

that for every n ∈ N:

σ1+nx1
1 . . . σ1+nxk

k

3

r s t u

Figure 1. Lemma V.4 assumes that there exist edges (r, t) and (s, u) depicted
on the top half that are iterable pairs. In this case edges (r, u) and (s, t) are
iterable pairs depicted on the bottom half.

is also a trace from cinit. Hence (1, . . . , 1) + nx ∈ N for
every n ∈ N. Thanks to the pigeonhole principle, there exists
a stratifiable linear set that contains (1, . . . , 1) + nx for an
infinite number of possible n ∈ N. Hence, there exist a
stratifiable periodic set P and a vector b = (b1, . . . , bk) ∈ Nk,
such that (1, . . . , 1) + nx ∈ b + P for an infinite number of
n ∈ N. The Dickson’s lemma shows that x ∈ Q≥0P .

We consider a finite stratified set G that generates the
periodic set P . Let us prove that G ⊆ X . As b + Ng ⊆ N
we deduce that for every n ∈ N the following word:

σb1+ng1
1 . . . σbk+ngk

k

is a trace from cinit.
In particular cinit + ∆(σb1+ng1

1 . . . σ
bj+ngj
j) ≥ 0 for every

1 ≤ j ≤ k and for every n ∈ N. Note that this vector is equal
to cinit + ∆(σb11 . . . σ

bj
j) + nvj where vj = g1∆(σ1) + · · ·+

gj∆(σj). We deduce that vj ≥ − 1
n · (cinit + ∆(σb11 . . . σ

bj
j)).

Thus vj ≥ 0. We have proved that g ∈X .
As G is a stratified set, there exists a nested relation U

over {1, . . . , k} such that G ⊆
⋃

(s,t)∈U Q≥0es +Q≥0et. We
introduce the iterable scheme R of iterable pairs (s, t) ∈ U
and we consider the following set:

C =
∑

j|∆(σj)≥0

Q≥0ej +
∑
r∈R

Q≥0mr

Now let us prove that G ⊆ C. Let g ∈ G. There exists
(s, t) ∈ U such that g ∈ Q≥0es + Q≥0et. Assume first that
s = t. Since g ∈X we deduce that gs∆(σs) ≥ 0. If ∆(σs) ≥
0 then g ∈ C and if ∆(σs) 6≥ 0 then gs = 0 and in particular
g = 0 ∈ C. Thus, in both cases we get g ∈ C. Next assume
that s < t. Since g ∈ X we deduce that gs∆(σs) ≥ 0 and
gs∆(σs) + gt∆(σt) ≥ 0. Assume first that gs = 0. From
gt∆(σt) ≥ 0 we deduce as previously that g ∈ C. So, we can
assume that gs > 0. From gs∆(σs) ≥ 0 we get ∆(σs) ≥ 0.
Note that if gt = 0 then g ∈ C. So, we can assume that gt > 0.
Note that if ∆(σt) ≥ 0 then g ∈ C. So, we can assume that
∆(σt) 6≥ 0. In this case (∆(σs),∆(σt)) is a matching pair.
From gs∆(σs) + gt∆(σt) ≥ 0 we get ∆(σs) + gt

gs
∆(σt) ≥ 0.

By maximality of the ratio, we get rat(s, t) ≥ gt
gs

. In particular
rat(s, t) > 0 and we deduce that (s, t) is an iterable pair. Thus
(s, t) ∈ R. The equality g = (gs − gt

rat(s,t))es + gt
rat(s,t) (es +

rat(s, t)et) shows that g ∈ C.

We deduce the following lemma that is depicted in Figure 1.

Lemma V.4. For every 1 ≤ r ≤ s < t ≤ u ≤ k such that
(r, t) and (s, u) are iterable pairs then (r, u) and (s, t) are
iterable pairs.

Proof. If r = s or t = u the lemma is immediate. So, we can
assume without loss of generality that r < s and t < u. We
introduce the vector x defined by:

x = mr,t + ms,u (6)

Observe that x ∈ X . We derive from Lemma V.3 that there
exists an iterable scheme R ⊆ {r, s}×{t, u} for (σ1, . . . , σk)
such that x ∈ Q≥0er+Q≥0es+

∑
(i,j)∈RQ≥0mi,j . We obtain

that x may be written as

x =
∑

i∈{r,s}

αi · ei +
∑

(i,j)∈R

αi,j · (ei + rat(i, j) · ej) (7)

where the αi and αi,j are nonnegative rational numbers such
that αi,j = 0 when (i, j) 6∈ R. We derive from (6) and (7)
that the αi and αi,j satisfy the following system of equations:

αr + αr,u = 1− αr,t
αs + αs,t = 1− αs,u

αs,t · rat(s, t) = (1− αr,t) · rat(r, t)
αr,u · rat(r, u) = (1− αs,u) · rat(s, u)

Recall that rat(r, t) > 0 and rat(s, u) > 0 since (r, t) and
(s, u) are iterable pairs. Moreover, since R is nested, αr,t = 0
or αs,u = 0. We derive from the above system of equations
that rat(r, u) > 0 and rat(s, t) > 0. Consequently, the pairs
(r, u) and (s, t) are iterable pairs.

