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Abstract

In this article, we describe all the group morphisms from the group of

compactly-supported homeomorphisms isotopic to the identity of a manifold

to the group of homeomorphisms of the real line or of the circle.

MSC: 37C85.

1 Introduction

Fix a connected manifold M (without boundary). For an integer r ≥ 0, we
denote by Diffr(M) the group of Cr-diffeomorphisms of M . When r = 0, this
group will also be denoted by Homeo(M). For a homeomorphism f of M , the
support of f is the closure of the set:

{x ∈M, f(x) 6= x} .

We denote by Diffr
0(M) (Homeo0(M) if r = 0) the identity component of the group

of compactly supported Cr-diffeomorphisms of M (for the strong topology). If
r 6= dim(M) + 1, these groups are simple by a well-known and difficult theorem
(see [1], [2], [4], [9], [10]).

In [6], Étienne Ghys asked whether the following statement was true: if M and
N are two closed manifolds and if there exists a non-trivial morphism Diff∞

0 (M) →
Diff∞

0 (N), then dim(M) ≥ dim(N). In [8], Kathryn Mann proved the following
theorem. Take a connected manifold M of dimension greater than 1 and a one-
dimensional connected manifold N . Then any morphism Diff∞

0 (M) → Diff∞
0 (N)

is trivial: she answers Ghys’s question in the case where the manifold N is one-
dimensional. Mann also describes all the group morphisms Diffr

0(M) → Diffr
0(N)

∗supported by the Fondation Mathématique Jacques Hadamard. Centre de mathéma-
tiques Laurent Schwartz. École Polytechnique. 91128 Palaiseau cedex. e-mail : emma-
nuel.militon@math.polytechnique.fr
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for r ≥ 3 when M as well as N are one-dimensional. The techniques involved
in the proofs of these theorems are Kopell’s lemma (see [15] Theorem 4.1.1) and
Szekeres’s theorem (see [15] Theorem 4.1.11). These theorems are valid only for a
regularity at least C2. In this article, we prove similar results in the case of a C0

regularity. The techniques used are different.

Theorem 1.1. Let M be a connected manifold of dimension greater than 2 and

let N be a connected one-manifold. Then any group morphism Homeo0(M) →
Homeo(N) is trivial.

The case where the manifold M is one-dimensional is also well-understood.

Theorem 1.2. Let N be a connected one-manifold. For any group morphism

ϕ : Homeo0(R) → Homeo(N), there exists a closed set K ⊂ N such that:

1. The set K is pointwise fixed under any homeomorphism in ϕ(Homeo0(R)).

2. For any connected component I of N − K, there exists a homeomorphism

hI : R → I such that:

∀f ∈ Homeo0(R), ϕ(f)|I = hIfh
−1
I .

Remark: By a theorem by Matsumoto (see [12] Theorem 5.3), every group mor-
phism Homeo0(S

1) → Homeo0(S
1) is a conjugation by a homeomorphism of the

circle. Moreover, any group morphism Homeo0(S
1) → Homeo(R) is trivial. In-

deed, as the group Homeo0(S
1) is simple, such a group morphism is either one-to-

one or trivial. However, the group Homeo0(S
1) contains torsion elements whereas

the group Homeo(R) does not: such a morphism cannot be one-to-one.

2 Proofs of Theorems 1.1 and 1.2

Fix an integer d ≥ 1. For a point p in R
d, we denote by Gd

p the group
Homeo0(R

d − {p}). This group is seen as a subgroup of Homeo0(R
d) consist-

ing of homeomorphisms which pointwise fix a neighbourhood of the point p. We
will call embedded (d− 1)-dimensional ball of Rd the image of the closed unit ball
of Rd−1 = R

d−1 × {0} ⊂ R
d under a homeomorphism of Rd. For an embedded

(d − 1)-dimensional ball D ⊂ R
d (which is a single point if d = 1), we denote by

Hd
D the subgroup of Homeo0(R

d) consisting of homeomorphisms which pointwise
fix a neighbourhood of the embedded ball D. Finally, if G denotes a subgroup
of Homeo(Rd), a point p ∈ R

d is said to be fixed under the group G if it is fixed
under all the elements of this group. We denote by Fix(G) the (closed) set of fixed
points of G.

