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Abstract

This paper is devoted to the effective behavior of linear viscoelastic hetero-
geneous materials with a particular emphasis on their transient response.
First, two new asymptotic relations for the overall creep function are derived
at short and large times. They are related to the retardation spectrum of the
composite and involve second-order moments per phase of the stress field for
the purely elastic and purely viscous problems. In the context of harmonic
loadings, these relations provide exact frequential asymptotic conditions on
the overall storage and loss moduli. Second, by making use of these asymp-
totic results, an approximate model is proposed. It consists in approximating
the retardation spectrum of the composite by a single discrete Dirac mass.
Its accuracy is assessed by comparison with exact analytical results, full-
field simulations and collocation results for several classes of composites and
polycrystals.
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1. Introduction

A major issue in the determination of the effective properties of viscoelas-
tic composites or polycrystals is the description of the interaction between
elastic and viscous deformation mechanisms within the material. The present
study is a contribution towards the understanding of this coupling.

The local and overall constitutive relations between the infinitesimal strain
ε and the Cauchy stress σ fields can be expressed as hereditary integrals. At
the scale of individual constituents it reads

ε(x, t) =
(
M (r) ? σ

)
(x, t), (1)

where x denotes a material point within phase r of the composite and ?
stands for the Stieljes convolution product (Appendix A). Similarly the
macroscopic or effective constitutive relations can be written as

ε(t) = (M̃ ? σ)(t) (2)

where ε and σ are the macroscopic, or averaged, strain and stress (the overall
bar denotes spatial averaging over a representative volume element of the
material). M (r)(t) and M̃ (t) are the local (in phase r) and effective creep
functions of the composite.

Even when the constituents have a “short memory” (for instance Kelvin-
Voigt or Maxwell materials whose creep functions M(t) are characterized by
a single retardation time), it is well established that the effective kernel func-

tion M̃ exhibits an additional fading memory term (i.e. a “long memory”
effect) (Sanchez-Hubert and Sanchez-Palencia, 1978; Francfort et al., 1983;
Suquet, 1987), and in particular is not characterized by a single retardation
time. More specifically, when the individual constituents of the composite
are Maxwellian, their creep function takes the form

M (r)(t) = M (r)
e + tM (r)

v , (3)

whereas the overall creep function of the composite can be written as:

M̃(t) = M̃ 0 + t M̃∞ +

∫ +∞

0

J̃(τ) (1− e−t/τ ) dτ (4)

where M̃ 0 + t M̃∞ is the Maxwellian component of M̃(t) (corresponding

to “short memory” effects as in (3)) and J̃(τ) is the retardation spectrum
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associated with “long memory” effects. The different terms M̃ 0, M̃∞ and
J̃ can be interpreted in physical terms by analyzing the response of the
composite to a creep test (see Subsection 2.2 and Figure 1). For simplicity
the present study will be focused on Maxwellian individual constituents,
corresponding for instance to irradiation creep in metals or ceramics at high
temperature. However it is worth noting that the long-memory effects have
a general character and that some of the conclusions of our study apply to
more general viscoelastic behaviors of the constituents.

These long-memory effects, arising from the change of scales, can be evi-
denced by means of the correspondence principle (Mandel, 1966) by which
the original viscoelastic problem is transformed into a symbolic elastic one
(Hashin, 1965, 1970; Laws and Mc Laughlin, 1978; Turner and Tomé, 1993).

The effective kernel J̃(τ) can then be tabulated at the expense of computing

a large number of effective moduli to obtain the Laplace transform M̃
∗
(p)

of M̃(t) for a large number of Laplace parameters p and then by taking the

inverse Laplace transform of M̃
∗
(p). In a few specific cases, J̃(τ) can even

be derived in closed form (Rougier et al., 1993; Masson et al., 2012). How-

ever, even when J̃ is known, either in tabulated form or in closed form, the
implementation of constitutive laws with long-memory effects in a macro-
scopic structural computation requires to store the whole time history of the
overall stress (or strain) at each Gauss point of the structure. The computa-
tional cost of this storage is prohibitive and approximate methods to avoid
it have been developed, proceeding either by a direct step-by-step integra-
tion in time of the effective constitutive relations (Lahellec and Suquet, 2007;
Kowalczyk-Gajewska and Petryk, 2011), or by approximating the relaxation
kernel of the composite. In the latter approach, a common practice, which
goes back to Schapery (1974) and Laws and Mc Laughlin (1978), consists in
approximating the effective kernel function by a finite sum of decaying expo-
nentials (so-called Prony series). This approximation turns out to be exact
only if the relaxation (or equivalently retardation) spectrum consists of dis-
crete Dirac masses corresponding to a finite number of relaxation times. This
is the case, for instance, when the microstructure of the composite is such
that the Hashin-Shtrikman’s estimate for isotropic two-phase composites is
appropriate to estimate the effective linear (either purely elastic or purely
viscous) properties of the composite (Brenner and Masson, 2005; Ricaud and
Masson, 2009). It is also the case for the bulk relaxation of isotropic compo-
sites composed of the assemblage of coated inclusions (Beurthey and Zaoui,
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2000) for which the generalized self-consistent estimate (a.k.a. N+1 – phase
model) applies. In more general situations, the exact effective spectrum has
a continuous part and the Prony series provide only a convenient approxi-
mation. The widely used collocation method and its extensions rely on this
series approximation (Schapery, 1962; Cost and Becker, 1970; Bradshaw and
Brinson, 1997; Turner and Tomé, 1993; Masson and Zaoui, 1999; Rekik and
Brenner, 2011).

New results have recently been obtained on the effective relaxation func-
tion of linear viscoelastic composites by considering its asymptotic behavior
in time (Suquet, 2012). These exact relations, which imply restrictions on the
effective relaxation function, involve cross products of elastic stress fields with
viscous compliances (viscous dissipation due to elastic or short-term stress
fields) and cross products of viscous stress fields with elastic compliances
(elastic energy stored in long-term stress fields). Moreover, by making use of
the Prony series approximation, they can be used to construct a model with
only two relaxation times for incompressible materials with overall isotropy.
This model is exact for specific microstructures whose relaxation spectrum
consists precisely of two discrete Dirac masses.

Following these results, the motivation of the present work is threefold.
First, we aim at deriving corresponding asymptotic relations for the overall
creep function. To this aim, the instantaneous and delayed local and global
responses of the composite to a creep test are analyzed. Second, the physical
interpretation of these conditions on the overall response is given for various
mechanical loadings. These relations have implications on the retardation

J̃(τ) and relaxation G̃(τ) spectra and on the storage L̃
′
(ω) and loss L̃

′′
(ω)

moduli characterizing the harmonic steady-state response of the composite
at frequency ω. Third, we derive the dual formulation of the approximate
model of Suquet (2012). It is then applied to estimate the overall viscoelastic
response of isotropic composites with particulate or granular microstructures.
Its accuracy is assessed by comparisons with analytical results, with the
standard collocation method as well as with full-field computations performed
with the fast Fourier transform (FFT) method (Moulinec and Suquet, 1998;
Labé et al., 2011).
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2. Composites with Maxwellian constituents

2.1. Local problem

The composite materials considered in this study are made from N differ-
ent homogeneous constituents, or phases, which are assumed to be randomly
distributed in a representative volume element V and perfectly bonded across
their interfaces. Each constituent occupies a domain Vr with characteristic
function χ(r). The total and partial volume averages of a function f over

the entire volume V and over phase r are denoted by f and f
(r)

respectively.
The phases are linearly viscoelastic and Maxwellian, characterized by elastic
and viscous compliances M (r)

e and M (r)
v (with inverse L(r)

e and L(r)
v ) and

governed by the constitutive relations

ε̇(x, t) = M (r)
e : σ̇(x, t) +M (r)

v : σ(x, t) in phase r. (5)

The initial conditions are taken such that the material is initially at rest:

ε(x, t) = σ(x, t) = 0 for all t < 0. (6)

Defining

M e(x) =
N∑

r=1

M (r)
e χ(r)(x), M v(x) =

N∑

r=1

M (r)
v χ(r)(x),

the local stress and strain fields σ(x, t) and ε(x, t) are determined by reso-
lution of the so-called local problem consisting of the constitutive relations
of the phases, the equilibrium and compatibility equations, and a prescribed
history of overall stress or strain:

ε̇(x, t) = M e(x) : σ̇(x, t) +M v(x) : σ(x, t), for (x, t) ∈ V × [0, T ],

div σ = 0, ε(x, t) = 1
2

(
∇u+ ∇uT

)
(x, t), for (x, t) ∈ V × [0, T ],

〈σ(t)〉 = σ(t) + boundary conditions on ∂V.





(7)
The boundary conditions on ∂V can be either periodicity conditions, uni-
form traction, affine displacement or others, provided that Hill’s lemma ap-
plies (see Ponte Castañeda and Suquet, 1998, for details). The size of the
volume element V is assumed to be sufficiently large, compared to the size
of the heterogeneities, to ensure that the boundary conditions do not affect
significantly the effective response of the composite.
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The effective or homogenized constitutive relations link the average strain
ε(t) at time t to the history of average stress prior to t, σ(s), 0 ≤ s ≤ t
and take the integral form (2). The material function characterizing the

viscoelastic properties of the composite is the effective creep kernel M̃(t)
which can be obtained by analyzing the overall strain response of the volume
element V to a creep test.

2.2. Response of the composite to a creep test

The applied overall stress in a creep test reads as

σ(t) = 0 for all t < 0, σ(t) = σ for all t ≥ 0. (8)

The overall stress is a discontinuous function of time at t = 0 and its time
derivative is therefore a Dirac mass at t = 0. The Stieljes integral has to be
interpreted in a generalized sense as detailed in Appendix A. From relations
(2) and (A.2), it is found that the overall strain response of the composite is

directly related to the effective kernel M̃ (t), through:

ε(t) = M̃(t) : σ =

(
M̃ 0 + t M̃∞ +

∫ +∞

0

J̃(τ) (1− e−t/τ ) dτ

)
: σ, (9)

and the overall strain rate is:

ε̇(t) =

(
M̃∞ +

∫ +∞

0

J̃(τ)

τ
e−t/τ dτ

)
: σ. (10)

The different terms in these expressions can be interpreted as follows (see
Figure 1):

1. M̃ 0 characterizes the instantaneous response of the composite:

ε(0+) = M̃ 0 : σ.

2. M̃∞ characterizes the long-term (or delayed) response of the compo-
site:

ε̇(+∞) = M̃∞ : σ.

3. The “Maxwellian” component of M̃(t) (short-memory effects) is de-
fined as:

M̃
Maxw

(t) = M̃ 0 + tM̃∞. (11)
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t

ε
(t

)

M̃∞

∫ +∞

0

J̃(τ)dτ : σ

ε(0+) = M̃0 : σ

t

ε̇
(t

)

ε̇(0+)

0

∫ +∞

0

J̃(τ)

τ
dτ : σ

ε̇(+∞) = M̃∞ : σ

Figure 1: Interpretation of the short and long memory terms in the effective creep ker-
nel. Overall creep strain (left) and overall creep strain-rate (right) for a constant applied
macroscopic stress σ. Exact response (solid line) and Maxwell approximation (dot-dashed
line)

It is shown as a dot-dashed line in Figure 1. The long-memory effects of
the effective constitutive relations are contained in the kernel J̃ . Taking

the limit of (9) as t→ +∞ , it is seen that the integral

∫ +∞

0

J̃(τ) dτ : σ

is the additional creep strain due to long memory effects, which adds
up to the creep strain due to the Maxwellian component of M̃ (t).

4. Taking the limit of (10) as t→ 0+ , it is found that

∫ +∞

0

J̃(τ)

τ
dτ : σ

is the difference between the instantaneous strain-rate (at t = 0+) and

the delayed strain-rate M̃∞ : σ as t→ +∞.

2.3. Local response of the composite to a creep test at short and large time

The solution (σ(x, t), ε(x, t)) of the local problem (7) has the following
asymptotic properties when the volume element is subjected to a creep test.

Instantaneous response. The instantaneous response of the composite to
a creep test corresponds to the limit of (σ(x, t), ε(x, t)) as t→ 0+ (the limit
is taken from the right, for t > 0) and depends only on the elastic properties
of the phases:

lim
t→0+

σ(x, t) = σe(x), lim
t→0+

ε(x, t) = εe(x), (12)
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where (σe, εe) is the solution of the purely elastic problem

εe(x) =
1

2

(
∇ue + ∇uT

e

)
= M e(x) : σe(x), div σe = 0, 〈σe〉 = σ. (13)

Delayed response. The delayed response of the composite to a creep test
corresponds to the limit as t→ +∞ and depends only on the viscous prop-
erties of the phases:

lim
t→+∞

σ(x, t) = σv(x), lim
t→+∞

ε̇(x, t) = ε̇v(x), (14)

where (σv, ε̇v) is the solution of the purely viscous problem

ε̇v(x) =
1

2

(
∇u̇v + ∇u̇T

v

)
= M v(x) : σv(x), div σv = 0, 〈σv〉 = σ. (15)

2.4. Overall response of the composite to a creep test at short and large time

Taking the volume average of the strain field in (13) and of the strain-
rate field in (15), two relations are obtained for the instantaneous and delayed
response of the composite to a creep test:

lim
t→0+

ε(t) = εe = 〈εe〉 = M̃ e : σ, (16)

lim
t→+∞

ε̇(t) = ε̇v = 〈ε̇v〉 = M̃ v : σ. (17)

Two first classical relations can be obtained from these asymptotic results

M̃ 0 = lim
t→0+

M̃ (t) = M̃ e, (18)

and

M̃∞ = lim
t→+∞

˙̃
M (t) = M̃ v. (19)

In other words, the instantaneous and delayed response of the composite are
governed by the effective compliances, respectively purely elastic M̃ e and
purely viscous M̃ v, obtained by homogenizing the local problems (13) and
(15). In addition to the two well-known relations (18) and (19), two new
asymptotic relations can be established (the derivation is given in Appendix
B):

lim
t→0+

ε̇(t) : σ = 〈σe : M v : σe〉 , (20)
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and

lim
t→+∞

(
ε(t)− εMaxw(t)

)
: σ = 〈σv : M e : σv〉 − 〈σe : M e : σe〉 , (21)

with :
εMaxw(t) = M̃

Maxw
(t) : σ, (22)

M̃
Maxw

being defined in (11). Interestingly the new relations (20) and (21)
involve, in their right-hand side, the second moments of the stress fields
solution of the two linear (purely elastic and purely viscous) problems (13)
and (15). These second moments can be expressed as

〈σe : M v : σe〉 =
N∑

r=1

c(r)M (r)
v :: 〈σe ⊗ σe〉(r) ,

where the second moment per phase of the stress field σe reads as (Bobeth
and Diener, 1987; Kreher, 1990; Suquet, 1995; Ponte Castañeda and Suquet,
1998)

〈σe ⊗ σe〉(r) =
1

c(r)
σ :

∂M̃ e

∂M (r)
e

: σ.

Therefore

〈σe : M v : σe〉 =
N∑

r=1

M (r)
v ::

(
σ :

∂M̃ e

∂M (r)
e

: σ

)
. (23)

Similarly,

〈σv : M e : σv〉 =
N∑

r=1

M (r)
e ::

(
σ :

∂M̃ v

∂M (r)
v

: σ

)
. (24)

It is worth noting that the new relations (20) and (21) come at no additional

cost once the elastic and viscous compliances M̃ e and M̃ v of the composite
have been determined.
Remarks: 1. Using Hill’s lemma, the two relations (20) and (21) can be
alternatively expressed as:

lim
t→0+

σ :

(
˙̃
M (t)− ˙̃

M
Maxw

(t)

)
: σ = 〈(σe − σv) : M v : (σe − σv)〉 , (25)
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lim
t→+∞

σ :
(
M̃ (t)− M̃Maxw

(t)
)

: σ = 〈(σe − σv) : M e : (σe − σv)〉 . (26)

These relations show that the effective response of the composite to a creep
test is always softer than its Maxwellian approximation.

2. The relations (20) and (21) have the following implications for the

effective retardation spectrum J̃ :

σ :

∫ +∞

0

J̃(τ)

τ
dτ : σ = 〈σe : M v : σe〉 − 〈σv : M v : σv〉 . (27)

and

σ :

∫ +∞

0

J̃(τ) dτ : σ = 〈σv : M e : σv〉 − 〈σe : M e : σe〉 , (28)

Therefore the two gaps between the actual response of the composite and its
Maxwellian approximation, indicated by arrows in the two plots of Figure 1,
are directly related to cross-products of the elastic and viscous stress fields
with the viscous and elastic compliances of the phases. These relations can
be further simplified by noting that:

〈σe : M e : σe〉 = σ : M̃ e : σ, 〈σv : M v : σv〉 = σ : M̃ v : σ.

2.5. Relaxation spectrum

For completeness, asymptotic relations for the effective relaxation func-
tion L̃(t) in the time domain are also derived here. Note that alternative
expressions have been previously obtained in Laplace space (Suquet, 2012).

Consider the effective relaxation function L̃(t) of the composite, inverse of

M̃ (t) in the sense of the Stieljes convolution product, by means of which the
effective constitutive relation (2) can be written as

σ(t) = (L̃ ? ε)(t), (29)

where L̃(t) is expressed as

L̃(t) =

∫ +∞

0

G̃(τ) e−t/τ dτ. (30)

G̃(τ) is the effective relaxation spectrum of the composite. The relations (18),

(19), (27) and (28) have counterparts for the effective relaxation function L̃
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and the effective relaxation spectrum G̃. Subject the volume element V to
a test where the strain history ε(t) is such that:

ε(t) = 0 t < 0, ε(t) = ε0 + tε̇ t ≥ 0, (31)

with an overall constant (in time) strain-rate ε̇. The instantaneous response
of the composite is purely elastic, that is:

lim
t→0+

σ(x, t) = σe(x), lim
t→0+

ε(x, t) = εe(x) (32)

where (σe, εe) is the solution of the elastic problem

εe(x) =
1

2

(
∇ue + ∇uT

e

)
= M e(x) : σe(x), div σe = 0, 〈εe〉 = ε0. (33)

On the other hand, the delayed response of the composite is purely viscous:

lim
t→+∞

σ(x, t) = σv(x), lim
t→+∞

ε̇(x, t) = ε̇v(x), (34)

where (σv, εv) is the solution of the viscous problem

ε̇v(x) =
1

2

(
∇u̇v + ∇u̇T

v

)
= M v(x) : σv(x), div σv = 0, 〈ε̇v〉 = ε̇. (35)

The volume averages of the strain and strain-rate fields in (33) and (35) yield
two classical asymptotic results for the overall response of the composite at
short and large times:

lim
t→0+

σ(t) = L̃e : ε0 and lim
t→+∞

σ(t) = L̃v : ε̇. (36)

Furthermore, two new asymptotic relations can be derived (see proof in Ap-
pendix C):

lim
t→0+

σ̇(t) : ε0 = ε̇ : L̃e : ε0 − 〈σe : M v : σe〉 (37)

and

ε̇ :

∫ +∞

0

(σ(t)− σv) dt = ε0 : L̃v : ε̇− 〈σv : M e : σv〉 . (38)

The four asymptotic results (36), (37) and (38) imply the following relations

for the effective relaxation function L̃ and the effective relaxation spectrum
G̃ :

L̃(0) =

∫ +∞

0

G̃(τ) dτ = L̃e, (39)

11



t

σ̇
(t

)

−
∫ +∞

0

G̃(τ)

τ
dτ : ε0

0

σ̇(0+)

t

σ
(t

)
:
ε̇

σ(+∞) : ε̇

0

ε̇ :

∫ +∞

0

τ2 G̃(τ) dτ : ε̇

Figure 2: Interpretation of the long memory term in the overall relaxation kernel. Re-
laxation stress-rate for a constant applied macroscopic strain ε0 (left) and stress response
for a constant applied macroscopic strain rate ε̇ (right). Exact response (solid line) and
Maxwellian approximation (dot-dashed line).

∫ +∞

0

L̃(t) dt =

∫ +∞

0

τ G̃(τ) dτ = L̃v, (40)

ε0 :

∫ +∞

0

G̃(τ)

τ
dτ : ε0 = 〈σe : M v : σe〉 , (41)

ε̇ :

∫ +∞

0

τ 2 G̃(τ) dτ : ε̇ = 〈σv : M e : σv〉 . (42)

The interpretation of relation (41) goes as follows: when the composite is
subjected to a relaxation test (ε̇ = 0, ε(t) = ε0), the limit of the macroscopic

stress-rate σ̇(t) =
˙̃
L : ε0 as t→ 0+ is, according to (29) and (30),

σ̇(0+) = −
∫ +∞

0

G̃(τ)

τ
dτ : ε0 (43)

As for relation (42), when the composite is subjected to a loading at constant
strain-rate (ε0 = 0, ε̇(t) = ε̇), the difference between the energy dissipated
in the Maxwellian approximation (σ(+∞) : ε̇ t) and the energy dissipated in
the actual composite is

ε̇ :

∫ +∞

0

τ 2 G̃(τ) dτ : ε̇. (44)
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3. Relations in Laplace space

A common practice when dealing with viscoelastic materials is to work in
the Laplace domain, or in the frequency domain, rather than in the time do-
main. The frequency domain is particularly useful to investigate the steady-
state harmonic regime of the material subjected to a periodic (in time) load-
ing. The above asymptotic relations can be expressed in both Laplace and
frequency domains.

3.1. Asymptotic relations in Laplace space

The local problem (7) can be transformed by means of the Laplace-Carson
(LC) transform (Appendix A). The compatibility conditions and the equi-
librium equations are unchanged, whereas the constitutive relation (5) be-
comes

pε∗(x, p) = (pM e(x) +M v(x)) : σ∗(x, p), ∀x ∈ V, (45)

where p is the Laplace parameter which is a complex number, ε∗ and σ∗ are
the LC transforms of ε and σ. Two equivalent writings of the constitutive
relation of the phases are introduced favoring either elasticity or viscosity.
The “elastic” formulation relates ε∗ to σ∗:

ε∗(x, p) = M ∗(x, p) : σ∗(x, p),

with

M ∗(x, p) = M e(x) +
1

p
M v(x), (46)

whereas the “viscous” formulation relates ε̇∗(x, p) = pε∗(x, p) to σ∗:

ε̇∗(x, p) = M∗(x, p) : σ∗(x, p),

with
M∗(x, p) = pM ∗(x, p) = pM e(x) +M v(x). (47)

The effective constitutive relations in LC space read equivalently

ε∗(p) = M̃
∗
(p) : σ∗(p) or ε̇

∗
(p) = M̃

∗
(p) : σ∗(p), (48)

where M̃
∗
(p) is related to the effective spectrum J̃ through:

M̃
∗
(p) = M̃ e +

1

p
M̃ v +

∫ +∞

0

J̃(τ)

1 + pτ
dτ, (49)
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and M̃
∗
(p) = pM̃

∗
(p).

In this section, counterparts in Laplace space to the relations (18), (19),
(27) and (28) are established. By making use of the initial and final value
theorems (see Appendix A), it is immediately found that

lim
p→+∞

M̃
∗
(p) = M̃ e, (50)

and
lim
p→0

M̃
∗
(p) = M̃ v, (51)

which are the counterparts of (18) and (19) respectively. The counterparts
of relations (27) and (28) in Laplace space are:

lim
p→+∞

σ :
∂M̃

∗

∂(1/p)
(p) : σ = 〈σe : M v : σe〉 , (52)

and

σ :
∂M̃

∗

∂p
(0) : σ = 〈σv : M e : σv〉 (53)

where σe and σv are the solutions of the purely elastic problem (13) and
purely viscous problem (15).

A direct derivation of these relations, independent from (20) and (21), is

given in Appendix D through a study of the asymptotic behavior of M̃
∗
(p)

and M̃
∗
(p) in Laplace space for small and large p’s, as was done for the

relaxation function in Suquet (2012). A different proof is given here showing
how (52) and (53) follow from (20) and (21) respectively.

It follows from (A.6) that

lim
t→0+

σ : ε̇ = lim
p→+∞

p σ : (ε∗(p)− ε(0)) = lim
p→+∞

p σ :
(
M̃
∗
(p)− M̃ (0)

)
: σ.

The last term is evaluated by setting q = 1/p:

lim
p→+∞

p σ :
(
M̃
∗
(p)− M̃ (0)

)
: σ = lim

q→0
σ :

M̃
∗
(q)− M̃ ∗

(q = 0)

q
: σ,

where the initial and final value theorem has been used to obtain

M̃ (0) = lim
p→+∞

M̃
∗
(p) = lim

q→0
M̃
∗
(q).
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It is then found that

lim
t→0+

σ : ε̇ = σ :
∂M̃

∗

∂q
(q = 0) : σ = lim

p→+∞
σ :

∂M̃
∗

∂(1/p)
(p) : σ. (54)

Equation (52) results from (54) and (20). As for relation (53), it is noted
with the help of (A.6) that

lim
t→+∞

σ : (ε(t)− εMaxw(t)) = lim
p→0

σ : (ε∗(p)− (εMaxw)∗(p))

= lim
p→0

σ : (M̃
∗
(p)−M̃ e−

1

p
M̃ v) : σ = lim

p→0

(
σ :

M̃
∗
(p)− M̃ v

p
: σ

)
−σ : M̃ e : σ

= σ :
∂M̃

∗

∂p
(0) : σ − σ : M̃ e : σ. (55)

Equation (53) results from (55) and (21).

3.2. Asymptotic relations in frequency domain

The above relations (50), (51), (52), and (53) are valid even when p is
a purely imaginary number. The response of the composite to a periodic
loading is classically studied in the frequency domain by taking p = ıω,
where ı =

√
−1 and ω is the frequency. The macroscopic harmonic loading

reads
σ(t) = σ∗ eıωt or ε(t) = ε∗ eıωt. (56)

Asymptotic relations in the frequency domain are obtained from (50), (51),
(52), and (53) (the proof is omitted here for conciseness):

lim
ω→+∞

M̃
∗
(ıω) = M̃ e,

lim
ω→0

M̃
∗
(ıω) = M̃ v,

lim
ω→+∞

−ı ω2σ∗ :
∂M̃

∗

∂ω
(ıω) : σ∗ = 〈σe : M v : σe〉 ,

lim
ω→0

−ıσ∗ :
∂M̃

∗

∂ω
(ıω) : σ∗ = 〈σv : M e : σv〉 ,





(57)

Note that M̃
∗
(ıω) and M̃

∗
(ıω) are complex and therefore that the left-hand-

side of (57) is complex, whereas its right-hand-side is real. It is convenient to
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express these relations in terms of the storage moduli L̃
′
(ω) and loss moduli

L̃
′′
(ω) defined as the real and imaginary parts of the complex stiffness tensor

L̃
∗
(ıω):

L̃
∗
(ıω) = L̃

′
(ω) + ıL̃

′′
(ω).

Asymptotic relations can be deduced from (57) for the storage and loss mo-
duli:

lim
ω→+∞

L̃
′
(ω) = L̃e, lim

ω→+∞
L̃
′′
(ω) = 0

lim
ω→0

1

ω
L̃
′
(ω) = 0, lim

ω→0

1

ω
L̃
′′
(ω) = L̃v

lim
ω→+∞

−ω2ε∗ :
∂L̃
′

∂ω
(ω) : ε∗ = 0, lim

ω→+∞
−ω2ε∗ :

∂L̃
′′

∂ω
(ω) : ε∗ = 〈σe : M v : σe〉 ,

lim
ω→0

ε∗ :
∂

∂ω

(
1

ω
L̃
′
(ω)

)
: ε∗ = 〈σv : M e : σv〉 , lim

ω→0
ε∗ :

∂

∂ω

(
1

ω
L̃
′′
(ω)

)
: ε∗ = 0,





(58)
These asymptotic relations can be further specialized when the phases are
incompressible and expressed in terms of the usual storage and loss shear
moduli G′(ω) and G′′(ω).

4. An approximate model based on Prony series

4.1. Restrictions on Prony series

In the absence of expressions for the relaxation spectrum G̃ or the re-
tardation spectrum J̃ in closed forms, a common practice is to approximate
them by a box function or by a sum of delta functions (Eyre et al., 2002).

In the latter case, the effective relaxation kernel L̃(t) is approximated by a
sum of exponentials (Prony series) corresponding to the relaxation kernel of
a generalized Maxwell model, i.e. Maxwell elements arranged in a parallel
fashion (Christensen, 1971):

L̃(t) ' L̃Prony(t) =
M∑

i=1

Li e−t/τ i . (59)

For simplicity each term in the series (59) is associated with a single re-
laxation time τ i but the tensors Li can be fully anisotropic. However, the
present results apply to more general situations as will be illustrated below
(see also Vu et al., 2012, Appendix A).
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The LC transform of the relaxation function (59) can be expressed as

L̃
∗
(p) = pL̃

∗
(p) '

M∑

i=1

p(
p+

1

τ i

)Li =
pQ(p)

M∏

i=1

(
p+

1

τ i

) (60)

where Q(p) is a (tensorial) polynom of degree M − 1 in p. Note that when
the complex number p is taken to be purely imaginary, in the form p = ıω,
equation (60) provides an approximation of the effective storage and loss
moduli describing the harmonic steady-state response of the composite at
frequency ω :

L̃
′
(ω) '

M∑

i=1

Li
τ i

2ω2

1 + τ i
2ω2

and L̃
′′
(ω) '

M∑

i=1

Li
τ iω

1 + τ i
2ω2

. (61)

Under the approximation (60), the LC transform M̃
∗
(p) of the creep

function satisfying M̃
∗
(p) : L̃

∗
(p) = I, reads

M̃
∗
(p) =

1

p
M̃
∗
(p) ' M̃ ∗

Prony(p) =
1

p

M∏

i=1

(
p+

1

τ i

)
Q−1(p). (62)

M̃
∗
Prony(p) can alternatively be put in the form:

M̃
∗
Prony(p) ' M̃ 0 +

1

p
M̃∞ +

M−1∑

i=1

1

1 + θip
M i, (63)

where the creep parameters M̃ 0, M̃∞, M i and θi are related to the relax-
ation parameters Li and τ i through relations which will not be given here
except when M = 2 (see relations (70)). The creep function is thus approxi-
mated as

M̃ (t) ' M̃Prony(t) = M̃ 0 + t M̃∞ +
M−1∑

i=1

M i (1− e−t/θi). (64)

This creep function corresponds to a generalized Kelvin-Voigt model combi-
ning a Maxwell model in parallel with M − 1 Kelvin-Voigt models connected
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in series, which is the conjugate model of the generalized Maxwell model in-
troduced in (59) (Tschoegl, 1989). The conjugate models (59) and (64) are
strictly equivalent (i.e. for a given loading history, they deliver the same re-
sponse) and lead to dual formulations of the composite’s response by internal
variables (Appendix E).

The asymptotic relations (50), (51), (52) and (53) on the LC transform of
the effective overall creep function provide restrictions on the approximation
(64):

M̃ 0 = M̃ e,

M̃∞ = M̃ v,

σ :

(
M̃∞ +

M−1∑

i=1

1

θi
M i

)
: σ =

∑

r

c(r)M (r)
v :: 〈σe ⊗ σe〉(r) ,

σ :

(
M̃ 0 +

M−1∑

i=1

M i

)
: σ =

∑

r

c(r)M (r)
e :: 〈σv ⊗ σv〉(r) .





(65)

The first two equations are well-known, the last two equations are new (dual
of the relations of Suquet (2012)). These equations are scalar or tensorial
depending on the class of isotropy of the phases and of the composite itself.
This set of four conditions on the Prony series can be used to determine a
minimal approximation with four parameters (scalar or tensorial), improv-
ing on the Maxwellian approximation which makes use only of the first two
equations in (65).

4.2. Approximate model for isotropic composites

The tensorial conditions (65) are now specified for composites presenting
macroscopic isotropy. Their overall creep function may thus be written as

M̃ (t) = M̃ (m)(t)J + M̃ (d)(t)K ' M̃
(m)
Prony(t)J + M̃

(d)
Prony(t)K, (66)

with

M̃
(m)
Prony(t) = M̃

(m)
0 + t M̃ (m)

∞ +
M−1∑

i=1

M
(m)

i (1− e−t/θ
(m)
i ),

M̃
(d)
Prony(t) = M̃

(d)
0 + t M̃ (d)

∞ +
M−1∑

i=1

M
(d)

i (1− e−t/θ
(d)
i ).





(67)
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J and K denote the projectors on hydrostatic and traceless symmetric
second-order tensors and the components on each tensorial subspace are res-
pectively indicated by superscripts (m) and (d). The set of relations (65)
becomes

M̃
(m)
0 = M̃ (m)

e , M̃
(d)
0 = M̃ (d)

e , M̃ (m)
∞ = M̃ (m)

v , M̃ (d)
∞ = M̃ (d)

v ,

(
M̃ (d)
∞ +

M−1∑

i=1

M
(d)

i

θ
(d)

i

)
s : s =

∑

r

M (r)
v ::

(
s :

∂M̃ e

∂M (r)
e

: s

)
,

(
M̃

(d)
0 +

M−1∑

i=1

M
(d)

i

)
s : s =

∑

r

M r
e ::

(
s :

∂M̃ v

∂M (r)
v

: s

)
,

(
M̃ (m)
∞ +

M−1∑

i=1

M
(m)

i

θ
(m)

i

)
p : p =

∑

r

M (r)
v ::

(
p :

∂M̃ e

∂M (r)
e

: p

)
,

(
M̃

(m)
0 +

M−1∑

i=1

M
(m)

i

)
p : p =

∑

r

M r
e ::

(
p :

∂M̃ v

∂M (r)
v

: p

)




(68)

where s and p denote purely deviatoric and hydrostatic macroscopic stress
tensors.

The four relations in the first line of (68) define the Maxwellian component
of the creep function. The last four relations, which impose conditions on the

4(M − 1) parameters
(
M

(m)

i ,M
(d)

i , θ
(m)

i , θ
(d)

i

)
, are not sufficient to determine

them all, except when M = 2, i.e. when the approximation (59) involves
only two terms or, equivalently, when the expansion (64) has a third term in
addition to the two first terms forming the Maxwellian approximation. In this

approximation M = 2, the independent unknowns
(
M

(m)

1 ,M
(d)

1 , θ
(m)

1 , θ
(d)

1

)

can be identified from the last four relations (68) and the approximate model
is fully determined by the asymptotic relations. The approximation (67) with
M = 2 consists in approaching each component of the effective retardation

spectrum J̃ by single Dirac functions, respectively at τ = θ
(m)

1 and τ = θ
(d)

1 :

J̃(τ) 'M
(m)

1 δ
θ
(m)
1

(τ)J +M
(d)

1 δ
θ
(d)
1

(τ)K. (69)

Furthermore, when M = 2, the parameters of the conjugate models (59) and
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(64) are related through

θ
(q)

1 =
τ
(q)
1 τ

(q)
2 M̃

(q)
v

M̃
(q)
e

and M
(q)

1 = M̃ (q)
e (M̃ (q)

v )2 L
(q)

1 L
(q)

2 (τ
(q)
1 − τ (q)2 )2 (70)

with q = m, d.

Remark: The interpretation of the integrals

∫ +∞

0

J̃(τ) dτ and

∫ +∞

0

J̃(τ)

τ
dτ

can be reformulated with this approximation as:

• M (m)

1 and M
(d)

1 are the differences in the dilatational and shear strains
at large time between the model (66) and the Maxwellian approxima-
tion:

M
(q)

1 = lim
t→+∞

M̃
(q)
Prony(t)− (M̃ (q)

e + t M̃ (q)
v ), q = m, d

• The ratios M
(m)

1 /θ
(m)

1 and M
(d)

1 /θ
(d)

1 are the differences in dilatational
and shear strain-rates between t = 0 and t → +∞ predicted by the
approximate model:

M
(q)

1

θ
(q)

1

=
˙̃
M

(q)

Prony(0)− M̃ (q)
v , q = m, d.

The right-hand sides of the last four relations in (68) require the second
moments of the stress field for the purely elastic and viscous problems, which
will be specified in the next paragraphs depending on the microstructure of
the composite.

5. Application to particulate and granular microstructures

The accuracy of the proposed model is assessed in this section by compa-
rison with exact analytical results, when available, and with other reference
results obtained either by full-field simulations performed by a method based
on fast Fourier transforms (FFT) or by a mean-field method relying on the
collocation method. Both methods are briefly described in the next subsec-
tions.
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5.1. Reference results

5.1.1. FFT full-field computations

Full-field simulations were performed by means of the FFT method of
Moulinec and Suquet (1998). This method was initially developed for linear
elastic or elasto-plastic composites and extended to more general constitutive
relations, including viscoelastic, elasto-viscoplastic composites with isotropic
and/or kinematic hardening in Idiart et al. (2006); Suquet et al. (2012). It
has also been extended from two-phase composites to polycrystals (N -phase
composites) by Lebensohn (2001); Lebensohn et al. (2011, 2012); Suquet
(2012).

The simulations presented below were performed with the software CraFT
(Labé et al., 2011) on polycrystalline 3D microstructures. A cubic unit-cell
is divided into N grains by a Voronoi tesselation (N = 4096 in the present
study). In the most general case of untextured polycrystals (Subsection
5.5), the orientation of each individual grain is chosen randomly. For two-
phase granular microstructures (Subsection 5.2), the material properties of
each grain are chosen randomly to be either the properties of phase 1 or
of phase 2, under the only constraint of equal volume fraction. The unit-
cell is discretized into 2563 voxels. 10 different realizations of the unit-cell
are generated from different random seeds for the Voronoi tesselations and
for the orientations (a typical realization is shown in Figure 3). The overall
responses of the 10 different realizations are averaged. The deviation between
the different realizations was observed to be small (less than 1 % in most
cases) and, although no systematic study on the size of the un! it-cell, on the
number of grains and on the number of realizations has been conducted in
the course of the present study, our experience from previous studies (Suquet
et al., 2012) is that these numbers are sufficient to ensure stationarity of the
effective properties.

5.1.2. Collocation method

The collocation method (Schapery, 1962) relies on the approximation of
the effective relaxation (resp. creep) function by a Prony serie (59) with an
a priori chosen set of M relaxation times τ i (i.e. collocation points). The
coefficients Li of the series are determined by minimizing the quadratic error
between the exact function and its approximation

min
Li

∫ +∞

0

(
L̃(t)− L̃Prony(t)

)2
dt. (71)
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Figure 3: A typical Voronoi tesselation of the unit-cell into 4096 grains.

This minimization leads to the following collocation condition

L̃
∗
(pr) = L̃

∗
Prony(pr) with pr = 1/τ r, ∀r = 1, . . . ,M. (72)

In other words, the best approximation of the exact relaxation function is
obtained when its LC transform is equal to the LC transform of its Prony
approximation at M collocation points pr. From a practical point of view,

the method requires the computation of the LC transform L̃
∗
(p) of the exact

function at each collocation point. Relation (72) defines a linear system
allowing for the determination of the coefficients Li.

5.2. Granular two-phase composites

Two-phase composites made of isotropic incompressible phases with equal
volume fraction and with a random granular microstructure are considered
first. As is well documented, an accurate estimate of their effective response
can be obtained by means of the self-consistent scheme (Suquet and Moulinec,
1997). The elastic or viscous compliance tensor of phase (r) is given by

M (r) = M (r)K, M (r) =
1

2µ(r)
, r = 1, 2, (73)

and the intraphase second moment of the stress field reads

K :: 〈s⊗ s〉(r) =
1

c(r)
∂M̃

∂M (r)
s : s. (74)

22



Applying this relation to the elastic and viscous stress fields, one obtains
from (68) the expressions of the two parameters describing the deviatoric
transient viscoelastic behaviour

M1 =
2∑

r=1

M (r)
e

∂M̃v

∂M
(r)
v

− M̃e and
M1

θ1
=

2∑

r=1

M (r)
v

∂M̃e

∂M
(r)
e

− M̃v (75)

where the superscript (d) has been omitted for brevity. The self-consistent

estimate of the effective compliance M̃ , is solution of the quadratic equation

M̃2 − 1

4
(M (1) +M (2))M̃ +

3

2
M (1)M (2) = 0. (76)

Explicit expressions for the partial derivatives of M̃ entering (75) are obtained
by derivation of (76).

In order to check the accuracy of the approximate model, the material is
subjected to the following stress loading history

σeq(t) = 1 MPa, ∀t ∈ [0, t1];
σeq(t) = 3 MPa, ∀t > t1.

}
(77)

with t1 = 2 s. The predictions of the model are compared in Figure 4 with
reference FFT full-field computations on 3D Voronoi tesselations containing
4096 grains, the collocation method using 5 terms in the Prony series and the
Maxwellian approximation. Two sets of material data from Suquet (2012) are
used, corresponding to moderate and strong contrasts between the relaxation
times of the phases:

Moderate contrast: µ
(1)
e = 1 MPa, µ

(1)
v = 2 MPa.s, τ (1) = 2 s,

µ
(2)
e = 100 MPa, µ

(2)
v = 20 MPa.s, τ (2) = 0.2 s.

}

(78)

Strong contrast: µ
(1)
e = 1 MPa, µ

(1)
v = 5 MPa.s, τ (1) = 5 s,

µ
(2)
e = 50 MPa, µ

(2)
v = 2.5 MPa.s, τ (2) = 0.05 s,

}

(79)
where µ(r) = 1/2M (r) is the elastic or viscous shear modulus of the two
phases. The agreement between the model, the FFT numerical scheme and
the collocation method is excellent at moderate contrast (the model improves
significantly on the Maxwellian approximation). It deteriorates when the
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Figure 4: Isotropic two-phase composites with random microstructure. Comparison of
approximations by the self-consistent estimate. (a): moderate contrast and (b) strong
contrast between the retardation times of the phases.

contrast increases, as expected since the retardation spectrum of the self-
consistent model is a continuous function between τ (1) and τ (2) (Rougier et al.,
1993). This spectrum is thus poorly approximated by a single retardation
time when τ (1) and τ (2) are far apart. Finally, it can be also noted that the
agreement between the FFT and the collocation results, at both moderate
and high contrast, confirms the accuracy of the collocation method, as is
documented in the literature (see, for instance, Brenner et al., 2002; Rekik
and Brenner, 2011; Vu et al., 2012).

5.3. Particle-reinforced two-phase composites

5.3.1. Generalized self-consistent estimate

When the composites under consideration are particle-reinforced materi-
als where the inclusions are surrounded by a layer of matrix (“cherry-pit” mi-
crostructure), their effective linear properties can be accurately predicted by
the generalized self-consistent scheme (GSC) (i.e. three-phase model). The
GSC model, which relies on the solution for a coated inclusion embedded in
an infinite medium (Christensen and Lo, 1979; Hervé and Zaoui, 1990), leads
to continuous relaxation/retardation spectra, like the self-consistent scheme
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(Beurthey and Zaoui, 2000). The predictions of the model of Subsection
4.2 are compared in Figure 5 with reference results. The material data and
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Figure 5: Isotropic two-phase composites with inclusion-matrix microstructure. Com-
parison of approximations by the generalized self-consistent estimate with (a) moderate
contrast and (b) strong contrast. The volume fraction of the particles is c(2) = 0.2.

the creep loading considered are identical to those used for incompressible
granular two-phase composites. The particulate composite comprises 20% of
inclusions. The model agrees very well with reference collocation results for
both moderate and high contrasts in the phase relaxation times. In the case
of a moderate contrast, the overall response is almost Maxwellian.

5.3.2. Hashin-Shtrikman estimate

Another relevant estimate for reinforced particulate composites is the
Hashin-Shtrikman lower bound (when the inclusions are stiffer than the ma-
trix) with the matrix as reference medium. By contrast with the generalized
self-consistent estimate, it is known that the effective relaxation spectrum of
composites attaining the Hashin-Shtrikman bound consists of discrete Dirac
masses (Ricaud and Masson, 2009). To pursue the assessment of our model,
we now consider a particulate composite with compressible phases. Accor-
ding to the Hashin-Shtrikman estimate, the LC transforms of the effective
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bulk and shear moduli reads

1

k̃∗(p) + kHill(p)
=

c(1)

kHill(p) + k(1)
∗
(p)

=
c(2)

kHill(p) + k(2)
∗
(p)

,

1

µ̃∗(p) + µHill(p)
=

c(1)

µHill(p) + µ(1)∗(p)
=

c(2)

µHill(p) + µ(2)∗(p)





(80)

with c(i) the volume fraction of phase (i). kHill and µHill are the bulk and
shear moduli of Hill’s interaction tensor which are functions of the bulk and
shear moduli of the matrix (phase 1). The estimates (80) are specified to
the case of elastic inclusions in a matrix which is elastic in dilatation and
viscoelastic (Maxwellian) in shear. Consequently, the phase moduli read

k(1)
∗
(p) = k(1)e , k(2)

∗
(p) = k(2)e , µ(1)∗(p) = µ(1)

e

p

p+ 1
τ (1)

, µ(2)∗(p) = µ(2)
e .

(81)
The Hashin-Shtrikman estimate for the bulk modulus simply reads

k̃∗(p) = k0 + k1
p

p+
1

τ (1)

, (82)

with

k0 =
k
(1)
e k

(2)
e

c(1)k
(2)
e + c(2)k

(1)
e

,

k1 =
c(1)k

(1)
e (4

3
µ
(1)
e + k

(2)
e ) + c(2)k

(2)
e (4

3
µ
(1)
e + k

(1)
e )

4
3
µ
(1)
e + c(1)k

(2)
e + c(2)k

(1)
e

,

τ (1) = τ (1)

(
1 +

4µ
(1)
e

3(c(1)k
(2)
e + c(2)k

(1)
e )

)
.





(83)

Therefore, the effective bulk moduli k̃(t) is the sum of a constant (elastic)
term and a decreasing exponential (i.e. its relaxation spectrum contains a
single Dirac mass). In this particular case, the estimate obtained with the
model (approximation (67)1 with M = 2) coincides with the exact result (82).
The model yields the exact effective bulk relaxation function for microstruc-
tures attaining the Hashin-Shtrikman bound in elasticity. A similar result
for the effective shear modulus of incompressible particulate composites has
been obtained by Suquet (2012). However, when the phases are compressible
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the effective shear modulus µ̃(t) is the sum of three decreasing exponentials
as shown by Ricaud and Masson (2009) for elastically homogeneous com-
posites. Its rather lengthy expression is not given here. By contrast with
the situation for the effective bulk relaxation, the model of Subsection 4.2
can only provide an approximation for the effective shear modulus. It has
been compared to the exact Hashin-Shtrikman estimate with the following
material data taken from Xue et al. (2006)

k
(1)
e = 1 MPa, µ

(1)
e = 0.5 MPa, τ (1) = 0.01 s,

k
(2)
e = 50 MPa, µ

(2)
e = 18.8 MPa, c(2) = 0.2.

}
(84)

It can be observed in Figure 6 that the approximation and the exact estimate
are indistinguishable.
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Figure 6: Hashin-Shtrikman estimates of the effective shear relaxation function of com-
pressible particulate composites. The volume fraction of the particles is c(2) = 0.2.

5.4. Checkerboard polycrystals

A checkerboard polycrystal is made of the repetition of two crystals ro-
tated by 90◦. The constitutive behavior of each single crystal is characterized
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by two shear relaxation moduli whose LC transform read

µ(k)∗(p) = µ(k)
e

p

p+
1

τ (k)

, k = 1, 2. (85)

µ
(k)
e and τ (k) are the elastic shear moduli and the characteristic relaxation

times of the single crystal. The checkerboard is subjected to anti-plane shear.
This problem, analogous to the two-dimensional conductivity problem, has
an exact solution for the effective shear relaxation modulus (Dykhne, 1970)

µ̃∗(p) = µ̃e
p√(

p+
1

τ (1)

)(
p+

1

τ (2)

) with µ̃e =

√
µ
(1)
e µ

(2)
e , (86)

The viscoelastic response of the checkerboard polycrystal exhibits a conti-
nuous effective relaxation spectrum (Masson et al., 2012) and has been in-
vestigated under various loading conditions including creep, relaxation and
deformation at constant strain-rate in previous studies (Vu et al., 2012; Su-
quet, 2012; Masson et al., 2012). Here, the harmonic steady-state response
of the polycrystal subjected to a sinusoidal macroscopic strain loading with
amplitude ε∗ and frequency ω: ε(t) = ε∗ eıωt is considered. The exact effec-
tive storage and loss shear moduli (µ̃′(ω) and µ̃′′(ω)) are classically obtained
by using the change of variable p = ı ω in the expression (86) (Hashin, 1970).
They read

µ̃′(ω), µ̃′′(ω) =
µ̃e ω

η

√
1

2

[
η ∓

(
1

τ (1) τ (2)
− ω2

)]
(87)

with

η =

√(
1

τ (1) τ (2)
− ω2

)2

+ ω2

(
1

τ (1)
+

1

τ (2)

)2

. (88)

Our approximate model for the real and imaginary parts of the effective com-
plex shear modulus µ̃∗(ı ω) corresponds to relations (61) with M = 2. The
coefficients and relaxation times of this approximation have been given by
Suquet (2012) to which the reader is referred for detailed expressions. The
model is compared with the exact results (87) for the two sets of constitutive
data, (78) and (79), corresponding to moderate and high contrasts on the
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Figure 7: Effective storage (a) and loss (b) shear moduli of a checkerboard polycrystal
with moderate contrast on the single crystal relaxation times.

10−310−210−1 100 101 102 103

ω (rad.s−1)

0

1

2

3

4

5

6

7

8

µ̃
′
(M

P
a)

Maxwell
Exact
Model

(a)

10−310−210−1 100 101 102 103

ω (rad.s−1)

0

1

2

3

4

5

µ̃
′′
(M

P
a)

Maxwell
Exact
Model

(b)

Figure 8: Effective storage (a) and loss (b) shear moduli of a checkerboard polycrystal
with high contrast in the single crystal relaxation times.
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relaxation times of the crystal. For a moderate contrast (Figure 7), the
approximate model yields very accurate estimates for both moduli. When
the contrast increases (Figure 8), the agreement is not quite as good, as ex-
pected. However, a significant improvement on the Mawellian approximation
is observed. In particular, our model delivers a reasonable estimate of the
position of the peak of the loss modulus whereas the Maxwell model predicts
a shift in the peak towards low frequencies.

5.5. Three-dimensional polycrystals

The model of Subsection 4.2 is now applied to three-dimensional poly-
crystalline materials with overall isotropy, i.e. the grains are equiaxed and
all crystalline orientations have equal probability. Each family of grains with
a given orientation is a different phase and the heterogeneity between the
phases arises from the different crystalline orientations of the grains. The ef-
fective response of the polycrystal is estimated by means of the self-consistent
scheme.

The anisotropy (elastic and viscous) of the single crystal can be quite gen-
eral and the linear viscous compliance tensor can be specified either through
the entries of a viscous matrix as in Turner and Tomé (1993) for irradiation
creep, or described by means of slip systems and slip viscosities. In the latter
case, let K denote the number of slip systems and R(k) the Schmid tensor of
slip system (k), the linear viscous compliance reads

M v =
∑

k

akR(k) ⊗R(k).

In most cases the elastic stiffness and viscous compliance of the single crystal
belong to the same class of anisotropy (dictated by the symmetries at the
single crystal level) and can be decomposed on the same elementary 4th-
order tensors R(k) ⊗R(k) (at least for incompressible crystals). The second
moments of the elastic or viscous stress fields entering the relations (65) could
be expressed by combining the second moments of the resolved shear stress
on the different slip systems in the spirit of Liu and Ponte Castañeda (2004).
This is not the approach followed here. In the subsequent examples, these
second moments have been computed by means of the relations (23) and
(24).
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5.5.1. Incompressible cubic polycrystals

The elastic or viscous compliance tensor of incompressible single crystals
with cubic symmetry reads

M (r) = MaK(r)
a +M bK

(r)
b , Ma =

1

2µa
, M b =

1

2µb
, (89)

with µa and µb the two shear moduli of the cubic single crystal. The projec-
torsK(r)

a andK
(r)
b are deduced, after rotation, from the deviatoric projectors

Ka and Kb with cubic symmetry:

Ka = N − J , Kb = K −Ka,

J =
1

3
i⊗ i, K = I − J ,



 (90)

where N is the fourth-order tensor with cubic symmetry defined as N =
3∑

i=1

ei ⊗ ei ⊗ ei ⊗ ei with (e1, e2, e3) the orthonormal basis associated with

the cubic symmetry. As a consequence, the second moment of the stress field
for phase (r) reads

K(r)
p :: 〈s⊗ s〉(r) =

1

c(r)
∂M̃

∂Mp
s : s with p = a, b. (91)

Applying this relation to the elastic and viscous stress fields, one gets

〈se : M v : se〉 =
∑

p

Mp
v

∂M̃e

∂Mp
e
s : s with p = a, b (92)

and

〈sv : M e : sv〉 =
∑

p

Mp
e

∂M̃v

∂Mp
v
s : s with p = a, b, (93)

which leads to the parameters M1 and θ1 by means of (68)

M1 =
∑

p

Mp
e

∂M̃v

∂Mp
v
− M̃e and

M1

θ1
=
∑

p

Mp
v

∂M̃e

∂Mp
e
− M̃v (94)

where the superscript (d) has been omitted for brevity. The effective shear
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Figure 9: Polycrystals with cubic symmetry. Comparison between the approximate model
of Subsection 4.2 (with the self-consistent scheme) and FFT full-field simulations.

modulus µ̃ of incompressible isotropic polycrystals made from cubic single
crystals is accurately predicted by the self-consistent scheme (Kröner, 1958)

3 µ̃2 − µbµ̃− 2µaµb = 0. (95)

The partial derivatives in (94) are obtained in closed form. The predictions
of the resulting (approximate) linear viscoelastic self-consistent scheme are
compared with FFT full-field simulations performed on 3D unit-cells con-
taining 4096 grains obtained by Voronoi tessellation. The FFT results have
been averaged over 10 different realizations of the unit-cell. The following
crystal data have been used

µae = 3424 MPa, µbe = 3014 MPa
µav = 1238 GPa.s, µbv = 29.3 GPa.s

}
(96)

The polycrystal is subjected to the stress loading (77) with t1 = 250 s. Figure
9 shows a good agreement between the model and full-field results, both in
the transient and asymptotic regimes. It is also observed that the collocation
method with 5 terms is in close agreement with the FFT results.
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5.5.2. Incompressible hexagonal polycrystals

The elastic or viscous compliance tensor of incompressible single crystal
with hexagonal symmetry reads

M (r) = MEK
(r)
E +M tK

(r)
t +M lK

(r)
l ,

ME =
3

2El
, M t =

1

2µt
, M l =

1

2µl
,





(97)

with El the longitudinal Young modulus, µt the transverse shear modulus
and µl the longitudinal shear modulus of the hexagonal single crystal. The
projectors K

(r)
E , K

(r)
t and K

(r)
l are deduced, after rotation, from the trans-

versely isotropic deviatoric projectors KE, Kt and K l defined as

KE =
1

6
(i− 3 c⊗ c)⊗ (i− 3 c⊗ c),

K l = 2
(
[c⊗ I ⊗ c](s) − c⊗ c⊗ c⊗ c

)
,

Kt = K −KE −K l, K = I − J ,





(98)

where c is the senary axis of the hexagonal crystalline structure. The re-
lations (91) to (94) used for crystals with cubic symmetry apply equally to
hexagonal crystals by extending the summation to p = E, t, l. When the
general equations of the self-consistent scheme for hexagonal materials (see
for instance Berryman, 2005) are particularized to incompressible phases,
the self-consistent estimate for the macroscopic shear modulus of isotropic
hexagonal polycrystals is solution of the cubic equation

µ̃3 +
1

9
Elµ̃2 − 2

27

[
El(µt + µl) + 6µtµl

]
µ̃− 4

27
Elµtµl = 0. (99)

Analytical expressions for the second moments defining the approximate
model (94) can be derived in closed form from (99). The predictions of
the model are compared in Figure 10 with FFT full-field simulations. The
polycrystal is subjected to the stress loading (77) with t1 = 250 s and the
single crystal data are:

El
e = 11846 MPa, µte = 3424 MPa, µle = 3424 MPa

El
v = 3249 GPa.s, µtv = 929 GPa.s, µlv = 14.63 GPa.s

}
(100)

This dataset is representative of ice single crystals which are characterized by
an almost isotropic elastic behaviour and a strong viscous anisotropy. The
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Figure 10: Isotropic polycrystals composed of single crystals with hexagonal symmetry.
Comparison between the approximate model of Subsection 4.2 (with the self-consistent
scheme) and FFT full-field simulations.

contrast between the relaxation times of the single crystal in the different
directions is of the order of 60. Once again the predictions of the model
are observed to be in close agreement with the reference FFT results. In
particular the significant decrease of the creep strain-rate during the tran-
sient regime, due to the (almost) elastic isotropy and to the strong viscous
anisotropy of the single crystal, is correctly captured by the model (unlike
the Maxwellian approximation).

6. Concluding remarks

In this study two new asymptotic relations for the effective creep function
of linear viscoelastic composites have been derived and their physical inter-
pretation at short and large times has been clarified, improving on a previous
and similar investigation on relaxation functions (Suquet, 2012). These ex-
act relations involve second-order moments per phase of the solutions of the
purely elastic and purely viscous problems. These asymptotic relations have
been applied to harmonic loadings. In this context, they provide a set of
asymptotic relations in the frequency domain on the storage and loss mod-
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uli of the composite. Although these conditions have been formulated for
mixtures of Maxwellian constituents (irradiation creep of metallic or ceramic
polycrystals, for instance), it is worth noting that similar relations hold for
more general viscoelastic behaviors of the constituents.

Based on these relations, an approximate model has been proposed for
the creep function of linear viscoelastic heterogeneous materials. This model
approximates the retardation spectrum of the composite by a single discrete
Dirac mass. The retardation time and its corresponding weight depend again
on the coupling between the elastic (resp. viscous) local compliances and the
viscous (resp. elastic) stress field fluctuations. This model has been applied
to predict the effective creep, relaxation and harmonic responses of different
composites and polycrystals. Its accuracy has been assessed by comparison
with exact analytical results, reference full-field simulations and collocation
results. A very good agreement is obtained when the contrast on the phase
relaxation times remains moderate.
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C.R. Acad. Sci., Ser. A 286, 903–906.

38



Schapery, R., 1962. Approximate methods of transform inversion for vis-
coelastic stress analysis. In: Proc. U.S. Nat. Congr. Appl. Mech. ASME
4th. ASME, New-York, pp. 1075–1085.

Schapery, R., 1974. Viscoelastic behavior and analysis of composite materi-
als. In: Sendeckyj, G. (Ed.), Mechanics of Composite Materials. Academic
Press, New-York, pp. 85–167.

Suquet, P., 1987. Elements of Homogenization for Inelastic Solid Mechanics.
In: Sanchez-Palencia, E., Zaoui, A. (Eds.), Homogenization Techniques for
Composite Media. Vol. 272 of Lecture Notes in Physics. Springer Verlag,
New York, pp. 193–278.

Suquet, P., 1995. Overall properties of nonlinear composites : a modified
secant moduli theory and its link with Ponte Castañeda’s nonlinear vari-
ational procedure. C.R. Acad. Sci., Ser. IIb 320, 563–571.

Suquet, P., 2012. Four exact relations for the effective relaxation function of
linear viscoelastic composites. C.R. Mécanique 340, 387–399.
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Appendix A. Stieljes convolution and Laplace-Carson transform

The Stieljes convolution product (?) of two functions f and g is the deriva-
tive of their usual convolution product. When g is a differentiable function
of time the Stieljes product f ? g reads

(f ? g)(t) =
d

dt
(f ∗ g)(t) =

∫ t

0

f(t− u) ġ(u) du (A.1)

When g is only piecewise continuous and differentiable, its time derivative
in (A.1) contains Dirac masses at discontinuity points tn and the Stieljes
convolution product (A.1) must be understood as

(f ? g)(t) =

∫ t

0

f(t− u) ġ(u) du+
∑

n

f(t− tn) [g]n (A.2)

where [g]n is the discontinuity of g at time tn and ġ(u) is the usual derivative
of g at all u’s where it is differentiable.

The Laplace-Carson transform of a function f(t) is defined by

f ∗(p) = p

∫ +∞

0

e−pt f(t) dt. (A.3)

From (A.2) and (A.3), it follows that

(f ? g)∗(p) = f ∗(p) g∗(p). (A.4)

It is also useful to note that the Laplace-Carson transform of the time deriva-
tive function ḟ(t) reads

ḟ ∗(p) = p(f ∗(p)− f(0)). (A.5)

The initial and final value theorems, linking the function f(t) and its
Laplace-Carson transform f ∗(p) at short and large times, read

lim
t→0+

f(t) = lim
p→+∞

f ∗(p) and lim
t→+∞

f(t) = lim
p→0

f ∗(p). (A.6)

By making use of (A.5), it is also noted that

lim
t→+∞

ḟ(t) = lim
p→0

pf ∗(p). (A.7)
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Appendix B. Proof of relations (20) and (21)

Proof of (20). Multiply the constitutive relation (5) by the elastic stress
field σe(x), average over V and take the limit of both sides of the equation
as t tends to 0+:

lim
t→0+
〈σe : ε̇〉 (t) = lim

t→0+
[ 〈σe : M e : σ̇〉 (t) + 〈σe : M v : σ〉 (t) ] . (B.1)

Hill’s lemma can be applied to both sides of this relation, recalling, for the
right-hand side that M e : σe = εe is a compatible strain field:

lim
t→0+

σe : ε̇(t) = lim
t→0+

[
εe : σ̇(t) + 〈σe : M v : σ〉 (t)

]
. (B.2)

Since σ does not depend on t (creep loading), one has:

σe = σ and σ̇(t) = 0, ∀t ∈]0,+∞[. (B.3)

Using (12), relation (B.2) gives

σ : ε̇(0+) = 〈σe : M v : σe〉 with ε̇(0+) = lim
t→0+

ε̇(t). (B.4)

Proof of (21). Multiplying the constitutive relation (5) by the stress field
σ(x, t) and averaging over V , one gets:

σ : ε̇(s) = 〈σ : M e : σ̇〉 (s) + 〈σ : M v : σ〉 (s),

(on the left-hand side, use has been made of Hill’s lemma and of the loading
condition 〈σ(s)〉 = σ). Integration in time gives:

σ :
(
ε(t)− ε(0+)

)
=

1

2
[〈σ(s) : M e : σ(s)〉]s=ts=0 +

∫ t

0

〈σ(s) : M v : σ(s)〉 ds.

(B.5)
The left-hand side of the equation (B.5) is the energy supplied by the external
device to apply a constant overall stress from s = 0 to s = t. The first term
in the right-hand side of (B.5) is the elastic energy stored in the composite
between 0 and t which can be re-written as:

1

2
〈σ(t) : M e : σ(t)〉 − 1

2
〈σe : M e : σe〉 .
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Note that the stored energy is always positive according to the variational
property of σe:

〈σe : M e : σe〉 = inf
τ∈S(σ)

〈τ : M e : τ 〉 ≤ 〈σ(t) : M e : σ(t)〉 . (B.6)

where
S(σ) = {τ , div τ = 0, 〈τ 〉 = σ.} . (B.7)

The stored energy remains finite as t→ +∞ and tends to

1

2
〈σv : M e : σv〉 − 〈σe : M e : σe〉 =

1

2
〈σv : M e : σv〉 −

1

2
σ : ε(0+). (B.8)

The second term in the right-hand side of (B.5) is the energy dissipated in
the creep test between s = 0 and s = t and is unbounded in the limit as
t → +∞. It can be compared to the energy dissipated by the Maxwellian
approximation of M̃ (t):

∫ t

0

〈σ(s) : M v : σ(s)〉 ds =

∫ t

0

〈σv : M v : σv〉 ds+

∫ t

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds

= σ : tM̃ v : σ +

∫ t

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds,

where use has been made of the following consequence of Hill’s lemma:

〈(σ(s)− σv) : M v : σv〉 = 〈(σ(s)− σv) : ε̇v〉 = (σ − σ) : ε̇v = 0.

Upon multiplication of the constitutive relations in (7) by σ − σv and aver-
aging over V one gets:

〈(σ − σv) : M v : (σ − σv)〉 (s) = −〈(σ̇ − σ̇v) : M e : (σ − σv)〉 (s).

and after integration in time:

∫ t

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds =

− 1

2

[
〈(σ(s)− σv) : M e : (σ(s)− σv)〉

]s=t
s=0

.
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Making use of the asymptotic properties of the stress field we finally obtain
in the limit as t→ +∞:
∫ +∞

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds =

1

2
〈(σe − σv) : M e : (σe − σv)〉 =

1

2
〈σv : M e : σv〉 −

1

2
〈σe : M e : σe〉 .

(B.9)

Finally, putting together (B.5), (B.8) and (B.9) gives (21).

Appendix C. Proof of relations (37) and (38)

The proofs of these asymptotic relations, for the macroscopic strain history
(31), are similar to those of relations (20) and (21). Elements of proofs are
given hereafter.
Proof of (37). Thanks to Hill’s lemma, relation (B.1) together with the
strain loading ε(t) = ε0 + tε̇ gives

σe : ε̇ = lim
t→0+

[
ε0 : σ̇(t) + 〈σe : M v : σ〉 (t)

]
. (C.1)

The result (37) follows by using the asymptotic property of the stress field,

solution of the local problem (33) as t→ +∞, and noting that σe = L̃e : ε0.
Proof of (38). By multiplying the constitutive relation (5) by the stress
field σ(x, t) and averaging over V , one gets:

σ(s) : ε̇ = 〈σ : M e : σ̇〉 (s) + 〈σ : M v : σ〉 (s).

The term on the left-hand side follows from Hill’s lemma and the strain
loading history (31). Integration in time gives:

ε̇ :

∫ t

0

σ(s) ds =
1

2
[〈σ(s) : M e : σ(s)〉]s=ts=0 +

∫ t

0

〈σ(s) : M v : σ(s)〉 ds.

(C.2)
In the limit t→ +∞, the stored elastic energy reads

1

2
〈σv : M e : σv〉 −

1

2
σ(0+) : ε0 (C.3)

and the dissipated viscous energy takes the form

ε̇ :

∫ +∞

0

(2σ(s)−σv) ds+

∫ +∞

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds. (C.4)
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Besides, using the asymptotic properties of the stress field, the following
equality holds:

∫ +∞

0

〈(σ(s)− σv) : M v : (σ(s)− σv)〉 ds =

1

2
〈σe : M e : σe〉 +

1

2
〈σv : M e : σv〉 − ε0 : L̃v : ε̇. (C.5)

The result (38) is finally obtained by gathering (C.2) to (C.5).

Appendix D. Proof of the relations (52) and (53)

Proof of (52): Under a prescribed (and constant in time) macroscopic stress
σ the variational property of σ∗(x, p) reads as:

σ∗(p) : M̃
∗
(p) : σ∗(p) = 〈σ∗(p) : M ∗(p) : σ∗(p)〉

= inf
σ, 〈σ〉=σ

〈σ : M ∗(p) : σ〉 , ∀p ∈ [0,+∞[, (D.1)

It follows from a classical lemma on the derivative of a stationary value of
an energy (Ponte Castañeda and Suquet, 1998) that, for any parameter q:

σ :
∂M̃

∗

∂q
: σ =

〈
σ∗(p) :

∂M

∂q
: σ∗(p)

〉
. (D.2)

Choosing q = 1/p and using the expression (46) to express the derivative of
M ∗(p) with respect to 1/p in (D.2) yields

σ :
∂M̃

∗

∂q
: σ = 〈σ∗(p) : M v : σ∗(p)〉 . (D.3)

The asymptotic result (12)1 for short times read in Laplace space

lim
p→+∞

σ∗(x, p) = σe(x),

and passing to the limit in (D.3) as p → +∞ yields (52). Also, by noting
that (14)1 can be written in Laplace space as

lim
p→0

σ∗(x, p) = σv(x),
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the limit of (D.3) as p→ 0 yields the classical result (51).
Proof of (53): The variational property of σ∗(x, p) can be alternatively
written as:

σ∗ : M̃
∗
(p) : σ∗ = 〈σ∗(p) : M∗(p) : σ∗(p)〉

= inf
σ, 〈σ〉=σ

〈σ : M∗(p) : σ〉 . (D.4)

It follows from the same lemma and from (47) that

σ :
∂M̃

∗

∂p
(p) : σ = 〈σ∗(p) : M e : σ∗(p)〉 . (D.5)

By making use of (14)1 and passing to the limit in (D.5) as p→ 0, one gets
(53). Similarly, the classical result (50) is retrieved asymptotically with (12)1
and (D.5) as p→ +∞.

Appendix E. Effective constitutive relations and internal variables

As shown by Ricaud and Masson (2009) and Vu et al. (2012) the appro-
ximation by Prony series is equivalent to a formulation of the overall con-
stitutive relations by internal variables. When the formulation based on the
relaxation function is chosen (primal model), the effective constitutive rela-
tions can be written as

σ(t) =
M∑

i=1

Li : (ε(t)−αi(t)) (E.1)

with
τ iα̇i(t) +αi(t) = ε(t), αi(0) = 0. (E.2)

When the formulation based on the creep function is chosen (dual model),
the effective constitutive relations read as

ε(t) = M̃ 0 : σ(t) + M̃∞ : ξ(t) +
M−1∑

i=1

M i : βi(t) (E.3)

with

θi β̇i(t) + βi(t) = σ(t), βi(0) = 0 and ξ̇(t) = σ(t), ξ(0) = 0. (E.4)
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