Now, let us assume by contradiction that there exists a
matching scheme U such that (σ1, . . . , σk, U) is a witness
of non-context-freeness for 〈A, cinit〉. In this case there exists
µ > 0 such that exc(U) + µ∆(σk) ≥ 0. We introduce the
vector x defined by:

x = µek +
∑
u∈U

mu (8)

Observe that x ∈ X . We derive from Lemma V.3 that there
exists an iterable scheme R such that:

x ∈
∑

j|∆(σj)≥0

Q≥0ej +
∑
r∈R

Q≥0mr (9)

From (8) and (9) we deduce that there exists z ∈∑
j|∆(σj)≥0 Q≥0ej such that:

µek +
∑
u∈U

mu ∈ z +
∑
r∈R

Q≥0mr

By removing from the previous membership vectors ms,t

occurring in both sides, we deduce two sequences (αu)u∈U
and (βr)r∈R of non-negative rational numbers such that
αs,tβs,t = 0 for every (s, t) ∈ U ∩R and such that:

µek +
∑
u∈U

αu ·mu = z +
∑
r∈R

βr ·mr (10)

We consider the relation Ũ of iterable pairs u ∈ U such that
αu > 0 and the set R̃ of pairs r ∈ R such that βr > 0 (these
pairs are iterable since R is an iterable scheme).

4

s s′ t′′ t′ t

R̃

Ũ

Figure 2. Iteration pairs (s′, t′) and (s′, t′′) constructed in the proof of
Lemma V.6. Edges are pairs (s, t), (s′, t′) ∈ R̃ on the top half, and
(s, t′), (s′, t′′) ∈ Ũ on the bottom half.

The following two lemmas are depicted in Figure 2.

Lemma V.5. There exists 1 ≤ s < t′ < t ≤ k such that
(s, t) ∈ R̃ and (s, t′) ∈ Ũ .

Proof. We consider t = k. Since µ > 0, we deduce from (10)
that there exists r ∈ R such that βr > 0 and mr(k) > 0.
Hence, there exists s < k such that r = (s, k). Note that
(s, k) ∈ R̃. Since βr > 0 and mr(s) > 0, we derive from (10)
that there exists u ∈ U such that αu > 0 and mu(s) > 0.
There exists t′ > s such that u = (s, t′). Note that t′ = k
implies u = r and αuβr > 0 which is a contradiction. Thus
t′ < k. Since U is a witness, we derive from (5) that there
exists s0 ≤ s such that (s0, t

′) is an iterable pair. Since s0 ≤
s < t′ < t and (s0, t

′) and (s, t) are iterable pairs, Lemma V.4
shows that (s, t′) is an iterable pair. Thus (s, t′) ∈ Ũ .

Lemma V.6. For every 1 ≤ s < t′ < t ≤ k such that (s, t) ∈
R̃ and (s, t′) ∈ Ũ , there exist s < s′ < t′′ < t′ such that
(s′, t′) ∈ R̃ and (s′, t′′) ∈ Ũ .

Proof. From (s, t′) ∈ Ũ we get αs,t′ > 0 and ms,t′(t
′) > 0.

As ∆(σt′) 6≥ 0 we get z(t′) = 0. From (10) we deduce that
there exists r ∈ R such that βr > 0 and mr(t

′) > 0. Hence
r ∈ R̃ and there exists s′ < t′ such that r = (s′, t′). Since
R is nested and (s, t) ∈ R we deduce that s ≤ s′. Note that
s = s′ implies βr = βs,t′ > 0 which is in contradiction with
αs,t′βs,t′ = 0. Thus s < s′ < t′ < t. Since ∆(σs′) ≥ 0
we get µek(s′) = 0. Since βr > 0 and mr(s

′) > 0, we
deduce from (10) that there exists u ∈ U such that αu > 0
and mu(s′) > 0. Hence, there exists t′′ > s′ such that u =
(s′, t′′). Note that if t′ < t′′ then s < s′ < t′ < t′′ and from
(s, t′), (s′, t′′) ∈ U we get a contradiction with the nestedness
of U . Thus t′′ ≤ t′. Note that t′′ = t′ implies αu = αs′,t′ > 0
which is in contradiction with αs′,t′βs′,t′ = 0. Thus t′′ < t′.
In particular t′′ < k and since U is a witness, we derive
from (5) that there exists s0 ≤ s′ such that (s0, t

′′) is an
iterable pair. Since (s0, t

′′) and (s′, t′) are iterable pairs and
s0 ≤ s′ < t′′ < t′, Lemma V.4 shows that (s′, t′′) is an iterable
pair. We deduce that u ∈ Ũ .

From the two previous lemmas, we deduce an infinite
sequence (si, ti)i≥1 such that 1 ≤ si < ti+1 < ti ≤ k,
(si, ti) ∈ R̃, and (si, ti+1) ∈ Ũ . Informally, this means that
the picture of Figure 2 can be iterated to produce an infinite

spiral. We get a contradiction since the set {1, . . . , k} is finite.
We have proved Proposition V.2.

VI. VECTOR PUSHDOWN AUTOMATA

We introduce an extension of pushdown automata that will
be convenient in the next section to simulate the behavior
of a VAS. Informally, vector pushdown automata are finite-
state automata equipped with two unbounded storage devices:
a counter r holding a vector in Qd≥0, and a pushdown stack
z, where each stack symbol is a vector in Qd≥0. Actions on
the counter are limited to translations by a vector in Qd≥0, and
actions on the stack are the usual push and pop operations.
In addition, the automaton may test linear constraints, with
nonnegative coefficients, involving its counter and the sum
of all stacked vectors. Formally, we define the set Op =
Opcnt ∪ Oplifo ∪ Optest of operations by

Opcnt = {add(v) | v ∈ Qd≥0}
Oplifo = {push(γ), pop(γ) | γ ∈ Qd≥0}
Optest = {test(ϕ) | ϕ ∈ Φ}

where Φ is the set of all Boolean combinations of constraints
d∑
i=1

αir(i) +
d∑
i=1

βi∆(z)(i) # c

with αi, βi ∈ N, # ∈ {≤,≥}, and c ∈ Z. It is understood
that a formula ϕ ∈ Φ has free variables r(1), . . . , r(d) and
∆(z)(1), . . . ,∆(z)(d).

