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Eddy current in arotating cylinder in a static field by a stochastic
method

J. Lévéque, T. Lubin, S. Mezani, A. Rezzoug

GREEN University of Nancy BP 239 54506 VandoeuviaEe

Abstract. This paper deals with the calculation of eddyrent in copper cylinder. This cylinder rotates m ienposed static
magnetic field. The electromagnetic problem is adlin two-dimension by considering transient matibwo methods for eddy
current computation are compared: stochastic me#maticlassical Finite Element Method. The main gdahis paper is to

compare these methaods

1. Introduction

In this paper we present the calculation of eddyent in a
copper cylinder when it moves in an applied stati&gnetic
field. This is a very important problem for thernte¢atment
of metal [1-2]. For heating any metal by inductifbeld, we
have two solutions. The first one is to submit toaductor
material to a low value (about 0.7T) and high freagy
variable magnetic field. The second method consistthe
achievement of a high magnetic field (several Tiesha using
a superconducting magnet for example, in whichniagerial
can rotate. So, the control of the body temperatiabtained
by adjusting the rotating speed and/or the valuethof
magnetic field. There are some studies on this kirdeating.
In this paper we propose a new numerical methazhkoulate
eddy current distribution in the cylinder. The aiifrthis paper
is to present a stochastic method to calculatecedcurrent
in a moving material. This method has some advantikg
calculation in only one point or in some points amad in the
whole domain. We present these advantages on aaBignt
motion problem with a constant applied magnetitdfi§he
results obtained with the proposed method are coedpaith
those obtained by the classical finite element wabth

1.1. Equation to be solve

First, we present the equation to solve [3] in ordefind the

induced current in a cylinder which rotates in afarm

magnetic field. The considered problem is solvedtvii-

dimension (2D). From this assumption, the flux dgns
presents only two components in tlxey plane and the
potential vector has only one component, this oed
orthogonal to this plane-component).

The induced current density in the cylinder is gity

)

J=0_(e+vxB)

whereog is the electrical conductivity of the cylinder.

The relation between the magnetic vector potergia the
current density is

AA = —11,d 2
Substituting (1) into (2), we obtain
AA =-p,0.(e+VvxB) 3)

The relation between the electric field and the metig vector
potential is defined as:

e=—a—A—grad(V) 4
ot

Equation (4) is then replaced in (3) to give:

DA =+u,0, %? ~ M0 (VX B) ®)

Now, we have to calculate the tefxB). To do that, we

define the position of a point M and the componesftshe
vector speed in cylindrical coordinates system:

rcosd
OM =|rsin® (6)
0
- ©sin® =0y
v =|rf cosh = 6x @)

0

8 or (d%t) is the angular speed of the copper cylinder

Knowing that the magnetic field is given by:

dA/oy
—-0A/0x
0

B=cur(A) = (8)



The product, xp)is developed and gives:

0
vxB =0
0A/dxr@sind-0A/dy récosh

©)

We now have to solve the following equation in tyinder
and in the air regions:

AA = HHoT ot 1,0, (—A/0x y&+0A/dy x6) (10)

whereo=0 in the air region.

1.2. Boundary condition

Now, we need to set the boundary conditions. Thatirg
cylinder is placed in a constant magnetic field,shswn in

figure n°1.
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Fig. 1. Rotating cylinder in a constant magnetic field

The whole considered domain, air and rotating dgmn
regions, is a square. On two sides of the domam,have
Neumann’s condition and on the other sides, thaevalf the
magnetic vector potential is imposed, either a totsor its
opposite. With these boundary conditions, we hacerstant
and uniform magnetic field created by external sesr In the
study, the boundaries are placed far enough fraamctipper
cylinder to not perturb the solution.

So, we now have the following problem to solve:

DA = +4,0, %—? + 14,0,(0A/0x y& + A/ dy x8)

with o=0 inair

and (11)
a—A:O in T,

on

A =-Cte in Ty

A =+Cte in T,

We have also a condition on the movement of thendgt.
The speed increase linearly with time from 0 tal3during
100ms. So, the initial value of the speed is null.

