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Actions of groups of homeomorphisms on one-manifolds

In this article, we describe all the group morphisms from the group of compactly-supported homeomorphisms isotopic to the identity of a manifold to the group of homeomorphisms of the real line or of the circle. MSC: 37C85.

Introduction

Fix a connected manifold M (without boundary). For an integer r ≥ 0, we denote by Diff r (M ) the group of C r -diffeomorphisms of M . When r = 0, this group will also be denoted by Homeo(M ). For a homeomorphism f of M , the support of f is the closure of the set:

{x ∈ M, f (x) = x} .
We denote by Diff r 0 (M ) (Homeo 0 (M ) if r = 0) the identity component of the group of compactly supported C r -diffeomorphisms of M (for the strong topology). If r = dim(M ) + 1, these groups are simple by a well-known and difficult theorem (see [START_REF] Banyaga | The structure of classical diffeomorphism groups, Mathematics and its Applications[END_REF], [START_REF]Bounemoura Simplicité des groupes de transformations de surface[END_REF], [START_REF] Fischer | On the group of all homeomorphisms of a manifold[END_REF], [START_REF] Mather | Commutators of diffeomorphisms I[END_REF], [START_REF] Mather | Commutators of diffeomorphisms II[END_REF]).

In [START_REF] Ghys | Prolongements des difféomorphismes de la sphère[END_REF], Étienne Ghys asked whether the following statement was true: if M and N are two closed manifolds and if there exists a non-trivial morphism Diff ∞ 0 (M ) → Diff ∞ 0 (N ), then dim(M ) ≥ dim(N ). In [START_REF] Mann | Homomorphisms between diffeomorphism groups[END_REF], Kathryn Mann proved the following theorem. Take a connected manifold M of dimension greater than 1 and a onedimensional connected manifold N . Then any morphism Diff ∞ 0 (M ) → Diff ∞ 0 (N ) is trivial: she answers Ghys's question in the case where the manifold N is onedimensional. Mann also describes all the group morphisms Diff r 0 (M ) → Diff r 0 (N )

for r ≥ 3 when M as well as N are one-dimensional. The techniques involved in the proofs of these theorems are Kopell's lemma (see [START_REF] Navas | Groups of Circle Diffeomorphisms[END_REF] Theorem 4.1.1) and Szekeres's theorem (see [START_REF] Navas | Groups of Circle Diffeomorphisms[END_REF] Theorem 4. 1.11). These theorems are valid only for a regularity at least C 2 . In this article, we prove similar results in the case of a C 0 regularity. The techniques used are different.

Theorem 1.1. Let M be a connected manifold of dimension greater than 2 and let N be a connected one-manifold. Then any group morphism Homeo 0 (M ) → Homeo(N ) is trivial.

The case where the manifold M is one-dimensional is also well-understood.

Theorem 1.2. Let N be a connected one-manifold. For any group morphism ϕ : Homeo 0 (R) → Homeo(N ), there exists a closed set K ⊂ N such that:

1. The set K is pointwise fixed under any homeomorphism in ϕ(Homeo 0 (R)).

2. For any connected component I of N -K, there exists a homeomorphism h I : R → I such that:

∀f ∈ Homeo 0 (R), ϕ(f ) |I = h I f h -1 I .
Remark: By a theorem by Matsumoto (see [START_REF] Matsumoto | Numerical invariants for semiconjugacy of homeomorphisms of the circle[END_REF] Theorem 5.3), every group morphism Homeo 0 (S 1 ) → Homeo 0 (S 1 ) is a conjugation by a homeomorphism of the circle. Moreover, any group morphism Homeo 0 (S 1 ) → Homeo(R) is trivial. Indeed, as the group Homeo 0 (S 1 ) is simple, such a group morphism is either one-toone or trivial. However, the group Homeo 0 (S 1 ) contains torsion elements whereas the group Homeo(R) does not: such a morphism cannot be one-to-one.