A vector pushdown automaton is a 5-tuple P =
〈Q, qinit,Σ, T 〉 where Q is a set of states, qinit ∈ Q is the initial
state, Σ is the input alphabet, and T ⊆ Q×(Σ∪{ε})×Op×Q
is a set of transitions. There is no explicit set of final states as
we won’t need them. Note, also, that the sets Q and T may
be infinite. A transition (q, `, op, q′), written q

op−→̀ q′, means
that the automaton moves from state q to state q′, by reading
the input letter ` ∈ (Σ ∪ {ε}) and performing op. We call `
the label of t, and op its operation.

We give the operational semantics of P as a labeled tran-
sition system. The set of configurations is C = Q × Qd≥0 ×
(Qd≥0)∗, and the initial configuration is (qinit,0, ε). The step

relation of a transition t = (q, `, op, q′), written t→, is the least
binary relation on C satisfying the following conditions:

(q, r, z)
t→ (q′, r + v, z) if op = add(v)

(q, r, z)
t→ (q′, r, zγ) if op = push(γ)

(q, r, zγ)
t→ (q′, r, z) if op = pop(γ)

(q, r, z)
t→ (q′, r, z) if op = test(ϕ) and

r,∆(z) |= ϕ

A run in P is a finite, alternating sequence
(c0, t1, c1, . . . , tk, ck) of configurations ci ∈ C and transitions
ti ∈ T , satisfying ci−1

ti→ ci for all i. The label of the run
is the word `1 · · · `k ∈ Σ∗, where each `i is the label of ti.
For brevity, we will sometimes replace the transition t by
its label and/or operation when dealing with steps and runs.

5

The language recognized by P is the set of words in Σ∗ that
label some run from the initial configuration. A state (resp.
transition, configuration) is called reachable in P when it
occurs on some run from the initial configuration.

Proposition VI.1. The language recognized by a vector push-
down automaton with finitely many states and transitions is
effectively context-free.

Proof. Let P = 〈Q, qinit,Σ, T 〉 be a vector pushdown automa-
ton, and assume that Q and T are finite. Observe that the
language recognized by P is preserved when every vector
occurring in the operations of T is multiplied by the same
positive natural number. So we may assume, w.l.o.g., that
every vector in the operations of T is in Zd. To prove that the
language recognized by P is context-free, we construct from
P a new vector pushdown automaton Q without add(v) nor
test(ϕ) operations. Let us define K to be the maximal constant
c occurring in test(ϕ) operations of T . The constant K acts
as a threshold to abstract large components of the counter and
of the sum of stacked vectors. Formally, the abstraction of a
vector x ∈ Nd is the vector x] in ({0, . . . ,K}∪{?})d, defined
by x](i) = ? if x(i) > K and x](i) = x(i) otherwise. The
counter of P is replaced by its abstraction in Q. This is possible
because all operations are monotonic w.r.t. the counter. As Q’s
abstracted counter may take only finitely values, we store it
as part of the state. We also maintain, in Q, the abstraction
of the sum of all stacked vectors. To this end, Q encodes a
stack content γ1 · · ·γh of P by γ1s1 · · ·γhsh, where each
si satisfies si = (

∑i
j=1 γj)

]. Remark that Q needs only
finitely many additional states and transitions to maintain this
encoding. Obviously, the information provided by the vector
s on top of the stack is sufficient (together with the abstracted
counter) to faithfully simulate the test(ϕ) operations of P.
We obtain that P and Q recognize the same language. Since
Q contains only stack operations in Oplifo and has finitely
many states and transitions, the language that it recognizes is
context-free.

VII. SIMULATING VAS WITH VECTOR PUSHDOWN
AUTOMATA

For the remainder of the paper, we assume a fixed VAS
〈A, cinit〉. We introduce a vector pushdown automaton PW ,
with infinitely many states and transitions, that simulates the
behavior of 〈A, cinit〉. This simulation is parameterized by a
prefix-closed subset W of A∗, called the support set of PW .
As will be clear later, the support set W has the effect of
restricting the behavior of PW . In particular, PW has finitely
many reachable states and transitions when W is finite. Note,
however, that the support set W need not be finite, in general.

Formally, given a prefix-closed subset W of A∗, the vector
pushdown automaton PW , with input alphabet A, is defined
as follows. States of PW are pairs q = (p, w) where p is a
vector in Qd and w is a word in W ∪WA. In addition, two
sink states ⊥ and are introduced to model failures of the
simulation. The initial state is (0, ε). The transitions of PW are
formally defined hereafter, but, first, let us explain its behavior

informally. There are two operational modes, depending on the
state’s first component p. If p = 0 then PW is idle, i.e., ready
to read an input symbol. Otherwise, PW is processing the
vector p. Let us describe a run of PW over an input word u
that is a trace of 〈A, cinit〉. Initially, PW is in the state (0, ε),
with an empty counter and an empty stack. First, PW reads
input symbols and appends them to the support w that is part
of the state. As soon as the support ends with a cycle2 σ 6= ε
such that ∆(σ) ≥ 0, PW extracts the cycle σ from the support,
pushes ∆(σ) on the stack, and moves to the state (0, w′) where
w = w′σ. Then, PW resumes its computation: it appends the
input to the support and extracts cycles. However, extraction
of cycles receives help from the stack: the condition ∆(σ) ≥ 0
becomes s+ ∆(σ) ≥ 0, where s is the sum of all previously
extracted cycles. When PW extracts a cycle σ with ∆(σ) 6≥ 0,
it moves to the processing state (∆(σ), w′) instead of pushing
∆(σ) on the stack. Then, vectors are popped from the stack
and used to match ∆(σ). Each time, the remainder is added
to the counter of PW . If ∆(σ) gets fully matched with the
stack, PW moves to the idle state (0, w′). If, on the contrary,
the stack becomes empty before ∆(σ) is fully processed, PW
moves to the failure state . Another cause for failure is when
the component w of the state gets outside of the set support set
W (after reading an input symbol). In that case, PW moves
to the failure state ⊥.