The theorems will be deduced from the following propositions. The two first
propositions will be proved respectively in Sections 3 and 4.
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Proposition 2.1. Let ϕ : Homeo0(R
d) → Homeo(R) be a group morphism. Sup-

pose that no point of the real line is fixed under the group ϕ(Homeo0(R
d)). Then,

for any embedded (d − 1)-dimensional ball D ⊂ R
d, the group ϕ(Hd

D) admits at

most one fixed point.

Proposition 2.2. Let ϕ : Homeo0(R
d) → Homeo(R) be a group morphism. Then,

for any point p in R
d, the group ϕ(Gd

p) admits at least one fixed point.

Proposition 2.3. For any group morphism ψ : Homeo0(R
d) → Homeo(S1), the

group ψ(Homeo0(R
d)) has a fixed point.

Proof of Proposition 2.3. Recall that the group Homeo0(R
d) is infinite and simple

and that the group Homeo(S1)/Homeo0(S
1) is isomorphic to Z/2Z. Hence any

morphism Homeo0(R
d) → Homeo(S1)/Homeo0(S

1) is trivial. Therefore, the image
of a morphism Homeo0(R

d) → Homeo(S1) is contained in Homeo0(S
1).

For some background about the bounded cohomology of groups and the
bounded Euler class of a group acting on a circle, see Section 6 in [5]. By [11] and
[13]:

H2
b (Homeo0(R

d),Z) = {0} .

Therefore, the bounded Euler class of a morphism Homeo0(R
d) → Homeo0(S

1)
vanishes: this action has a fixed point.

Proof of Theorem 1.1. Let d = dim(M). The theorem will be deduced from the
following lemma.

Lemma 2.4. Any group morphism Homeo0(R
d) → Homeo(R) is trivial.

Let us see why this lemma implies the theorem. Consider a morphism
Homeo0(M) → Homeo0(N). Take an open set U ⊂ M homeomorphic to R

d

and let us denote by Homeo0(U) the subgroup of Homeo0(M) consisting of home-
omorphisms supported in U . By Lemma 2.4 and Proposition 2.3, the restriction
of this morphism to the subgroup Homeo0(U) is trivial. Moreover, as the group
Homeo0(M) is simple, such a group morphism is either one-to-one or trivial: it is
necessarily trivial in this case.

Proof of Lemma 2.4. Take a group morphism ϕ : Homeo0(R
d) → Homeo(R).

Suppose by contradiction that this morphism is nontrivial. Replacing if nec-
essary R with a connected component of the complement of the closed set
Fix(ϕ(Homeo0(R

d))), we can suppose that the group ϕ(Homeo0(R
d)) has no fixed

points.

Let us prove that, for any points p1 6= p2 in R
d:

Fix(ϕ(Gd
p1
)) ∩ Fix(ϕ(Gd

p2
)) = ∅.

The proof of this fact requires the following lemma.

3



Lemma 2.5. Let d′ ≥ 1 be an integer. Let p1 6= p2 be two distinct points in R
d′

.

Then, for any homeomorphism f in Homeo0(R
d′

), there exist homeomorphisms

f1, f3 in Gd′

p1
and f2 in Gd′

p2
such that:

f = f1f2f3.

Proof. Take a homeomorphism f in Homeo0(R
d′

). Let f1 be a homeomorphism
in Gd′

p1
such that f−1

1 sends the point f(p1) to a point which lies in the same

connected component of Rd′

− {p2} as the point p1. Let f2 be a homeomorphism
in Gd′

p2
which is equal to f−1

1 f in a neighbourhood of the point p1. The existence
of the homeomorphism f2 is easy to prove when d′ = 1, is a consequence of the
Schönflies Theorem when d′ = 2 and of the annulus theorem by Kirby and Quinn
when d′ ≥ 3 (see [7] and [16]). Changing if necessary the homeomorphism f2 into
the composition of the homeomorphism f2 with a homeomorphism supported in a
small neighbourhood of the point p1, the homeomorphism f3 = f−1

2 f−1
1 f belongs

to Gd′

p1
.

Take two points p1 and p2 in R
d. Suppose by contradiction that Fix(ϕ(Gd

p1
))∩

Fix(ϕ(Gd
p2
)) 6= ∅. By Lemma 2.5, a point in this set is a fixed point of the group

ϕ(Homeo0(R
d)), a contradiction.