2 Proofs of Theorems 1.1 and 1.2

Fix an integer d ≥ 1. For a point p in R d , we denote by G d p the group Homeo 0 (R d -{p}). This group is seen as a subgroup of Homeo 0 (R d ) consisting of homeomorphisms which pointwise fix a neighbourhood of the point p. We will call embedded

(d -1)-dimensional ball of R d the image of the closed unit ball of R d-1 = R d-1 × {0} ⊂ R d under a homeomorphism of R d . For an embedded (d -1)-dimensional ball D ⊂ R d (which is a single point if d = 1), we denote by H d
D the subgroup of Homeo 0 (R d ) consisting of homeomorphisms which pointwise fix a neighbourhood of the embedded ball D. Finally, if G denotes a subgroup of Homeo(R d ), a point p ∈ R d is said to be fixed under the group G if it is fixed under all the elements of this group. We denote by Fix(G) the (closed) set of fixed points of G.

The theorems will be deduced from the following propositions. The two first propositions will be proved respectively in Sections 3 and 4.

Proposition 2.1. Let ϕ : Homeo 0 (R d ) → Homeo(R) be a group morphism. Suppose that no point of the real line is fixed under the group ϕ(Homeo 0 (R d )). Then, for any embedded (d -1)-dimensional ball D ⊂ R d , the group ϕ(H d D ) admits at most one fixed point. Proposition 2.2. Let ϕ : Homeo 0 (R d ) → Homeo(R) be a group morphism. Then, for any point p in R d , the group ϕ(G d p ) admits at least one fixed point. Proposition 2.3. For any group morphism ψ : Homeo 0 (R d ) → Homeo(S 1 ), the group ψ(Homeo 0 (R d )) has a fixed point.

Proof of Proposition 2.3. Recall that the group Homeo 0 (R d ) is infinite and simple and that the group Homeo(S 1 )/Homeo 0 (S 1 ) is isomorphic to Z/2Z. Hence any morphism Homeo 0 (R d ) → Homeo(S 1 )/Homeo 0 (S 1 ) is trivial. Therefore, the image of a morphism Homeo 0 (R d ) → Homeo(S 1 ) is contained in Homeo 0 (S 1 ).

For some background about the bounded cohomology of groups and the bounded Euler class of a group acting on a circle, see Section 6 in [START_REF] Ghys | Groups acting on the circle[END_REF]. By [START_REF] Mather | The vanishing of the homology of certain groups of homeomorphisms[END_REF] and [START_REF] Matsumoto | Bounded cohomology of certain groups of homeomorphisms[END_REF]:

H 2 b (Homeo 0 (R d ), Z) = {0}
. Therefore, the bounded Euler class of a morphism Homeo 0 (R d ) → Homeo 0 (S 1 ) vanishes: this action has a fixed point.

Proof of Theorem 1.1. Let d = dim(M ). The theorem will be deduced from the following lemma. Let us see why this lemma implies the theorem. Consider a morphism Homeo 0 (M ) → Homeo 0 (N ). Take an open set U ⊂ M homeomorphic to R d and let us denote by Homeo 0 (U ) the subgroup of Homeo 0 (M ) consisting of homeomorphisms supported in U . By Lemma 2.4 and Proposition 2.3, the restriction of this morphism to the subgroup Homeo 0 (U ) is trivial. Moreover, as the group Homeo 0 (M ) is simple, such a group morphism is either one-to-one or trivial: it is necessarily trivial in this case.

Proof of Lemma 2.4. Take a group morphism ϕ : Homeo 0 (R d ) → Homeo(R). Suppose by contradiction that this morphism is nontrivial. Replacing if necessary R with a connected component of the complement of the closed set Fix(ϕ(Homeo 0 (R d ))), we can suppose that the group ϕ(Homeo 0 (R d )) has no fixed points.

Let us prove that, for any points

p 1 = p 2 in R d : Fix(ϕ(G d p1 )) ∩ Fix(ϕ(G d p2 )) = ∅.
The proof of this fact requires the following lemma.

Lemma 2.5. Let d ′ ≥ 1 be an integer. Let p 1 = p 2 be two distinct points in R d ′ . Then, for any homeomorphism f in Homeo 0 (R d ′ ), there exist homeomorphisms