We now make the above ideas more precise. To simplify the
presentation, we use a couple notational shortcuts for formulas
ϕ used in test(ϕ) operations. Given a vector v ∈ Qd and
∈ {≤,≥},

r + ∆(z) + v# 0 stands for
d∧
i=1

r(i) + ∆(z)(i) # − v(i)

‖v‖+ ⊆ ‖r‖+ stands for
∧

v(i)>0

r(i) > 0

The formula Extr(w) used in the first rule specifies that an
“extract cycle” transition (see the third rule) can be taken. This
formula is defined by

Extr(w) =
∨

σ 6=ε suffix of w

r + ∆(z) + ∆(σ) ≥ 0

Formally, the (infinite) set of transitions of PW is given by
the following rules, where p ranges over Qd, w ranges over
W , and γ ranges over Qd≥0.

• Read an input vector. For every vector a ∈ A,

(0, w)
test(¬Extr(w))−−−−−−−−−→ · test(r+∆(z)+v≥ 0)−−−−−−−−−−−−→

a
(0, wa)

where v = cinit + ∆(w) + a.
• Fail with missing support. If w ∈WA \W ,

(0, w)→ ⊥

2In our setting, a cycle is nothing more than a non-empty sequence of
actions in A∗. We use the term cycle since the suffixes that are extracted by
PW would be cycles for a vector addition system with states.

6

• Extract cycle. For every word σ ∈ A∗ with wσ ∈W and
σ 6= ε,

(0, wσ)
test(r+∆(z)+∆(σ)≥ 0)−−−−−−−−−−−−−−−→ (∆(σ), w)

• Positive processing. If p > 0,

(p, w)
test(‖p‖+⊆‖r‖+)−−−−−−−−−−−→ · add(p)−−−−→ (0, w)

(p, w)
test(‖p‖+ 6⊆ ‖r‖+)−−−−−−−−−−−→ · push(p)−−−−→ (0, w)

• Non-positive processing. If p 6≥ 0,

(p, w)
pop(γ)−−−−→ · add(rem(γ,p))−−−−−−−−→ (mat(γ,p), w)

• Fail with empty stack. If p 6≥ 0,

(p, w)
∆(z) = 0−−−−−→

The vector pushdown automaton PW might seem useless at
first glance, since it has infinitely many states and infinitely
many stack symbols. But, in fact, it is the main ingredient of
our upcoming algorithm (see Figure 3 page 10) solving the
context-freeness problem for VAS. Before that, we need to
establish a few preparatory results.

Let us first prove that PW faithfully simulates the VAS
〈A, c!〉 when it does not fail. The following notation will
be helpful to formally present the simulation of 〈A, c!〉 by
PW . Given a configuration (p, w, r, z) of PW , we denote by
val(p, w, r, z) its value, defined by

val(p, w, r, z) = c! + p+ ∆(w) + r + ∆(z) (11)

Observe that the value remains constant under the application
of “extract cycle” and “processing” transitions. It follows, by
a routine induction, that

val(p, w, r, z) = c! + ∆(u) ≥ 0 (12)

for every run (0, ε,0, ε)
∗−→
u

(p, w, r, z) in P. Hence, the
language recognized by PW is contained in the trace language
of 〈A, c!〉. The reverse inclusion does not hold in general, but
we provide a sufficient condition for it. Formally, we say that
PW succeeds if neither ⊥ nor is reachable in PW .

Lemma VII.1. If PW succeeds then it contains, for every
reachable configuration (0, w, r, z), a run (0, w, r, z)

∗−→
ε

(0, w′, r′, z′) such that r′,∆(z′) |= ¬Extr(w′).

Proof. Consider a reachable configuration (0, w, r, z). We
show that, if r,∆(z) |= Extr(w), then PW may reach, from
the configuration (0, w, r, z), a configuration with state (0, w′)
where w′ is a proper prefix of w. The lemma will follow by
induction on |w|.

Assume that r,∆(z) |= Extr(w). There exists a non-empty
suffix σ of w such that r + ∆(z) + ∆(σ) ≥ 0. Moreover,
w ∈ W since ⊥ is not reachable in PW . Hence, PW may
move, via an “extract cycle” transition, to a configuration with
state (p′, w′), where w = w′σ. If p′ 6≥ 0, then PW may take
“non-positive processing” transitions and reach a configuration
with state (p′′, w′) for some p′′ ≥ 0. Indeed, the stack may

not become empty in the process since PW succeeds. So we
may assume, w.l.o.g., that p′ ≥ 0. If p′ = 0 then we are done.
Otherwise, PW may take a “positive processing” transition and
reach a configuration with state (0, w′).

Proposition VII.2. If PW succeeds then it recognizes the trace
language of 〈A, c!〉.

Proof. It remains to show that the language recognized by
PW contains the trace language of 〈A, c!〉. We show by
induction on |u| that, for every trace u of 〈A, c!〉, there exists
a run (0, ε,0, ε)

∗−→
u

(0, w, r, z) in P. The basis u = ε is
trivial. To prove the induction step, consider a trace ua of
〈A, c!〉, and assume that (0, ε,0, ε)

∗−→
u

(0, w, r, z) is a run in
P. Since PW succeeds, we derive from Lemma VII.1 that
PW contains a run (0, w, r, z)

∗−→
ε

(0, w′, r′, z′) such that
r′,∆(z′) |= ¬Extr(w′). Observe that

c! + ∆(w′) + r′ + ∆(z′) + a = val(0, w′, r′, z′) + a

= c! + ∆(u) + a

≥ 0

Therefore, PW contains a “read” transition (0, w′, r′, z′)
t−→
a

(0, w′a, r′, z′), which concludes the proof.

