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On the Effect of the Local Overall Interaction
on the Postbuckling of Uniformly Compressed Channels

Marcello Pignataro, Angelo Luongo and Nicola Rizzi

Istituto di Scienza delle Costruzioni-Universita di Roma,
Via Eudossiana 18, 00184 Roma, Italy

ABSTRACT

On the basis of the general theory of elastic stability due to Koiter,
postbuckling analysis of simply supported channels under uniform
compression Is performed. Attention is essentially focused on local/
eulerian and local/flexural—torsional simultaneous buckling modes
interaction. The column is treated as a plate assemblage. Linearized
expressions for the displacement field are employed while assuming
strain-displacements relationships that are linear for the curvatures and
up to second order terms for the in-plane strains. The total potential
energy is hence written up to third order terms in order to investigate
asymmetric buckling phenomena. A discrete model is developed through
an automatic procedure of algebraic manipulation, and an extensive
parametric analysis is performed. After determining the range of geo-
metric parameters which characterize different types of interaction, it is
found that in the postbuckling range the local/eulerian interaction is more
dangerous than the local/flexural—torsional one, due to the column higher
imperfection sensitivity.

1 INTRODUCTION

Modern metal structures such as aeronautical, ship-building and civil
engineering constructions, are characterized by the use of thin plates of
high strength steels. Such structural plate elements are, however, likely to
buckle locally in compression, bending or shear. Accordingly, local plate
buckling considerations are of great importance in the design of thin



plated structures. In addition, when thin plates are utilized as component
plate elements of thin-walled stiffened and unstiffened compression
members, local plate buckling may interact with overall buckling. Local
buckling assumes that the line junctions between intersecting plates
remain straight and the cross-sectional shape of the member undergoes
distortion. Overall buckling is characterized by no distortion of the cross-
section in its plane.

The occurrence of simultaneous or nearly simultaneous buckling
modes can produce an adverse effect on the strength in that. structures
with stable postbuckling behaviour by correspondence with each of the
single buckling modes may exhibit imperfection sensitivity when two (or
more) buckling modes interact.

The interaction behaviour of thin-walled structural elements in com-
pression has received a great deal of attention in the past years by many
researchers. Among the pioneering works we wish to mention Grimaldi
and Pignataro' who analysed the eulerian/flexural-torsional interaction
and Van der Neut® and Graves-Smith’ who first studied the interaction
between local and Euler buckling in thin-walled compression members by
using mathematical models which included the nonlinear membrane
stiffness of the plates forming the columns. In more recent years
analytical investigation has been replaced by numerical methods, among
which are the most competitive one for prismatic structures subjected to
end loads seems to be the finite strip method. Graves-Smith and
Sridharan*’ have used this method extensively by furnishing versions
particularly suitable for post-locally-buckled analysis of plate structures
within the frame of a perturbation procedure.

In a few recent works, interaction analysis is based on the assumption
that, under increasing loading, the column undergoes local buckling first,
followed by overall deflection at higher loading level. Due to weakening
effects of local buckling, the overall deflection takes place at lower load
than the column would carry in the absence of the local buckling. In a
number of papers Hancock®’ and Bradford and Hancock® investigated
the reduction of the effective flexural resistances and the associated
overall buckling loads through a nonlinear analysis of the column in the
post-locally-buckled range. By adopting the finite strip method they
solved the ensuing equations by the Newton—-Raphson method, and the
results were compared to experimental tests. A somewhat parallel
analysis, based on the empirical formulas to evaluate the effective plates’
width, was performed by Wang and Pao.” They analysed a channel under



compression by using the finite element method within an iterative
procedure. Rhodes and Harvey," Loughlan and Rhodes, " Loughlan"
and Upadhya and Loughlan"" investigated the post-locally-buckled
behaviour of a plain and lipped channel under compression without and
with local or overall imperfections. The Rayleigh—Ritz method was used
to obtain local buckling loads and a semi-energy method is employed to
describe postbuckling interaction behaviour.

A different approach was used by Benito"” and Sridharan and
Benito'*'” who employed the finite strip method within the frame of
Koiter general theory of stability. They analysed nearly simultaneous
buckling modes in the presence of initial imperfections and solved by
Newton—-Raphson method for the relevant nonlinear equilibrium
equations in terms of the displacement parameters for a number of
sections.

