
HAL Id: hal-00788686
https://hal.science/hal-00788686

Submitted on 15 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eddy current in a rotating cylinder in a static field by a
stochastic method

Jean Lévêque, T. Lubin, Smail Mezani, A. Rezzoug

To cite this version:
Jean Lévêque, T. Lubin, Smail Mezani, A. Rezzoug. Eddy current in a rotating cylinder in a static
field by a stochastic method. European Physical Journal: Applied Physics, 2012, 57 (3), �10.1051/ep-
jap/2011110025�. �hal-00788686�

https://hal.science/hal-00788686
https://hal.archives-ouvertes.fr


Eddy current in a rotating cylinder in a static field by a stochastic 
method 

 
J. Lévêque, T. Lubin, S. Mezani, A. Rezzoug 

 
GREEN University of Nancy BP 239 54506 Vandoeuvre France 

 
Abstract. This paper deals with the calculation of eddy current in copper cylinder. This cylinder rotates in an imposed static 
magnetic field. The electromagnetic problem is solved in two-dimension by considering transient motion. Two methods for eddy 
current computation are compared: stochastic method and classical Finite Element Method. The main goal of this paper is to 
compare these methods. 
 
 

1. Introduction 
 
In this paper we present the calculation of eddy current in a 
copper cylinder when it moves in an applied static magnetic 
field. This is a very important problem for thermal treatment 
of metal [1-2]. For heating any metal by induction field, we 
have two solutions. The first one is to submit the conductor 
material to a low value (about 0.7T) and high frequency 
variable magnetic field. The second method consists in the 
achievement of a high magnetic field (several Tesla), by using 
a superconducting magnet for example, in which the material 
can rotate. So, the control of the body temperature is obtained 
by adjusting the rotating speed and/or the value of the 
magnetic field. There are some studies on this kind of heating. 
In this paper we propose a new numerical method to calculate 
eddy current distribution in the cylinder. The aim of this paper 
is to present a stochastic method to calculate induced current 
in a moving material. This method has some advantage like 
calculation in only one point or in some points and not in the 
whole domain. We present these advantages on a 2D transient 
motion problem with a constant applied magnetic field. The 
results obtained with the proposed method are compared with 
those obtained by the classical finite element method.  
 

1.1. Equation to be solve 
 
First, we present the equation to solve [3] in order to find the 
induced current in a cylinder which rotates in a uniform 
magnetic field. The considered problem is solved in two-
dimension (2D). From this assumption, the flux density 
presents only two components in the x-y plane and the 
potential vector has only one component, this one being 
orthogonal to this plane (z-component). 
The induced current density in the cylinder is given by 
 

( )BveJ ×+= eσ       (1) 

 
where σe is the electrical conductivity of the cylinder. 
 
 

The relation between the magnetic vector potential and the 
current density is  
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Substituting (1) into (2), we obtain 
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The relation between the electric field and the magnetic vector 
potential is defined as: 
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Equation (4) is then replaced in (3) to give: 
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Now, we have to calculate the term(v B)× . To do that, we 

define the position of a point M and the components of the 
vector speed in cylindrical coordinates system: 
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θ&  or ( )dt
dθ  is the angular speed of the copper cylinder 

 
Knowing that the magnetic field is given by: 
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The product(v B)× is developed and gives: 
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We now have to solve the following equation in the cylinder 
and in the air regions: 
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where σ=0 in the air region. 
 

1.2. Boundary condition 
Now, we need to set the boundary conditions. The rotating 
cylinder is placed in a constant magnetic field, as shown in 
figure n°1. 
 

 
 
Fig. 1. Rotating cylinder in a constant magnetic field 
 
The whole considered domain, air and rotating cylinder 
regions, is a square. On two sides of the domain, we have 
Neumann’s condition and on the other sides, the value of the 
magnetic vector potential is imposed, either a constant or its 
opposite. With these boundary conditions, we have a constant 
and uniform magnetic field created by external sources. In the 
study, the boundaries are placed far enough from the copper 
cylinder to not perturb the solution. 
So, we now have the following problem to solve: 
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We have also a condition on the movement of the cylinder. 
The speed increase linearly with time from 0 to 3 rd.s-1 during 
100 ms. So, the initial value of the speed is null. 
 
In this first part, the system of equations to describe the 
problem has been developed. In the two following parts, we 
present first the stochastic method allowing to solve the 
problem and then the obtained results. 

2. Calculation by stochastic method 
 
Stochastic methods are used to solve various kinds of problem 
but are very rarely used in electrical engineering. To show the 
relevance of such method, we applied it to solve our problem 
[4-7]. 
 

2.1 Stochastic resolution of PDE 
 
The aim of this part is to explain how to solve equation (11). 
We begin by a short presentation of Monte-Carlo method to 
describe the resolution of PDE by stochastic process. In a 
second step, we present the resolution of our problem thanks 
to the Brownian motion. 
 

2.1.1. Fixed random walk 
 
The resolution of a stationary problem by a Monte Carlo 
method consists in generating a set of fixed random walks 
starting from a point of calculation. A virtual particle 
randomly moves on a mesh. A random walk stops when the 
particle reaches a border with a Dirichlet’s condition. The 
particle retrogresses when it meets a border with a Newman’s 
condition. The probabilities of displacement are given by the 
discretization of the partial derivative equation as explain in 
the following example. 
 
We will generalise the construction of a random walk to solve 
a time dependent problem. We take for example a very simple 
one-dimensional diffusion equation: 
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The first step consists of discretizing the PDE. We notice that 
x = i.∆x and t = n. ∆t, where ∆x and ∆t are the spatial and 
temporal steps. 
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Substituting (13), (14) and (15) into (12), we obtain the 
following equation 
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From this equation, we can define the following probabilities: 
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Fig. 2. Spatio temporal random walk. 
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So, we define the probabilities which will be used to build the 
random walks. 
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As shown in Fig. 2, the Monte Carlo Markov Chain Method 
consists in computing a set of random walks starting from the 
same point P(Xo=io.∆x, To=no.∆t) for which we need to 
approximate the value of U.  
We consider that dx and dt values are quite chosen for the 
numerical calculation. To do that let us consider the value of 
α. If it is very small, whereas the value of the probability Px+ 

and Px- tends to 0.5, Pt- tends to 0 and the convergence process 
is time consuming. If α is very large, the space probabilities 
tend toward 0 while Pt- tends to 1. A reasonable choice for the 

value of α is roughly1 which gives an equiprobability for the 
three walks. 
 

2.1.2. Brownian motion 
 
We saw that the probability of displacement on the mesh 
comes from the discretization by finite difference of the 
equation (12). Knowing that when the spatial step tends to 
zero, the random walk tends to a Brownian motion, we use 
this property to build now a random walk without mesh. 
 
The general expression of a diffusion processes is given by:  
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where xi, xj are spatial variable and t the time. 
 
It could be associated to a diffusion process which is solution 
of the Cauchy problem [8]: 
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Sij(x) being a square matrix, we have the following relation:  
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X(t) is a stochastic variable which defines the position of a 
particle at a time t. At t=0 this particle is at the position where 
we need to calculate the solution of the equation. 
 

ttXt ))(,(µ is the expectation of the stochastic variable. 

  

))(,(2 tXtσ  is the variance of the stochastic variable. 

 
Bt is the Brownian motion. It is a stochastic variable whose 
increment Bt+δt-Bt follows a normal distribution law N(0, δt).  
 
With this method, a stationary problem is calculated like the 
limit of a time dependent problem. 
 
We now present a simple example to illustrate the calculation 
process. We consider the Laplace equation in 2D: 
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This equation could be rewritten to correspond to the form 
defined by (21): 
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The parameters of the stochastic variable X(t) are now the 
following : 
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2.1.3. How many Brownian motion do we have to 

take? 
 
It is obvious that we cannot take only one Brownian motion to 
estimate the solution at the point P(Xo,To). The question is 
how many Brownian motion we have to take? 
 
Let us define the stochastic variable UN by: 
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The stochastic variable associated to the nth Brownian 

displacement is Un. nU
~

 is the simulation result for the nth 

random process starting from the point P(xo,to). The central 
limit theorem indicates that UN follows a Gaussian stochastic 

law with US the mathematical expectation and with Ns /σ  

standard deviation if N is sufficiently high.  
The probability that 

nU
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Where subscript n correspond to the current Brownian motion 
and subscript s correspond to the final value of the stochastic 
variable 
 
As N increases, the diameter of the 95 % confidence interval 

[ ]N/.2U,N/.2U SSSS σ+σ−  tends to zero and SU
~

 

tends to the solution US.  
 
We obtain not only one estimate of the solution but also an 
estimate of the error by the value of the standard 
deviation Sσ~ .  

 

2.2 Application to a rotating cylinder 
 
In this part, we use Brownian motion to solve the problem of a 
copper cylinder rotating in magnetic field as represented in 
figure 1. To solve equation (11), we first rewrite it in order to 
separate time derivative term: 
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An elementary displacement of the Brownian motion is given 
by the previously described equation: 
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In this case, the parameters are the following characteristics: 
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The main characteristics of the studied problems are 
summarized in table 1 
 

Table 1. Characteristic of the problem 
 

 Copper Air 
Angular speed 0 to 3 rd/s 0 
Electrical 
conductivity 

37 106 S/m 0 

Size cylinder radius of 
0.08 m 

Square of 0.16 m  

Step size 0.004 m 
Simulation time 0.1 s 
Time step 10-7 s 
 
The value of the magnetic vector potential is fixed at 0.1 
Wb/m on the boundary Γd2 and at -0.1 Wb/m on the boundary 
Γd1. These values give a constant magnetic flux density of 1.25 
T in the whole domain when the copper cylinder doesn’t 
move. 
Electrical conductivity σe and angular speed are null in the air 
region and have a non null value in the copper cylinder region. 
To overcome the numerical problem due to any discontinuity 
of the parameters in equation (11), functions ))t(X,t(σ  and 

))t(X,t(µ  must be continuous. For that, we adopt a sigmoid 

representation of speed and conductivity 
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where c and d are parameters adjusting the curves. The 
variation of the electrical conductivity versus space is shown 
on figure 3. If the c term is too weak, the variation of the 
speed is not sharp and the description of the phenomenon is 
not good. We do not see influence of this term on the 
computation speed and the precision of the calculus. 
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Fig. 3. Electrical conductivity versus space for c=0.01 and 
d=5.3 
 

3. Results 
 
In order to study the effectiveness of the stochastic method, 
the results have been compared with those obtained from 2D 
transient finite element simulations. 
Figure 4 and figure 5 show the flux lines obtained respectively 
by stochastic method and finite element simulation for the 
same condition. We can observe that the results are in good 
agreement but very noisy with stochastic method. 
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Fig. 4. Flux lines obtained with Brownian motion method 
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Fig. 5. Flux lines obtained with finite element simulation. 
 
Figure 6 shows the time evolution of the potential vector at a 
given point (x= 0.8, y= 0.8) on the cylinder surface obtained 
by finite element simulation and Brownian motion. We note 
again a good agreement between the results obtained by the 
two methods. 
 

0

0,01

0,02

0,03

0,04

0,05

0,06

0 0,02 0,04 0,06 0,08 0,1

Time (s)

P
ot

en
ti

al
 V

ec
to

r

Brownian motion

FEM calculus

 
Fig. 6. Comparison of the two methods at one point on the 
border of the cylinder 
 
The main advantage of the stochastic method is in the choice 
of the number of Brownian motions and consequently in the 
precision of the calculus because we have an estimator of the 
results. If we need very short computer time consuming for the 
calculus, we can associate the stochastic method with a 
numeric filter to avoid the noisy part of the numerical results. 
Figure 7 and 8 show a comparison between two computations 
results of the magnetic vector potential, one with a low 
number of  Brownian motions and another with finite element 
method. We also present on Fig. 7 the curve obtained thanks 
to a noise filtering. It can be seen in Fig. 7 and 8 that the 
results are much closed for FEM and stochastic method. We 
show on Fig. 9 a comparison between stochastic method and 
FEM on a line at y =0.04 and we a good agreement between 
the two methods. 
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Fig. 7. Comparison of two stochastic methods at one point on 
the border of the cylinder 
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Fig. 8. Comparison of stochastic methods and finite element 
method at one point on the border of the cylinder 
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Fig. 9. Comparison of stochastic methods and finite element 
method on a line at y=0.04. 
 

4. Conclusion 
In this paper, we have solved the problem of induced current 
in a moving copper cylinder placed in a uniform magnetic 

field. We have shown that the stochastic method gives results 
very close to those obtained by finite element simulations. 
Each method has its own advantages and drawbacks. 
 
Among the advantages of the finite element method, we can 
quote its popularity and the large number of software 
packages, some of them being free. One of the problems of 
this method is that we need to calculate the solution in the 
whole space and for transient problem, at each space time. 
Another problem is that we have, when thin meshing is 
required, a large system to solve with the risk of numerical 
instability. 
 
 
 Among the advantages of stochastic method to solve partial 
differential equation, we can notice that: 

• It is very easy to program it. 
• It is not necessary to mesh all space and, so, to use a 

lot of computer memory. 
• It is possible to calculate solution in only one point 

and not in the whole space. 
• It is also possible to calculate solution at one time 

and not at each space time. 
 
Because of these advantages, the method can be easily 
included in a larger design program to study problems of eddy 
currents and new thermal heating systems. 
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