Now, let us prove that if PW reaches the state then
〈A, cinit〉 admits a witness of non-context-freeness. This wit-
ness is obtained from the sequence (σ1, . . . , σk) of cycles
extracted along the run and the nested relation corresponding
to the matching push/pop operations.

A sequence (σ1, . . . , σk) of words in A∗ is said to be
compensable if ‖∆(σj)‖− ⊆ ‖∆(σ1)‖+ ∪ . . .∪ ‖∆(σj−1)‖+.
In this case the set of indexes I = ‖∆(σ1)‖+∪. . . ∪|∆(σk)‖+
is called the set of increased components.

Lemma VII.3. For every compensable sequence (σ1, . . . , σk)
there exists a sequence n1, . . . , nk ∈ N>0 such that the vector
vj = ∆(σn1

1 . . . σ
nj

j) is in Nd for every 1 ≤ j ≤ k and such
that ‖vk‖+ is the set of increased components.

Proof. We prove the lemma by induction over k. The case
k = 0 is immediate. Assume the property proved for a k ∈ N
and let us consider a compensable sequence (σ1, . . . , σk+1).
By induction, there exists n1, . . . , nk > 0 such that the vector
vj = ∆(σn1

1 . . . σ
nj

j) is in Nd for every 1 ≤ j ≤ k and such
that ‖vk‖+ is the set of positive components of (σ1, . . . , σk).
Since ‖∆(σk+1)‖− ⊆ ‖∆(σ1)‖+ ∪ . . .∪ ‖∆(σk)‖+ = ‖vk‖+
we deduce that there exists m ∈ N such that m · vk +
∆(σk+1) ≥ 0. Let us consider the sequence n′1, . . . , n

′
k+1

defined by n′j = (m+1)nj if j ≤ k and n′k+1 = 1 and observe
that this sequence proves the induction at rank k + 1.

In the sequel we show that the cycles extracted along any
run of PW are compensable. We introduce the set QdI of
vectors v ∈ Qd such that v(i) = 0 for every i 6∈ I , and
the set A∗I of words u ∈ A∗ such that ∆(u) ∈ QdI .

7

Lemma VII.4. Let us consider v ∈ Nd and a subset I ⊆
‖v‖+. If there exists a trace from a configuration c labeled
by a word in A∗Ia1 . . .A

∗
Ian then there exists r ∈ N and a

trace from c+ r · v labeled by a1 . . .an

Proof. Let us consider words u1, . . . , un ∈ A∗I such that
u1a1 . . . unan is a trace from c. We consider the configuration
cj = c + ∆(u1a1 . . . ujaj). Since I ⊆ ‖v‖+ there exists
r ∈ N such that the vector xj = c + r · v + ∆(a1 . . .aj)
satisfies xj(i) ≥ 0 for every i ∈ I and for every 0 ≤ j ≤ n.
Since xj(i) = cj(i) for every i 6∈ I we get xj ∈ Nd. As
xj−1

aj−→ xj for every 1 ≤ j ≤ k, we have proved that there
exists a trace from c+ r · v labeled by a1 . . .an.

A sequence (σ1, . . . , σk) is said to be insertable in a
trace u from cinit if there exist a decomposition of u into
u = u1 . . . uk+1 and a sequence m1, . . . ,mk ∈ N>0 such that
u1σ

m1
1 . . . ukσ

mk

k uk+1 is a trace from cinit.

Lemma VII.5. For every configuration (p,a1 . . .an, r, z)
reachable in PW by a run labeled by u, the sequence
(σ1, . . . , σk) of cycles extracted along the run is insertable in
u, and it is compensable with a set I of increased components
such that p, r ∈ QdI , z ∈ (QdI)∗, and such that:

u ∈ A∗Ia1 . . .A
∗
IanA

∗
I

Proof. The proof is performed by induction over the length
of runs in the vector pushdown automaton. For the empty run
the proof is immediate. So, let us assume that we reach a
configuration (p, w, r, z) with a run labeled by u. We denote
by (σ1, . . . , σk) the sequence of cycles extracted along the
run. Let us consider a configuration (p′, w′, r′, z′) reachable in
one step from (p, w, r, z) in PW . We assume that (p, w, r, z)
satisfies the lemma. That means (σ1, . . . , σk) is insertable in
u, and it is compensable with a set I of increased components
such that p, r ∈ QdI , z ∈ (QdI)∗, and u ∈ A∗Ia1 . . .A

∗
IanA

∗
I

where w = a1 . . .an.
A routine case inspection clearly shows that we can only

consider the “extract cycle” transition since the induction is
immediate for the other transitions. In this case w can be
decomposed into w = w′σ where σ is a non-empty word,
p′ = ∆(σ), r′ = r, z′ = z, and ∆(σ) + r + ∆(z) ≥ 0.

Observe that ∆(σj)(i) = 0 for every i 6∈ I . In partic-
ular r(i) = 0 and ∆(z)(i) = 0 for every i 6∈ I . Since
∆(σ) + r + ∆(z) ≥ 0 we deduce that ‖∆(σ)‖− ⊆ I . Thus
(σ1, . . . , σk, σ) is compensable. Let us consider the set I ′

of components increased by this sequence and observe that
p′, r′ ∈ QdI′ . Moreover, since A∗I ⊆ A∗I′ , we get z′ ∈ (QdI′)∗.