In this paper the effect of simultaneous buckling modes on the post-
buckling behaviour of uniformly compressed channels simply supported
at the ends is investigated on the basis of Koiter theory of elastic
stability. " The column is considered to be a plate assemblage. Initial
impertections are not considered and bifurcation corresponding to the
two simultaneous buckling modes local/flexural -and local/flexural-
torsional is analysed. The total potential energy is expanded up to third
order terms in order to obtain the slope to the bifurcated paths. The
displacement field is discretized through adequate shape functions, which
account for compatibility along the plate junctions and boundary con-
ditions at the free longitudinal edges and at the beam ends. The relevant
perturbation equations are obtained by means of an automatic procedure
of algebraic manipulation. Results show that interaction between local
and overall buckling has an adverse effect on column strength and it is far
more detrimental for the local/eulerian interaction than for the local/
flexural-torsional one. In particular, results regarding the local/flexural-
torsional coupling coincide with those ones furnished in ref. 16 when the
number of local buckling halfwaves is sufficiently large. In this case the
slope of all bifurcated paths approaches zero.

2 BUCKLING AND POSTBUCKLING ANALYSIS

In this section we present a brief sketch of Koiter nonlinear bifurcation
theory in the form essentially due to Budiansky. "



Let us consider a hyperelastic body system subjected to conservative
loads characterized by a total potential energy functional ®{u; Al, where u
is the displacement field and A a parameter governing the external force
field acting on it. The equilibrium condition is obtained by requiring the
functional ®[u;\] to be stationary with respect to kinematically admiss-
ible displacement fields, that is

O'[u;\]du=0 Véu (n

where a prime denotes Fréchet differentiation with respect to u. Equation
(1) furnishes all relations between u and A which we shall call equilibrium
pathsu = u(A).

In buckling problems it is assumed that at a certain critical value A, of
the load factor A, the state u. belongs to two different equilibrium paths:
the fundamental one, u'(\), which is assumed to be known, and the
bifurcated path u°(A)

u=u'()) '
u=u"(\) (2)
u'(A) = u'(A) = u

Let us now introduce the differential state variable
v(d) = u'(\) —u'(A) (3)
and express for convenience the function v(\) in the parametric form

v = v()
4

A = A1) )
where ¢ = 0 is assumed to correspond to bifurcation. We admit that the
functions in eqn (4) can be represented in the neighbourhood of t = () by

the series expansions

M) = Ao+ A2+ 0 ()

v(t) = vt +0(t5) o
in which here and in the sequel the subscript ¢ refers to the bifurcation
point and a dot denotes ¢-differentiation. Note that second order terms
have been omitted in eqn (5) since we are only interested in the evaluation
of the critical mode v. and of the tangent . to the bifurcated path. In



problems in which A, = 0, the postbuckling path is symmetric, and
second order terms are necessary for a meaningful analysis of the
mechanical behaviour of the system. The first two coefficients of the
series expansions in eqn (5), A, v, are obtained by solving the eigenvalue
problem

d/[uA]vdu =0  Vu (6)

Equation (6) is obtained by taking the first t-derivative of eqn (1) along
the fundamental and bifurcated paths and by subtracting by corre-
spondence with ¢ = 0.

It may happen that the eigenvalue problem in eqn (6) admits a muitiple
eigenvalue A of multiplicity m. The most general solution of eqn (6) can
then be expressed as a linear combination of m eigenvectors associated
with A, that is

v(. = V,".','c (7)

where repeated indices denote summation from 1 to m and v; are
parameters satisfying

viv, =1 (8)

which describe the relative contributions of the various modes to the
additional displacement v.

To determine A. we need to make use of the equation relative to the
evaluation of the second order term V. of the series expansion (5)

B V.8u = —{ @ (v,vir)' + 2K D e (vivie) +
+28. D/ (v,v,) ) du You(i = 1,...,m) 9

where a hat denotes differentiation with respect to A and the arguments of
the functionals ®.’, ®", ¢ have been omitted for simplicity. Equation
(9) is obtained along the same lines as eqn (6) starting from the second
t-derivative of eqn (1). Due to the singularity of the self-adjoint
operator ®7, eqn (9) has a solution if and only if its right-hand member is
orthogonal to the solutions of the homogeneous problem, eqn (6). Hence
by assuming du = V., ...,V successively, eqn (9) in conjunction with
eqn (6) yields a set of m equations of the type

(DLH(Vivic)zvjc + zxcq)'c” l‘if.‘(vl'vic)vjc: + zxcé’é’(uivic)vjc = 0 (] = 1~ re. »m)
(10)



which together with the conditions in eqn (8) permit evaluation of the m
numbers v; and A.. Since egn (10) is nonlinear, according to Bézout’s
theorem® there are at most 2” — 1 essentially different solutions and at
least one real solution.

