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Abstract. Coupling between erosion and tectonics are thought to play

a determinant role in mountains evolution. Here, we investigate the inter-

play in this coupling between the assumed erosion law and the crustal rhe-

ology at the margin of a collisional plateau, like the Himalaya of central Nepal.

Lithospheric deformation is calculated over a time scale of 100 kyr by a two-

dimensional finite elements model that incorporates the rheological layering

of the crust and the main features of the convergence across the range in-

cluding shortening rate and geometry of the Main Himalayan Thrust fault.

For the upper boundary condition, several surface processes were tested: a

linear diffusion model and a 1D1/2 integrative model including fluvial in-

cision along the fluvial network and hillslope erosion by landsliding. Model

results and their sensitivity to the chosen combinations of erosion law and

crustal properties are discussed in light of the constraining geologic and ge-

omorphologic observations (topography, river elevation, denudation and flu-

vial incision rates). In contrast with the conclusions of Cattin and Avouac

[2000] where a compliant, quartz-rich crustal rheology and diffusion law were

required, we rather propose to use a composite quartz-diabase rheology for

the crust associated with fluvial incision to account for erosion and eleva-

tion profiles across the Himalaya of central Nepal. More generally, it is pro-

posed that, because of the interplay between the dominant denudation con-

ditions and rheology of the crust, well documented erosion rates and processes
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can provide significant constrains on crustal properties within an active oro-

gen.
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1. Introduction

The land surface is a dynamic interface that results from the combination of tectonic

uplift and denudation. Knowledge of the linkages and feedbacks between those two pro-

cesses is essential for the understanding of the structure and the evolution of mountain

belts. Because of several numerical limitations, few 3D studies with full coupling between

tectonics and erosion have been conducted so far. Most of the thermomechanical finite

element models are bidimensional, where erosion processes are usually reduced to a 1D

process acting on the surface profile. Erosion is either resumed to a diffusion law [Avouac

and Burov, 1996; Cattin and Avouac, 2000], or to a linear relation of the surface slope

[Beaumont et al., 2001], or to a simple river incision law where the mean topographic

profile is represented by a river profile [Willet, 1999]. These simplified models ignore the

respective role of river network and hillslopes in controling the morphology and evolution

of the landscape. In this paper we investigate the influence of the assumed erosion law

and of the rheological properties of the crust on crustal deformation through the use of a

2-D thermo-mechanical finite element model. We apply our approach to the Himalaya of

central Nepal, one of the best documented example of active mountain belt. After a short

presentation of the main features of the Himalayan orogenic belt, we describe the mod-

eling approach and the two distinct erosion laws we want to test. We next compare the

existing geomorphologic observations (including horizontal shortening, topography, river

elevation, denudation and fluvial incision rates) with model-simulated landscape produced

by various combinations of erosion law and crustal properties. We finally discuss the sen-
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sitivity of our results and try to highlight the most discriminant observations to unravel

rheologic and erosional conditions prevailing in a mountain range.

2. Geodynamical Setting and characteristics of the fluvial network

The Himalayan belt has resulted from the ongoing collision between the Indian and

Asian plates. It is one of the most active orogen of the Earth, characterized by a steep

topographic front from the 5000m elevated Tibetan Plateau down to the Gangetic plain.

This topographic step goes through four major morphotectonic domains: the rugged South

Tibetan plateau, the High Himalaya (HH) with deep gorges and ∼ 8000m summits, the

lower relief of the Lesser Himalaya (LH), and the frontal low elevation relief of the Siwaliks

Hills. The Himalayan range is affected by an intense ongoing seismicity [e.g. Ni and

Barazangi, 1984; Pandey et al. 1995], and displays abundant records of active deformation

[Nakata, 1972]. The long term shortening rate across the range is ∼ 20 mm.yr-1 [Lyon

Caen and Molnar, 1985; Armijo et al., 1986]. During the Holocene, this convergence has

been mostly transferred to the southernmost thrust or Main Frontal Thrust (MFT) [Lavé

and Avouac, 2000]. This frontal fault branches on the Main Himalayan Thrust (MHT)

rooting at 30-40km deep beneath the South Tibet [Zhao et al., 1993], and displaying a

ramp and flat geometry beneath the HH and LH domains [Schelling and Arita, 1991;

Lavé and Avouac, 2001]. Several major north south rivers drain the Himalayas of Nepal

from the southern Tibet down to the Indo-Gangetic plain. In Central and East Nepal,

across the HH, those trans-himalayan rivers are distant of 50km on average before joining,

in the southern part of the LH, two major rivers systems, the Narayani and Sapt Kosi

basins. Both rivers are tributary of the Ganga. Precipitations in Nepal are controlled by
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the barrier of the Himalayas, with a brutal condensation against the HH of the wet air

coming from the Indian ocean during monsoon. Whereas a marked rain shadow develops

on the north flank of the HH, the prominent fluvial network of the south flank, fed by

intense rainfalls is deeply entrenched in the topography and actively participate to the

denudation of the orogen (figure 1). Transhimalayan rivers and fluvial terraces profiles

[Lavé and Avouac, 2000, 2001] or thermochronologic data [Burbank et al., 2003] suggest

in addition that erosion is maximal across the Siwaliks and the HH, lower in the LH and

minimal in South Tibet.