Note that u ∈ A∗Ia1A
∗
I . . .anA

∗
I . Since w = w′σ,

there exists p ∈ {1, . . . , n} such that w = a1 . . .ap−1

and σ = ap . . .an. We deduce that u can be decomposed
into u = u′σ′ where u′ ∈ A∗Ia1 . . .A

∗
Iap−1 and σ′ ∈

A∗IapA
∗
I . . .anA

∗
I . Observe that ∆(σ′)(i) = ∆(σ)(i) for

every i 6∈ I . Thus σ′ ∈ A∗I′ . From A∗I ⊆ A∗I′ we deduce
that u ∈ A∗I′a1A

∗
I′ . . .ap−1A

∗
I′ .

Lemma VII.3 shows that there exists a sequence
n1, . . . , nk ∈ N>0 such that vj = ∆(σn1

1 . . . σ
nj

j) is a

vector in Nd and such that ‖vk‖+ = I . Since (σ1, . . . , σk)
is insertable in u, there exists a decomposition of u into
u = u1 . . . uk+1 and a sequence m1, . . . ,mk ∈ N>0 such
that u1σ

m1
1 . . . ukσ

mk

k uk+1 is a trace from cinit. By monotony,
observe that for every r ∈ N there exists a configuration cr
such that:

cinit
u1σ

m1+rn1
1 ...ukσ

mk+rnk
k

uk+1−−−−−−−−−−−−−−−−−−−→ cr

Let us consider the configuration c′ such that cinit
u′−→ c′.

Let us prove that cr(i) ≥ c′(i) for every i 6∈ I . Let i 6∈ I .
We introduce the configuration c such that c′ σ

′

−→ c. We have
cr(i) = c(i) since uj ∈ A∗I . We have c = c′ + ∆(σ′). Since
∆(σ′)(i) = ∆(σ)(i), we deduce that c(i) = c′(i) + ∆(σ)(i).
As ‖∆(σ)‖− ⊆ I we get c(i) ≥ c′(i). Thus cr(i) ≥ c′(i) for
every i 6∈ I .

Let us consider r ∈ N large enough such that r ≥ c′(i)
for every i ∈ I . As cr(i) ≥ r for every i ∈ I we get
cr ≥ c′. Since σ′ is a trace from c′ we deduce that σ′ is
also a trace from cr. Lemma VII.4 shows that there exists
r′ ∈ N such that σ is a trace from cr + r′vk. We deduce
that u0σ

m1+r+r′

1 u1 . . . σ
mk+r+r′

k ukσ is a trace from cinit. Thus
(σ1, . . . , σk, σ) is insertable in u.

The following lemma shows that a “partial witness” of non-
context-freeness can be obtained from any run of PW . This
“partial witness” is inductive and it will provide a witness of
non-context-freeness when the target configuration can execute
a “fail with empty stack” transition. The proof is obtain with
an immediate induction over the length of the run. The nested
relation R introduced in this lemma corresponds intuitively
to the matching push/pop operations performed along the run.
The content of the stack is obtained from unmatched elements
corresponding to free indexes of R. An index j ∈ {1, . . . , k}
is said to be free for a nested relation R over {1, . . . , k} if
there does not exist (s, t) ∈ R satisfying s < j < t.

Lemma VII.6. For every configuration (p, w, r, z) reachable
in PW by some run, there exists a matching scheme R for the
sequence (σ1, . . . , σk) of cycles extracted along the run and
a sequence j1 < · · · < jm of free indexes for R such that:
• R satisfies condition (5) of Definition V.1,
• ‖r‖+ = ‖exc(R)‖+,
• The set of words (Q>0∆(σj1)) . . . (Q>0∆(σjm)) con-

tains z if p = 0 and it contains zp otherwise, and
• jm = k if p 6≥ 0.

When the state is reachable in PW , a witness of non-
context-freeness can be derived from the “partial witness”
introduced in the previous lemma.

Proposition VII.7. If the state is reachable in PW then
〈A, cinit〉 admits a witness of non-context-freeness.

Proof. There exists a configuration (p, w, r, z) reachable in
PW by a run labeled by u such that p 6≥ 0 and ∆(z) = 0.
Since the vector p + z + ∆(z) is constant during the “non-
positive processing” and it is in Qd≥0 just after an “extract

8

cycle” transition, we deduce that p + r + ∆(z) ≥ 0. Hence
from ∆(z) = 0, we get ‖p‖− ⊆ ‖r‖+. Lemma VII.5 shows
that the sequence (σ1, . . . , σk) of cycles extracted along the
run is insertable in U . Lemma VII.6 shows that there exists a
matching scheme R for (σ1, . . . , σk) satisfying condition (5)
of Definition V.1 and such that ‖r‖+ = ‖exc(R)‖+ and p ∈
Q>0∆(σk).

There exists a decomposition of u into u = u1 . . . uk+1

and a sequence m1, . . . ,mk ∈ N>0 such that
u1σ

m1
1 . . . ukσ

mk

k uk+1 is a trace from cinit. We consider
the tuple (u1, σ

m1
1 , . . . , uk, σ

mk

k , U) where U is the matching
relation U = {(2s, 2t) | (s, t) ∈ R}. Just observe that this
tuple is a witness of non-context-freeness for 〈A, cinit〉.

Since the trace language of a VAS that admits a witness
of non-context-freeness is not context-free, we deduce the
following corollary.

Corollary VII.8. If the state is reachable in PW then the
trace language of 〈A, cinit〉 is not context-free.

VIII. DECIDABILITY OF THE CONTEXT-FREENESS
PROBLEM FOR VAS

We now show how the vector pushdown automaton PW ,
introduced in the previous section, can be used to solve the
context-freeness problem for VAS. There are two possible
causes for failure of PW . Corollary VII.8 shows that the
trace language of 〈A, cinit〉 is not context-free when is
reachable in PW . However, reachability of ⊥ in PW only
means, intuitively, that the support set W is too small. We
show that there exists a finite support set that is large enough.