For a single buckling mode eqn (10) furnishes

1 D' v]
A f L)
2 dralvi+ Uy’

<

3 KINEMATICS AND POTENTIAL ENERGY FORMULATION

Let us consider a channel under a system of uniformly distributed axial
forces at the ends and further assume that the end constraint allows only
axial displacements (simply supported column). Field equations will be
derived consistent with the assumption that the column is a plate
assemblage with straight junction lines.

On the basis of a purely linear kinematics, the displacements field is
described following the classical Vlasov theory® where the assumption of
the rigid cross-section is removed. In the sequel it will be convenient to
express the (linearized) total points displacement as the sum of the Vlasov
(global) displacement and an additional one (local) in which the cross-
section is assumed to lose its shape the junction lines position remaining
unchanged.

In order to obtain a representation for the global (linearized) displace-
ment field it is useful to make the following decomposition

u¥(P) = ul(P) +u%(P) Ry

where ué(P) and u(P) are the orthogonal projections of u(P) onto the
beam axis and the cross-section plane, respectively. Following Vlasov we
assume ué(P) to be rigid in the sense that

ué(P) = ué(Q)+0x(P—-Q) (13)

for all P, Q belonging to the same cross-section plane, 8 being the rotation
vector.

Let us consider now the channel in its undeformed shape and introduce
an orthonormal basis (e, e,, €;) such that e, is in the direction of the beam



a) b)

Fig. 1. (a) Local coordinate system; (b) cross-section geometry.

axis and e., e; are parallel to the cross-section central axes of inertia y and
z, respectively (Fig. 1).

For each plate of the folded structure we introduce now a (local)
coordinate system x, s, with origin O, and natural (orthonormal) basis
(by, = e..bs). A (local) rectangular Cartesian coordinate system x, §,, n,
covering the whole space can then be obtained by introducing the basis

(e1.by,bi; = e, X by) (Fig. 1a). Components of the displacement field are
now defined through

u¥(P) = ug(P)el+Vg(P)b12+Wg(P)bn (14)

where ©*(P) = ui(P)-e,. vi(P) = ui(P)-by,, wiP) = u(P)-b, and
P = P(x,s,). By enforcing the condition (Vlasov)

y=—+—=10 (15)



we obtain

- 1 aud(Q) 90 A
ug(sl) = Up— f()[ [ Py ‘b]z ds,*—a;-w(Q.(),,S,) {161
where
st
@(Q, Olwsl) =f [P(S/)—‘Q] X bpds, (i
V]

is the sectorial area with pole Q and zero point O, and the dependence ot
ut, u, Q, 6 on x has been omitted. With reference to a generic cross-
section, it can now be easily seen that

d
b[z = X(P(SI)_G)
[ {18)

o(Q.0..5) = o(Q.M,5) +k(Q.0,,M)

where G is the centroid of the cross-section, M the zero point for
w(Q,M,s)) which coincides with the principal zero point of the cross-
section and k(Q, O,, M) is a vector independent of s,. If we let Q coincide
with the shear centre S, eqns (16) and (13) can be written in the form

au,(S)

ut(s) = u— .
(s) ox

[P(s) — G]- 2. (S, M. )
ox
{19
wi(s) = u,(S)+@x[P(s))—S]

u being an arbitrary function of x. In order to ensure compatibility for u
along the junction lines & must be the same for all plates. In particular we
will assume u = 0.

By defining the following components

n.(S) = vy(x)e, + wg(x)e,

0= O(X)el

w(S,M.s)) = w(s))e 20y
P(s) — S = ci(s;)e; + cs(s))es

P(s)) — G = gas)) e+ gs(s)) e,



the scalar counterpart of eqn (19) reads

ub(x.s)) = —vi(x)gas) —wsgi(s) —0'(N)w(s)
vE(x.s;) = vs(x) — 8(x)cs(s) (21)
wh(x,s;,) = ws(x) + 6(x)cas))

where a prime from now on will denote differentiation with respect to x.
The local (linearized) displacement field is described consistently with
the assumption

u'(P) = ul(P) = w/(P)bs (22)

[t is useful to stress that the assumption in eqn (22) implies u’(P) = 0all
along the lines in which the web joins the flanges. The effective
(linearized) displacement field is then obtained by combining eqns (12)
and (22)

u(P)

ué(P) + u'(P)

I

u(P)e +v(P)b, + w(P)b (23)
Due to eqn (22) it is immediately seen that

u(P) = u®(P)
v(P) = v&(P) (24)
w(P) = wi(P) + w'(P)

Under the assumption that the channel is made of a hyperelastic,
homogeneous material, we introduce the total potential energy function
in the form

3
=3, [oar [ Waluto.s)-utsas (25)
Al €

where A, is the plate surface, €, the end contour on which the external
load AN, is applied and ¢; is the strain energy density of each plate. We
assume ¢, to be represented through a quadratic expression in terms of
the in-piane and curvature strain measures € and x, respectively, without
coupling terms

‘Pl(e« X) = %{Da[(fxx + es:)z - 2(1 - V)(exxexs - Gi)]
+ Df[(Xxx + Xss)2 - 2(1 - V)(Xxxx:s - Xis)]} (26)



Here D, = Et/(1 —v?), D;= Et/12(1 — v°) are the axial and bending
stiffnesses, respectively, v is the Poisson ratio, £ the Young modulus
while € and x are the components of the strain measures.

