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ABSTRACT Categories and Subject Descriptors

We study static analysis, in particular the containmenbpro H.2.3 [Database managemerjt Languages—Query Lan-
lem, for analogs of conjunctive queries over XML docu- guages, F.2 [Analysis of algorithms and problem com-
ments. The problem has been studied for queries based omlexity]: General
arbitrary patterns, not necessarily following the treeicstr
ture of documents. However, many applications force the
syntactic shape of queries to be tree-like, as they are lmased
proper tree patterns. This renders previous results, atyci )
based on having non-tree-like features, inapplicable.sThu Algorithms, Theory
we investigate static analysis of queries based on proper
tree patterns. We go beyond simple navigational conjunc-1  INTRODUCTION
tive queries in two ways: we look at unions and Boolean
combinations of such queries as well and, crucially, all our
queries handle data stored in documents, i.e., we deal with Static analysis of queries and specifications has been ac-
containment over data trees. tively investigated in the context of XML, not only due to
. its importance in tasks such as query optimization but also

We start by giving a general;, upper bound on the con-  que 0 a very different nature of the results brought to the
tainment of conjunctive queries and Boolean combinations {5re by the hierarchical structure of XML documents [1, 3,
for patterns that involve all types of navigation througlcdo 7,10,13, 14, 16, 17, 18, 19, 28, 30, 33, 35]. Typical reason-
uments. We then show matching hardness for conjunctivejng problems include consistency of queries or constraints
queries WI.th all navigation, orlthellr Boolean combinations ith respect to schema information, typechecking of trans-
with the simplest form of navigation. . After that we look formations, security of views, and crucially, query contai
at cases when containment can be witnessed by homomorment, with or without schema information. The latter is the
phisms of analogs of tableaux. These include conjunctive problem we deal with. Starting from the relational case, we
queries and their unions over child and next-sibling axes; xnow that query containment is often the technical core of
hc_)wever, we show that not all cases of containmen_t can bemany query optimization [15]. In recent years query con-
witnessed by homomorphisms. We look at extending tree iginment found multiple applications not only in query an-

patterns used in queries in three possible ways: with wild- swering and optimization, but also in data integration, ex-

card, with schema information, and with data value compar- change, and provenance among others [22, 23, 27].

isons. The first one is relatively harmless, the second one

tends to increase complexity by an exponential, and the last Already in the relational case, we know that, by and

one quickly leads to undecidability. large, containment is decidable for conjunctive queries an
relatives, and undecidable for expressive queries, such as
those coming from the full relational algebra. In the XML
case, static analysis of queries has been largely restricte
queries in various fragments of XPath [35] and analogs of
conjunctive queries [10, 11, 21], primarily describing the
structure of documents. The latter classified the complex-

Permission to make digital or hard copies of part or all o§ twork for ity Of_ q_uery Conta_mmem deDend'ng on the list of used axes,
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a query is one saying that we have two noslaads’, so that value. This is also sufficient to model XML documents
s’ is a descendant of, and we have other nodss, . . ., s, whose nodes may have multiple attributes, simply by cre-
so that each; is a descendant gfand an ancestor af. This ating an extra child of a node for each attribute name.

says that thes;s appear in some order on the unique path

from s ands’. But note that the query itself is DAG-shaped . 1 :
rather than tree-shaped (i.e., if we consider its tablaag, i 2'¢ based. The simplest are patterns based on child navi-

a DAG rather than a tree). Secondly, results in those papersgatilor_]' gnbe;(ample is ”;]e patt_eatl)ilx)[b(x), c(y)] tg_at Wed
mainly concentrated on navigational features and much less®*P'ained belore. Note that variables corresponding ta dat
on the data that documents carry. For instance, containment/@/Ues are free: we view this patternzas:, ), returning all

of queries with data values remained practically unexpglore P&rs(z,y) such that a match occurs withandy being the
(as these papers concentrated on satisfiability).

We start by defining tree patterns upon which our queries

data values witnessing it. We can add horizontal navigation
too, for instance we can have a pattefn)[b(z) — c(vy)],

And yet many applications demand prop@iL conjunc- stating that thes-witness is the sibling that follows thie
tive queries which are tree-based and can return data. Suchwitness. More generally, we can have transitive closure axe
queries are naturally induced B¥ML patterns which ap- too: for instanceu(x)[c(x)]//[b(x) —* c(y)] says that the

pear in multiple applications including XML data exchange, a-node has a-child with the same data value and two de-
data integration, and query optimization [4, 5, 6, 8, 9, 24]. scendants, with labelsandc and data values andy, so
Such patterns are given by grammars or formation rules thatthat they are siblings and tHenode occurs earlier in the
naturally induce a tree structure. As a simple example, we sibling order. These types of patterns occur, for instance,

can say that a label is a pattern, and if, . .., m, are pat- in integration and exchange tasks for defining XML schema
terns, theru[m,...,m,] is a pattern. It will be matched by = mappings [4, 6, 8] or in descriptions of XML with incom-
ana-labeled node that has (not necessarily distinct) chil-  pleteness features [2, 9].

dren matchingry,...,m,. Such patterns (and more com-

plex ones including other axes) form the basis for desagibin Based on SL_’Ch patterns, we de_fme conjunctive queries
XML schema mappings and incompleteness in XML docu- (CQS) by closing them under conjunction and existential
ments. And yet they cannot generate the DAG-like “conflu- duantification, i.e., as queriggr) = 3y A, mi(z,y). We
ence” behavior explained earlier; because for any two nodes/0CK at unions of conjunctive queries, or UCQs, which are
appearing on a descendant path, it is always specified which®f the formU, ¢;(z), where eachy;(z) is a CQ, and their
one appears first. But it is precisely this behavior that is be B00l€an combinations, or BCCQs, obtained by applying op-

hind many of the complexity results applied to graph-based €"ationsz N ¢’,¢ U ¢', andg — ¢’ to CQs.

pattern queries in XML. We present a general upper bound showing that contain-
ment of BCCQs that use all the axes id1§. We show two
matching lower bounds: either for BCCQs with the simplest
navigation (only child relation), or CQs with all the axes.

So our question is: what are the costs of static analysis
problems for propetree-based pattern queries?