Proposition VIII.1. There exists a finite prefix-closed subset
W of A∗ such that ⊥ is not reachable in PW .

Proof. Note that ⊥ is not reachable in PA∗ . Let W be the set
of all words w ∈ A∗ such that the state (0, w) is reachable in
PA∗ . It is readily seen that W is prefix-closed. Observe that
every configuration (0, w, r, z) that is reachable in PW is also
reachable in PA∗ . Therefore, ⊥ is not reachable in PW . We
show that W is finite, which will conclude the proof of the
lemma. Assume, by contradiction, that W is infinite. Since
A is finite, we obtain by König’s Lemma that there exists
an infinite sequence a1,a2, . . . of actions such that wn =
a1 · · ·an ∈ W for every n ∈ N. Let n ∈ N. By definition of
W , the state (0, wn+1) = (0, wnan+1) is reachable in PA∗ .
It follows that PA∗ contains a run of the form

(0, ε,0, ε)
∗−→ (0, wn, rn, zn)

test(¬Extr(wn))−−−−−−−−−−→ · · · (13)

Define vn = val(0, wn, rn, zn). We derive from (12) that
vn ∈ Nd for every n ∈ N. By Dickson’s Lemma, there exists
indexes m < n such that vm ≤ vn. It follows that

∆(wm) + rm + ∆(zm) ≤ ∆(wn) + rn + ∆(zn)

Therefore, rn+∆(zn)+∆(σ) ≥ 0, where σ = am+1 · · ·an.
Observe that σ is a non-empty suffix of wn. We obtain that
rn,∆(zn) |= Extr(wn), which contradicts (13).

Even when the support set W is finite, PW has infinitely
many states and transitions, which is inadequate for algorith-
mic purposes. To address this issue, we restrict PW to its
reachable states and transitions. Define QrW and T rW to be
the sets of states and transitions that are reachable in PW ,
respectively. Clearly, the reduced vector pushdown automaton
PrW = 〈QrW , (0, ε),A, T rW 〉 has the same runs from the initial
configuration as PW . So it recognizes the same language as
PW . However, PrW still contains vectors of rational numbers
in the state and in the stack. We first establish a sufficient
condition for components of these vectors to be integers.

Lemma VIII.2. For every configuration (p, w, r,γ1 · · ·γh)
reachable in PW , the components p(i) and γ1(i), . . . ,γh(i)
are integers for every index i such that r(i) = 0.

Proof. The lemma obviously holds for the initial config-
uration (0, ε,0, ε). We show that the lemma condition is
preserved by every step of PW . Consider a step (p, w, r, z)

t−→
(p′, w′, r′, z′) where t is a transition of PW , and assume that
the lemma holds for (p, w, r, z). We proceed by case analysis
on the transition t.

If t is a “non-positive processing” transition, then it pops a
vector γ ∈ Qd≥0 from the stack z and adds rem(γ,p) to the
counter r. We get that p′ = mat(γ,p), r′ = r + rem(γ,p),
and z = z′γ. Recall that 0 ≤ r and 0 ≤ rem(γ,p). Consider
an index i ∈ {1, . . . , d} such that r′(i) = 0. We derive from
r′ = r + rem(γ,p) that r(i) = rem(γ,p)(i) = 0. According
to the induction hypothesis, p(i) and γ(i) are both integers.
Recall that γ + p = mat(γ,p) + rem(γ,p). It follows that
p′(i) = γ(i) + p(i) is an integer. Moreover, as z′ is a prefix
of z, we obtain that the lemma holds for (p′, w′, r′, z′).

The other cases for t immediately follow from the induction
hypothesis.

Proposition VIII.3. For every finite subset W ⊆ A∗, the sets
QrW and T rW are finite and computable from W and 〈A, cinit〉.

Proof. We introduce two sets, ΓW ⊆ Qd≥0 and MW ⊆ Qd,
and show that they contain the sets of reachable stack symbols
and of reachable vectors p, respectively. Firstly, ΓW is the set
of all vectors k

∆(σ)(i)∆(σ) such that
• σ is a suffix of some word in W verifying ∆(σ) ≥ 0,
• i is an index in {1, . . . , d} with ∆(σ)(i) > 0, and
• k ∈ {1, . . . ,∆(σ)(i)}.

Secondly, MW is the least subset of Qd satisfying the two
following conditions:
• ∆(σ) ∈MW for every w ∈W and every suffix σ of w,
• mat(γ,m) ∈ MW for every γ ∈ ΓW and m ∈ MW

with m 6≥ 0.
It is readily seen that ΓW is finite and computable. Hence,
there exists η > 0 such that η ≤ γ(i) for all γ ∈ ΓW and
i ∈ ‖γ‖+. Observe that for every γ ∈ ΓW and m ∈ Qd
with m 6≥ 0, if m 6= mat(γ,m) and mat(γ,m) 6≥ 0 then
m(i) ≤ mat(γ,m)(i) for all i ∈ ‖m‖− and m(j) + η ≤
mat(γ,m)(j) for some j ∈ ‖m‖−. It follows that MW is
also finite, and, hence, it is computable.

9

ContextFree (A, cinit)

1 foreach finite prefix-closed subset W of A∗ do
2 if ⊥ is not reachable in PW then
3 if is reachable in PW then
4 return no

5 else
6 return yes

Figure 3. Algorithm solving the context-freeness problem for VAS.