By Proposition 2.2, the sets Fix(ϕ(Gd
p)), for p ∈ R

d are nonempty. We just saw
that they are pairwise disjoint. Recall that, for any embedded (d− 1)-dimensional
ball D, the set Fix(ϕ(Hd

D)) contains the union of the sets Fix(ϕ(Gd
p)) over the

points p in the closed set D. Hence, this set has infinitely many points as d ≥ 2,
a contradiction with Proposition 2.1.

Proof of Theorem 1.2. Let ϕ : Homeo0(R) → Homeo(N) be a nontrivial group
morphism. By Proposition 2.3, we can suppose that the manifold N is the real line
R. Replacing R with a connected component of the complement of the closed set
Fix(ϕ(Homeo0(R))) if necessary, we can suppose that the group ϕ(Homeo0(R)) has
no fixed point. Recall that the group Homeo0(R) is simple. Hence any morphism
Homeo0(R) → Z/2Z is trivial. Thus, any element of the group ϕ(Homeo0(R))
preserves the orientation of R.

By Propositions 2.1 and 2.2, for any real number x, the group ϕ(G1
x) has a

unique fixed point h(x). Take a homeomorphism f in Homeo0(R) which sends a
point x in R to a point y in R. Then fG1

xf
−1 = G1

y and, taking the image under ϕ,
ϕ(f)ϕ(G1

x)ϕ(f)
−1 = ϕ(G1

y). Hence ϕ(f)(Fix(ϕ(G1
x))) = Fix(ϕ(G1

y)). Therefore,
for any homeomorphism f in Homeo0(R), ϕ(f)h = hf .

Let us prove that the map h is one-to-one. Suppose by contradiction that there
exist real numbers x 6= y such that h(x) = h(y). The point h(x) is fixed under
the groups ϕ(G1

x) and ϕ(G1
y). However, the groups G1

x and G1
y generate the group
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Homeo0(R) by Lemma 2.5. Therefore, the point h(x) is fixed under the group
ϕ(Homeo0(R)), a contradiction.

Now we prove that the map h is either strictly increasing or strictly decreasing.
Fix two points x0 < y0 of the real line. For any two points x < y of the real line,
let us consider a homeomorphism fx,y in Homeo0(R) such that fx,y(x0) = x and
fx,y(y0) = y. As ϕ(fx,y)h = hfx,y, the homeomorphism ϕ(fx,y) sends the ordered
pair (h(x0), h(y0)) to the ordered pair (h(x), h(y)). As the homeomorphism ϕ(fx,y)
is strictly increasing:

h(x) < h(y) ⇔ h(x0) < h(y0)

and
h(x) > h(y) ⇔ h(x0) > h(y0).

Hence the map h is either strictly increasing or strictly decreasing.

Now, it remains to prove that the map h is onto to complete the proof. Suppose
by contradiction that the map h is not onto. Notice that the set h(R) is preserved
under the group ϕ(Homeo0(R)). If this set had a lower bound or an upper bound,
then the supremum of this set or the infimum of this set would provide a fixed
point for the group ϕ(Homeo0(R)), a contradiction. This set has neither upper
bound nor lower bound. Let C be a connected component of the complement of
the set h(R). To simplify the exposition of the proof, we suppose that the map h
is increasing. Let us denote by x0 the supremum of the set of points x such that
the real number h(x) is lower than any point in the interval C. Then the point
h(x0) is necessarily in the closure of C: otherwise, there would exist an interval in
the complementary of h(R) which strictly contains the interval C. We suppose for
instance that the point h(x0) is the supremum of the interval C. Choose, for each
couple (z1, z2) of real numbers, a homeomorphism gz1,z2 in Homeo0(R) which sends
the point z1 to the point z2. Then the sets gx0,x(C), for x in R, are pairwise disjoint:
they are pairwise distinct as their suprema are pairwise distinct (the supremum of
the set gx0,x(C) is the point h(x)). Moreover, those sets do not contain any point
of h(R) and the infima of those sets are accumulated by points in h(R). Hence,
these sets are pairwise disjoint. Then the set C has necessarily an empty interior
as the topological space R is second-countable. Therefore C = {h(x0)}, which is
not possible.

3 Proof of Proposition 2.1

The proof of this proposition is similar to the proofs of Lemmas 3.6 and 3.7 in
[14]. We need the following lemma. The proof of this lemma is almost identical
to the proof of Lemma 2.5 and is omitted.