f 1 , f 3 in G d ′ p1 and f 2 in G d ′ p2 such that: f = f 1 f 2 f 3 . Proof. Take a homeomorphism f in Homeo 0 (R d ′ ). Let f 1 be a homeomorphism in G d ′ p1 such that f -1 1 sends the point f (p 1 ) to a point which lies in the same connected component of R d ′ -{p 2 } as the point p 1 . Let f 2 be a homeomorphism in G d ′ p2 which is equal to f -1 1 f in a neighbourhood of the point p 1 .
The existence of the homeomorphism f 2 is easy to prove when d ′ = 1, is a consequence of the Schönflies Theorem when d ′ = 2 and of the annulus theorem by Kirby and Quinn when d ′ ≥ 3 (see [START_REF] Kirby | Stable homeomorphisms and the annulus conjecture[END_REF] and [START_REF] Quinn | Ends of maps III : Dimensions 4 and 5[END_REF]). Changing if necessary the homeomorphism f 2 into the composition of the homeomorphism f 2 with a homeomorphism supported in a small neighbourhood of the point p 1 , the homeomorphism

f 3 = f -1 2 f -1 1 f belongs to G d ′ p1 .
Take two points p 1 and Proof of Theorem 1.2. Let ϕ : Homeo 0 (R) → Homeo(N ) be a nontrivial group morphism. By Proposition 2.3, we can suppose that the manifold N is the real line R. Replacing R with a connected component of the complement of the closed set Fix(ϕ(Homeo 0 (R))) if necessary, we can suppose that the group ϕ(Homeo 0 (R)) has no fixed point. Recall that the group Homeo 0 (R) is simple. Hence any morphism Homeo 0 (R) → Z/2Z is trivial. Thus, any element of the group ϕ(Homeo 0 (R)) preserves the orientation of R.

p 2 in R d . Suppose by contradiction that Fix(ϕ(G d p1 )) ∩ Fix(ϕ(G d p2 )) = ∅. By Lemma 2.
By Propositions 2.1 and 2.2, for any real number x, the group ϕ(G 1

x ) has a unique fixed point h(x). Take a homeomorphism f in Homeo 0 (R) which sends a point

x in R to a point y in R. Then f G 1 x f -1 = G 1 y and, taking the image under ϕ, ϕ(f )ϕ(G 1 x )ϕ(f ) -1 = ϕ(G 1 y ). Hence ϕ(f )(Fix(ϕ(G 1 x ))) = Fix(ϕ(G 1 y )). Therefore, for any homeomorphism f in Homeo 0 (R), ϕ(f )h = hf .
Let us prove that the map h is one-to-one. Suppose by contradiction that there exist real numbers x = y such that h(x) = h(y). The point h(x) is fixed under the groups ϕ(G 1

x ) and ϕ(G 1 y ). However, the groups G 1

x and G 1 y generate the group Homeo 0 (R) by Lemma 2.5. Therefore, the point h(x) is fixed under the group ϕ(Homeo 0 (R)), a contradiction. Now we prove that the map h is either strictly increasing or strictly decreasing. Fix two points x 0 < y 0 of the real line. For any two points x < y of the real line, let us consider a homeomorphism f x,y in Homeo 0 (R) such that f x,y (x 0 ) = x and f x,y (y 0 ) = y. As ϕ(f x,y )h = hf x,y , the homeomorphism ϕ(f x,y ) sends the ordered pair (h(x 0 ), h(y 0 )) to the ordered pair (h(x), h(y)). As the homeomorphism ϕ(f x,y ) is strictly increasing:

h(x) < h(y) ⇔ h(x 0 ) < h(y 0 ) and h(x) > h(y) ⇔ h(x 0 ) > h(y 0 ).
Hence the map h is either strictly increasing or strictly decreasing. Now, it remains to prove that the map h is onto to complete the proof. Suppose by contradiction that the map h is not onto. Notice that the set h(R) is preserved under the group ϕ(Homeo 0 (R)). If this set had a lower bound or an upper bound, then the supremum of this set or the infimum of this set would provide a fixed point for the group ϕ(Homeo 0 (R)), a contradiction. This set has neither upper bound nor lower bound. Let C be a connected component of the complement of the set h(R). To simplify the exposition of the proof, we suppose that the map h is increasing. Let us denote by x 0 the supremum of the set of points x such that the real number h(x) is lower than any point in the interval C. Then the point h(x 0 ) is necessarily in the closure of C: otherwise, there would exist an interval in the complementary of h(R) which strictly contains the interval C. We suppose for instance that the point h(x 0 ) is the supremum of the interval C. Choose, for each couple (z 1 , z 2 ) of real numbers, a homeomorphism g z1,z2 in Homeo 0 (R) which sends the point z 1 to the point z 2 . Then the sets g x0,x (C), for x in R, are pairwise disjoint: they are pairwise distinct as their suprema are pairwise distinct (the supremum of the set g x0,x (C) is the point h(x)). Moreover, those sets do not contain any point of h(R) and the infima of those sets are accumulated by points in h(R). Hence, these sets are pairwise disjoint. Then the set C has necessarily an empty interior as the topological space R is second-countable. Therefore C = {h(x 0 )}, which is not possible.