The strain-displacement relationships are listed hereafter

€ = U +H@)+ (V') + (W)

€ = TVE,

€ = 3 W+ WW)

Xxx = (W’)Z (27
Xss = (W)°

Xes = W

where the apostrophe, from now on, will denote differentiation with
respect to s,. By replacing the expressions from eqn (27) into eqn (26) we
obtain, up to third order terms

o = HE{@) +u' (W)’ + (V') + (w))]
+ DLW + (W) +2ow" W+ 2(1 - w1} (283

In view of obtaining the counterpart of eqns (6) and (10), respectively.
for the problem at hand, we need the second and third variation of eqn
(28) which read

ol ujuy, = Et{uius+3u' wius+ u' (vivi+ wiw?d)
+ v (W vi+ vius) + w(uiwh + wiuh)]
+ De[wiwh + wiwd +u(wi'wd +wiwy) + 2(1 = v)wiw]  (29)
ol wuaus = Et[3ujuus + wi(vivi+ wiwh) + vi(ubvi + viub)
+ wiluawi + wius) (30)
It is easily verified that the fundamental path in our case is

AN,

uix) = - Et

X

Vi) = wilx) =0
so that, evaluating eqn (29) along it leads to

xx

! Ii ’ ! I 2y
For, (3u1u3+V|V2+W1W2)] (}2)

+ De[wiwh + wiwh + p(wi' wi + wi'wi’)

ol (uyuur = Ef{uius—

+2(1 +v)wi'wi']



4 DISCRETE ANALYSIS

The problem presented in the previous sections can be given a discrete
formulation suitable for numerical analysis. Starting from eqn (21) we
assume

ve(x) = Vsinmx/l
ws(x) = Wsinmx/l (33)
8(x) = Osinmx/l

which satisfy the simply supported boundary conditions and allow a
description of the global displacement field in terms of the parameters
VS, WS, e.

Passing now to the local displacement field we shall assume

wilx,s,) = f(x)g(s) (34)

where f(x) is a sine and g(s,) is a polynomial function. Further we divide
the channel into four strips (Fig. 2) and assume for each strip the dis-
placement field to be expressed in the form

w(x,s;) = f(x)g(s)) (35)

where f(x) is a sinusoidal function representing displacements and
rotations of the nodal lines, and g(s,) are cubic polynomials. The
functions f(x) employed in the analysis are listed below

wa(x) = Wsinnmx/l
85(x) = Ogsinnmx/l
wy(x) = Wysinnmx/! (36)
0n(x) = Oysinnmx/!
0(x) = O¢sinnmx/l
wp(x) = Wpysinnmx/!

where n is an integer and W,, O, Wy, O4., O, W), are the parameters
assumed to describe the configuration. Note that the rotations in A and D
have been condensed by requiring w2 (x) = wp(x) = 0.

We can now obtain, for each element, a discrete counterpart of eqn
(32) by substituting for u,, v,, w, and u,, v,, w, the discrete expressions.
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Fig. 2. Degrees of freedom of the discretized channel.

After the double integration along x and s, has been performed, we arrive
at a system of equations that define a linear algebraic eigenvalue problem

in terms of A.
The steps aforementioned have been performed by means of the

automatic Algebraic Manipulation System (AMS) REDUCE, running
on the UNIVAC 1100 at the computer centre of the University of
Rome. >

Due to the few strips employed and to the problem symmetries, the use
of the AMS with its possibilities to define integration procedures, has
allowed solution of our problem practically in parametric form. Numerical
computations have been performed only in solving the eigenvalue
problem.

In the same fashion second and third order terms necessary to build up
the discrete counterpart of eqn (10) have been easily obtained by means
of the AMS.

It is worth noting that the procedure described herein can be utilized as
a support for a finite element of finite strip analysis.” For a discussion on
the use of the AMS with mixed perturbation/Galerkin techniques. see
also ref. 26.