Lemma 3.1. Take two disjoint embedded (d− 1)-dimensional balls D and D′ in

R
d. For any homeomorphism f in Homeo0(R

d), there exist homeomorphisms h1,
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h3 in Hd
D and h2 in Hd

D′ such that

h = h1h2h3.

For such an embedded (d − 1)-dimensional ball D, let FD = Fix(ϕ(Hd
D)).

Let us prove that these sets are pairwise homeomorphic. Take two embedded
(d − 1)-dimensional balls D an D′ and take a homeomorphism h in Homeo0(R

d)
which sends the set D onto D′. Observe that hHd

Dh
−1 = Hd

D′ and that
ϕ(h)ϕ(Hd

D)ϕ(h)−1 = ϕ(Hd
D′ ). Therefore: ϕ(h)(FD) = FD′ .

In the case where these sets are all empty, there is nothing to prove. We
suppose in what follows that they are not empty.

Given two disjoint embedded (d − 1)-dimensional balls D and D′, Lemma 3.1
implies, as in the proof of Lemma 2.4:

FD ∩ FD′ = ∅.

Lemma 3.2. Fix an embedded (d − 1)-dimensional ball D0 of R
d. Then any

connected component C of the complement of FD0
meets one of the sets FD, where

D is an embedded (d− 1)-dimensional ball disjoint from D0.

Proof. Let (a1, a2) be a connected component of the complement of FD0
. It is

possible that either a1 = −∞ or a2 = +∞. Consider a homeomorphism e :
R

d−1 × R → R
d such that e(Bd−1 × {0}) = D0, where Bd−1 denotes the unit

closed ball in R
d−1. For any real number x, let Dx = e(Bd−1 × {x}). Given two

real x 6= y, take a homeomorphism ηx,y in Homeo0(R) which sends the point x to
the point y. Consider a homeomorphism hx,y such that the following property is
satisfied. The restriction of ehx,ye−1 to Bd−1 × R is equal to the map:

Bd−1 × R → R
d−1 × R

(p, z) 7→ (p, ηx,y(z))

Notice that, for any real numbers x and y, hx,y(Dx) = Dy

Let us prove by contradiction that there exists a real number x 6= 0 such that
FDx

∩ (a1, a2) 6= ∅. Suppose that, for any such embedded ball Dx, FDx
∩ (a1, a2) =

∅. We claim that the open sets ϕ(h0,x)((a1, a2)) are pairwise disjoint. It is not
possible as there would be uncountably many pairwise disjoint open intervals in
R.

Indeed, suppose by contradiction that there exists real numbers x 6= y such
that ϕ(h0,x)((a1, a2)) ∩ ϕ(h0,y)((a1, a2)) 6= ∅. Notice that the homeomorphism
h−1
0,xh0,y and h−1

0,yh0,x send respectively the set D0 to sets of the form Dz and Dz′ ,
where z, z′ ∈ R. Hence, for i = 1, 2, the homeomorphisms ϕ(h−1

0,xh0,y) (respectively
ϕ(h−1

0,yh0,x)) sends the point ai ∈ FD0
to a point in FDz

(respectively in FD
z′

). By
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hypothesis, these points do not belong to (a1, a2). Therefore

ϕ(h−1
0,yh0,x)(a1, a2) = (a1, a2)

or
ϕ(h0,x)(a1, a2) = ϕ(h0,y)(a1, a2).

But this last equality cannot hold as the real endpoints of the interval on the
left-hand side belong to FDx

and the real endpoints point of the interval on the
right-hand side belongs to FDy

. Moreover, we saw that these two closed sets were
disjoint, a contradiction.

Lemma 3.3. Each set FD contains only one point.

Proof. Suppose that there exists an embedded (d−1)-dimensional ballD such that
the set FD contains two points p1 < p2. By Lemma 3.2, there exists an embedded
(d − 1)-dimensional ball D′ disjoint from D such that the set FD′ has a common
point with the open interval (p1, p2). Take a real number r < p1. Then, for any
homeomorphisms g1 in GD, g2 in GD′ and g3 in GD,

ϕ(g1) ◦ ϕ(g2) ◦ ϕ(g3)(r) < p2.