Let us show that p ∈ MW and z ∈ Γ∗W for every
configuration (p, w, r, z) that is reachable in PW . The proof
is by induction on the length of runs in PW from its initial
configuration. The initial configuration (0, ε,0, ε) obviously
satisfies the desired property. Consider a run

(0, ε,0, ε)
∗−→ (p, w, r, z)

t−→ (p′, w′, r′, z′)

where t is a transition of PW , and assume that p ∈MW and
z ∈ Γ∗W . A routine inspection of PW ’s transition rules shows
that p′ ∈MW and z′ ∈ Γ∗W . We detail the non-trivial cases.

If t is a “non-positive processing” transition, then p 6≥ 0 and
the vector γ that is popped from the stack satisfies z = z′γ.
Since z ∈ Γ∗W , we get that γ ∈ ΓW . It follows from the
definition of MW that p′ = mat(γ,p) ∈MW .

If t is a “positive processing” transition and ‖p‖+ 6⊆ ‖r‖+,
then r(i) = 0 < p(i) for some index i ∈ {1, . . . , d}. It follows
from Lemma VIII.2 that p(i) ∈ N. Moreover, since p ∈MW

and p > 0, we obtain that p = µ∆(σ) where σ is a suffix
of some word in W verifying ∆(σ) ≥ 0, and µ is a rational
number such that 0 < µ ≤ 1. Observe that ∆(σ)(i) > 0 and
µ = p(i)

∆(σ)(i) . This entails that p ∈ ΓW , hence, z′ = zp is
contained in Γ∗W .

We have shown that p ∈ MW for every state (p, w) in
QrW , and γ ∈ ΓW for every push(γ) or pop(γ) operation
of T rW . Therefore, by restricting γ and p to ΓW and MW ,
respectively, we obtain a computable finite set Q]W of states
of PW and a computable finite set T]W of transitions of PW
such that QrW ⊆ Q

]
W and T rW ⊆ T

]
W . Thus, the sets QrW and

T rW are both finite. Clearly, the vector pushdown automaton
P
]
W = 〈Q]W , (0, ε),A, T

]
W 〉 has the same runs from the initial

configuration as PW . We derive from Proposition VI.1 that the
finite sets QrW and T rW are computable.

We are now equipped with the required ingredients to
present our algorithm solving the context-freeness problem
for VAS (see Figure 3). The algorithm looks for a finite
support set W that is large enough, i.e., such that ⊥ is not
reachable in PW . Then the algorithm returns yes if PW
succeeds, and no otherwise. Proposition VIII.3 guarantees
that the tests performed at lines 2 and 3 are computable.
Termination of this algorithm follows from Proposition VIII.1.
Its correctness derives from Corollary VII.8 for line 4, and
from Propositions VI.1 and VII.2 for line 6. This concludes our
proof that the context-freeness problem for VAS is decidable.

Remark VIII.4. When ContextFree (A, cinit) returns yes, a
finite prefix-closed subset W of A∗ such that PW succeeds
has been computed by the algorithm. According to Propo-
sition VIII.3, the reduced vector pushdown automaton PrW
has finitely many states and transitions, and is computable.
We derive from Proposition VI.1 that the trace language of
〈A, cinit〉 is effectively context-free.

IX. CONCLUSION

When the trace language of a VAS 〈A, cinit〉 is not context-
free, the state is reachable in PW , where W = A∗.
Proposition VII.7 shows that 〈A, cinit〉 admits a witness of
non-context-freeness. We derive from Proposition V.2 that
the intersection of the trace language of 〈A, cinit〉 with a
bounded regular language is not context-free. Since context-
free languages are closed under intersection with regular
languages, we obtain the following characterization, which
cannot be derived from Schwer’s proof (see [15, p. 224]).

The trace language of a VAS is context-free if,
and only if, it has a context-free intersection with
every bounded regular language.

We conjecture, based on this characterization, that the context-
freeness problem for VAS is solvable in exponential space.

REFERENCES

[1] P. A. Abdulla, G. Delzanno, and L. V. Begin. A classification of the
expressive power of well-structured transition systems. Inf. Comput.,
209(3):248–279, 2011.

[2] M. Blockelet and S. Schmitz. Model checking coverability graphs of
vector addition systems. In Proc. MFCS’11, volume 6907 of LNCS,
pages 108–119. Springer, 2011.

[3] S. Demri. On selective unboundedness of vass. In Proc. INFINITY’10,
volume 39 of EPTCS, pages 1–15, 2010.

[4] J. Esparza, P. Ganty, and R. Majumdar. A perfect model for bounded
verification. In Proc. LICS’12, pages 285–294, 2012.

[5] J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey.
Bulletin of the EATCS, 52:244–262, 1994.

[6] P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproxima-
tions. In Proc. CAV’10, Lecture Notes in Computer Science, pages
600–614. Springer, 2010.

[7] S. Ginsburg. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, Inc., New York, NY, USA, 1966.

[8] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and
languages. Pacific J. Math., 16(2):285–296, 1966.

[9] A. Ginzburg and M. Yoeli. Vector addition systems and regular
languages. J. Comput. Syst. Sci., 20(3):277–284, 1980.

[10] P. Jancar, J. Esparza, and F. Moller. Petri nets and regular processes. J.
Comput. Syst. Sci., 59(3):476–503, 1999.

[11] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147–195, 1969.

[12] E. W. Mayr and A. R. Meyer. The complexity of the finite containment
problem for petri nets. J. ACM, 28(3):561–576, 1981.

[13] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[14] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6(2):223–231, 1978.

[15] S. R. Schwer. The context-freeness of the languages associated with
vector addition systems is decidable. Theor. Comput. Sci., 98(2):199–
247, 1992.

[16] R. Valk and G. Vidal-Naquet. Petri nets and regular languages.
J. Comput. Syst. Sci., 23(3):299–325, 1981.

[17] H.-C. Yen. A note on fine covers and iterable factors of vas languages.
Inf. Process. Lett., 56(5):237–243, 1995.

10