In this first part, the system of equations to dbsc the
problem has been developed. In the two followingspave
present first the stochastic method allowing toveothe
problem and then the obtained results.

2. Calculation by stochastic method

Stochastic methods are used to solve various kihgsoblem
but are very rarely used in electrical engineerifgshow the
relevance of such method, we applied it to solvepyablem
[4-7].

2.1 Stochastic resolution of PDE

The aim of this part is to explain how to solve &tipn (11).
We begin by a short presentation of Monte-Carlohoetto
describe the resolution of PDE by stochastic pacés a
second step, we present the resolution of our prolihanks
to the Brownian motion.

2.1.1. Fixed random walk

The resolution of a stationary problem by a Montarl€
method consists in generating a set of fixed randeetks

starting from a point of calculation. A virtual piate

randomly moves on a mesh. A random walk stops when
particle reaches a border with a Dirichlet’s coiadit The
particle retrogresses when it meets a border witewman’s
condition. The probabilities of displacement areegi by the
discretization of the partial derivative equatio® explain in
the following example.

We will generalise the construction of a randomkntal solve
a time dependent problem. We take for example a sienple
one-dimensional diffusion equation:

v _ou

(12)

ot ox>

The first step consists of discretizing the PDE. Wé#éice that
X = i.Ax and t = nAt, whereAx and At are the spatial and
temporal steps.

02U _ Ui ~2Uin + Uiy, (13)
ox2 Ax2

and

% ~ u in u in-1 (14)
ot At



Substituting (13), (14) and (15) into (12), we dbtahe
following equation

Ui+Ln _2Ui,n +Ui—1,n = a(Ui,n _Ui,n—l) (15)
= Ui+1,n U i-1n + G'U i,n-1 (16)
M 2+a 2+a  2+a

with

q =D 17)

At
From this equation, we can define the followinglyabilities:
P,=P_= 1 (18)
2+a
a

R_= 19

-5, (19)

Thus, we havep,_ +p,, +p, =1.

-+
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Fig. 2. Spatio temporal random walllj.(XO To) = iZN:U
: N

So, we define the probabilities which will be useduild the
random walks.

U i,n = px—U i-1n + px+U i+1n + th in-1' (20)

As shown in Fig. 2, the Monte Carlo Markov Chain thv

consists in computing a set of random walks stgiom the
same point P(XoziAx, To=n,At) for which we need to
approximate the value of U.

We consider that dx and dt values are quite chdsethe

numerical calculation. To do that let us consider value of
a. If it is very small, whereas the value of the lmability B,.

value ofa is roughlyl which gives an equiprobability for the
three walks.

2.1.2. Brownian motion

We saw that the probability of displacement on thesh
comes from the discretization by finite differenoé the
equation (12). Knowing that when the spatial stepds to
zero, the random walk tends to a Brownian motior, uge
this property to build now a random walk withoutshe

The general expression of a diffusion processga/én by:

ouU

a

Lutx) = 338,09

ij=1

0%U d ou
+> u(x)— (21)
0% Z;,,U (%) o

where x, x; are spatial variable and t the time.

It could be associated to a diffusion process wigcéolution
of the Cauchy problem [8]:

dX(t) = p(t, X (1)dt + a(t, X (t))dB, (22)

Sj(x) being a square matrix, we have the followinigtien:

S, (x) =07 (x).0(x) (23)

X(t) is a stochastic variable which defines theifpms of a
particle at a time t. At t=0 this particle is aethosition where

we need to calculate the solution of the equation.

HU(t, X (1)), is the expectation of the stochastic variable.

o?(t, X(t)) is the variance of the stochastic variable.

B; is the Brownian motion. It is a stochastic vareakthose
increment B.s-B; follows a normal distribution law N(@t).