By Lemma 3.1, this implies that the following inclusion holds:
{

ϕ(g)(r), g ∈ Homeo0(R
d)
}

⊂ (−∞, p2].

The supremum of the left-hand set provides a fixed point for the action ϕ, a
contradiction.

4 Proof of Proposition 2.2

This proof uses the following lemmas. For a subgroup G of Homeo0(R
d), we

define the support Supp(G) of G as the closure of the set:
{

x ∈ R
d, ∃g ∈ G, gx 6= x

}

.

Let HomeoZ(R) = {f ∈ Homeo(R), ∀x ∈ R, f(x+ 1) = f(x) + 1} .

To prove Proposition 2.2, we need the following lemmas.

Lemma 4.1. Let G and G′ be subgroups of the group Homeo+(R) of orientation-

preserving homeomorphisms of the circle. Suppose that the following conditions

are satisfied.

1. The groups G and G′ are isomorphic to the group HomeoZ(R).

2. The subgroups G and G′ of Homeo+(R) commute: ∀g ∈ G, g′ ∈ G′, gg′ =
g′g.
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Then Supp(G) ⊂ Fix(G′) and Supp(G′) ⊂ Fix(G).

Lemma 4.2. Take any nonempty open subset U of Rd. Then there exists a sub-

group of Homeo0(R
d) isomorphic to HomeoZ(R) which is supported in U .

Lemma 4.1 will be proved in the next section. We now provide a proof of
Lemma 4.2.

Proof of Lemma 4.2. Take a closed ball B contained in U . Changing coordinates if
necessary, we can suppose that B is the unit closed ball in R

d. Take an orientation-
preserving homeomorphism h : R → (−1, 1). For any orientation-preserving home-
omorphism f : R → R, we define the homeomorphism λh(f) : Rd → R

d in the
following way.

1. The homeomorphism λh(f) is equal to the identity outside the interior of
the ball B.

2. For any (x1, x
′) ∈ R× R

d−1 ∩ int(B):

λh(f)(x1, x
′) = (

√

1− ‖x′‖2h ◦ f ◦ h−1(
x1

√

1− ‖x′‖2
), x′).

The map λh defines an embedding of the group Homeo+(R) into the group
Homeo0(R

d). The image under λh of the group HomeoZ(R) is a subgroup of
Homeo0(R

d) which is supported in U .

Let us complete now the proof of Proposition 2.2.

Proof of Proposition 2.2. Fix a point p in R
d. Take a closed ball B ⊂ R

d which is
centered at p. Let Gd

B be the subgroup of Gd
p consisting of homeomorphisms which

pointwise fix a neighbourhood of the ball B. Let us prove that Fix(Gd
B) 6= ∅.

Take a subgroup G1 of Homeo0(R
d) which is isomorphic to HomeoZ(R) and

supported in B. Such a subgroup exists by Lemma 4.2. This subgroup commutes
with any subgroup G2 of Homeo0(R

d) which is isomorphic to HomeoZ(R) and
supported outside B.

If the group ϕ(Homeo0(R
d)) admits a fixed point, there is nothing to prove.

Suppose that this group has no fixed point. As the group Homeo0(R
d) is simple,

the morphism ϕ is one-to-one. Moreover, any morphism Homeo0(R
d) → Z/2Z is

trivial: the morphism ϕ takes values in Homeo+(R). Hence the subgroups ϕ(G1)
and ϕ(G2) of Homeo(R) satisfy the hypothesis of Lemma 4.1. By this lemma:

∅ 6= Supp(ϕ(G1)) ⊂ Fix(ϕ(G2)).

We claim that the group Gd
B is generated by the union of its subgroups isomorphic

to HomeoZ(R). This claim implies that

∅ 6= Supp(ϕ(G1)) ⊂ Fix(ϕ(Gd
B)).
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For d ≥ 2, the claim is a direct consequence of the simplicity of the group Gd
B .