A key feature of the main applications of such patterns . . .
is that they are not purely about trstructure of docu- In the relational case, cQ clg)ntalnment is tested by
ments, but they also colledata. For instance, a pattern  t@bléaux homomorphisms. TH&,-hardness for general

a(z)[b(z), ¢(y)] collects values andy of data so thatadoc- ~ CQS precludes the possibility of such a test in general, but
ument has an-node with valuer. that in turn has a-child we show that with restricted sets of axes it is still possible

with the same value: and ac-child with valuey. Thus (in fact we just have to exclude the horizontat relation).

queries return sets of tuples, rather just a yes/no answer fo  \e then look at adding features to patterns and queries.
the existence of a purely structural match. First, we add wildcard and show that th&-upper bound

Furthermore, we do not look solely at analogs of conjunc- continues to hold. We also ShO_W that, for some classes of
tive queries. In the relational case, it is well known thatco ~ du€ries, the complexity of containment can jump from NP-
tainment of both conjunctive queries and their unions has complete toll,-complete if V\‘nldca}rd is added 1o patterns.
the same complexity, namely NP-complete [15, 34], and the Furthermore, we identify a ‘safe’ case of using wildcard,
complexity of containment of arbitrary Boolean combina- Namely everywhere exceptat roots of patterns, that preserv
tions of conjunctive queries moves one level up in the poly- NPmMomorphism characterizations of containment.

nomial hierarchy tdI;-complete. So we deal with analogs ~ The next addition we consider is containment under
of such queries too, built from tree-based patterns. schema information (abstracted as a tree automaton, which
+ capture many schema formalisms for XML). Here we show
that the upper bound increases to double-exponential, and
a matching lower bound can be shown for CQs with all
axes. Finally, we look at adding data-value comparisons to
queries, in particular the disequalit¢) comparisons. This
addition has a much more dramatic effect on the complexity
Overview of the results. As an abstraction of XML docu-  of containment: it becomes undecidable for BCCQs, and for
ments with data values we use, as is comnaata trees. CQs when both comparisons and schemas are present (even
In those trees, each node carries both a label and a datavith severe restrictions on available navigation).

Thus, our revised goal is to investigate the containmen
problems for analogs of conjunctive queries and relatives
(unions, Boolean combinations) based on tree-based XML
patterns over both structural information and data that XML
documents carry.



Comparison with non-tree pattern queries.As we already Data trees are a standard abstraction of XML documents
mentioned, a number of results exist on CQs based on graphwhen one deals with both structural properties and data.
shaped, rather than tree-shaped patterns [10, 11, 21]. Non&uppose we have a domdnof data values, such as strings,

of those results extend to handle unions and differences ofnumbers, etc. Alatatreeis a structuré = (D, |, —, \, p),
queries (i.e., UCQs and BCCQs) and they handle data valuesvhere (D, |, —, \) is an unranked tree, and: D — D

in a very limited way. Below we contrast them with our assigns each node a data value. In XML documents, nodes
results. may have multiple attributes, but this is easily modeledhwit

: . data trees. For instance, to model a node with attributes
For CQs that may contain arbitrary graph patterngnﬁle ai, - ..,a, having values, ..., v,, we pick special labels

upper bound continues to hold, but hardness requires Iesszg1 _...0,, and create extra children labelef,. . .. . ¢, car-

for instance, purely navigational queries with non-tree pa ryfng \;aﬁ.]’eSUl v e

terns are alreadyl5-complete for vertical navigation [11] T

(for tree patterns they stay in NP, as we show). Under Patterns. As already explained, the patterns that we use are

schema, containment of CQs jumps to doubly-exponential naturally tree-shaped. To explain how they are introduced,

too [10]. With £ comparisons, even CQ containment be- let us consider the reducts of data trees to the child relatio

comes undecidable [10]. i.e., structuregD, |, A, p). Trees of this form can be defined

by recursion. That is, a node labeled witte £ and carry-

Those reSl_JIts cover only a part_of the _Iandscape that Weing a data value € D is a data tree, and ff, ..., 1, are

study here (i.e., CQs, concentrating mainly on pure navi- yrees we can form a new tree by making them children of a

gation), and, crucially, under different assumptions o& th 0 4e with labek and data value.

shape of queries. Such assumptions make most existing

proofs inapplicable for us (as they often rely heavily on-hon In patterns we use also variables; the intention for them is

tree features, such as the confluence, explained earligr, anto match data values in data trees. Thus, they are essgntiall

the bidirectionality of axes). partial tree descriptions with variables appearing in @latc

some data values. We assume a countable infinit® sét

Organization. We give key definitions in Section 2. The Va”ab.les' dl'_510|nt ff_o_”.‘ the _doma_ln of valugs S_o_t_he pre-

T2 upper bound for BCCQs is shown in Section 3. In Sec- vious inductive definition gives rise to the definition of the

tion 4 we prove two matching lower bounds. In Section 5 simplest patterns we consider here:

we investigate cases when containment can be witnessed by 7 :=a(x)[n,. .., 7 (1)

the homomorphism of tableaux. Section 6 studies the effect .

of adding wildcard to queries. In Section 7 we investigate With a € £ andz € V U D. Here the sequence in. |

static analysis under schema constraints. Adding dataeval could be empty. In other words, if;, ..., 7, is a sequence
comparison is studied in Section 8. Concluding remarks are Of patterns (perhaps empty),€ £ andz € ¥V U D, then
given in Section 9. Due to space limitations, proofs are only @(z)[71, ..., 7] is a pattern. Ifz is the list of all the vari-
sketched. ables used in a pattern we writer ().
We denote patterns from this classHy/). The seman-
2. TREES, PATTERNS, AND QUERIES tics of 7(z) is defined with respect to a data tree- (D, |,
—,\,p), anodes € D, and a valuation : z — D as
follows: (¢, s,v) | a(z)[m1(Z1), ..., ™ (Zy)] iff

Unranked trees and data trees.We start with the standard

definitions of unranked finite trees which serve as an abstrac L

tion of XML documents when one deals with their structural ~ ® A(8) = a (the label ofs is a);
properties. A finite unranked tree domain is a non-empty, v(z) if zisavariable
prefix-closed finite subsé? of N* (words oveN) such that ° ps) = {x if = is a data value
s-i € Dimpliess-j € Dforall j < iands € N*. We refer '

to elements of finite unranked tree domainsnades. We » there exist not necessarily distinct childreni,, ...,
assume a countably infinite sétof possible labels that can s iy Of s sothat(t, s - ij, v) |= m;(z;) foreachj < n_
be used to label tree nodes. An unranked tree is a structure (recall thatn could be0, in which case this last item is
(D, |, -, \), where not needed).
e D is afinite unranked tree domain, We write (¢, v) = n(z) if there is a node so that(t, s, v) =
e | is the child relations | s-ifors-i € D, m(Z) (i.e., a pattern is matched somewhere in the tree). Also
e — is the next-sibling relations - i — s - (i 4 1) for if 0 = v(z), we writet |= 7 (0) instead oft, v) = 7(z).
s-(i+1)e D, and A natural extension for these simple patterns is to include
e )\ : D — Listhe labeling function assigning a label to  both vertical and horizontal navigation. Again the intoiti
each node. comes from defining data trees as follows: a node labeled
with ¢ € £ and carrying a data value € D is a data tree,
We denote the reflexive-transitive closure pfby |* and ift,, ..., t, are trees, we can form a new tree by making

(descendant-or-self), and the reflexive-transitive alesaf them children of a node with labeland data value, so that
— by —* (following-sibling-or-self). their roots are connected in the order— to — ... — t,,.



