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Beta-hypergeometric probability
distribution on symmetric matrices

A. Hassairi *, M. Masmoudi, O. Regaig

Sfax University Tunisia.

Running title: Beta-hypergeometric distribution

Abstract : Some remarkable properties of the beta distribution are based on relations in-
volving independence between beta random variables such that a parameter of one among
them is the sum of the parameters of an other (see (1.1) et (1.2) below). Asci, Letac and
Piccioni [1] have used the real beta-hypergeometric distribution on IR to give a general
version of these properties without the condition on the parameters. In the present paper,
we extend the properties of the real beta to the beta distribution on symmetric matrices,
we use on the positive definite matrices the division algorithm defined by the Cholesky
decomposition to define a matrix-variate beta-hypergeometric distribution, and we extend
to this distribution the proprieties established in the real case by Asci, Letac and Piccioni.

Keywords: Hypergeometric function, Beta-hypergeometric distribution, symmetric ma-
trices, generalized power, spherical Fourier transform.

1 Introduction
Consider the gamma distribution on IR, with scale parameter ¢ > 0 and shape parameter
p>0,

P
e YyP 11 g ooy () dy.
) (0,400)(¥)

Let U and V be two independent random variables with respective gamma distributions
Vp,os Vg0, and define

Yp.o(dy) =

U
X = 1Y = 2.
vt+v ™ %

Then the distribution of X and Y are called the beta distributions of the first and of the
second kind with parameters (p,q) and are denoted by ﬂl(;}q) and ﬂl(;?q) respectively.
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The beta distributions of the first and of second kind on IR have many remarkable prop-
erties. For instance, it is well known (see [1]) that

it W~ g}a,’a, is independent of X ~ ﬁ(%,, then TTwx” ﬁé}?a (1.1)
And it is shown in [3] that
1
if W~ ﬁa(i)a/ aw X~ ﬁéli, , W~ ﬁa(i)a/ « are independent, then ————— ~ X. (1.2)
TW'X

In these two properties, the random variables W and W’ are beta distributed with first
parameter equal to the sum of the parameters of the distribution of the variable X. Asci,
Letac and Piccioni [1] have used the so-called real beta-hypergeometric distribution to
extend these results to the general case where W ~ 61572@) , W~ ﬁéiz, with b > 0 not
necessarily equal to a + a’. Recall that the hypergeometric function ,Fy is defined for
positive numbers a1, ..., ap; b1, ..., by, by

pFa(@1, s i by o by ) = %xn’wh @ = W

n=0
The beta-hypergeometric distribution with parameters (a,a’,b) is then defined by
Pa,a p(dz) = C(a, a, b)x“_l(l — x)b_l oFy(a,b;a +d'; x)1(071)(x)dm,
where

I'(a+0)
L(a)T(b)sF(a,a,b;a +b,a+a;1)

C(a,a’,b) =

Note that the distribution g 4 3, reduces to a ﬁgg/ when b=a +d'.
Asci, Letac and Piccioni have shown that

. 2 .
if X ~ pgaepand W~ ﬁ,g’a), are independent, then TTwx Ha’ ab (1.3)
and
if W~ 552(1), W'~ @EQCE, and X > 0 are independent, then (1.4)
1
X ~———y— ifand only if X ~ g q
L+ s

In the present work, we first extend the properties in (1.1) and (1.2) to the beta distri-
butions on symmetric matrices. We then use results from harmonic analysis on symmetric
cones, and a division algorithm defined by the Cholesky decomposition to extend the def-
inition of a beta-hypergeometric distribution to the cone of positive definite symmetric
matrices generalizing the definition of a beta distribution on matrices (see [5]). These
distributions are then used to extend to symmetric matrices the results established in
the real case by Asci, Letac and Piccioni. It is worth mentioning here that in a private
communication, Letac has given a definition of a beta-hypergeometric distribution on sym-
metric matrices using a division algorithm based on the notion of quadratic representation.
The use of the division algorithm defined by the Cholesky decomposition is crucial in our



work, it allows the calculation of the spherical Fourier transform which the key tool in
some proofs. The paper has the following plan. In Section 2, after a review of some facts
concerning the beta distributions on symmetric matrices, we establish the matrix versions
of the properties (1.1) and (1.2). We then introduce the matrix beta-hypergeometric distri-
bution and we show some preliminary properties concerning this distribution. In Section 3,
we state and prove our main results, in particular we use the matrix beta-hypergeometric
distribution to give a matrix version of (1.3) and (1.4).