Proof of Proposition 2.1

The proof of this proposition is similar to the proofs of Lemmas 3.6 and 3.7 in [START_REF] Militon | Continuous actions of the group of homeomorphisms of the circle on surfaces[END_REF]. We need the following lemma. The proof of this lemma is almost identical to the proof of Lemma 2.5 and is omitted. 

h 3 in H d D and h 2 in H d D ′ such that h = h 1 h 2 h 3 .
For such an embedded (d -1)-dimensional ball D, let

F D = Fix(ϕ(H d D )
). Let us prove that these sets are pairwise homeomorphic. Take two embedded (d -1)-dimensional balls D an D ′ and take a homeomorphism h in Homeo 0 (R d ) which sends the set D onto D ′ . Observe that

hH d D h -1 = H d D ′ and that ϕ(h)ϕ(H d D )ϕ(h) -1 = ϕ(H d D ′ ). Therefore: ϕ(h)(F D ) = F D ′ .
In the case where these sets are all empty, there is nothing to prove. We suppose in what follows that they are not empty.

Given two disjoint embedded (d -1)-dimensional balls D and D ′ , Lemma 3.1 implies, as in the proof of Lemma 2.4: Proof. Let (a 1 , a 2 ) be a connected component of the complement of F D0 . It is possible that either a 1 = -∞ or a 2 = +∞. Consider a homeomorphism e : R d-1 × R → R d such that e(B d-1 × {0}) = D 0 , where B d-1 denotes the unit closed ball in R d-1 . For any real number x, let D x = e(B d-1 × {x}). Given two real x = y, take a homeomorphism η x,y in Homeo 0 (R) which sends the point x to the point y. Consider a homeomorphism h x,y such that the following property is satisfied. The restriction of eh x,y e -1 to B d-1 × R is equal to the map:

F D ∩ F D ′ = ∅.
B d-1 × R → R d-1 × R (p, z) → (p, η x,y (z))
Notice that, for any real numbers x and y, h x,y (D x ) = D y Let us prove by contradiction that there exists a real number x = 0 such that F Dx ∩ (a 1 , a 2 ) = ∅. Suppose that, for any such embedded ball D x , F Dx ∩ (a 1 , a 2 ) = ∅. We claim that the open sets ϕ(h 0,x )((a 1 , a 2 )) are pairwise disjoint. It is not possible as there would be uncountably many pairwise disjoint open intervals in R.

Indeed, suppose by contradiction that there exists real numbers x = y such that ϕ(h 0,x )((a 1 , a 2 )) ∩ ϕ(h 0,y )((a 1 , a 2 )) = ∅. Notice that the homeomorphism h -1 0,x h 0,y and h -1 0,y h 0,x send respectively the set D 0 to sets of the form D z and D z ′ , where z, z ′ ∈ R. Hence, for i = 1, 2, the homeomorphisms ϕ(h -1 0,x h 0,y ) (respectively ϕ(h -1 0,y h 0,x )) sends the point a i ∈ F D0 to a point in F Dz (respectively in F D z ′ ). By hypothesis, these points do not belong to (a 1 , a 2 ). Therefore

ϕ(h -1 0,y h 0,x )(a 1 , a 2 ) = (a 1 , a 2 ) or ϕ(h 0,x )(a 1 , a 2 ) = ϕ(h 0,y )(a 1 , a 2 ).
But this last equality cannot hold as the real endpoints of the interval on the left-hand side belong to F Dx and the real endpoints point of the interval on the right-hand side belongs to F Dy . Moreover, we saw that these two closed sets were disjoint, a contradiction. ). Take a real number r < p 1 . Then, for any homeomorphisms

g 1 in G D , g 2 in G D ′ and g 3 in G D , ϕ(g 1 ) • ϕ(g 2 ) • ϕ(g 3 )(r) < p 2 .
By Lemma 3.1, this implies that the following inclusion holds:

ϕ(g)(r), g ∈ Homeo 0 (R d ) ⊂ (-∞, p 2 ].
The supremum of the left-hand set provides a fixed point for the action ϕ, a contradiction.