This leads to the definition of patterns in the cl&bg,, —): Shorthands. We shall be using standard shorthand notations:
a(z)/m stands fou(z)[r], whilea(z)//m denotesi(z) //[7],
m=a(@)lm = ... ] (2) agld)c{(:c) Ir ) ol gom(x)[w](//)[{r/']. i
with a € L andz € V U D. Again the sequence ip. ]
could be empty. In other words, 4f;, . . . , 7, iS a sequence
of patterns (perhaps empty), € £ andz € V U D, then
a(z)[m1 — m — ... = m,] is a pattern. The last clause
in the definition of the semantics ®f(| ) is modified as fol-
lows:

Conjunctive queries, their unions, and Boolean combina-
tions. Pattern-based conjunctive XML queries are obtained
by closing patterns by conjunction and existential quantifi
cation. Since we have different classes of patt&fs), for
o beingy, or |, —, or |}, or ||, =, we have different classes
of conjunctive queries denoted by G£). More precisely,
) ) CQ(o) queries are of the form:
o there exists a child-i of s sothat(t, s-i,v) = m1(Z;), N
(t,s-(i+1),v) Ema(Z2),...,(t, s (i+n—1),v) E N o .
7 (Z). In other words, it is consecutive children that q(z) = /\ mi(%i) )
witness the satisfaction of subpatterns. =t
where eachr; is all(c) pattern, and each is contained in
Z,y. The semantics is standard; v) = ¢(z) if there is an
extension/ of valuationv to variablegj such tha(¢, ') =
m;(Z;) for everyi < n.

Patterns inII(}) and II({,—) completely specify the
structure of a tree (depending on the available axes) and, in
particular, only express local properties of trees. Weeher
fore also consider their more expressive versions with-tran  As is standard, we also write = ¢(9) if (¢, v) = q(z)

sitive closure axes$™ (descendant) ane:* (following sib- with v(z) = ©.

ling). More precisely, following [4, 20], we define general

patterns by the rules: Of course conjunctive queries are closed under conjunc-

tion. Standard ways of enriching their power include consid

m = a(@)lp, -l s ) 3) ering unions of conjunctive queries (BICQs, which, in the
o= mae e m relational case, capture the positive fragment of relation

Herea, z andr are as before, and stands for aequence, algebra) and more generally, Boolean combinations of con-

i.e., a forest such that the roots of its trees are sequentiajunctive queries (0BCCQs, which, while possessing some

siblings in a tree, and eaeh is either— or —*. form of negation, still retain many nice properties thaarel

tional algebra as a whole loses).
The class of such patterns is denoted b}, =), with |

we use both types of downward navigatigrad, *) and= Formally, a query fromUCQ(c) is of the formg(z) =
meaning that we use both types of horizontal navigatien ( ¢1(%) U ... U g (%), where eachy;(z) is a CQo) query. It
and—*). The semantics is extended as follows. returns the union of answers to thgs, i.e., (t,v) |= q(2)
iff (¢,v) = ¢:(Z) for some; < m.
o (t,s,v) E m ~ ... ~ m, if there is a sequence Queries in the clasBCCQ are obtained as follows: take

s = s1,...,5y Of nodes so thatt, s;,v) = m; for some querlesl_(:f),_. ey G (T) frpm CQ(o) and consider a

eachi < m ands; — s;+1 whenever théth ~» is —, Boolean combination of them, i.e., close them under opera-

ands; —* s;,1 whenever théth ~» is —*. tionsq N ¢, qU ¢, andq — ¢’. The semantics is extended

naturally, with those interpreted as intersection, unenmg

, P .
o (Lsv) =al@lim, .o mnl// i, gy i the satis set difference, respectively.

faction ofa(x) in nodes is as before, and there exist

n not necessarily distinct childres, ... ., s, of s such The answer to a queryz), from any of the above classes,
that (¢,s;,v) |= p; for eachi < n, and there exist  on a data tree s defined ag(t) = {1v(Z) | (t,v) = ¢(T)}.
k not necessarily distinct descendasfs. . ., s, of s Note that our definitions of query classes ensure ¢htis
such that(t, s, v) = u; for eachi < k. always finite.
) ) ) Containment. The main problem we study here is the con-
Notice that the semantics of patterns allows differento tainment problem. Given two querie$z), ¢'(z') with tu-
be mapped into the same nodes in a tree. ples of free variables of the same length, we wyitg ¢’ iff

Finally, we consider a clasd()) of patterns which is a  4(t) S ¢'(?) for every data tree. So the problem we look at

restriction of the most general patterns to downward naviga 'S the following.
tion only. These are defined by the grammar

PrROBLEM: C
L T VL @) lo) ___
where each of the sequences of patterns can be empty. That I(IQ\ILT;ST'.I'ION' g”eges‘!é“’)’ ¢(#)In CQ(o);
. f e ) : q<q"
is, a pattermu(z)[m1, ..., m]//[7], ..., 7] i witnessed in
an a-labeled node assigning its data valueatdf it has _ o o
n children (not necessarily distinct) witnessing, . . ., 7, Ifinstead of queries in C(F) we use queries iNCQ(o),

andk descendants (again not necessarily distinct) witness-we refer to the problemfyCQc (o) and, if we use queries
ingmy,...,m,. fromBCCQ(o), we refer to the probleBCCQc (o).



In therelational case, these problems are among the basic
problems of database theory. The complexity of Cénd
UCQc over relational databases is NP-complete [15, 34]

LOWER BOUNDS FOR CONTAIN-
MENT

4.

(under the representation of UCQs that we use here), and

the complexity ofBCCQ_ is IT5-complete [34].

3. AN UPPER BOUND

A priori, there is no upper bound that is immediate for the
containment problem. In fact, in the presence of negation
(even a limited form of it) combined with XML hierarchical
structure, some reasoning problems can become undecidabl
(see, e.g., [17, 4]). In the relational case, we know that con
tainment for BCCQs i$l5-complete, but this does not imply

Now that we know that all the containment problems are in
118, it is natural to ask when we have matching lower bounds.
Note that in all the variations of containment problems, we
have two parameters: the class of queries (going from the
simplest, CQs, to UCQs, and to BCCQs), and the set of axes
(again, starting with the simplest, just and then going to
more complex,, —, as well ag} and|}, =).

What we show in this section is that each of the combi-
eation simplest/hardest leads f-hardness. That is, the
containment problem with the simplest of axes, jysts
I15-complete if we allow Boolean combinations of queries.

the same bounds for XML pattern-based queries, especiallylf we have just CQs, the containment becorfi§scomplete

those that might use transitive closure axesand|*.

Nevertheless, we can show that for all such queries, the
containment problem remains not only decidable, but the up-
per bound on its complexity continues to match that for the
simplest relational queries. In fact we show the following.

THEOREM 3.1. The problem BCCQc (I}, =) is decid-
ableinIT5.

In other words, for each of the classes of queries — CQ,

when we have all the axes, i.e.l*, —, and—*.