In the case where d = 1, denote by [a, b] the compact interval B. The inclusions
of the groups Homeo0((−∞, a)) and Homeo0((b,+∞)) induce an isomorphism
Homeo0((−∞, a))×Homeo0((b,+∞)) → Gd

B. The simplicity of each factor of this
decomposition implies the claim.

Now, let us prove that the set Fix(ϕ(Gd
B)) is compact. Suppose by contradic-

tion that there exists a sequence (ak)k∈N of real numbers in Fix(ϕ(Gd
B)) which

tends to +∞ (if we suppose that it tends to −∞, we obtain of course an analo-
gous contradiction). Let us choose a closed ball B′ ⊂ R

d which is disjoint from
B. Observe that the subgroups Gd

B and Gd
B′ are conjugate in Homeo0(R

d) by a
homeomorphism which sends the ball B to the ball B′. Then the subgroups ϕ(Gd

B)
and ϕ(Gd

B′) are conjugate in the group Homeo+(R). Hence the sets Fix(ϕ(Gd
B))

and Fix(ϕ(Gd
B′ )) are homeomorphic: there exists a sequence (bk)k∈N of elements

in Fix(ϕ(Gd
B′ )) which tends to +∞. Take positive integers n1, n2 and n3 such that

an1
< bn2

< an3
. Fix x0 < an1

. We notice then that for any homeomorphisms
g1 ∈ Gd

B , g2 ∈ Gd
B′ and g3 ∈ Gd

B, the following inequality is satisfied:

ϕ(g1)ϕ(g2)ϕ(g3)(x0) < an3
.

However, any element g in Homeo0(R
d) can be written as a product

g = g1g2g3,

where g1 and g3 belong to Gd
B and g2 belongs to Gd

B′ . The proof of this fact is
similar to that of Lemma 2.5. Therefore:

{ϕ(g)(x0), g ∈ Homeoc(R)} ⊂ (−∞, an3
].

The greatest element of the left-hand set is a fixed point of the image of ϕ: this is
not possible as this image was supposed to have no fixed point.

Observe that the group ϕ(Gd
p) is the union of its subgroup of the form ϕ(Gd

B′),
with B′ varying over the set Bp of closed balls centered at the point p. By com-
pactness, the set

Fix(ϕ(Gd
p)) =

⋂

B′∈Bp

Fix(Gd
B′)

is nonempty. Proposition 2.2 is proved.

5 Proof of Lemma 4.1

We need the following lemmas. The first one will be proved afterwards.

Lemma 5.1. Let ψ : HomeoZ(R) → Homeo+(R) be a group morphism. Then

there exists a closed set F ⊂ R such that:

9



1. The set F is pointwise fixed under any element in HomeoZ(R).

2. For any connected component K of the complement of F , there exists a

homeomorphism hK : R → K such that:

∀f ∈ HomeoZ(R), ∀x ∈ K, ψ(f)(x) = hKfh
−1
K .

Lemma 5.2. Any group morphism HomeoZ(R) → Z is trivial.

Proof of Lemma 5.2. Actually, any element in HomeoZ(R) can be written as a
product of commutators, i.e. elements of the form aba−1b−1, with a, b ∈
HomeoZ(R). For an explicit construction of such a decomposition, see Section
2 in [3].

Observe that the center of the group HomeoZ(R) is the subgroup generated by
the translation x 7→ x+ 1. Let α (respectively α′) be a generator of the center of
G (respectively of G′). Let Aα = R− Fix(α) and Aα′ = R− Fix(α′).

As the homeomorphisms α and α′ commute:

{

α′(Aα) = Aα

α(Aα′) = Aα′

.

Take any connected component I of Aα and any connected component I ′ of
Aα′ . Then, either I is contained in I ′, or I ′ is contained in I, or I and I ′ are
disjoint.

We now prove that only the latter case can occur. Suppose by contradiction
that the interval I is strictly contained in the interval I ′. Let ∼ be the equivalence
relation defined on I ′ by

x ∼ y ⇔ (∃k ∈ Z, x = α′k(y)).

The topological space I ′/ ∼ is homeomorphic to a circle. By Lemma 5.1, the group
G′ preserves the interval I ′. Notice that the group G′/ < α′ >≈ Homeo0(S

1) acts
on the circle I ′/ ∼. As the group G′ commutes with the homeomorphism α, this
action preserves the nonempty set (Aα ∩ I ′)/ ∼. As α′(Aα) = Aα, the endpoints
of the interval I are sent to points in the complement of Aα under the iterates of
the homeomorphism α′. Hence the set (Aα∩I ′)/ ∼ is not equal to the whole circle
I ′/ ∼. However, by Theorem 5.3 in [12] (see the remark below Theorem 1.2), any
non-trivial action of the group Homeo0(S

1) on a circle is transitive. Hence, the
group G′/ < α′ > acts trivially on the circle I ′/ ∼: for any element β′ of G′, and
any point x ∈ I ′, there exists an integer k(x, β′) ∈ Z such that β′(x) = α′k(x,β′)(x).
Fixing such a point x, we see that the map

G′ → Z

β′ 7→ k(x, β′)

10



is a group morphism. Such a group morphism is trivial by Lemma 5.2. Therefore,
the group G′ acts trivially on the interval I ′, a contradiction.