5 BUCKLING ANALYSIS

An extensive parametric analysis has been performed by using a
FORTRAN program generated by the program of algebraic manipu-
lation. The local and overall buckling modes and the associated critical
stresses have been determined for different geometries of beams of
technical interest. In particular, with regard to overall buckling modes, it



is found that the critical stress is affected by the web/flange thickness ratio
due to the loss of shape of the cross-section. However, since our analysis
is focused on the behaviour of cold formed steel members (constant
thickness), this effect is practically irrelevant and Vlasov theory can be
successfully employed. Thus we have

1 3
Tpr = ;—[((rv +oy) = Vo, +a,) —dco,04]
2c '
(37)

T = g,

Here o,, o, and o, are the well known flexural and torsional buckling
stresses, respectively, and ¢ = 1 — (y4/rs)’, where yis the abscissa of the
shear centre in the principal coordinate frame and r; is the radius of
gyration with respect to the same point.

By introducing the nondimensional parameters

a=1h B=bh y=th (38)

where / is the beam length and b, A, ¢ are defined in Fig. 1b, a number of
diagrams corresponding to different classes of beams have been plotted.
Figures 3 to 5 furnish in a semi-log scale the values of the critical stress
o/E vs o for fixed values of 8, and y ranging approximately between 10 °
and 107" It is seen that, whereas the purely flexural buckling curve is
independent of vy, the flexural-torsional curves are affected by this
parameter and cover the lower area of the diagrams for decreasing values
of y. Besides, for decreasing values of 8 the lowest flexural-torsional
curve approaches the eulerian curve, and for 8 sufficiently small and y not
exceeding the prescribed range, the buckling mode is only purely flexural.
Points of intersection of the two families of curves correspond to
simultaneous overall buckling modes.

Local buckling analysis has been performed numerically by using the
discrete plate assembly model. Results have been tested for a number of
limit cases corresponding to values of the flange/web thickness ratio
around zero and infinity, thus obtaining the critical stress of simply
supported or longitudinally clamped plate. For constant thickness, results
furnished by ref. 27 have been recovered and plotted in Fig. 6. It is found
that the local buckling mode of the cross-section is symmetric with respect
to the y-axis and it is represented in Fig. 6 for two different values of 8.
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The critical stress o,/ E is length-independent for not too short beams and
it is proportional to y* according to

=k Ty (39)
where k() is furnished by the diagram for v = 0-3.

It is observed that for 8 approaching zero the value k = 4 correspond-
ing to simply supported plate is obtained. A small increment of 8 up to
about 0-2 increases the structure stiffness and consequently the critical
stress. In this case the thin-walled member behaviour is the same as that of
a plate elastically supported along the longitudinal edges. For larger
values of 8 the stiffening effect due to the flanges tends to diminish and for
B = B = 0-3678 the value k = 4 is recovered. From a mechanical point
of view this can be explained by thinking that the stiffening effects of the
flanges are counterbalanced by the possibility that the buckling is initiated
by the flanges themselves. For increasing values of 8 the destabilizing
effect obviously prevails and therefore k decreases rapidly.

We look now for the conditions under which simultaneous buckling
modes (overall/overall and local/overall) occur. By equating two by two
the right hand members of eqns (37) and (39) we obtain the simple
relations

ay = o(B)  (i=1.2.3) (40)

The three functions ¢{() are explicitly given in the Appendix and are
plotted in Fig. 7. For each value of 8 we may select infinite pairs of values
of « and vy which satisfy eqn (40) such that two critical stresses coincide.
their actual value depending on « and y. From an engineering point of
view it is interesting to determine in the space of the geometrical para-
meters the domains inside which single buckling modes occur and the
boundaries of two adjacent domains along which two critical stresses
coincide. After some simple manipulation it can be easily shown that the
inequalities

TrrE 0, TLE0, OLETrr (41)
are satisfied if the geometrical parameters verify the relations

ayZdi(B), ay = dxB), ay Z¢s(8) (42)
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The inequalities in eqn (42) can be usefully employed to verify whether or
not the critical stress corresponding to two interacting modes is the
smallest possible in the column. If we consider, for instance, the inter-
action eulerian/flexural-torsional, the corresponding curve ¢,(8) is
meaningful only if s = oz <o, i.e. by using eqns (41) and (42), for
& (B) > b+(B) which is verified for 8> 8 = 0-3678. For 8 <8 the situ-
ation is reversed and the local critical stress prevails, the eulerian/
flexural-torsional buckling interaction occurring at a higher value of the
loading. In a completely similar manner it can be shown that of =
oL <o if ¢AB)<ds(B) which takes place for 3<B8 and besides
orr = o, < orif ¢x(B) < d(8) which occurs for 8> B. In conclusion, for
B> B two different types of interaction can manifest, namely the
eulerian/flexural-torsional or the local/flexural-torsional; for 8 < 8 only
the local/eulerian interaction is possible. For 8 = 8 the three buckling
modes occur simultaneously. Note that curve ¢,(8) is not defined for
values of 8<<B8* = 0-303 and therefore the eulerian/flexural-torsional
interaction can never exist below this value. In Fig. 7 the meaningful
branches of the curves have been represented with heavy lines; dashed
branches correspond to cases of no practical interest since there is always



a) b)