Note that the first result on the surface is rather similar to
I15-completeness of containment of relational BCCQs [34].
Indeed, the standard representation of relations in XMl onl
needs the axis, and shallow documents. However, the re-
sult does not follow from the results in [34], as we demand
containment over all XML documents, not only those that
properly represent relational databases of a given schema.
In particular, if we have two relational BCCQsandq’, and
their natural XML codings aBCCQ(/.) queriesgxm. and
G » thengxme € ¢&u impliesq C ¢’ (as each relational

UCQ, BCCQ— and for each of the classes of patterns seengatabase can be coded as an XML tree), but under the same

so far, the containment problem islif§, as all of these prob-
lems are subsumed by the containment problem of BCCQs
with TI({, = )-patterns.

Proof sketch. Checking whetheg; C ¢, is the same as
checkingg; — g2 = 0, so it will suffice to give &% algorithm
for checking if a BCCQy returns a nonempty result on some
data tree. We assume thgs a Boolean combination of CQs
q1, - - -, qm- FOr the sketch we assume they are Boolean (free
variables do not change anything). To check satisfiability i
suffices to guess an assignmgnt{1,...,m} — {0,1} so
that for

¢ = N{ai | x(i) =1} andq” = \/{q; | x(j) = 0}

we have a tree such thaty'(¢) is true andqg”(¢) is false.
Note thaty’ is a CQ, andy” is a UCQ. The idea of the proof

is to turn this into a certain answer problem in XML data ex-
change [8]. We let schemas of XML documents be arbitrary
and the mapping consist of a single rules ¢/, forcing the
patterns of’ in every target tree. Then we check whether
the certain answer tg’ is false: this happens iff there is a
tree satisfying,’ and the negation af”.

The latter requires two steps in the proof. One is a modifi-
cation of the proof of the oNP data complexity of certain
answers in [8]. The problem is that the latter proof produces
a witnessing tree whose size is exponentiaj/ilnwhich is
too large for our purposes. So we show how to encode the
exponential witness by a data structure whose size is poly-
nomial ing’, ¢ and which allows checking for satisfiability

codingq C ¢’ need notimplygxmr C ¢ -

Even though we cannot use results on [34], we can modify
reductions to apply to all XML documents and obtain the
following.

THEOREM 4.1. The problem BCCQc({)
complete. B

i 14
is II5-

Next, we move to the other extreme case: CQs with all
the axes. Of course relational containment of CQs is NP-
complete, so to get hardness for a larger class, one has,to use
in an essential way, the hierarchical structure of XML. In
fact we provide a rather elaborate reduction showing theat th
navigational abilities of all the axes are sufficient to ewse
the complexity even of conjunctive query containment.

THEOREM 4.2. The problem CQc({,=)
complete. B

i 14
is II;-

Proof sketch. The upper bound was shown in the pre-
vious section. To show hardness, we proceed by re-
duction from Y33CNF. Given such a formula
Vp1...Vp3ry ... drp, /\1 (611 V b V &3), where the&-js
could be positive or negative literals, we associate with it
two Boolean queries, ¢’ € CQ({}, =) such thaty is true if
and only if¢ C ¢'.

We constructy andq’ so that for every possible valuation
v of thep;s, two conditions hold. First, there exists a ttge

of UCQs. The second step is making sure that all the guessesatisfyingg which encodes. Second, such a treg satisfies

are combined in the right order to yield3 algorithm. O

¢’ iff there is a valuation/™ extendingv to ther;s and for



which ¢ evaluates to true. The key idea behind the construc- tableaux? And even before answering this question, we need
tion is encoding possible valuations for quantified vaeabl  to ask: what are the tableaux of XML-based CQs?
and we explain it now. The encoding of the CNF formula

itself is standard Since tableaux for relational queries are essentiallyrimco

plete databases (more precisely, naive tables with a distin
In order to encode every possible valuation of the us- guished row of variables), it is natural to define tableaux of
ing one single query, we associate a variable to each XML CQs as incomplete XML trees. Indeed, patterns form-
p; and then take full advantage of navigational features ing a query are essentially incompletely specified trees, so
to model assignments. Specifically, we use a tree patternwe can view each query as an incomplete tree (more pre-
V(2)/[Val(0) — Val(1),Val(x1),...,Val(x;)]. lItsroot has  cisely, a forest). The theory of incompleteness of XML has
[+ 2 children, among which the ordering is specified for two been developed [2, 9] and thus we can borrow a notion of an
(Val(0) — Val(1)). The remaining children carry thex;s, incomplete tree.
but note that their exact positions as children of the2)

node are not specified. This is illustrated below: Incomplete trees and homomorphismAn incomplete tree

is defined as a structure = (N,V,],1*, —, ="\ p),

where
V(2)
/ \\ e N andV are disjoint finite sets of the nodestadnd its
data values, respectively; we assume that DUV,
Val(0) — Val(1) Val(z1) ... Val(a) i.e., values could be either data values or variables;

, ) . . e all of |, |*, —, —™ are binary relations oV;
Now on every complete treewitnessing this pattern via . ol f ion f - and
some homomorphisii, the image of every; will either be * Alisapartial function fromv to £; an
on the left, or on the right di, i.e., either e pis afunction fromV to V.

t =V (2)[Val(h(z; * Val(0)], : : .
= VEM(hiw:)) = (0] Note that in an incomplete tree, the relatigng*, —, —*

or may be interpreted arbitrarily. In particular, some incom-

t = V(2)[Val(0) —* Val(h(z;))]. plete trees cannot be extended to a complete tree. The issue

is discussed in details in [9]. The labeling function is par-
This allows us to associate a valuatioof the p;s to any tial, reflecting the fact that labels of some nodes may not be

tree satisfying this pattern by lettingp;) be false iftheim-  known. The data assigning functignis not partial since
age ofz; occurs on the left okal(0), and by lettingv(p;) some data values could be variables, just like in patterns.
be true otherwise. The rest of the encoding consists of the

> > Giventwo incomplete treds= (N, V, |, |*, —, =*, A,
standard encoding of a CNF formula, and ensuring gfor P < b o)

andt’ = (N', V', |, }* —,—=* XN, p), a homomorphism

that the extended valuation makes that formula true. O fromttot isamaph: N UV — N’ UV’ such that:
Remark Note that letting one omit a complete specification

of the sibling ordering has the effect of encoditfgpossible e h(N) C N"andh(V) C V",

valuations withn different nodes. This is similar to the effect e if wRw' int, withw,w’ € N andR one of the rela-
of using “confluence” features in [11]. In both cases, such tions|, |*, —, —*, thenh(w)Rh(w') in t';

a concise encoding of exponentially many valuations led to
1% lower bounds.

if A(w) is defined irt, then\ (h(w)) = Aw);
h is the identity on elements @; and
o hip(w)) = p'(h(w)) forallw € N.