Proof of Proposition 2.2

This proof uses the following lemmas. For a subgroup G of Homeo 0 (R d ), we define the support Supp(G) of G as the closure of the set:

x ∈ R d , ∃g ∈ G, gx = x . Let Homeo Z (R) = {f ∈ Homeo(R), ∀x ∈ R, f (x + 1) = f (x) + 1} .
To prove Proposition 2.2, we need the following lemmas. Lemma 4.1. Let G and G ′ be subgroups of the group Homeo + (R) of orientationpreserving homeomorphisms of the circle. Suppose that the following conditions are satisfied.

1. The groups G and G ′ are isomorphic to the group Homeo Z (R).

The subgroups G and G

′ of Homeo + (R) commute: ∀g ∈ G, g ′ ∈ G ′ , gg ′ = g ′ g.
Then Supp(G) ⊂ Fix(G ′ ) and Supp(G ′ ) ⊂ Fix(G). Lemma 4.1 will be proved in the next section. We now provide a proof of Lemma 4.2.

Proof of Lemma 4.2. Take a closed ball B contained in U . Changing coordinates if necessary, we can suppose that B is the unit closed ball in R d . Take an orientationpreserving homeomorphism h : R → (-1, 1). For any orientation-preserving homeomorphism f : R → R, we define the homeomorphism λ h (f ) : R d → R d in the following way.

1. The homeomorphism λ h (f ) is equal to the identity outside the interior of the ball B.

For any

(x 1 , x ′ ) ∈ R × R d-1 ∩ int(B): λ h (f )(x 1 , x ′ ) = ( 1 -x ′ 2 h • f • h -1 ( x 1 1 -x ′ 2
), x ′ ).

The map λ h defines an embedding of the group Homeo + (R) into the group

Homeo 0 (R d ). The image under λ h of the group Homeo Z (R) is a subgroup of Homeo 0 (R d ) which is supported in U .
Let us complete now the proof of Proposition 2. Take a subgroup G 1 of Homeo 0 (R d ) which is isomorphic to Homeo Z (R) and supported in B. Such a subgroup exists by Lemma 4.2. This subgroup commutes with any subgroup G 2 of Homeo 0 (R d ) which is isomorphic to Homeo Z (R) and supported outside B.

If the group ϕ(Homeo 0 (R d )) admits a fixed point, there is nothing to prove. Suppose that this group has no fixed point. As the group Homeo 0 (R d ) is simple, the morphism ϕ is one-to-one. Moreover, any morphism Homeo 0 (R d ) → Z/2Z is trivial: the morphism ϕ takes values in Homeo + (R). Hence the subgroups ϕ(G 1 ) and ϕ(G 2 ) of Homeo(R) satisfy the hypothesis of Lemma 4.1. By this lemma:

∅ = Supp(ϕ(G 1 )) ⊂ Fix(ϕ(G 2 )).
We claim that the group G d B is generated by the union of its subgroups isomorphic to Homeo Z (R). This claim implies that

∅ = Supp(ϕ(G 1 )) ⊂ Fix(ϕ(G d B )).
1. The set F is pointwise fixed under any element in Homeo Z (R).

2. For any connected component K of the complement of F , there exists a homeomorphism h K : R → K such that:

∀f ∈ Homeo Z (R), ∀x ∈ K, ψ(f )(x) = h K f h -1 K . Lemma 5.2. Any group morphism Homeo Z (R) → Z is trivial.
Proof of Lemma 5.2. Actually, any element in Homeo Z (R) can be written as a product of commutators, i.e. elements of the form aba -1 b -1 , with a, b ∈ Homeo Z (R). For an explicit construction of such a decomposition, see Section 2 in [START_REF] Eisenbud | Transverse foliations of Seifert bundles and self-homeomorphisms of the circle[END_REF].

Observe that the center of the group Homeo Z (R) is the subgroup generated by the translation x → x + 1. Let α (respectively α ′ ) be a generator of the center of

G (respectively of G ′ ). Let A α = R -Fix(α) and A α ′ = R -Fix(α ′ ).
As the homeomorphisms α and α ′ commute:

α ′ (A α ) = A α α(A α ′ ) = A α ′ .
Take any connected component I of A α and any connected component I ′ of A α ′ . Then, either I is contained in I ′ , or I ′ is contained in I, or I and I ′ are disjoint.