0. /E

Jioe |

; a,) i bl) } o
oy a, ay; a @y, a, az o« [ a, i

Fig. 8. Local/overall and overall/overall interaction buckling curves.

a critical stress lower than that corresponding to the associated simul-
taneous buckling modes.

The previous arguments can be better illustrated by the diagrams in
Fig. 8. In Fig. 8a, b and c hyperbolas defined by eqn (40) have been plotted
for 8> B, B* <B<B, B<B*. These curves delimit the domains in the
o—y plane inside which a single buckling mode occurs. With reference to
Fig. 8a, for instance, the upper right region of the diagram corresponds
to ay>d¢(B) and therefore from eqn (41), or<os follows, this
implying that the Euler buckling load prevails. Similar arguments hold
true for the other domains. Below the previous figures, three qualitative
diagrams of the type shown in Figs 3-5 have been sketched, correspond-
ing to the same values of 8. In each of them the eulerian buckling curve
and one of the flexural-torsional buckling curves corresponding to a
particular value of y = y, have been depicted. The associated local
critical stress is also shown. Focusing our attention on Fig. 8a we can read
three values of a, related to y, to which the three types of interaction are



associated. Fig. 8a’ furnishes the corresponding critical stresses. It is
apparent that the column related to a; buckles at a load lower than o, ina
flexural-torsional mode. The same reasoning can be extended to the
other two diagrams. Fig. 8¢’ visualizes the previous statement that for
8 < B* the eulerian/flexural-torsional interaction does not occur.

6 OVERALL/LOCAL INTERACTION POSTBUCKLING
ANALYSIS

Interaction buckling analysis is performed on the basis of the general
theory presented in Section 2 where the investigation is restricted to the
case of two interacting buckling modes, namely local/eulerian and local/
flexural-torsional. Eulerian/flexural-torsional interaction has also been
tested, and results achieved in ref. 1 have been recovered.

By combining eqn (5); and (7) we have

v = (v, ¥, +a¥,)t +0(2%) (43)
with the loading parameter expansion

A >
== 1+ A2+ 0(6%) (44)

where A, = AJ/A.. On the other hand the counterpart of eqn (10) reads

a“l/l+a12V|V2+a|3V§+b11)\1V| = ()

aZluf+asz|V2+b22)\1V2 =40 (45)
with the condition in eqn (8)
Vi = | (46)

In eqn (45) and in the sequel indices 1 and 2 refer to overall and local
buckling modes, respectively. The missing terms in eqn (45) turn out to be
identically zero; besides coefficients a,, a,, vanish when the number » of
halfwaves in the local buckling mode is even. Explicit expression of the
coefficients has been obtained by means of the AMS REDUCE as antici-
pated in Section 4. By solving eqns (45) and (46) three different solutions



v, V2, A1, at most, are found in accordance with Bézout theorem, and the
corresponding bifurcated paths are determined through eqns (43) and
(44). A direct relationship between the load parameter A and a meaning-
ful displacement component of a particular point, say u,, can be obtained
by specializing eqn (43) to the evaluation of u, and replacing the corre-
sponding value of ¢ into eqn (44). For both interaction analyses we find it
convenient to select point P coincident with a corner in such a way that no
contribution to the displacement v arises from the local buckling mode.
We have therefore

A —VB
—=1+N,—
A "h

47
A ek 2o o
A 'h

for the local/eulerian and local/flexural interaction, respectively, where

X‘ - }\1/’1 X‘ _ A]h (48)

. k .
ViVig »\Wip

ve and wp being the global displacement component of corner B at
midspan as shown in Fig. 9.

From a kinematical point of view it can be interesting to evaluate the
ratio between local and global displacement components along the

~<w

Fig. 9. Corners displacement components.