5. CONTAINMENT VIA° HOMOMOR-

PHISMS Note that each tree can be viewed as an incomplete tree
(with the natural interpretations of the binary relatioasyl

A classical result of relational database theory says thatthus it makes sense to speak of a homomorphism from an
containment of relational CQs is NP-complete and contain- iNcComplete tree to a complete tree.
ment is witnessed by the existence ofi@nomorphism of
tableaux: ifT; is the tableau of a query, fori = 1,2, then
q1 C qo iff there is a homomorphism fror, to 77 [15].

Our plan is now as follows. We show how to associate, to
a CQgq, an incomplete treg,. If ¢ is a Boolean query, then

: 2 AL t = ¢ iff there is a homomorphism from), into ¢. If ¢ has
However, the results of the previous section indicate that ee variables:. thent = ¢(v) iff there is a homomorphism
such a characterization of containment via homomorphismsg. . Y that sends: to o.

cannot be extended to all classes of CQs we consider here. a(@
Indeed, testing for the existence of a homomorphism is a We then show that, for some classesf axes and queries
classical NP-complete problem and we saw in Theorem 4.2¢, ¢’ € CQ(c), we havey C ¢’ iff there is a homomorphism
that containment of CQl, =) queries idI5-complete. from thes-restriction oft, to theo-restriction oft,.

So the question is: for what types of queries, if any, can Incomplete trees of CQs.We now define analogs of
we characterize containments via homomorphisms of their tableaux of relational CQs; these will be incomplete trees.



We first define an incomplete tregfor each pattermr. To
carry the inductive construction, we shall need to definé bot
treest, andt, for sequenceg. Note that even though we

iff there is a homomorphism from the tableaugdf) to D
that sends to o. The same is true here. The result is very
similar to one in [9], adapted to the definitions given here.

use the name ‘incomplete tree’, such a structure need not be

atree (due to incompleteness); in fags will be forest-like.
Each incomplete treeof the form¢, or ¢, will have a set
Rt (¢) of roots associated with it in such a way that(R; ) is
always a singleton. The inductive construction is as faflow

° If ™= a(x), thentﬂ' = <{S}7 {$}, \La J/*v *>7 H*v >‘a p>!
wheres is a single node, all the binary relations are
empty, A(s) = a and p(s) x. Furthermore,
RT(t:) = {s}.

o Letm = a(x)[pi,. .., wal// 1, - -5 15]. Suppose we
already have,,,s andt%s defined. LetV; andV; be
the sets of nodes and valuestins and N, and V}
be the sets of nodes and vaIuest;;gls. By renaming

PrRoOPOSITION 5.1. Let t beadatatree, and ¢(z) a query
fromCQ({, =). Thent |= ¢(v) iff thereisa homomorphism
h:t, — tsothat h(z) = ©.

Containment and homomorphisms. We already men-
tioned that a classical result of relational database theor
states that relational CQ containmentC ¢’ holds iff
the tableau ofy can be homomorphically mapped into the
tableau ofq. Furthermore, an analog of this cannot possi-
bly hold for queries in CQ|, =) unless some complexity
classes collapse. Nonetheless, it will work for queries$ tha
do not use all the axes.

Suppose we have a quepfrom CQ(J). Then its incom-

. . 1 1 *
nodes in those incomplete trees, we may assume that?/ete treet, records no information aboyt’, —, and—".

all the setsV;s ande’-s are disjoint. Then
tTr = (Na Va \IM \L*7 _>7 _>*7 )‘1 p)

whereN = {s} U, N; UU; N}, with s being a new
node, and/ = |J;V; UU; V/. The binary relations
are the unions of those relations in thes andt,,s.
In addition, we put:

— s ¢ foreachs’ € RT(u;), fori < n;and
— s |* &' foreachs’ € RT(u}), for j < k.

The functions\ andp are the same as in thg,s and
tsiin addition\(s) = a andp(s) = z. Furthermore,
RT(t;) = {s}.

e lety =m ~ ...~ m,. Lett, be anincomplete
tree (N;, Vi, |, 1%, —, =% i, pi). As before, assume
that by renaming nodes, all thg;s are disjoint. Let
RT(tr,) = {si}

Thent, (N,V, 1, 1%, =, =" A\ p), whereN =
U; Ni andV = |, V;; the binary relations are unions
of those in the ., s, and in addition we put:

— 8; — 8;41 If p containsr; — m;41; and
- S; —* Sit1 if M ContaiHSm- —* 41

The functions\ andp coincide with\; andp; on N;.
Moreover, R(p) = {s1,...,8n}

With a query
q(Z) =301 ... Wnm1(Z, 1) A .. AT (T, Yn)
we associate an incomplete data tree
ty=(N,V, 1,15 =, ="\ p)

which is the node-disjoint union of all the;s; that is, we re-
name nodes so that their sets are disjoint (but not the Values
and take the union of structures , ..., tr, .

The incomplete treefs, indeed play the role of tableaux of
CQs. Recall that in the relational case, we haveé= ¢(7)

So for two such queriegandq’, a homomorphism of the-
reducts oft, andt, (that only keep information aboyt ),
andp) is the same as a homomorphiggandt, . Hence,
even for queries that use reduced sets of axes, e.g.{)CQ
or CQ(J,—), we can still meaningfully talk about homo-
morphisms of their incomplete trees, in place of homomor-
phisms of reducts of incomplete trees.

We next show that without transitive closure axes, we have
an analog of relational containment.

THEOREM 5.2. Let ¢(Z) and ¢'(z") be two queries from
either CQ({), or CQ({, —). Then ¢ C ¢’ iff thereisa homo-
morphismh : t,, — t, Sothat h(Z') = .

Since testing homomorphism existence is done in NP, and
NP-hardness bound for relational CQs trivially applies to
CQ(J) queries, we obtain the following.

COROLLARY 5.3. The containment problems for CQ(J,)
and CQ(},—), i.e, CQ-({) and CQ-({,—), are NP-
complete. - -

In fact, we prove an even more general result, that shows
the applicability of the homomorphism technique to queries
in CQ({, —), i.e., queries using all forms of vertical naviga-
tion, but only the next-sibling form of horizontal navigai
Formally, they are CQs based on patterns fidi}, —) de-
fined as

s

. ®)

That is, they extendI(],—) patterns by allowing descen-
dants, and prohibiting only»*.

a(@)[p, - m /1, 1]
m™— ... > T

Given a query; € CQ({, —), we define an incomplete
tree(¢,)* by replacing the interpretation of in ¢, by the
reflexive-transitive closure of the union ¢fand]* in ¢,.