2 Matrix variate beta-hypergeometric distribution

Let V be the linear space of symmetric r xr matrices on IR, and §2 be the cone of positive
definite elements of V. We denote the identity matrix by e, the determinant of an element
x of V by A(x) and its trace by trz. We equip V with the inner product (x,y) = tr(zy),
for all x,y € V. For an invertible r x r matrix a, we consider the automorphism g(a) of
V defined by g(a)r = axa® where a* is the transpose of a. We denote G the group of such
isomorphisms, K the subgroup of elements of G corresponding to a orthogonal, called the
orthogonal group. As mentioned above, we will use the division algorithm on matrices
based on the Cholesky decomposition of an element y of 2, that is on the fact that y can
be written in a unique manner as y = tt*, where ¢ is a lower triangular matrix with strictly
positive diagonal (see [2]). For an element z in V, we set 7(y)(z) = tzt*, and we define
the ”quotient” of 2 by y as 771 (y)(x) = t~*x(t*)~!, which, for simplicity, we sometimes
denote abusively £
Consider the absolutely continuous Wishart distribution concentrated on {2 with shape
parameter p > (r — 1)/2 and scale parameter o € €,

r+1

2 1q (iU?)(iZU,

Wolie) = EED (a0 ) (5w

where
T(T 1)

Fa(p) = ﬁI‘ (k—1)/2).

If U and V are two independent Wlshart random matrices with the same scale parameter
o and respective shape parameters p > >t and ¢ > = L then the random matrix 7~ YU+

V)(U) has the so called beta dlstrlbutlon (of the ﬁrst kind) ﬁpﬂ on QN (e — Q) given by

r+1

B0 (de) = (Ba(p,0)) ™ (A@)P~F (Ale — )" F Lan(-a(a)de,
where the normalizing constant Bq(p, q) is the multivariate beta function defined by

La(p)Talq)
La(p+q)

Bo(p,q) =

We also have the beta distribution (of the second kind) ﬁ;(fq) on () given by

B (dx) = (Ba(p,q) " (A@)P~F (Ale + )"+ 1g(2)dx.

It is the distribution of the random matrix 7=(V)(U), or equivalently the distribution of
7 e~ Z)(Z) with Z ~ 5,(,713 More precisely, we have:
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Proposition 2.1 Let Y be a random matriz in Q). Then Y ~ 51(;72,3 if and only if Z =
7l e+ YV)(Y) ~ By

Proof Let Y ~ 51(,723 and Z = 7~ 1(e + Y)(Y) which is equivalent to Y = 7= (e — Z)(2).
For a bounded measurable function A, we have

EMZ) = (Bap.0)™" [ hr(e+n)w)Am— 3 Ale+y) " dy

~ (Bat.a)™ [ m(@_ﬂ)h(zm(fl(e—z)(z))p* FAE e - e A - 2)

= Bolwa)” [ hEACY

Thus Z ~ ﬁl(,,lg
In a same way, we verify that if Z ~ ﬁz(,,lq) then 7= Y(e — Z)(Z) ~ ffq). 0

Now, we give the matrix versions of (1.1) and (1.2).

Theorem 2.1 Let W', X and W be three independent random matrices valued in ).

i) If W~ ﬁa+a o ond X~ 5aa/, then (2.5)
e+ 7 (X)(W))(e) ~ 85
i) If W B2 X~ and W~ B2, o then (2.6)

7 He4+ 1 e+ n(X)W))(W))(e) ~ X.

Proof i) Let W’ and X be two independent random matrix such that W’ ~ ﬁ wtar o A0
X ~ ﬁéli,. It is known (see Theorem 2.2 in [6]), that 7(X)(W') ~ ﬁfgl,, and according to
Proposition 2.1, we obtain that 7= (e + 7(X) (W) (7 (X)(W')) ~ ﬁéli,. It follows that

7 e+ m(X)(W)(e) = e — [r (e + m(X) (W) (x(X) (W) ~ L.

i) As 7 e+ n(X)(W)N)(W) = 7(r (e +7(X)(W')(e))(W), then according to The-
orem 2.2 in [6] and to (2.5), we obtain that 7= (e + 7(X)(W"))(W) ~ Bff?a.
Therefore 7= 1(e + 7~ (e + m(X) (W) (W))(e) ~ X. O

In what follows, we will be interested in the extension of the results in Theorem 2.1 to
the case where the parameter a + @’ in the distributions of W and W’ is replaced by any
parameter b not necessary equal to a + a’. For this we require some further terminology.
Let P denote the space of polynomials on the space V' of symmetric r x r matrices. A
natural representation H of the group of automorphisms of V is defined for g in this group
and p in P by (H(9)p)(z) = p(g~"2).

For X = (Xjj)i<ij<r in Qand 1<k <r,let Agy(X) denote the principal minor of order
k of X, that is the determinant of the sub-matrix Py (X) = ((Xj;)1<i j<k). The generalized
power of X is defined for s = (s, ...,s,) €C", by

As(X) = (Ar(X))7 772 (Ag (X)) (Ar (X))
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For a given m = (my,...,m,) € IN" which satisfies m; > mgy > ... > m, > 0 (denoted by
m > 0), we denote by Py, the subspace of P generated by the polynomials H(g)A,, where
g € G. The spherical polynomial ¢, is defined in [4] by

() = /K A, (k) dk.

Up to a constant factor, the ¢, are the only K-invariant polynomials in P,,.
The definition of the beta-hypergeometric distribution on the cone of positive definite
symmetric matrices relies on the notion of hypergeometric function which appears in [4],
page 318. For instance, for a = (ay,...,a,) inC" and m = (mq,...,m,) in IN" such that
m > 0, we write
Fa(a+m) . i—1

Tl | (TR
and for o; = (a},...,al) in@",i=1,...,p and §; = ( ]1,,5;) inC", j=1,...,q, we
define the hypergeometric function

(@1)m - (ap)m 1
Fylaa,....ap; By, Bgiz) = A P (), (2.7)
P P I go (ﬁl)m s (ﬁq)m (%)m e
where d;, is the dimension of P,,. Note that we can define the hypergeometric function
for some complex «; and B;, i = 1,...,p, j = 1,...,q, where(a;),, = H§:1(04i — %)mj

and (3j)m = [T=1 (85 — 5 )m:-

It is shown in [4], page 318, that the domain D of convergence of this series is:
o V, ifp <y,
e D = {w;|w| < 1} where |.| is the spectral norm, if p = ¢ + 1,
o 0, ifp>q+1.

As it is done for the real beta-hypergeometric distribution (see[l]), we will be interested
in the case p = ¢+ 1. We will first show that under some conditions, the definition of
¢+1F, () may be extended to x = e. This is in fact equivalent to show that the series (2.7)
converges when x = e.

Propqsitipn 2.2 Let aj = (04]1-, ... ,04;) and B; = ( }, .+, B]) in IR, such that 04;» + %
and B; # % foralli=1,...,r. Denote fori=1,...,r,

O B

1<j<q 1<j<q+1

Then the series

(al)m c (anrl)m 1
,%0 B B (B ™ (2.8)

converges if and only if, for all 1 < k <,

k:(r—i—l)‘

k
ch->1—|—k(r—k:)— 5

i=1



Note that in particular ¢; > %, and when r = 1, the condition reduces to ¢; > 0.
Proof Let a; = (04;-7 ..,aj) € RMand 8 = ( L ,87) in R". We will consider separately

70
two cases:
e Case where 04;» > % and ﬁji- > % foralli=1,...,7.
Denote p; = m; — mj4q, for © = 1,...,r, where m,+; = 0. Then (p1,...p,) € IN"

and m; = Y p_; Dk-
Using the fact that

(see [4], page 286), we obtain that

j—1

1<i<j<r
On the other hand, by Stirling approximation, we have that for m; # 0,

o
(a1

| m;!
(o — Ymi ~ A
J 2 I’(a} - —’21)

Then .
r m(a;_%)m.l
A A
(a)m ~ |1 Pz i idy” J
i=1

=1,...,q+ 1.
(O‘j 2

Consequently, the term of the series (2.8) is equivalent to

T r j—1
Ay AT e I A+ ),
k=1

i=1 k=i 1<i<j<r

X o) | R )

Where AZ — Hztllr(a}c—%) and C; = Zlgquﬁ‘;—zlgqu+l Oé;-, Z — 1,...,T.
Hence, the series (2.8) converges if and only if for all 1 <k <,
k E(r+1)
Zci>1+k(r—k)—7
; 2
=1
e Case where oz; < % or ﬁ; < % for some 7 = 1,...,r. There exists k € IN such

that —k < of — 1 < —k + 1. This implies that (af — s, = (af — %)k(o@ -

5L+ k)p,—i for m; > k. Then also the series (2.8) is convergent if and only if

S > 14 k(r—k) = EH) foran 1<k <r

d

Note that if a} = Z;l, for some i = 1,...,7, then in the case where m; = 0, (o)m =
k—

szl,kﬁ(a? - —21). If not (aj)m = 0.

Hence the series (2.8) is convergent if and only if

zk:c]'>1+k(r—k)—w

j=1

forall 1<k<i-1.



We are now in position to introduce the beta-hypergeometric distribution on symmetric
matrices.