Fig. 10. Cross-section deformation in local/eulerian interaction.

bifurcated paths. As a meaningful displacement parameter for the local
mode we select the wave amplitude at the point H, thus obtaining

Ve~ Vg _ VaVay (49)

Vg ViVig
for the local/eulerian interaction (Fig. 10) and

Vi _ VaVay (50)
Wg ViWig

for the local/flexural-torsional interaction (Fig. 11).
With regard to the local/eulerian interaction, qualitative results can be
achieved by analysing the nonlinear eqns (45) and (46). It is thus seen that

Fig. 11. Cross-section deformation in local/flexural-torsional interaction.
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Fig. 12. Local/eulerian postbuckling equilibrium paths: (a) # even; (b) 7 odd.

for neven one solutionis givenby v, = 1.», = 0, A, # 0and corresponds
to purely flexural buckling mode. Two other different solutions
correspond to the triplets A, vy, v> and \,, v, —v, (Fig. 10a and b,
respectively) and are represented by the same straight line in Fig. 12a.
This is obviously due to the fact that the configurations corresponding to
the two solutions can be obtained from each other through a rigid rotation
of the beam around the symmetry axis of midspan section. This is no
longer true for n odd and consequently the straight line is expected to split
into two different ones (Fig. 12b). For very large values of n, however, the
two situations become undistinguishable and therefore the two straight
lines can be predicted to coincide again.

A number of beams corresponding to different values of the geometric
parameters a, B, y within the ranges defined in Section 5 have been
analysed. Results are collected in Tables 1, 2 and 3 corresponding to
B = 0-20, 0-25, 0-30, respectively, for different values of « and 7. such
that ay = ¢2(8). It is apparent that for n even the value A, corresponding
to the purely flexural buckling mode is small but not zero, due to the
presence of the term «’” in the strain €., definition, as has been checked
from calculations. For n odd there are three different solutions, one of
which is ‘nearly’ purely flexural, as the value of the ratio in eqn (49)
shows, and the other two correspond to slightly different values of A ..
For a fixed value of x, the associated cross-section deformations in eqn
(49) along the two bifurcated paths are depicted in Fig. 10. For increasing
values of n it is apparent that these two solutions tend to coincide; besides
for the three solutions the coefficient in eqn (49) approaches zero thus
revealing a diminishing of the cross-section deformation. It is worth



TABLE1
Local/Eulerian Interaction (8 = 0-2)

« v n A (vu—vg)/ve
—3-845 +0-593
421 0-02 4 { o 0
—4-002 0-271
8-42 0-01 9 [ —4-164 —0-255
0-022 0-005
—3-987 0-140
16-84 0-005 17 —4-031 -0-137
0-005 0-001
—3-816 0-057
41-00 0-002 41 {—3'823 —0-057
0-001 1x107*
TABLE 2

Local/Eulerian Interaction (8 = 0-25)

a v n i (va—vg)lvs
—-2-552 +0-609
3-67 0-03 4 { 0105 0
-1-977 0-567
5-50 0-02 5 { —2-448 -0-409
0-123 0-049
-2-370 0-221
11-00 0-01 11 —2-457 —-0-209
0-014 0-004
_ . [ —2-416 +0-107
22-00 0-005 22 ] 0-003 0

noting that A, decreases for increasing values of 8 and that it changes very
little with o and y, when B is kept constant.

Considering local/flexural-torsional buckling interaction, we have
from the algebraic maniplation analysis AMS that coefficients a,, a3, as
are always zero for any value of n. Consequently, since for n even also the



TABLE 3
Local/Eulerian Interaction (8 = 0-3)

a v n N (vu—ve)ive

~0-822 0-669
472 0-03 5 —1-180 —0-381
0-166 0-078
~0-710 0-402
7-08 0-02 7 —()-881 -0-289
0-059 0-034
—~(0-781 +0-165

14-17 0-01 14 { 0-008 0
—0-727 0-070
34-56 0-0041 33 —0-735 ~0-069
0-001 4x 1077

remaining coefficients a, a,; are zero, we have identically A, = 0, for all
bifurcated paths (Fig. 13a). The number of these curves cannot, however,
be determined on the basis of the present analysis and higher order terms
have to be considered. For n odd eqn (45) reduces to

apviva+byhiv =0
2 (51)

ar vy + bzz)\ﬂ/z = ()
which together with eqn (46) admit the three solutions v, = 0, v, = 1.
A = 0 and v,, =v,, =\, the first of which representing a purely local
buckling mode (Fig. 13b) and the other two corresponding to interaction.

Ad Al
focal
loc - flex. tors.
[ I . [ L -
u U
a) b)

Fig. 13. Local/flexural-torsional postbuckling equilibrium paths: (a) n even; (b) n odd.