Then containment can be tested by the existence of homo-
morphisms between such extended tableaux. As an example,
consider querieg C ¢/, whereg = 3z a(z) //b(z)[c(x)] and

¢’ = 3z a(x)//c(x). While there is no homomorphism from



ty 10 tg, there is one fronft, )* to (t4)*. Indeed, in both here), and now give just a couple of examples. One is the
structures there is a descendant axis going fromlabeled containmeny C ¢’ for any of the classes QQ), CQ({, —),

node to the=-labeled node. and CQJ, —) if the queryq’ is fixed. The other is contain-
. ment for the classes QQ) and CQ|, —) wheng’ mentions
THEOREM 5.4. Let ¢(z) and ¢'(z') be two queries from each variable at most once (since in this case containment
CQ(U,—). Theng C ¢’ iff there is a homomorphism /. : can be reduced to the combined complexity of evaluating
(tg)" — (tg)" sothat h(2') = Z. conjunctive queries of fixed treewidth). More results witl b

provided in the full version.

Proof sketch. The right to left direction of the equivalence is
immediate. To show the other direction, we assunie ¢’

and we turn the foresf, into some “canonical” complete
tree’l’ such that there is a natural one to one homomorphism
hi : (ty)* — T and such that for allv, w’ € (¢,)*, for all

R € {—,!,}*}, we havewRuw' iff hy(w)Rhi(w"). To this
end, we create new nodes labeled with a fresh I&bahd a
fresh data valué. One of these nodes becomes the common
parent of each of the roots of the tree patterns,iand thus
becomes the root df. We also define a recursive procedure
replacing descendant axis |* wy occurring int, by child
pathsw; | ws | wq, wherews is one of the new nodes la-
beledQ(#). We proceed in a similar way with sequences of  Note that we have defined XML queriestiiCQ(o) to be
siblings which are given as mere unions. We order them ar- syntactically of the formy; U ... U ¢,,,, Where eachy; is a
bitrarily using the next-sibling relation, but we alway&e¢a  CQ(o)-query. It turns out that for the classes which permit
care of inserting one of the neW(#)-labeled nodes in be-  testing containment by means of homomorphisms between
tween two siblings which were not previously related by a incomplete trees,, a similar extension to unions continues
—-arrow. We finally substitute fresh distinct constants for to be true.

every distinct variable, thus obtaining a complete treentr

g C ¢, we then infer that there exists another homomor-  PROPOSITION 5.7. QueriesinUCQ({) and UCQ({, —)

Extension to unions of CQs A classical result in relational
theory says that for unions of relational conjunctive geri
¢g=qU...Ugnand¢ =qjU...Ugq,, we havey C ¢’ iff

for everyi < m, there existg < k so thatg; C ¢; [34]. We

call this theSY-criterion (for Sagiv/Yannakakis) for contain-
ment of UCQs. In particular, the SY-criterion implies that
the complexity of containment of relational UCQs remains
NP-complete (assuming, of course, that they are repratente
in the above way, as unions of CQs; for other syntactic repre-
sentations, in which the union is not the outermost opematio
the complexity iSlT5-complete [34]).

phismh, : t — T'. Relying on the special propertiesiof, satisfy the SY-criterion for containment.
we finally construct the homomorphisin: (t,/)* — (¢4)*
from hy andh, by lettingh(z) = Ay (ha(z)). = This immediately gives us the following.

As before, we immediately obtain the following. COROLLARY 5.8.The problems UCQ.(}) and
. . g

COROLLARY 5.5. The problem CQc({},—) is NP- UCQc({,—) are NP-complete.
complete. -

. . . . Indeed, for querieg = ¢q; U ... U andq¢’ = ¢} U
As mentioned earlier, replacing: by = and obtaining q g @ dm q @

p )
an analog of Theorem 5.4 is impossible without an unlikely '{'1', U qif kg?;é?ﬂ%'ﬁg;gzisgoﬁfsls. at(r)niﬁ Pf({)} ,eacf’nmg} 7:
collapse of complexity classes. ) T iy T -
and check, in polynomial time, if the;s satisfy conditions

COROLLARY 5.6. Assume that there is a polynomial- of Theorem 5.2.
time algorithm that associates with each query ¢ €
CQ(l,=) an incomplete tree t(q) so that ¢ C ¢ iff there
52 homomorphiam (1) 1(a) Then NP ~CONP 6. THE EFFECT OF WILDCARD

Indeed, since containment of CQR =) is I15-hard and A standard feature of most XML formalisms is the use
testing homomorphism existence is NP-complete, the exis-of wildcard, i.e., a special symbol in place of a label that
tence of such a containment test would imfy C NP from matches every label in a tree. We normally use _ for wild-
which NP =coNP follows easily. card. So patterns can be extended in the following way: in-

o o ) stead of a pattern that starts witfi), we can have a pattern
Polynomial-time cases. Our characterization of contain-  that starts with (). It will be witnessed in a node of a
ment via homomorphisms immediately shows how to ob- gata tree even if we drop the requirement that labels match.

tain polynomial-time cases of containment. Indeed, since \when we deal with classes of pattedil§o) extended with
containment is now reduced to the existence of homomor-yildcard, we writeII(o, )

phisms, it is effectively cast as a constraint satisfac{imm

conjunctive query evaluation) problem. Thus, we can use Forinstance, patterns ¥(],_) are given by

multiple known results classifying tractqble cases of ¢hos =a(@)[m,...,7], acLU{}, zeVUD. (7)
and apply them to structures representing incomplete data
trees. As all of these are quite routine, we leave the com- The semantics is extended, compared to (1), as follows.
plete treatment to the full version (due to space limitation For a data tree¢ = (D,],—,\,p), a nodes € D,

™



and a valuationv : © — D, we have(t,s,v) E or h(z;) = 1, i.e.,t encodes one particular valuation of the
a(x)[m (jl)v s 77Tn(jn)] iff p;S. (]

: ] Since wildcard can lead to an increase in complexity of the
* Ms)=aifacl; containment problem, it is natural to ask then when we can
e p(s)isv(zx) if x is a variable, and: if 2 is a constant  match the previously established complexity results in the

data value; presence of wildcard. Fdri(]) andII(|,—) patterns the
o there exist not necessarily distinct childreni, ... ., answer to this is surprisingly simple: we can allow Wlldcaro_l
s-in Of s SO that(t, s-i;,v) k= m;(z;) for eachj < n. everywhere except at the root of the pattern. Recall that in

Section 5 we associated with each patteran incomplete
treet, with a unique root. The requirement is basically that
the label of the root of . is a € L; other nodes of,. can be
labeled either by, € £ orby .

Likewise we define all other classes of patterns extended
with wildcard, e.g.JI({,—,_) andII({},=-,_), and classes
of CQs, UCQs, and BCCQs based on them. For those
queries we define the containment problem: for instance, For instance, the following rules define such patterns
BCCQc-({},=,_) is the problem of checking containment based on child-only navigation:
of BCCQs based on patterns frdm({, =, _).
!