Of course, the case where the interval I ′ is strictly contained in I is symmetric
and cannot occur.

Suppose now that I = I ′. Take any element β′ in G′. As the homeomorphism
β′ commutes with α, by Lemma 5.1, the homeomorphism β′ is equal to some
element of G on I. As the homeomorphism β′ commute with any element of G,

there exists a unique integer k(β′) such that β′
|I = α

k(β′)
|I . The map k : G→ Z is a

nontrivial group morphism. But such a map cannot exist by Lemma 5.2. Lemma
4.1 is proved.

It remains to prove Lemma 5.1.

Proof of Lemma 5.1. Denote by t a generator of the center of the group
HomeoZ(R).

Claim 1. The connected components of the complement of Fix(ψ(t)) are each
preserved by the group ψ(HomeoZ(R)). Moreover

Fix(ψ(HomeoZ(R))) = Fix(ψ(t)).

Claim 2. Any action of the group HomeoZ(R) on R without fixed points is
conjugate to the standard action.

It is clear that these two claims imply Lemma 5.1.

First, let us prove Claim 1. The set Fix(ψ(t)) is preserved under any element
in ψ(HomeoZ(R)), because any element of this group commutes with the homeo-
morphism ψ(t). Moreover, any element in ψ(HomeoZ(R)) preserves the orienta-
tion. Hence any connected component of the complement of Fix(ψ(t)) with infinite
length is preserved under the action of the group ψ(HomeoZ(R)). We suppose now
that any connected component of the complement of Fix(ψ(t)) has a finite length.
Let us denote by ≡ the equivalence relation on R such that x ≡ y if and only if the
points x and y belong to the same connected component of Supp(ψ(t)). The mor-
phism ψ induces an action of the group HomeoZ(R)/ < t >≈ Homeo0(S

1) on the
quotient topological space R/ ≡ which is homeomorphic to R if the set Fix(ψ(t))
has a nonempty interior. However, such an action is trivial by the remark below
Theorem 1.2. Hence, any connected component of Supp(ψ(t)) is preserved by the
action. Restricting to one of these connected components if necessary, we can
suppose that the closed set Fix(ψ(t)) contains only isolated points. If this set is
empty, there is nothing to prove. Otherwise, let

Fix(ψ(t)) = {xi, i ∈ A} ,

where A is a set contained in Z and contains 0 and where the sequence (xi)i∈A

is strictly increasing. Then, for any element f in HomeoZ(R), there exists an
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integer i(f) such that ψ(f)(x0) = xi(f). The map i : HomeoZ(R) → Z is a group
morphism: it is trivial by Lemma 5.2. Claim 1 is proved.

By Claim 1, restricting if necessary the action on a connected component of the
complement of Fix(ψ(t)), we can suppose that the homeomorphism ψ(t) has no
fixed point. Changing coordinates if necessary, we can suppose that the homeomor-
phism ψ(t) is the translation x 7→ x+1. The morphism ψ induces an action ψ̂ of the
group HomeoZ(R)/ < t >≈ Homeo0(S

1) on the circle R/Z. This action is nontriv-
ial: otherwise, there would exist a nontrivial group morphism Homeo0(S

1) → Z.
By the remark below Theorem 1.2, there exists a homeomorphism h of the circle
R/Z such that, for any homeomorphism f in HomeoZ(R)/ < t > (which can be
canonically identified with Homeo0(R/Z)):

ψ̂(f) = hfh−1.

Take a lift h̃ : R → R of h. For any integer n, denote by Tn : R → R the translation
x 7→ x+n. For any homeomorphism f in HomeoZ(R), there exists an integer n(f)
such that

ψ(f) = Tn(f)h̃f h̃
−1.

However, the map n : HomeoZ(R) → Z is a group morphism: it is trivial by
Lemma 5.2. This completes the proof of Claim 2.
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