We now prove that only the latter case can occur. Suppose by contradiction that the interval I is strictly contained in the interval I ′ . Let ∼ be the equivalence relation defined on I ′ by x ∼ y ⇔ (∃k ∈ Z, x = α ′k (y)).

The topological space I ′ / ∼ is homeomorphic to a circle. By Lemma 5.1, the group G ′ preserves the interval I ′ . Notice that the group G ′ / < α ′ >≈ Homeo 0 (S 1 ) acts on the circle I ′ / ∼. As the group G ′ commutes with the homeomorphism α, this action preserves the nonempty set (A α ∩ I ′ )/ ∼. As α ′ (A α ) = A α , the endpoints of the interval I are sent to points in the complement of A α under the iterates of the homeomorphism α ′ . Hence the set (A α ∩ I ′ )/ ∼ is not equal to the whole circle I ′ / ∼. However, by Theorem 5.3 in [START_REF] Matsumoto | Numerical invariants for semiconjugacy of homeomorphisms of the circle[END_REF] (see the remark below Theorem 1.2), any non-trivial action of the group Homeo 0 (S 1 ) on a circle is transitive. Hence, the group G ′ / < α ′ > acts trivially on the circle I ′ / ∼: for any element β ′ of G ′ , and any point x ∈ I ′ , there exists an integer k(x, β ′ ) ∈ Z such that β ′ (x) = α ′k(x,β ′ ) (x). Fixing such a point x, we see that the map

G ′ → Z β ′ → k(x, β ′ )
is a group morphism. Such a group morphism is trivial by Lemma 5.2. Therefore, the group G ′ acts trivially on the interval I ′ , a contradiction.

Of course, the case where the interval I ′ is strictly contained in I is symmetric and cannot occur.

Suppose now that I = I ′ . Take any element β ′ in G ′ . As the homeomorphism β ′ commutes with α, by Lemma 5.1, the homeomorphism β ′ is equal to some element of G on I. As the homeomorphism β ′ commute with any element of G, there exists a unique integer k 

(β ′ ) such that β ′ |I = α k(β ′ ) |I . The map k : G → Z
(R)). Moreover Fix(ψ(Homeo Z (R))) = Fix(ψ(t)).
Claim 2. Any action of the group Homeo Z (R) on R without fixed points is conjugate to the standard action.

It is clear that these two claims imply Lemma 5.1.

First, let us prove Claim 1. The set Fix(ψ(t)) is preserved under any element in ψ(Homeo Z (R)), because any element of this group commutes with the homeomorphism ψ(t). Moreover, any element in ψ(Homeo Z (R)) preserves the orientation. Hence any connected component of the complement of Fix(ψ(t)) with infinite length is preserved under the action of the group ψ(Homeo Z (R)). We suppose now that any connected component of the complement of Fix(ψ(t)) has a finite length. Let us denote by ≡ the equivalence relation on R such that x ≡ y if and only if the points x and y belong to the same connected component of Supp(ψ(t)). The morphism ψ induces an action of the group Homeo Z (R)/ < t >≈ Homeo 0 (S 1 ) on the quotient topological space R/ ≡ which is homeomorphic to R if the set Fix(ψ(t)) has a nonempty interior. However, such an action is trivial by the remark below Theorem 1.2. Hence, any connected component of Supp(ψ(t)) is preserved by the action. Restricting to one of these connected components if necessary, we can suppose that the closed set Fix(ψ(t)) contains only isolated points. If this set is empty, there is nothing to prove. Otherwise, let Fix(ψ(t)) = {x i , i ∈ A} , where A is a set contained in Z and contains 0 and where the sequence (x i ) i∈A is strictly increasing. Then, for any element f in Homeo Z (R), there exists an integer i(f ) such that ψ(f )(x 0 ) = x i(f ) . The map i : Homeo Z (R) → Z is a group morphism: it is trivial by Lemma 5.2. Claim 1 is proved.