8
The question is then whether the use of wildcard increases ™ a(@)[r’,....7"]  aeLU{} ®)

the cost of testing containment. The first instance of that 1,4 is, ther’s define patterns that can use wildcard, and

question is whether we can preservetHeupper bound for s the top-level pattern, whose root label comes flm
all containment cases. The answer to this is positive. In

fact, our proof of Theorem 3.1 already shows how to handle  When we have this restriction on patterns with wildcard,

™
/

a(x)[x',...;7"] a€eLl

wildcard. we write II(o, _-r), Whereo, as before, is a set of axes.
o Likewise we define classes of queries — e.g.(£Q>, _—r)
PROPOSITION 6.1. The problem BCCQ¢ (I, =,_) isin — and containment problems — e.g., €Q, —, ).
5. -

Obviously the addition of wildcard preserves lower
bounds. We have already seen that containment of BCCQs

Hence, all other containment problems arelifiin the  with wildcard is inTI%, and hence all three versions of BCCQ
presence of wildcard. containment ~BCCQc (|, =), BCCQ({},=,_ ), and
What does change, however, is the lower bounds. Re-BCCQc({, =, _-r) — arellj-complete.
call that we saw in Corollary 5.8 thafCQc (4, =) is in Now we show that the NP bounds established via homo-

NP. The presence of wildcard makes the complexity jump:
adding wildcards tdI(|, —) patterns makes the complexity
of containment of UCQSI%-hard, rather than being in NP.

morphisms are also preserved when wildcard is used every-
where except the root.

PROPOSITION 6.3. The problems CQc({,_-r) and

complete. =

Proof sketch. We adapt the proof of the corresponding result
Proof sketch. To show hardness, we adapt the lower bound in Section 5. We now turtg into a complete tree using

proof of Theorem 4.2 by constructing querigsid, grigiq iN- a slightly different procedure. We just add to it one new
stead ofg, ¢’. Recall that the query was encoding all the  root node labele® () and we decide arbitrarily on a sibling
possible valuations of thg;s using a special pattern over ordering when none is specified. We finally substitute fresh
I1(|,=). Additionally we used another patternrto en- distinct constants for every distinct variable, thus afitag
code the clauses ip. We did not describe this pattern in & complete tre@'. The remainder of the proof is almost as
the sketch of Theorem 4.2, but it is enough for the current before. Whenever the next sibling relation is available, we
sketch to note that it can alternatively be represented as aonly need to notice that the homomorphigm: tg: — T

I1(|, —)-patternz,. We definegigq by adding tor,, two cannot map any nodg tiy to the root ofl’. As tree patterns
new nodes as first and second child of its root. These neware rooted, this entails that nothing can be saithinabout
nodes are respectively labelea (0) andVal(1). Let ng be the relative sibling orderings of the preimages of the ckitd
the resulting pattern. For eveily< i < [, we also create  of the root of". o

a single node pattern label&él (z;) and we formgyigq by
existentially quantifying the;;'s and taking the conjunction

of thesel + 1 patterns. Now we defing/;;4 as a disjunc-
tion whose first member slightly adapts while its second
memberr- is the disjunction of all1(|,, —) patterns extend-
ing = with one single node labeled with wildcard and with
a fresh variable over data values. The key idea is now that
if a complete tree does not satisfyr— but satisfiesyigq via
some homomorphisif, then for every;, eitherh(z;) = 0, Similarly, the method cannot be applied to queries in

Note that such a procedure would not work when both
unions of siblings and next sibling are allowed. For
instance, letg = 3Jz,y,z a(x)[a(y),b(z)] and ¢ =
Jz,y, 2z a(z)[_(y) — _(2)] with @ # b. Obviouslyq C ¢,
asq forces the tree to have anlabeled node with at least
two children. On the other hand, it is easy to see that there
is no homomorphism fromy, to t,,.



CQ(l},_-r). Considerq = 3Fz,y a(x)//b(y) andq’ = over X-labeled trees is a tupld = (Q, X, 0, F'), where@
Jz,y,z a(x)/_(2)//bly) A Fz,y, z a(x)//_(z)/b(y), with is a finite set of statedy C () is the set of final states, and

a # b. Againg C ¢, asq forces the tree to have anlabeled §: Q x % — 2@ js a transition function. We require
node which has at least one child anétlabeled descendant that thed(q, a)’s be regular languages ovérfor all ¢ € Q

which has a parent. But here again, it is obvious that there isanda € . When we deal with complexity results involving

no homomorphism fromy to (¢4)*. automata, we assume that these regular languages are repre-
sented by NFAs (or by regular expressions, since those can

Observe finally that by allowing wildcard to appear ev- pa ~onverted into NFAS in polynomial time).

erywhere in patterns we also lose the homomorphism cri-
terion that let us establish the NP upper bound. For in- A run of A over a treet with domain D and labeling
stance, ley = Jx,y (a(x) A b(y)), with a # b, and let function A is a functionr4 : D — @ such that for each

¢ = 3z,y (_(z)/_(y)). Sinceq forces each tree to have at nodes with n childrens - 0,...,s - (n — 1), the word
least two nodes, we have the containment ¢’; however rA(s:0)---ra(s-(n—1))isinthe languagé(r 4(s), A(s)).
there is no homomorphism froty to ¢,. So, for a leafs labeleda this means that could be assigned

) ) .. stateq iff the empty worde is in §(g, a). A run is accepting
As the last result of this section, we show that combining o, treet if the root oft is assigned an accepting state (for-
unions of queries even with the restricted use of wildcard mally, 7 4(€) € F. A treet is accepted by if there exists
can increase the complexity of containment. an accepting run afl ont. The set of all trees accepted by

PROPOSITION 6.4. Containment of UCQs that use Als denoted by’(A).
downward navigation and wildcard except at the root, i.e., We then define the containment problem under schemas
the problem UCQ ({}, _-r), isTI5-complete. as follows. LetQ be one of the classes CQ, UCQ, or BCCQ,
- ando a set of axes.

Proof sketch. We adapt the proof of Theorem 4.2 along
the same lines as in the proof of Theorem 6.2. We de- | PRoBLEM:  Qc (o) under schemas
fine queriesyy, ¢ as follows. We keep all th¢ paths pat- - — — —— -
terns which were actually used into encode the clauses | INPUT querlescq(:c/), q/f(fﬂl) in Q(o) 2”;11 '\J)TAA
of ¢, but we now encode the valuation of tpgs using QUESTION. isq(t) € ¢'(t) for everyt € L(A)*

a patternmy/.../m where for eachl < i < [, m; =

Val(0)//Val (z;) //Vel(1). We can now construaf, aimost A general upper bound. We show that all the versions
as in the proof of Theorem 6.2, except that we replace ¢ 5 () remain decidable under schemas, but the upper
with a CQ3z; ... Jror 1 VAI(0)/_(a1)/ - /_(w2141). D bound is one exponent higher than it was without schemas.