With this method, a stationary problem is calcuddlike the
limit of a time dependent problem.

We now present a simple example to illustrate #deutation
process. We consider the Laplace equation in 2D:
a°u
ox?

92U _

= (24)
ay*

+B

This equation could be rewritten to correspondhe form
defined by (21):
J ) 0

1(20{
2

02U
ox?

(25)

o°U
+2
Bay2

and R_tends to 0.5, Ptends to 0 and the convergence proceskhe parameters of the stochastic variable X(t) rmoe the
is time consuming. Ifx is very large, the space probabilitiesfollowing :
tend toward 0 while Ptends to 1. A reasonable choice for the



=00

20 O 2.2 Application to arotatin linder
sj(x):(o ZBJ T (26) PP e

In this part, we use Brownian motion to solve thelagbem of a
copper cylinder rotating in magnetic field as regred in
figure 1. To solve equation (11), we first rewiiitén order to
separate time derivative term:

where

0:(@ 0 J 27)

0 2B yoae%—?:AA—yoae(aA/axy9+0A/6yx9) (30)
andp =0.
A_ 1 [PA A [ oA, oA 31
—= ot =0 y—+x— (31)
2.1.3. How many Brownian motion do we haveto 0t (4,0 [0X° 0y ox oy

take?

An elementary displacement of the Brownian mot®igiven
It is obvious that we cannot take only one Browniastion to by the previously described equation:
estimate the solution at the point B(K). The question is

how many Brownian motion we have to take? dX(t) = p(t, X (t))dt +o(t, X(t))dB, (32)

Let us define the stochastic variablg by: In this case, the parameters are the followingaxttaristics:

n=N
U, :%Zun . (28) 2
1O (33)
o(t, X(t) =
The stochastic variable associated to th® Brownian 0 2
displacement is YU, is the simulation result for the™n HoTe
and

random process starting from the point P(xo,to)e Tentral
limit theorem indicates that JJfollows a Gaussian stochastic

law with Us the mathematical expectation and with, /N p(t, X (1)) = —G{y} (34)

standard deviation if N is sufficiently high. X

The robability that U belongs to the interval
P y U g The main characteristics of the studied problemg ar

[US -204/JN,Ug + 2'08/‘/NJ is 95%. W and 0/+/N  summarized in table 1

are estimated byJ ¢ and g5 which are defined by: Table 1. Characteristic of the problem
eV~ ~ S Copper Air
S = ; Un and Us = N (29) Angular speed 0to 3rd/s 0
. 5 Electrical 37 10 S/m 0
S, => Un? 3, = 1 S, S conductivity
n=1 N-1 N Size cylinder radius of Square of 0.16 m
0.08 m
Step size 0.004 m
Where subscript n correspond to the current Browniation Simulation time 0.1s
and subscript s correspond to the final value efdtochastic Time step 10s
variable

The value of the magnetic vector potential is fixad0.1
As N increases, the diameter of the 95 % confidentsval Wb/m on the boundarlys, and at -0.1 Wb/m on the boundary

[U —-20./JN.U.+20 /\/ﬁl tends to zero andU. [a. These values give a constant magnetic flux deosit.25
S N N s S T in the whole domain when the copper cylinder ddes
tends to the solutiondJ

move.
We obtain not only one estimate of the solution &isb an Electrical conductivityo, and angular speed are null in the air

estimate of the error by the value of the standat%?gion and have a non nyll value in the coppendydi.r.egi.on.
L~ 0 overcome the numerical problem due to any disicoity
deviationog.

of the parameters in equation (11), functiogg x() and
u(t, X(t)) must be continuous. For that, we adopt a sigmoid
representation of speed and conductivity