TABLE 4
Local/Flexural-Torsional Interaction (8 = 0-5)

a v n Al vHiwg
6-47 0-040 5 +(-884 +0-352
9-41 0-027 7 +0-414 +0-251

11-76 0-022 9 +0-242 +0-195
17-25 0-015 13 +0-113 +0-135
25-88 0-010 19 +0-052 +0-092
51-76 0-005 39 +0-012 +0-045
TABLESS
Local/Flexural-Torsional Interaction (8 = 0-8)

o y n Xl vu/wsg

8-68 0-050 5 +0-576 +0-138
12-41 0-035 7 +0-269 +0-098
17-37 0-025 9 +0-158 +0-077
27-14 0-016 15 +0-055 +0-046
43-42 0-010 23 +0-023 +0-030
95-00 0-0046 51 +0-005 +0-014

A physical explanation which accounts for the apposite sign of A, for
the interactive curves can simply be given by considering that the two
different configurations corresponding to the same value of A can be
obtained from each other through a rigid rotation of the beam around the
symmetry axis of the midspan section.

For large values of n, the distinction between n odd and even becomes
meaningless and the two interactive curves are expected to approach the
horizontal equilibrium path. These results do not agree with the Benito
and Sridharan claims according to which tangents to the postbuckling
equilibrium paths are always horizontal, whatever the value of n. Results
do however coincide for large values of n.

A number of beams corresponding to 8 = 0-5, 0-8, 1-0 have been
analysed for different values of «, y such that ay = ¢4(8) and are
reported in Tables 4, 5, 6. Obviously only beams buckling in an odd
number of local halfwaves have been considered. For each value of B it is



TABLE 6
Local/Flexural-Torsional Interaction (8 = 1-0)

« Y n A v H/WR
10-87 0-050 5 +0-509 +0-097
15-53 0-035 7 +0-238 +0-069
19-76 0-0275 9 +0-139 +0-054
37-48 0-0145 17 +()-038 +0-028
54-35 0-010 25 +0-017 +0-019

108-70 0-005 49 +(0-004 +0-010

found that the two \;s approach zero for increasing n, along with the
deformation parameter vy/wp, thus implying that the buckling modes
tend to be purely flexural-torsional. In contrast with the results obtained
for the local/eulerian interaction, it is found here that numerical results
do not change drastically with 8 even if this geometrical parameter ranges
within a much larger interval.

In conclusion local/eulerian interaction seems to be more dangerous
than the local/flexural-torsional interaction even if it occurs for a more
restricted field of the geometric parameters.

7 CONCLUSIONS

On the basis of the general theory of elastic stability, postbuckling
analysis of simultaneous buckling modes has been performed on a simply
supported channel under uniform compression. A discrete model has
been developed through an automatic procedure of algebraic manipu-
lation. In the buckling analysis, fields of geometric parameters
corresponding to different types of interaction have been determined and
the relevant postbuckling behaviour has been investigated. Results have
shown that the local/eulerian interaction is more detrimental than the
local/flexural-torsional one and therefore beams exhibiting the first type
of interaction are more sensitive to initial imperfections and more likely
to collapse under external loads far below the critical value. A further
analysis should be accomplished to evaluate the reduction of the limit
load as a function of the imperfection parameters. The triple point



B:

B = 0-3678 of Fig. 7 corresponding to local/eulerian/flexural-

torsional interaction, also deserves investigation. Finally the analysis
should be extended to cover the case of columns with symmetric post-
buckling behaviour.

14.
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APPENDIX

The critical stresses o, o,, oy, and the factor ¢ appearing in eqn (37) in
terms of the geometric parameters of eqn (38) are given by the formulas

g, = _'1'2- fl(B)
[

1 )
oy =7f2(.3) (A1)



Ty = f%(B) ———[fa(B) + &’y 5(B)]

c=1-—1 1928°(1 +38)°

£(8)
where
7’ B (2+B)
_ 7 1+68
t(B) = IVREST]
f3(8) = 18728°+ 14888° + 72483* + 4408 + 1448*+ 208+ 1 (A.2)

£(B) = m* B2+ 3B)(1 +2B)(1 +68)

2 ki
fs(B) = m(l +6B)*(1+2B)°

v being the Poisson ratio.
Functions ¢(B8) (i = 1, 2. 3) appearing in eqn (40) are defined by

172

— f3 2_ ¢ __f4_ _
¢1(B)—[m[cf1 fits = (1 fz)”

fl 172

:(B) = (—) (A.3)
M

&3(B) = {(fafs +fy — £r65) — [(fof5 + nf, — f,15)°

— dn(enfs — £5) 177} */[2n(enf; — £5)]

where the argument 8 of all functions has been omitted and n = km?/
12(1 — v?), k being defined in eqn (39).