THEOREM 7.1. BCCQc({},=,_) under schemas is

7. THE EFFECT OF SCHEMAS 2EXPTIME-complete.

So far we have not assumed any schema information, such  proof sketch. The idea is to prove that we can reduce
as a DTD ora more general schema description, under whichgccq (|1, =, ) under schemas to a similar problem over
we pe_rform stati_c analysis of queries. However, such as- fqite alphabets and that we can encode a£@>, ) into
sumptions are falrly common, as many XML documentsare 5, exponential-size unranked tree automaton. ,ThEPQE
required to satisfy schema descriptions. Schemas are veryr,,,- upper bound then follows from tree automata tech-

well known to affect static analysis of XML. Infact contain- 465 The lower bound is immediate from Theorem 7.2.
ment of queries can easily behave differently under schemas

even such simple ones as specifying the label of the root of Lower bounds. SinceBCCQc (I}, =,_) without the pres-

a document. For instance,df= 3z,y (a(z) Ab(y)) and  ence of schemas is i, (and therefore in single-exponential
¢ = 3z,y (c(z)/_(y)), then in generay Z ¢, but if we time), it is natural to ask to whether the jump to double-
state that roots must be labelgdheng C ¢'. exponential time is unavoidable. It turns out that it is,reve

o ) for conjunctive queries, as we can prove the following.
In addition, the presence of schemas is known to affect the

complexity of static reasoning tasks, generally by indreas THEOREM 7.2.CQ-({},=) under schemas s
it, sometimes even making it undecidable [7, 10, 17, 18, 21, 2ExPTIME-complete.

33, 35]. The main observation of this section is that under
schema information, we preserve decidability of query con-

tainment for those classes we have encountered so far, but a}erirgoggfl%(;h.lom? gggﬁ(rj ?Soggga;ﬁé?mﬁgggrzmggxe
the cost of an exponential blow-up. o pS-

show that we can transfer lower bounds I0€Q ({},=)
Abstraction of XML schemas. There are many formalisms  under schemas to lower bounds for €@,=-) under

for describing XML schemas (see, e.g., [29] for a survey), schemas by adapting a technique from [31]. Then we prove
but most of them are subsumed by the notion of an unrankedthe lower bound forUCQ.({},=-) by a reduction from
tree automaton. To define it, fix a finite alphabett £. A the acceptance problem for alternating exponential space
non-deterministic unranked tree automaton (NTA) [32, 36] bounded Turing machines. This is done by adapting the



proof of the 2ExPTIME lower bound for query containment
from Theorem 6 in [10]. Two difficulties arise as that proof

used queries with node equalities and wildcards. We handle

node equalities by using data value equality constraints in
our setting. We show how we can enforce all nodes from a

tree to have different data values and then we simulate node

equality by data equality. We further provide a modification
of the encoding that avoids the use of wildcard. o

We do not yet have a complete classification of what hap-

pens for all of the classes of queries under schemas, but™

we do have an indication very little is needed to make their
complexity considerably higher than in the schema-less sce
nario. In fact one can use results from [12] to prove that even
for very simple classes of queries (child relation only; no
branching), containment under schenpasvably requires
exponential time.

8. THE EFFECT OF DATA VALUE COM-
PARISONS

The last feature we are going to consider is data value

comparisons, specifically disequalitigs This is a standard

the variablesu andv come fromz andy. For instance,
q(z) = Jy (a[b(x), c(y)] A = # y) is such a query.

The class of such queries will be denoted by (@Q-)
(using the common XML literature notation ef for data
value comparisons). We then define the claéX)(o, ~) as
unions of queriesin C(@, ~), andBCCQ(o, ~) as Boolean
combinations of such queries.

Before we present our results, notice that in (9), the for-
ula « allows explicit equalities. Normally in CQs these
can be avoided simply by collapsing two variables. How-
ever, in the case of pattern-based queries, we may actually
need explicit equalities, at least for UCQs. Consider, for e
ample, a Boolean query(z,y) = a(x) A a(y). Then this
query implies the following UCQ'(z,y) = (x = y) vV _/_
Indeed, if¢(x,y) is witnessed by two data values that are
different, then they must occur in different nodes and hence
the _/_patternis true.

Containment without schemasWithout schemas, the con-
tainment problem for BCCQs behaves drastically diffegentl
from the relation case, as we show below.

THEOREM 8.1. Containment of BCCQs with data com-
parisons, i.e., the problemBCCQ ({, =, _, ~), isundecid-

addition that has been considered in the study of relational able.

conjunctive queries. In fact it is one of the mildest ways of
adding a limited form of negation to positive queries in a way
that preserves their nice properties, such as the dedigabil

of static analysis. The other such extension, also coresider

here, is allowing Boolean combinations of CQs.

The relational case of CQs with comparisons has been
settled in [25, 26, 37]: the containment problemII$-

complete. From this we can derive some hardness results

for instance, containment of GQ) with disequalities under
schema id15-hard (note that the schema assumption is nec-

essary here to ensure documents code relational database

as was already explained in Section 4). As for upper bounds
for relational BCCQs, even with disequalities, containinen

is decidable. In fact it is easily seen that such containment

reduces to the complement of satisfiability for the Bernays-
Schonfinkel class.

However, relational results do not give us aopper
bounds on the containment problem for XML queries. We
show in this section that there is a reason for it: such prob-
lems are, by and largeindecidable. In fact we show two
undecidability results: for XML BCCQs with data compar-

isons, and even for CQs in the presence of schema informa

tion.

Queries with data comparisons.We now formally define
classes of queries witk and+# data comparisons. Suppose
we start with a clas$I(o) of patterns. Thel€Qs with data
comparisonsovero are defined as

where all ther;s are patterns froril(c) and« is a con-
junction of formulae of the form = v andu # v, where

In fact one needs either, |*, — or |, —, —* to establish
undecidability.

Proof sketch. The proof shows that satisfiability for a
BCCQ is undecidable by reduction from Post’s Correspon-
dence Problem (PCP). The proof is rather technical. It may
be tempting to think that, sindkBCCQ({}, =, _, ~) can ex-

press certain key constraints, one can simulate the node

equality tests from [10] in our setting by data equalities] a
then we can adapt undecidability results from there as well.
Blowever, under such a key constraint, it is not clear at all

'how then the data equalities and inequalities from [10] can

be correctly simulated. The reduction from PCP consists of
a series of encoding steps that state that (1) all treegysatis
ing the BCCQ must be string-shaped and of a certain form;
and (2) that they somehow encode a PCP solution. The proof
can be done in two flavors: either we say that the tree does
not branch, in which case we need the negation of-the
predicate to express (1) as well as bgtland |* for (2).
Alternatively, we say that the root has no grandchildren, in
which case we neefdfor (1) and— and—* for (2). |

“Containment with schemasAs in the previous section, for

each containment problem of the for@c (o, ~), with Q
being CQ, or UCQ, or BCCQ, we can associate an analogous
containment problemander schemaswhich, in addition, will

take as an input a schema, represented as an automaton.

The combination of data value comparisons and schemas
has an even more severe effect on the complexity of the con-
tainment problem: it becomes undecidable already for CQs
using only downward navigation.

THEOREM 8.2. The containment problem for CQ({}, ~)
gueries under schema is undecidable.
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