By Claim 1, restricting if necessary the action on a connected component of the complement of Fix(ψ(t)), we can suppose that the homeomorphism ψ(t) has no fixed point. Changing coordinates if necessary, we can suppose that the homeomorphism ψ(t) is the translation x → x+1. The morphism ψ induces an action ψ of the group Homeo Z (R)/ < t >≈ Homeo 0 (S 1 ) on the circle R/Z. This action is nontrivial: otherwise, there would exist a nontrivial group morphism Homeo 0 (S 1 ) → Z. By the remark below Theorem 1.2, there exists a homeomorphism h of the circle R/Z such that, for any homeomorphism f in Homeo Z (R)/ < t > (which can be canonically identified with Homeo 0 (R/Z)):

ψ(f ) = hf h -1 .
Take a lift h : R → R of h. For any integer n, denote by T n : R → R the translation x → x + n. For any homeomorphism f in Homeo Z (R), there exists an integer n(f ) such that ψ(f ) = T n(f ) hf h-1 .

However, the map n : Homeo Z (R) → Z is a group morphism: it is trivial by Lemma 5.2. This completes the proof of Claim 2.

Lemma 2 . 4 .

 24 Any group morphism Homeo 0 (R d ) → Homeo(R) is trivial.

  5, a point in this set is a fixed point of the group ϕ(Homeo 0 (R d )), a contradiction. By Proposition 2.2, the sets Fix(ϕ(G d p )), for p ∈ R d are nonempty. We just saw that they are pairwise disjoint. Recall that, for any embedded (d -1)-dimensional ball D, the set Fix(ϕ(H d D )) contains the union of the sets Fix(ϕ(G d p )) over the points p in the closed set D. Hence, this set has infinitely many points as d ≥ 2, a contradiction with Proposition 2.1.
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 31 Take two disjoint embedded (d -1)-dimensional balls D and D ′ in R d . For any homeomorphism f in Homeo 0 (R d ), there exist homeomorphisms h 1 ,

Lemma 3 . 2 .

 32 Fix an embedded (d -1)-dimensional ball D 0 of R d . Then any connected component C of the complement of F D0 meets one of the sets F D , where D is an embedded (d -1)-dimensional ball disjoint from D 0 .

Lemma 3 . 3 .

 33 Each set F D contains only one point. Proof. Suppose that there exists an embedded (d-1)-dimensional ball D such that the set F D contains two points p 1 < p 2 . By Lemma 3.2, there exists an embedded (d -1)-dimensional ball D ′ disjoint from D such that the set F D ′ has a common point with the open interval (p 1 , p 2

Lemma 4 . 2 .

 42 Take any nonempty open subset U of R d . Then there exists a subgroup of Homeo 0 (R d ) isomorphic to Homeo Z (R) which is supported in U .
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 2 Proof of Proposition 2.2. Fix a point p in R d . Take a closed ball B ⊂ R d which is centered at p. Let G d B be the subgroup of G d p consisting of homeomorphisms which pointwise fix a neighbourhood of the ball B. Let us prove that Fix(G d B ) = ∅.

  is a nontrivial group morphism. But such a map cannot exist by Lemma 5.2. Lemma 4.1 is proved. Proof of Lemma 5.1. Denote by t a generator of the center of the group Homeo Z (R). The connected components of the complement of Fix(ψ(t)) are each preserved by the group ψ(Homeo Z

	It remains to prove Lemma 5.1.
	Claim 1.

)) which tends to +∞. Take positive integers n 1 , n 2 and n 3 such that a n1 < b n2 < a n3 . Fix x 0 < a n1 . We notice then that for any homeomorphisms

, the following inequality is satisfied:

However, any element g in Homeo 0 (R d ) can be written as a product

where g 1 and g 3 belong to G d B and g 2 belongs to G d B ′ . The proof of this fact is similar to that of Lemma 2.5. Therefore:

The greatest element of the left-hand set is a fixed point of the image of ϕ: this is not possible as this image was supposed to have no fixed point.

Observe that the group ϕ(G d p ) is the union of its subgroup of the form ϕ(G d B ′ ), with B ′ varying over the set B p of closed balls centered at the point p. By compactness, the set

is nonempty. Proposition 2.2 is proved.

5 Proof of Lemma 4.1

We need the following lemmas. The first one will be proved afterwards.

Lemma 5.1. Let ψ : Homeo Z (R) → Homeo + (R) be a group morphism. Then there exists a closed set F ⊂ R such that: