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Abstract

We propose an efficient level-set approach for numerical simulation of
moving contact lines. The main purpose is to formulate and test a model
wherein the macroscale flow is resolved while the effects of the microscopic
region near a contact line are represented using asymptotic theories. The
model covers viscous as well as inertial regimes. Test simulations include
axisymmetric displacement flow in a tube and droplet spreading on a flat
surface. The results show that the present approach leads to excellent con-
vergence properties even with very coarse grids; furthermore, the results
agree well with asymptotic analysis, with those obtained with a method for
direct numerical simulations (wherein an adaptive grid is used) and also with
experiments.

Keywords: moving contact line, macroscale simulation, level-set method,
viscous regime, inertial regime, asymptotic theories

1. Introduction

Many phenomena in nature and industry involve multiphase flows with
moving contact lines, including any form of droplet spreading/impact on
a solid surface, coating flows and displacement flows (of oil with CO,, for
example). A major challenge in numerical simulations of moving contact
lines is that the conventional hydrodynamic theory combined with a no-slip
boundary condition leads to a non-integrable stress singularity at the contact
linel"?. In order to alleviate this stress singularity, various approaches have
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Figure 1: Three regions in the vicinity of a moving contact line; A represents slip length,
e=1/]1ln\|.

been proposed, such as assuming a precursor-film®, or a diffuse-interface
method *® amongst others. One of the best documented methods is that
wherein the no-slip condition is replaced by a slip condition, thereby intro-
ducing a slip length parameter (e.g., Refl®l). Although the physical basis
for slip remains unclear, and an integrable singularity in the pressure at
the contact line usually remains (it can be avoided by using a different slip
model if the contact angle is less than 90°("%l), theoretical results of such
an approach (e.g., Refs®13]) have been widely used and compare well with
experiment 15 The fact that the slip length must be taken to be much
smaller than other length scales in a low remains a major hurdle in numerical
simulations of these flows (a similar problem arises in the other approaches
mentioned above), however. In order to obtain mesh-convergent results, the
slip length, which is usually inferred to be of nano-meter scale (e.g., Ref.[16]),
must be resolved in direct numerical simulations with a slip-length-based
method 1721,

An efficient approach for large-scale simulations of flows with moving
contact lines could be to only resolve the macroscopic scale far away and



modelling the microscopic region near the contact line on the basis of hy-
drodynamic theories (e.g.,*'*3). With a slip boundary condition at the
wall, such moving-contact-line theories have been well developed, such as
that of Cox!® for relatively slow contact-line motion. However, a computa-
tional method relying on the validity of asymptotic theories is expected to be
applicable for flows solely within a part of parameter space. We shall use the
following independent dimensionless groups: the capillary number (defined as
Cay = pnUgq/o, where p is fluid viscosity, U, is the contact-line speed and o
represents surface tension) and the Reynolds number (Re = p1Uy L/ 11 where
p is the fluid density and L is a macroscopic length scale), along with the
viscosity and density ratios of the two fluids involved, the slip length (made
dimensionless with L) and the contact angle. Ca, and the dimensionless
slip length are herein assumed small throughout. Also, further complications
such as non-local hydrodynamic effects on the dynamic contact angle (as in
curtain coating!?%) and rapid dewetting (for which asymptotic theory has not
been well developed?!) are not modelled here. However, the computational
approach proposed here can be used as a framework to accommodate further
theoretical advances, and to test other moving contact line models (such as
Refs. [327).

In the hydrodynamic theories for slow contact-line motion such as that
of Cox!, the interface is divided into three regions, with different length
scales, as illustrated in Fig. 1. In the inner region, regardless of macroscopic
geometry, a wedge flow pattern! is expected; the interface is almost planar
and the angle it makes with the wall 6, corresponds to the static advancing
angle. Although in this theory a constant 6, is assumed, there is evidence
that the microscopic angle changes with the contact-line speed?”. Such a
dynamic contact angle is allowed in the numerical approach proposed here. In
the intermediate region, the interfacial angle changes sharply due to viscous
bending. In the outer region, classical hydrodynamic models with a no-slip
boundary condition at the wall apply and the interface is affected by the
large scale flow geometry. Cox’ theory includes the interfacial angle in the
vicinity of the contact line and relates the apparent angle 6,,,, which can be
obtained by extrapolating the interface profile from the outer region to the
wall, to the microscopic contact angle 6, and contact line speed U, by

g(eappa Tv) = g(ewa Tv) + C’acl (hl%) + Cacl (Q’L - QO) ) (1)



where
9(0,1) = / F(B,r)dB 2)

and

f(ﬁ, Tv) =
(8% — sin?B)[(7 — B) + sinBcosB] + (7 — B)? — sin?B](B — sinfBcos)3)
2B, 2(suB) + 2, |(x — B) + 8] 1 [(7 — )% — su’A]

Here, r, = po/p1 is the viscosity ratio; L; is a length scale characterizing the
microscale region, which can be set as the slip length!: @, is a parameter
depending on the inner slip model, r, and 6,; @), is also a parameter that
is determined!® by the geometry of the problem, 7, Oapp, this is explained
further in Sec.3 below.

Several approaches have been developed previously for large-scale sim-
ulations of flows with moving contact lines, based on the above theory. In
these approaches, boundary conditions of the distance function (in a level-set
method??) or volume fraction (in a VOF method!?®!) have been developed
to approximate the effect of the microscopic region near the contact line. In
a level-set approach suggested by Spelt!! the contact-line velocity is cal-
culated from Eq. 1 and its location is obtained by integration. In another
category of prior work, the effect of the contact-line region is modeled by
imposing a contact angle?*?4 in a VOF method. These approaches can be
theoretically supported by the conclusion of Kafka and Dussan[® that the
macroscopic dynamics is affected by the microscopic inner regime mainly
through the interfacial angle in the intermediate region. In the work of
Dupont and Legendre?¥, the contact angle implemented is set to be a inter-
facial angle predicted by the theory of Ngan and Dussan™®, which is similar
to that of Cox[, at a length scale of 10 um to the contact line, setting the
inner length scale as 1 nm. Although grid convergence cannot be achieved
in this way without using a slip boundary condition with the slip length re-
solved by the mesh resolution, it resulted in a favourable comparison with
experimental results for droplet spreading. Using the asymptotic results of
Cox !, Afkhami et al.? proposed a mesh-dependent contact-angle bound-
ary condition in the framework of a 2D VOF method and achieved good grid
convergence. This is a very important merit since it forms the basis to sim-
ulate the moving contact line in a consistent manner. However, this model
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has not as yet been compared with full-scale direct numerical simulations or
experiments.

Furthermore, in prior work, as discussed above, asymptotic theory such
as that of Cox to order Ca% has been employed, i.e., higher-order terms
in e.g. Eq. 1 (ie., @Q; and Q,) have been neglected. This is mainly because
these terms cannot be obtained analytically for general problems. Also, all
available approaches are based on asymptotic theory for the creeping-flow
regime, which are naturally limited to cases where inertial effects do not
even enter the intermediate contact-line region. An approach that is valid
for fast motion of a contact line is not yet available.

In the present study, a level-set approach for large scale simulations of
moving contact line in both viscous and inertial regimes is formulated based
on the theories of Cox!” and Hocking and Rivers"l for slow contact-line
motion, and Cox' for cases involving rapid contact-line motion. With the
present model, simulations including displacement flows in a tube and droplet
spreading on a flat surface are carried out and the grid-convergence proper-
ties of the present model are tested. The model is validated by comparing
the results with those from asymptotic analysis or full scale simulations with
adaptive mesh refinement and the effect of previously neglected high-order
terms is investigated. The present model is also validated against an experi-
ment of fast droplet spreading.

2. Numerical Method
2.1. Lewvel-set method

In the present model we assume both fluids to be incompressible, viscous
and immiscible. The level-set approach employed here is based to some
extent on that of Spelt['® which is an extension of the method developed by
Sussman et al.[?? to account for moving contact lines. We begin with briefly
summarizing the level-set method before introducing the contact-line model.

The level-set function ¢(x,t) is taken to be a signed distance function
from the interface, and the sign is used to distinguish between the two fluids;
the zero level set corresponds to the interface. The level-set function follows
the advection equation:

99
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The advection equation only holds at the interface, and a ‘redistance’ step®



is used to ensure that ¢ at points away from the interface remains approxi-
mately the signed distance function.

The incompressible viscous fluids are governed by a single continuity equa-
tion and momentum equation valid throughout the computational domain,

Vou=0 (5)

Jou 1
pl= +u-Vu]=-Vp+ —V - [u(Vu + Vu")] + f. (6)

ot Re
The local fluid density and viscosity are functions of ¢, and they change
smoothly across the interface over a length £ that is proportional to the grid

spacing:

p(d) = H(®) + (p2/p1)(1 = H(9)), (@) = H () + (p2/pm)(1 — H(9)) (7)

where H is the smoothed version of Heaviside function:

0, ¢ < =€
H(¢) =1 L1+ ¢/¢+sin(r/e)/m), |¢|<E (8)
17 ¢>§

¢ is set to be 1.5 times the grid spacing[*®!. Surface tension is represented as

a singular force density term f in the momentum equation, also smoothed
out over a few mesh points:

1
ReCaqy

f=- r(0)VH(¢) (9)

where the interfacial curvature « is calculated through:

Vo

K(g) =V W

(10)

In the present implementation, a finite-volume method based on a uni-
form marker-and-cell (MAC) mesh is employed. The velocity components
are defined at cell faces and scalar variables such as pressure and level-set
function are defined at the cell centres. A fifth-order weighted essentially
non-oscillatory (WENO) schemel?” is employed in the discretization of the
advection term in Eq. 4 using the local flow velocity as the up-winding direc-
tion. The continuity and momentum equations are coupled and solved with
a standard projection method. More details can be found in Refs. 185,
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2.2. Moving-contact-line models for slow and rapid contact-line motion

Kafka and Dussan!® found that the macroscopic dynamics in the outer
region is mainly affected by the microscopic inner regime near the contact
line mainly through the interfacial angle in the intermediate region, which is
of non-trivial size. It was found in Ref.?" that for a nano-meter slip length,
using an interfacial angle at a distance to the contact line ranging from
O(10nm) to O(10pm) leads to almost the same results for the outer region
(and consistent with the prediction resulting from resolving the inner region).
This is a very important finding for macroscale simulations of moving contact
lines, as it significantly increases the length scale that needs to be resolved
in numerical simulation. The interfacial angle in the intermediate region can
be predicted by asymptotic theories.

In Cox’ viscous theory!?, the angle that the interface makes with the wall
6 in the intermediate region follows from

(2

d
g(‘ga TU) = g(‘gwa TU) + C’acl <1nf) + Calei» (11>

where d represents the distance to the contact line (illustrated in Fig. 1). As
stated in Sec. 1, we account here for the higher-order term ();, investigate
the dependencies of the result on the grid spacing and validate the model
against asymptotic analysis and full scale simulations.

For cases wherein the contact line moves fast (small values of Oh =
\/Cay/Re), Cox, in a later paper "%, further divided the intermediate region
into a viscous intermediate sublayer where Eq. 11 applies and an inviscid
intermediate layer, and matched these two sublayers in a transitional zone.
The transition is at a distance from the contact line d* chosen such that a
Reynolds number, Re*, based on the contact-line speed and d* is of O(1).
Cox!'% took this Reynolds number to be exactly unity, i.e., d* = Re*/Re =
1/Re. In recent work ! for droplet spreading, Cox’ inertial theory has been
validated and modified. It was found that in order to achieve good agreement
between the full scale simulation and the theory, a non-unity value should be
used for Re*, ranging from 0.2 to 1 (an average value of 0.37 was proposed).
The interfacial angle, 8* at the boundary of the intermediate viscous and
inviscid sublayers (d* = Re*/Re) follows from

*

% B Re
g(0",1ry) = g0y, 1) + Cag (lnLiRe

) + Caleiv (12)



while in the inviscid subregion the interfacial angle can be obtained from

9iv(0) — gin(07) — Caglhiy(0) — hiyy(07)] = Cagyln(d Re/Re*), d* <d <1

(13)
where
giv(0) = 1.53161 (0 — sind), (14)
° 0dY
, - _ ini _—
hiv(0) 2In(sinz0) + 2/7r T (15)

Note, terms of O(Ca:ll) have been left out by Cox!'! for simplicity, although
these terms were included in the analysis of the viscous layer. Here we have
re-instated these terms as we found in Ref.?!! that otherwise significant errors
can occur.

In the present implementation of the level-set method, the level-set func-
tion is defined at cell centres, and the contact angle boundary condition is
therefore implemented at a height of 0.5dz above the wall. We propose in
the present model to determine the interfacial angle at this length scale from
Eq.11 or Eq.13 in the case of slow or rapid contact-line motion, and to use
the interfacial angle 6,.,, = 6(z = 0.5dz) as the contact angle boundary
condition. At z = 0.5dz, d can be approximated by z - cosec[0.5(0,, + 0)].

Contact angle hysteresis is not included in the present model, and 6,
is assumed to be the static advancing angle. Special attention should be
paid to cases wherein the contact line moves fast: one needs to first check in
which layer the interface at z = 0.5dz lies and then decide to use Eq. 11 or
13, as appropriate; the determination of the value of constants such as @); is
explained in Sec. 3 below. Details of the implementation of the contact-angle
boundary condition in level-set methods are same as in Spelt['® and are not
repeated here.

If the grid is refined to such an extent that in fact the inner region is
resolved after all, recourse should be taken to imposing just the microscale
contact angle in conjunction with a slip condition, U,, = A\(Ou/0z),,. In what
follows, we have simply kept the slip condition throughout. No artificially
large slip coefficient is used.

The present model for slow contact-line motion differs from that of Dupont
and Legendre®¥ as follows. Although in both methods, an interfacial angle
at a certain distance to the contact line is imposed, in the present model,
0,.um depends on its distance to the contact line and thus is a function of mesh
size, whereas this was taken to be independent of grid spacing (d = 10um



in Eq. 11). A relatively large slip coefficient is not required and not used
here. Also, terms corrected to Cazl have been taken into account in the
present model. The macroscale modelling along these lines for cases of rapid
contact-line motion appears not to have been considered at all in prior work.

Finally, we note that no additional forcing at the contact line is imposed
in this model, which at first sight may seem odd, since the wall stress com-
ponents peak at the contact line. However, the peaks in wall shear stress
and pressure are accounted for in the asymptotic analysis for the inner re-
gion, and the expressions in the above for the interfacial angle imposed at
the first grid cell have been obtained theoretically through matching with the
solution for the inner region. In other words, in the intermediate region, no
additional forcing is to be imposed, neither in the full asymptotic theory nor
in the present model. Conversely, should the shear stress or pressure distri-
bution be required from a simulation wherein the present model is used, the
pertinent theoretical results can be used (these are summarized in Ref.[!).

2.3. Adaptive mesh refinement

In order to test the accuracy of the present model, we compare the results
with full-scale direct numerical simulations with the slip length resolved. For
full-scale simulation of flows with more or less realistic values of a dimen-
sionless slip length, A = O(107%), we have incorporated into our method in
a previous study?! the free open-source software package, PARAMESH %
which is an adaptive mesh refinement (AMR) tool developed for parallel
computing. It is categorized into the structured and block-based adaptive
mesh refinement family. The computational domain is covered with a hi-
erarchy of grid blocks having the identical logical structure. In the present
method, the refining and coarsening of the grid blocks are based on whether
the maximum distance of the grid block to the interface is smaller than a
critical value. If true, a block is cut into two in all directions, respectively,
producing four (in 3D this would be eight) children at a higher refinement
level with the grid spacing in each direction is half that of its parent. As it is
also required that the jump in refinement level between two adjacent blocks
is not larger than 1, the mesh density varies relatively smoothly. Each block
is surrounded by several layers of guard cells on each side, which protrude
into the adjacent blocks. The connection between adjacent blocks and the
implementation of boundary condition is realized by filling the guard cells
with data from neighbouring blocks or user-defined boundary conditions, de-
pending on the physical position of a block. In PARAMESH, all mesh blocks

9



have the same logic structure at all levels of refinement. Hence, once the
flow solver is developed for one grid block, it can be easily applied to all
other blocks independent of the level of refinement. In addition, the different
blocks can be distributed relatively equally to different CPUs in an MPI par-
allel environment, which can support large-scale simulations. Various tests
for droplet spreading have been carried out in Ref.?! and shows the hybrid
code, LS-PARAMESH, to be accurate and efficient in simulating multiphase
flows with moving contact lines (although these are extensive computations
despite the AMR, hence the need for the present model).

3. Results and discussion

Although from the work of Kafka and Dussan/® discussed above, the
present approach is expected to work for slow contact-line motion, it is un-
clear whether this extends to rapid contact-line motion. In order to test
the validity of the present model for moving contact lines in both viscous
and inertial regimes, simulations have been carried out for axisymmetric dis-
placement flows in a tube and droplet spreading on a flat surface. The grid
convergence properties of the present model are tested first; the simulation
results are also compared with analytical solution, results from full-scale sim-
ulations using adaptive mesh refinement for flows with realistically small slip
lengths, as well as an experiment for rapid droplet spreading. For all cases
considered we have found that the global error in mass conservation for each
phase to be below 0.5% throughout the simulations.

3.1. Viscous regime

We first test the present model by simulating steady axisymmetric dis-
placement flows in a tube as defined in Fig. 2. One fluid, which is pumped
into a tube with cross-sectional radius, a, displaces another fluid with which
the tube is filled initially. The contact angle is defined from the displacing
fluid. In the microscopic inner region, the contact angle 6,, is assumed to be
the static advancing angle and set to be a constant. The viscosity and density
ratios of the fluids, denoted by r, = uo/p; and rq = pa/p1, are set to be 0.05.
Gravity is not considered. The size of the computational domain is a x 8a,
which has been found long enough for the interface to develop into steady
shapes. At the inlet (z = 0), fully-developed Poiseuille flow is imposed with
a cross-sectionally averaged speed U. At the outlet, a zero normal velocity
gradient outflow condition is used. At the centreline of the tube, a symmetry
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Figure 2: Illustration of axisymmetric displacement flow in a tube.

boundary condition is used and at the wall (r = a), the Navier slip boundary
condition is employed. The tube radius a and the average flow velocity U
(which is also the contact line speed when the interface has achieved a steady
shape) are chosen as the macroscopic length and velocity scales, respectively.
The Reynolds number is set to be unity as we found a further reduction
of Re to lead to almost identical steady state interface profiles. The initial
velocity condition in the tube is set as fully-developed Poiseuille flow. The
initial interface profile is flat; this evolves into a deformed, but steady-state
shape that we have found (in a previous study®!) to be independent of
the initial interface shapes used, for example when using as initial condition
a steady wavy shape from a simulation conducted at another value of the
Reynolds number. A dimensionless time step of 1.25 x 107% (normalized by
a/U) has been used for all simulations of displacement flow; tests for the
finest mesh have shown that halving the time step leads to visually identical
steady shapes.

In the present study, although the contact angle in the inner region, 6,
is assumed to be the constant static advancing angle, the contact angle 6,
that is implemented as the boundary condition obviously depends on mesh
size, contact line speed etc, according to Eq. 11, where the distance d to
the contact line is determined as explained in Sec.2.2. Equation 11 can be

11
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Figure 3: (a) Evidence that when just imposing the static angle for a realistically small
slip length, results for the steady interface shapes obtained with an otherwise reasonable
range of grid sizes appear not to converge. (b) Shear stress along the tube wall for different
mesh resolutions. Parameter values are Re = 1, Cag = 0.01, A = 1079, and 6,,,,,, = 45°.

written alternatively as

d
g(0,1r,) = g(0u, 1) + Cagy (lnLia) , (16)

where L; = X and the prefactor & = e~?. Simulations are carried out to
investigate the grid convergence properties of the present model. The cases
considered are for 0, = 45° and A = 107® (normalized with a), corresponding
to a realistic nanometer slip length if the tube radius is of the order of a
millimeter. We use o = 10 for this case, and this choice is discussed further
below.

It is known that as long as the slip length is not resolved by the grid,
convergence is not observed when using a constant contact angle 0,,,.,, as
confirmed in Fig. 3. It is seen that upon mesh refinement the steady in-
terface profile becomes flatter. This can be easily understood from Eq. 16:
if a constant contact angle 6,,,, is implemented, mesh refinement leads to
reduction of the value of the second term on the right-hand side of Eq. 16,
so that 6, in the inner region simulated is in fact increasing which leads to
interface shape that is flatter for the present parameters. In Fig. 3b the wall
shear stress distribution is shown, it is seen that at the contact line the shear
stress also does not appear to converge upon mesh refinement for the range
of grid spacings used.

However, when using the present moving contact line model, the results

12
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Figure 4: Steady interface shapes from the present numerical modeling with different grid
sizes at Re =1, A\ = 107% and Ca. =(a)0.01; (b)0.04.

are virtually independent of the grid spacing although the grid spacing (al-
beit varied over a significant range) is significantly larger than the slip length,
as shown in Fig.4. The convergence of the method is further analyzed in
Fig. 5(a). There, the relative error is defined as [H (dr)—H (0.005)]/H(0.005),
where H(dr) is the difference in axial coordinate of the contact line and the
interface location at the symmetry axis when using a grid spacing dr. The
results appear to converge upon grid refinement. Furthermore, we plot in
Fig. 5(b) 63,,, — 03 versus the grid spacing. It is seen that it decreases log-
arithmically with the grid spacing, as expected. The grid convergence of
the present model is a direct result of accurate prediction of interface profile
(interfacial angle) in the intermediate region. According to the theoretical
analysis of Kafka and Dussan[®, the outer interface profile is affected by
the inner region mainly through the interfacial angle in the intermediate re-
gion, which depends on the distance to the contact line. Therefore, if the
grid resolution lies within the intermediate region, which is not a stringent
requirement, the present model is indeed expected to lead to consistent and
accurate large-scale dynamics. However, because the microscopic inner re-
gion is far from being resolved, as stated above, it is of interest to investigate
the behaviour of the wall shear stress near the contact line with mesh refine-
ment, for which results are shown in Fig. 6. We find that the peak value
of the wall shear stress is similar to that presented in Fig. 3b for the same

13
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Figure 5: Convergence study for the case shown in Fig. 4(a). (a) Relative error in the
interface height versus grid spacing, using the result for dr = 0.005 as the reference. (b)
03 ,.,—03 as a function of mesh size. In (a), the interface height is defined as the difference
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in the axial coordinate of the contact-line and of the interface at the symmetry axis, and
the dashed line represents linear convergence.

mesh resolution. This is to be expected, as the flow is resolved within the
intermediate region near the contact line, and upon refinement, more of this
region is resolved, so when plotting the shear-stress along the wall, this gives
the appearance of divergence; when the grid has been refined such that the
first grid point is within the inner region, the method would switch in fact
to a full DNS which does converge (see also Ref.[?! where this is established
computationally for spreading droplets and good agreement is obtained with
theory).

Of course, the present model is only expected to apply when Eq. 16 can
accurately predict the interface shape in the intermediate region, that is for
small C'ay and Re. Figure 7 presents the steady interface shapes from the
present modeling for a large capillary number Ca, = 0.1, and it is seen that
grid convergence is no longer achieved.

We have also compared results obtained from the present model with
asymptotic analysis. A matched-asymptotic approach for creeping flows has
been developed previously to predict the meniscus advancing or receding in
a capillary tube®!. The theoretical results have been found to agree very
well with full scale direct numerical simulation®>4 in the limit of small
capillary number Ca, < 0.07 for an advancing contact line in the viscous
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Figure 6: Shear stress along the tube wall for different mesh resolutions for Fig. 4a.
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Figure 7: Steady interface shapes from numerical modeling with different grid sizes for
Re=1, 6, =45°, A=10"% and Ca, = 0.1.
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Figure 8: Steady interface shapes from numerical modeling with dr = 0.01 and theoretical
model at Re = 1. (a) A = 1075, Cay = 0.01; (b)A = 1076, Cay = 0.04; (c)\ = 1074,
Cay = 0.01; the dot line represents the result obtained from the model of Afkhami et
al. [20],

regime. Details of the theoretical model are not repeated here but can be
found in pertinent literature®33. It should be noted that for quantitative
comparison, the prefactor a in Eq. 16 is required. For the displacement
flow simulated here, « is a parameter that depends only on 6,, and the slip
model®. Here we fit this prefactor by comparing our numerical results with
that predicted by Ref.[*3. Since all present simulations have used a Navier
slip boundary condition, there should be a single prefactor for a single value
of #,. An example is shown in Fig. 8, where for 6, = 45° we find a = 10 to
give the best fit for all cases considered. With A = 1075, we find very good
agreement between the numerical modeling and asymptotic analysis can be
achieved up to Ca, = 0.05; when Cay < 0.02, there is almost no visible
difference between the numerical and theoretical results, as can be seen from
Fig. 8a. We have also carried out tests for a = 1, that is neglecting @); in
Eq. 11; it can be seen from Fig. 8a and b that this leads to quantitative
deviations from the theoretical results. Similar results have also been found
for various values of slip length in the present investigation, and one example
is shown in Fig. 8c for A = 1 x 107%. It is seen that the agreement between
the theory and the numerical simulation is excellent with o = 10.

As reviewed in the Introduction, Afkhami et al.? developed a related
macroscopic contact line model for the viscous regime, by drawing an analogy
to Cox’s viscous theory, albeit neglecting corrections to order Ca™. In their
model the contact angle boundary condition at z = 0.5dz is calculated from

0.5dz
g(‘gnum) - g(gapparent) + C’a/cl (111 I > ) (17>
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In their numerical tests, a constant apparent contact angle is prescribed
and grid convergence was achieved. In principle, 6,,, can be obtained from
various empirical correlations?” and this is tested in the present study, using
the Hoffman-Voinov-Tanner law, 63, = 63 +9Caq (In%). The result is
presented in Fig. 8c for Ca = 0.01 and A = 1074, it is seen that the steady
interface profile closely resembles those obtained from the present model with
a = 1 and deviates from the theoretical prediction presumably due to the
neglected high-order terms of Cox’s theory.

The second test of the present model is for axisymmetric slow spreading
of a droplet, with diameter D, on a flat surface. The initial shape of the drop
is chosen to be a circular cap with constant contact angle 6;,;, and a smaller
microscopic contact angle 6, is prescribed so that a high-curvature region is
formed at the contact line that initiates the spreading of the droplet towards
a shape corresponding to 6,,. The simulations will be identified in terms of
an Ohnesorge number, which indicates the effect of inertia. Other parame-
ters includes A = 10™* (normalized by D) and r4 = 7, = 0.1. In the present
numerical modeling, the instantaneous contact angle 6,,,,, is calculated from
Eq. 11. For droplet spreading with negligible density and viscosity ratios, );
is available and can be found in!"* (The present Q; equals the value of Q; in
Ref. 'Y plus one); in the present test case, 6, = 30°, which gives Q; = —0.7.
The results from the present model are compared with full-scale simulation
with adaptive mesh refinement (the latter have been tested elsewhere?!). In
the full-scale simulation, the computation domain is of unity dimensions and
doubling the domain size leads to nearly identical results; the finest mesh res-
olution is dr = 1/5120, which is sufficient to give mesh-convergent results?!,
A time-step convergence study has been carried out and the dimensionless
time steps (normalized by pR?/u) employed are 107° and 5 x 107% for mesh
resolutions dr = 1/32,1/64 and dr = 1/128,1/256 respectively.

In Fig. 9 results are presented for the temporal evolution of the contact
line radius and speed. From Fig. 9a, the results represented by red lines, it
is of course clear that when the grid spacing is significantly larger than the
slip length, simulations with the contact angle 6,,,,, set as the inner wetting
angle cannot yield converged results; the drop spreads much faster than that
from full scale fine mesh simulation with adaptive mesh refinement (DNS).
With the present model, it is seen (black and blue lines) that virtual grid
independency is achieved even with a very coarse mesh. Furthermore, the
modeling results using Eq. 11 (Q; is obtained from™)) with dr = 1/32
can compare well to those of the DNS with dr = 1/5120. We also find
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Figure 9: Axisymmetric droplet spreading with r, = r4 = 0.1, A = 0.0001, 6,, = 30°
and Oh = 0.1. (a) Contact line radius as a function of time. Red lines are for constant
O pum = 30°. Black lines are for 60,,,,, inferred from Eq. 11. Blue lines are for 6,,,,, from
Eq. 11 with @; neglected. Black dots are for direct numerical simulation with adaptive
mesh refinement. (b) Contact line speed as a function of time. Black lines are for 6,,,m,
inferred from Eq.11. Black dots are for full scale simulation with adaptive mesh refinement.
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(c) Replot of (b) with both axes on logarithmic scales.
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Figure 10: Wall shear stress profiles obtained with different mesh resolutions at ¢ = 0.32.
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Figure 11: Instantaneous interface profiles from numerical modeling with dr = 1/32 green
line dr = 1/128 (black line) and full scale simulation with dr = 1/5120 (blue line). ¢ =(a)
0.064;(b)0.384
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Grid spacing | Wetted distance | Relative error
1/32 0.0808 0.043
1/64 0.0794 0.025
1/128 0.0782 0.009
1/256 0.0775

Table 1: Convergence study of the distance travelled by the contact line corresponding to
Fig. 11(b). The relative error is defined as the difference with the most accurate result
with dr = 1/256.

that neglecting the term (@);, as has been done in previous work, leads to
a quantitative difference and worsens the comparison with DNS. Figure 9b
presents the mesh dependency study of the contact line speed as a function
of time from the present modeling with taking into account the value of Q);,
and it is seen that the results are very close to the DNS data. In the present
simulation, an initial downward velocity is applied which helps to trigger an
initial spreading speed that may depend somewhat on the mesh resolution, as
the asymptotic contact-line region resulting from this initial condition is very
small. To investigate this in detail, a log-log plot of the contact line speed
as a function of time is included in Fig. 9c to single out the very earliest
data. We conclude from the figure that the results converge at shorter and
shorter times towards the DNS data upon grid refinement i.e., the curves fold
towards the DNS from later to shorter times. Figure 10 shows the wall shear
stress for different mesh resolutions at t = 0.32. The behaviour is similar to
that observed in Fig. 6 for the flow in a tube; as discussed there, the fact
that upon grid refinement more of the intermediate region is resolved gives
the appearance of divergence.

The instantaneous drop shapes obtained are presented in Fig.11, it is seen
that results obtained with the model at different grid spacings - including a
very coarse grid - are all very close. The small differences are analyzed further
in Table 1 for Fig.11(b), where the results appear to converge. Furthermore,
in Fig.11, the results obtained with the present model are seen to be also very
close to the corresponding DNS results. An exact convergence to the DNS
cannot result, as the model used is itself not exact (this has been investigated
further in Ref.?! using DNS) but the differences are very small.

Regarding the computational effort involved, a simulation using the present
approach with dr = 1/32 takes about 5 minutes on a single PC, while a DNS
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Figure 12: Axisymmetric droplet spreading with r, = r4 = 0.1, A = 0.0001,0,, = 30° and
Oh = 0.00316. (a) Contact line radius as a function of time. 6,4, is inferred from Eq. 11
or 13. Black lines are for Q; from!"] and Re* = 0.37. Blue lines are for neglected Q;, hiy
terms and Re* = 1. Black dots are for direct numerical simulation with adaptive mesh
refinement. (b) Contact line speed as a function of time. Black lines are for the same case
as in (a). Black dots are from DNS with adaptive mesh refinement.

simulation with a grid spacing of dr = 1/5120 takes 140,000 cpu hours on the
High-Performance Computing facility at Imperial College London, typically
using 64 processors.

3.2. Inertial regime

We now go beyond the slow-spreading regime. We first consider axisym-
metrical rapid droplet spreading on a flat surface with parameters similar to
that in the previous section except that the value of Oh is now reduced to
0.00316, to introduce strong inertial effects. From the results presented in
Fig. 12, it can be seen that similar to the viscous model, the present inertial
model also leads to results for contact-line radius and speed obtained with
different grids to virtually overlap. The dimensionless time steps normalized
by an inertial /capillary time scale \/pR?/o employed are 5 x 10~° for simu-
lations with the present model. With the present model, even using a very
coarse mesh gives results that agree quite well with the DNS results (we have
tested and found dr = 1/2560 leads to converged results for this case), when
accounting for the appropriate value of ();. The value of Re* is taken from
previous work ! and set to be 0.37. The results obtained when neglecting
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line dr = 1/400 (red line) and full scale simulation with dr = 1/2560 (black line). ¢ =
(a)0.09; (b)0.36; (c)0.54; (d)0.8.

terms corrected to O(Ca;') and Re* = 1 deviate more from the direct numer-
ical simulation. From Fig.13, where the grid-converged instantaneous drop
shape compares well with that of DNS; it is seen that macro-scale dynam-
ics like capillary waves traveling along the drop interface can be accurately
captured with the present inertial model.

We further test the present inertial model by comparison with a recent
experiment of rapid droplet spreading[*® where a novel mode of droplet pinch
off following the deposition of a liquid droplet on a substrate has been identi-
fied. To facilitate this, we need to set a proper value of the slip length in the
numerical model. In the present study, the slip length is inferred by fitting
Cox’s inertial theory!'”) to the experimental data, as shown in Fig.14. In[0,
the intermediate region is further divided into a viscous sublayer connected
by a inviscid layer. At the outer edge of the viscous sublayer, the interfacial
angle can be obtained with Eq. 12. The apparent angle then follows from

Giv(Oapp) — Gin(87) — Calhiv(bapp) — hin(07)] = Cagln(d,,Re/Re*).  (18)
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Figure 14: Apparent angle as a function of instantaneous Ca.. The experiment (from
Ref. [35]) is for a water drop of 0.77mm in diameter with an small impact speed of 0.079m /s
(Oh = 0.006 and We = 0.033) and 6,, = 23°. The theoretical predictions are obtained
from Eq. 12 and 18. Cox 1998a is for A = 10~ '®m and a constant 6, = 23°, Cox 1998b is
for A = Inm and a velocity-dependent contact angle.

In Ref "% d,, is of order 1; in recent work by the present authors?!, it was
found that using d,,, = 0.2 always leads to good agreement in apparent angle
between the theory and full-scale simulation. Here we have used the value of
0.2. We find that in order to achieve good agreement with the experiment,
an unrealistically small slip length needs to be employed. The physical ex-
planation is investigated elsewhere?!: it may be because the wetting angle
in the microscopic inner region 6, in the experiment is a function of the
spreading rate. However, we have found using the inferred slip length with
a constant 6, to have the same effect on the apparent angle. We revisit this
issue further below.

We have carried out simulations using the present model with the in-
ferred slip length, and the parameter values set as in the experiment. The
dimensions of the computational domain are twice the drop diameter in both
directions, which is found to be large enough to neglect the boundary effect.
The density ratio is set to be r; = 0.001 and viscosity ratio r, = 0.05, a fur-
ther reduction of viscosity ratio leads to identical results. The dimensionless
time step used is 2.5x 1075, First tested is the mesh-dependency performance
of the present model and the results are presented in Fig. 15. The results of
the simulations obtained with the present model using different grid spacings
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nearly coincide, for the instantaneous contact line radius as well as for the
contact-line speed, even though the grid spacing is varied significantly and is
much larger than the slip length.

In Cox’s inertial theory for spreading, the intermediate region is divided
into a viscous sublayer connected by an inviscid layer, and the transition is
at d* = Re*/Re. In the viscous sublayer, the interface shape is identical to
that in Cox’s viscous theory. In the simulation of droplet spreading presented
in the above, the value of Re decreases as the spreading rate decreases and
hence d* increases (i.e., the viscous sublayer becomes thicker). Therefore, at
a late stage in the spreading process the location z = 0.5dr ceases to be in the
inviscid intermediate sublayer but lies in the viscous intermediate sublayer
instead (e.g., for dr = 1/100, this occurs in the present case when U, = 1.3
and Re = 39). From this point onwards, 6, is calculated from Eq. 11,
which is in fact identical to Cox’s viscous theory and thus leads to results for
different grids in Fig. 15 to virtually overlap also at this stage.

In Fig. 15b, the second oscillation (after ¢ = 2) coincides with the arrival
of the capillary wave caused by a droplet ejection. At this instance in the
experiment, the contact line overshoots and then recedes rapidly. In dewet-
ting that is sufficiently rapid, the model of Cox* is not expected to perform
well?!) and in fact ultimately leads to negative values of ,,m, so we have
terminated the simulations when this point was reached in Fig. 15b due to
current limitations of the asymptotic modelling.

In our previous work Y, for a realistic slip length A = 1nm, we found that
in order to achieve good agreement between the inertial theory of Cox and
the experiment, a contact-line-speed-dependent contact angle, 04,,, must be
used. Following a formula proposed by Sheng and Zhou %, cosf,, = cosfg,,+
B -Caly, it was found B = 9.6 and n = 0.64 leads to excellent agreement, as
shown in Fig. 14. We have carried out a simulation wherein this dynamic
microscale contact angle is used with A = 1nm and the result is shown in
Fig. 15a for the instantaneous contact line radius. It is seen that the result is
almost identical to that obtained for a constant contact angle and an inferred,
though unrealistically small, slip length, which confirms these two approaches
have the same effect on the macroscale simulation; in the following, we adopt
the static model as outlined above. Note, the static and dynamic models in
Fig. 15 refer to the contact angle 6, in the microscopic inner region, not to
the contact angle boundary condition 6,,,,, implemented at z = 0.5dz. The
models of the latter affect the droplet evolution significantly, as discussed
further below.
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Figure 15: Axisymmetric droplet spreading on a flat surface with Oh = 0.006, 6,, = 23°.
(a) Contact line radius and (b) drop spreading speed as a function of time. In (a) the green
line is for simulation using a dynamic microscopic contact angle instead of a constant 6,,
as explained in the text.

Figure 16: Instantaneous interface profiles from numerical model with time running from
top to bottom, and then from left to right. dr = 1/100 and other parameters are the same
as those in Fig. 15. Q; = —0.99["") and Re* = 0.37.
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Figure 17: Instantaneous interface profiles from numerical model using a fixed contact
angle 0,4, = 23° with time running from top to bottom, and then from left to right;
dr = 1/100, and other parameters are the same as those in Fig. 15

Figure 16 presents the interface shapes during droplet spreading. Cap-
illary waves are observed, leading to the formation of a narrow neck in the
upper part of the droplet with its size decreasing with time (from the third
column in the figure onwards). However, the neck size does not directly go
to zero to result in pinch off (termed as first-stage pinch off in[®!); from the
fourth column in Fig 16, it is seen that the neck re-expands (in the r direction)
to a certain extent and after that a similar necking process happens again
and finally leads to the ejection of a small droplet, which is termed second-
stage pinch-off. The present simulation agrees very well with the experiment
of Fig. 14, where a similar second-stage pinch off has been observed.

We have also carried out a simulation for 6,,,, = 0, = 23°, instead of
calculating 0,,,,, from Eq. 11 or 13. Other parameters are the same as in Fig.
16. The instantaneous droplet shapes are presented in Fig. 17. It is seen that
a first-stage pinch-off is obtained, qualitatively different from experimental
observation.

Quantitative comparisons have also been conducted. Figure 18a and b
present the time evolution of the apparent angle and the capillary number
based on spreading rate, respectively. According to Cox!®'% the apparent
angle is obtained by extending the interface from the outer region to the
wall and finding the intersection angle, as illustrated in Fig. 19, where 0
represents the interfacial angle and s is the interfacial distance to the contact
line. A similar approach has also been adopted in the experiment®”. From
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Figure 18: Temporal evolution of (a) apparent angle; (b) capillary number based on
droplet spreading rate for the experiment (curves) and the numerical modeling (diamonds).
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Figure 19: Hlustration of the measurement of the apparent angle in numerical simulation.
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Figure 20: Apparent angle as a function of instantaneous capillary number for experiment
and numerical modeling. Parameters are the same as those in Fig. 14.

Fig. 18, it is seen that good quantitative agreement is achieved. Hence the
present inertial model with an inferred slip length can accurately predict the
instantaneous contact line speed and the transient large scale dynamics.

We also compare the apparent angle as a function of capillary number and
get reasonably good agreement, as shown in Fig. 20. Flat loops are observed
in the experimental data, which are investigated in detail in Ref.!®?). From
Fig. 20, it is seen that these flat loops have been captured by the numerical
simulation using the present inertial model.

In summary, the required input beyond the standard ones for two-phase
flows without contact lines are: the microscale contact angle and the slip
length. However, the parameters (); in Eq. 12 and Re* in Eq. 13 depend,
in principle, on the geometry of the flow (this was already recognized by
Cox!?), so the values for these used herein are for the systems we have tested
the model for. Even so, we are encouraged by the fact that @; in the tests
for capillary rise in a tube are of the same order as in slow axisymmetric
spreading. We envisage that in practice, the model proposed here could be
used in various ways, depending on the amount of information available in
any application. The minimum scenario would be to provide an estimated
value for slip length and microscale angle, and using );, Re* to be of order
unity. Next, recognizing not only that the values for (); and Re* may be
a bit different in another application, but the appropriate slip length value
could be affected by the properties of the surface and the microscale angle
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may pose a further uncertainty, it would be sensible to test the sensitivity
of the results to the values used for these parameters. Of these, we would
expect the microscale contact angle to be the dominant one.

4. Conclusion

Within the framework of the level-set method, we have developed an ap-
proach for macroscale simulation of multiphase flows with moving contact
lines. Instead of resolving the microscopic region near the contact line di-
rectly, the present approach models its effect, mainly an interfacial angle, by
using asymptotic theory®' so that using the present model can capture
the large-scale dynamics at much reduced computational cost. The present
model has been tested by simulations including displacement flow in a tube,
as well as slow and rapid droplet spreading on a flat surface. The results
show that the present approach, in both viscous and inertial regimes, leads
to grid-converged results even when using a very coarse mesh. Furthermore,
the results from the present model agree quantitatively with asymptotic anal-
ysis, full-scale DNS results and also with experiments. These tests suggest
the present model to be accurate and efficient for macroscale simulations of
moving contact lines.
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