3. Modeling approach

Following Cattin and Avouac [2000], our model is based on a 700 km long N18 cross

section perpendicular to the range, from the Gangetic Plain to the Tibetan Plateau (see

figure 1 for the location). We use a 2-D finite element model, ADELI [Hassani et al.,

1997] that accounts for the mechanical layering of the crust, the non-newtonian rheology

of rocks, and their dependencies on temperature and pressure. Three lithological layers are

distinguished: the upper and lower crusts, and the upper mantle. Each layer has specific

mechanical properties. We use the empirical rheological equations and laboratory-derived

material properties for quartz, diabase and dry olivine (see supplemented electronic docu-

ment 1). Those rheologies are dependent on temperature which is prescribed as an initial

condition [Henry et al, 1997] and do not evolve during the simulation, considering the

typical duration of ∼100 kyr (see Appendix 1 (suppl. Electr. Material) for the detail

of time scenario). For the different runs, this duration was usually sufficient to reach a

stabilized topographic profile, i.e. an average equilibrium between uplift and erosion (in
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a Lagrangian sense). The principal geometric characteristics of our model are similar to

Cattin and Avouac’s model [2000] (figure 2). The geometry of the Moho beneath South

Tibet is derived from INDEPTH seismic profile [Zhao et al., 1993] and from gravity data

[Cattin et al., 2001]. The boundary conditions applied to the system are constrained by

geodynamics data: we apply a 20 mm.yr-1 horizontal velocity on the northern vertical

face for depth above 40 km and leave vertical velocities free for the other vertical faces.

The structure is supported by hydrostatic pressure at its base which allows isostatic com-

pensation and thus realize a coupling between uplift and denudation. Due to the duration

of our simulations we are not taking into account the seismic cycle and the slip on a low

friction MHT is considered as continuous. Our main goal is to test the importance of

the upper boundary condition imposed with the introduction of surface processes on the

evolution of the system.

4. Surface processes

We distinguish two domains in term of surface processes: the foreland, south of the MFT

(x<0), with active sedimentation and the mountain range north of the MFT, dominated

by active erosional processes. The first domain, the Indo-gangetic basin is classically de-

scribed as a low elevation over-filled basin [Lyon-Caen and Molnar, 1985]: we thus assume

in the following a constant ∼ 0m elevation for it. In the range, two distinct erosion models

are explored: a diffusion model and a detachment limited fluvial incision model including

an implicit description of the tributaries and hillslope in the mean topography (Lavé, in

prep.). The diffusion model is probably one of the most simple self-consistent model, in

the sense that erosion, transport and deposition are described by a single relation. The
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basic form of this relation is a 1-D linear diffusion law that simply writes :

(

∂h̄

∂t

)

x

= κ

(

∂2h̄

∂x2

)

x

, (1)

where κ is the mass diffusivity coefficient, h̄ is the elevation of the topography and x is

the distance from the MFT. The diffusion model can be applied to describe the shape

and evolution of small scale topographic feature. However, it hardly applies at the scale

of a whole mountain range, because it can not account for the advective nature of the

fluvial processes. Recent studies have, in particular, underlined the key role played by

the fluvial incision in leading unglaciated landscape denudation [e.g. Whipple and Tucker,

1999]. Whereas different functional forms have been proposed to model fluvial incision [eg.

Whipple and Tucker, 2002], in an attempt to develop a simple approach, we have used a

detachment limited relation that provides satisfying first order results in the Subhimalaya

[Lavé and Avouac, 2001]. This relation states that bedrock incision rate of a river is

proportional to the fluvial shear stress τ in excess of some threshold τc, computed from

the river slope Sx and flood discharge derived from rainfall profile (figure 2) [Lavé and

Avouac, 2001]:

(

∂hriv

∂t

)

x

= Kx(τ − τc) (2)

with,

τ = k1(P̄x − Pr)
γ(L(X − x))β

(

Sx

s0

)α

, (3)

where Kx is the erodability coefficient (figure 2) depending on rock strength, k1 a coeffi-

cient that depends on the river network geometry, sediment size and flood distribution, L

the width of the watershed, s0 the sinuosity of the river and α, β, γ are exponents consid-
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ered as constant in our study area. P̄ is the average precipitation on the watershed and Pr

some treshold runoff. X is the abscissa of the drainage divide. Despite their leading role,

the main rivers do not account for the mean topography, which represent the pertinent

variable for the upper boundary condition of mechanical modelling. The elevation profile

of the transhimalayan river represents in fact the base level for the network of tributaries

which are draining the whole topography, from their sources at the base of the hillslopes

to their confluence with the trunk stream. At a given abscissa, the mean elevation of the

topography h̄ is therefore the sum of three contributions: (1) the elevation of the main

river hriv, (2) the fluvial relief associated to the tributaries ∆htrib that we assume to be

controlled by the same incision law as the main river and (3) the relief of the hillslope

from the fluvial network to the crest ∆hhill. In active orogens, hillslopes are dominated

by landslides [Hovius et al., 1997]: we thus assume that they display a critical slope angle

of repose θc and that they react instantaneously to any local base level drop. A new

formalism to integrate the fluvial relief associated to the tributaries network is proposed

by Lavé [in prep.] and enable to compute at each time step the changes of the elevation

of the trunk stream from equation 2 and of the changes in mean topography according to

(

∂h̄

∂t

)

x

=

(

∂hriv

∂t

)

x

+Kx(k2(Px − Pr)
γ∆hα

tribx
− τc) (4)

with,

∆htrib = ∆htotal −∆hhill = ∆htotal −
∆l

2
tan θc, (5)

where k2 is a coefficient which depends like k1 on the tributary network and the flood

distribution, and ∆l the horizontal distance between the crest and the base of the hill-
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slope. The different parameters of the two erosion models are detailed in Appendix 2

(supplemented electronic material).

5. Sensitivity to the erosion law

To investigate the influence of the denudation law, the rheological layering used is

quartz (upper crust), diabase (lower crust) and wet olivine (mantle) as on figure 2. The

comparison between the two tested erosion models is carried out on 4 different profiles:

mean elevation, horizontal velocity, uplift and erosion rates (figure 3). The river elevation

and incision rates are specific to the fluvial incision model, and thus do not appear in

the diffusive case. The two models display very similar profiles of horizontal velocity: the

southward transfer of the Himalayan shortening is allowed by the low friction condition

on the MHT [Cattin and Avouac, 2000]. In contrast, the uplift and erosion rates display

distinct profiles suggesting that part of the vertical motion is controlled by deformation

in the middle and lower crust in response to erosional unloading. Diffusion processes

localize the highest erosion at the southern edge of Tibetan plateau (x∼ 140 km on our

profile), associated with the maximum amount of slope variations along the profile. With

the fluvial incision model, the erosion of the whole topography acts at a slower rate

than incision of the main river: less denudation leads to a faster southward migration

or gravitational spreading of the plateau and counteracts against river regressive erosion.

Finally, diffusion based landscape evolution leads to relatively smooth topographic profiles,

with continuous slopes variations. By contrast using the incision law allows to preserve a

clear slope transition between the LH and HH. This enhances that, in addition of being

the most realistic of the two erosion laws, only the fluvial incision model provides a good
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agreement with all the available observations: i.e. the highest rates of erosion and incision

across the HH (x∼ 100 km in Figure 3) [Lavé and Avouac, 2001; Burbank et al., 2003],

positive denudation in the LH, ≤ 1 mm.yr-1 of sedimentation in front of the MFT [Lavé

and Avouac, 2000], the sharp topographic transition between the LH and HH.

6. Sensitivity to the crustal rheology

In contrast with our results, Cattin and Avouac [2000] obtained with a linear diffusion

model a good fit to the geophysical observations data including the estimated pattern of

river incision. However Cattin and Avouac [2000] have been using a homogeneous quartz-

like rheology for the crust. We thus suspect a trade off between the assumed denudation

condition and the rheological properties of the crust. To test this hypothesis we calculate

the deformation field resulting from various combinations of erosion law (diffusion or

fluvial incision) and crustal properties (homogeneous or composite). As shown in figure 4,

a complex interplay indeed exists between surface processes and crustal properties. A soft

rheology for the lower crust (quartz) induces a gravitational collapse of the plateau. This

localizes the maximum slope variations at the foothill of the HH, leading to a maximum

of erosion by diffusion across the HH. In contrast, with the fluvial incision model, this

collapse increases the river embanking, the denudation and uplift rates within the LH,

which is found inconsistent with available data in LH [Lavé and Avouac, 2001]. The other

end member diabase like crustal rheology implies a stronger coupling between mantle and

crustal deformation. This model predicts a buckling of the lithosphere. Using diffusion

law with this rheology gives sedimentation in the Lesser Himalaya, and a denudation peak

far too the North. Fluvial incision, associated to this unrealistic diabase like upper crust,
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displays also the same inconsistent peak of erosion in South Tibet and provides a poorer

fit of the erosion profile than when using a composite rheology.

7. Conclusion

Among the reduced set of simulations presented in this paper, two combinations provide

a good fit to denudation data: (1) the Cattin and Avouac’s model in which an homogenous

quartz like rheology is associated with diffusion, and (2) our model with composite crustal

rheology (quartz-diabase) associated with fluvial incision including erosion of the whole

topography. However, the first combination can not provide a good fit to the whole set of

observations: only a fluvial incision based model preserves a clear slope transition between

the LH and HH, and only a strong lower crust can account for ≤ 1 mm/yr of sedimentation

in the Gangetic plain. A diabase-like rheology for the lower crust, which minimize the

decoupling effect between crust and mantle, is in addition required to produce the strength

of the Indian lithosphere as inferred from gravity anomalies measurements [Cattin et al.,

2001]. Our exploration of the different model parameters (i.e. the mechanical properties

of the crust, the MHT geometry and the apparent friction on it, or the denudation law) is

far to be exhaustive. However, these preliminary results highlight several concerns when

studying active orogens. First, the hypothesis of the dominant erosion law may have

major consequences in terms of denudation and uplift pattern. Second, because of the

trade off between the denudation pattern and the crustal rheology, the use of a realistic

denudation law, calibrated with field measurements, allows to put significant constraints

on the properties of the crust. Finally, it has to be noted that for a given range several

sets of different observation are necessary to fully decipher the different combinations of
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rheologic, tectonic and erosion models. In our case study focused on the Himalayas of

central Nepal, the incision and denudation rates, the sedimentation rate in the foreland

basin, the topographic profile appears as the respective most constraining data.
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Figure 1. Topographic map of the studied area (GTOPO30 digital elevation model),

showing the principal hydrographic features, the position of the Main Frontal Thrust, and

the cross sections AA’ (figure 2) used in the modeling and BB’ presented on figures 3 and

4. 1-Ganga, 2-Narayani, 3-Sapt Kosi, 4-Tsangpo.
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Figure 2. Main features of the model.(a) Rainfall profile (black line) and initial topog-

raphy (gray area) used in this study. Dashed line gives the location of the high erodability

area associated with the Siwaliks foothills. (b) Geometry of the system, temperature field

(K), rheological units, and boundary conditions used for the mechanical modeling. The

model is loaded with gravitational body forces. A fault with a simple Coulomb friction

law is introduced and follows the ramp and flat geometry proposed for the MHT. In

the foreland south of the MFT (x<0), erosion balances tectonic uplift or subsidence. In

the range (i.e. north of the MFT) landscape evolution is controlled by the erosion law

(diffusion law or river incision law).
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Figure 3. Fluvial incision model (black line) and diffusive model (dashed line). Uplift,

denudation and incision profiles are confronted to profiles across the range from Lavé and

Avouac [2001], and to fission track datas from Burbank et al. [2003] for the denudation

profile (denudation rates obtained using the thermal model from Henry et al. [1997]).

The control points on horizontal velocity are derived from folding of fluvial terraces in

the Siwaliks (1) [Lavé and Avouac, 2000], progradation of the sediments in the Gangetic

Plain and flexure of the indian plate (2) [Lyon-Caen and Molnar, 1985] and quaternary

grabbens extension in Southern Tibet (3) [Armijo et al., 1986]. Topography is derived

from GTOPO30 DEM, and river elevation from Lavé and Avouac [2001].

D R A F T February 15, 2013, 9:11am D R A F T



GODARD ET AL.: TRADE OFF BETWEEN EROSION AND RHEOLOGY X - 19

-4

-2

0

2

4

6

8

10

E
ro

si
on

 (
m

m
.y

r-1
)

0 100 200

Distance from MFT (km)

Denudation rate

1

2

3

4

5

6

7

8
A

lti
tu

de
 (

km
)

Mean topography

Fluvial Incision Diffusion

Mean topography

0 100 200

Distance from MFT (km)

Denudation rate

Figure 4. Effect of the assumed erosion law (fluvial incison and diffusion) on the

rheology of the crust to fit topography and denudation profiles. Black line: quartz (upper

crust), diabase (lower crust). Dashed line: quartz (upper and lower crust). Dotted line:

diabase (upper and lower crust)
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