((x2+y2)lc)d Fig. 4. Flux lines obtained with Brownian motion method
e

0.(X) =0, (35)
d Hux line at t 100 ns wth copper
2.2
. . @x +y' ﬂc)
B(x) =0e : (36)
0.15
where ¢ and d are parameters adjusting the curiks. o1

variation of the electrical conductivity versus spas shown

on figure 3. If the c term is too weak, the vapatiof the 0.05
speed is not sharp and the description of the ghenon is

not good. We do not see influence of this term be t > 0
computation speed and the precision of the calculus

-0.05
01y ——
Y N
‘ -0.15
J
‘ -0.2 -0.1 0 0.1 0.2

Fig. 5. Flux lines obtained with finite element simulatio

0lo0 o QIO with 040 10° and Qo=3 rd/s

Ill"!l.“l-' Figure 6 shows the time evolution of the potentigttor at a

e S oo

s ) given point (x= 0.8, y= 0.8) on the cylinder sudaabtained
’ T o by finite element simulation and Brownian motioneWote

again a good agreement between the results obtéinete
two methods.

Fig. 3. Electrical conductivity versus space for ¢=0.01d a

0,06

o
=}
a

3. Results

i=]

[=]

=
L

In order to study the effectiveness of the stoébasiethod,
the results have been compared with those obtdioed 2D
transient finite element simulations.

Figure 4 and figure 5 show the flux lines obtainespectively
by stochastic method and finite element simulation the e T Erounian molo
same condition. We can observe that the resultsnagood

Potential Vector
o
o
w

i=]

Q

R
!

(=)
o
=4
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0,02 0,04 0,06 0,08 0,1

agreement but very noisy with stochastic method. 0
Time(9)
Aux line a t 100 ns with copper Fig. 6. Comparison of the two methods at one point on the
0.2y s s ‘ border of the cylinder

The main advantage of the stochastic method ikenchoice
of the number of Brownian motions and consequeintlthe
precision of the calculus because we have an estiréthe
results. If we need very short computer time coriagrfor the
calculus, we can associate the stochastic methdd wi
numeric filter to avoid the noisy part of the nuinal results.
Figure 7 and 8 show a comparison between two coatipot
results of the magnetic vector potential, one wéhlow
number of Brownian motions and another with firetement
method. We also present on Fig. 7 the curve oldaihanks
to a noise filtering. It can be seen in Fig. 7 @hdhat the
results are much closed for FEM and stochastic odetiiVe
show on Fig. 9 a comparison between stochastic adeimd
FEM on a line at y =0.04 and we a good agreemetntdss
the two methods.




field. We have shown that the stochastic methoégesults
0,056 very close to those obtained by finite element &tans.
Each method has its own advantages and drawbacks.

0,054 —— Brownian motion

0,052 1 T Movingaverage (100period Among the advantages of the finite element methasl can
quote its popularity and the large number of sofewa

packages, some of them being free. One of the gmublof

r““‘w il this method is that we need to calculate the smiuin the

e whole space and for transient problem, at eachestiate.
Another problem is that we have, when thin meshisg

0042 H{ required, a large system to solve with the risknofmerical
W instability.

0,04

0,05 1 il

‘ ‘1\‘ ' I
0,048 | il ik

Potential Vector

0,046 -

0,044 1 “ I N‘ ‘

0 0,02 0,04 0,06 0,08 0,1
Times(S) . .
) ) ) . Among the advantages of stochastic method to gudv&al
Fig. 7. Comparison of two stochastic methods at one @int gjfferential equation, we can notice that:
the border of the cylinder . Itis very easy to program it.
e Itis not necessary to mesh all space and, scseau

0,054 1 lot of computer memory.

0,052 | R * Itis possible to calculate solution in only onenpo
— - Brownian motion- Moving average (100 period) and not in the whole space.
* It is also possible to calculate solution at ommaeti

and not at each space time.

0,05

0,048 1

Potential Vector

0,046 Because of these advantages, the method can bk easi
included in a larger design program to study pnolsief eddy

currents and new thermal heating systems.

0,044

0,042 1
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