Definition 2.1 The beta-hypergeometric distribution, with parameters (a,a’,b) € (J55%, +00)3,
is defined on Q2N (e — Q) by

Ma,a’,b(dw) - C(a7 ala b)A(x)a_%A(e - x)b_% 2F1 (a7 b7 a—+ a/; .%') IQﬁ(e—Q) (.%')(dl’), (29)

where
To(a+b)

Cla,d',b) = .
(@:0.0) = P @Ta0) sFa(a,abiat bataso)

Note that the distribution pi4 4/ o4 is nothing but the distribution ﬁéli,. In fact, since we
have

2Fi(ab;a+dsx)=Ale— )" 9Fi(d,a+d —b;a+d;m), (2.10)
(see [4], page 330), then (2.9) becomes

FQ(G/ + b)FQ(a/) ’ / ’ (1)
F; —b; ; ,(dx).
To(a+d)To(b) 3Fs(a,a,b;a+b,a+adse) 1@, ata=bata;2)5, o (dz)
(2.11)
When a+a' —b=0, sFy(a,a,b;a+b,a+ad’;e) becomes oF(a,a;2a+ a';e). This, using

the following Gauss formula

Ha,a’ ,b(dx) =

Po(y)la(y —a—f)
Lo(y — B)Taly — @)’

2 F1 (o, B;y5€) = (2.12)

for « = 3 = a and v = 2a + a’ shows that Ha,a’ a+a’ coincides with ﬁéli,.

Next, we calculate the spherical Fourier transform of a beta—hypergec;metric distribution,
it is the expectation of its generalized power. This transform is important, it plays, for
the K-invariant distributions on symmetric matrices, the role that the Mellin transform
plays in the real case.

Proposition 2.3 Let X be a random variable having the beta-hypergeometric distribution
Haa' b defined by (2.9). Then for t = (t1,...,t,) € IR" such that t; +a > %, for all
1 <1 <r, the spherical Fourier transform of X 1is

E(A (X)) _ FQ(a+b) Fﬂ(t+(l) 3F2(a, b’a+t;a+a,,t+a—|—b; 6)
t - Fﬂ(a) PQ(t+a+b) 3F2(a7a7b;a+b’a+a/;e)

. (2.13)

E(A(X)) = Cla,d,b) / Az)A(z)* T Ale — )™ 7 9Fy(a,b;a + d';2)dz.
QN(e—Q)

Since the determinant and the hypergeometric function are K-invariant, for k € K,

E(A(X)) = C(a,d, b)/ Af2)A™ ) T Ale — k7La) 7 o F(a,b;a + o' kL x)da.
QN(e—Q)



With the change of variable y = k~ 'z, we can write

E(At(X)) = C(a7 a,7 b) /Qﬂ( Q) At(ky)A(y)a_%A(e - y)b_% 2F1 (a7 b7 a—+ a/; y)dy

= C(a7a/7b)/ﬂm( Q) At(ky)A(ky)ai%A(e_ky)bi% 2F1(a7b;a+a/;y)dy
b)md _n _n
— Cla,db (“)’”(’”m/ /AkAkMA k) EA, (ky)dkd
(a,a )go (B Joe—sy Jue MDA T A~ hy) (ky)dkdy
b) .
— Cla,d.b (@) (Bl dm/ Apisia n (A —y)5d
(a a )mzz:o (a+a,)m(%)m QN(e—9) +t+ T(y) (6 y) Yy
. (@ (B)m Ia(a+b) La(m +1t+a)lo(b)
250 (@4 a)m(F)m "Tq(a)lq(b) sF(a,a,bja+b,a+ase) To(m+t+a+b)
_ Z (@)m (D) m(t + a)m Fa(a+0b) Lot +a)
0 (a+ad)m(t+a+b)m(L)m "Tala) sF(a,a,bja+b,a+d;e) Lot +a+b)

Fa(a+b) Tq(t+a) sFi(a,b,a+t;a+ad,t+a+b;e)
Ia(a) Tao(t+a+b) sFi(a,a,bja+ba+ase)

3 Characterizations of the beta-hypergeometric
distributions

In this section, we state and prove our main results involving the beta-hypergeometric
probability measure fiq 4 .

Theorem 3.1 Let X and W be two independent random matrices such that W ~ ﬁé?
and X ~ pigqp. Then
7 e+ m(X)W))(E) ~ trarap. (3.14)

For the proof, we need to establish the following technical result.

Proposition 3.1 Fora, a’, b E]TT_l,oo[ and z € QN (e — ), we have

A(@ — t)ari’a/f%A(t)b*% ) . B FQ(CL,)FQ(b) - ,
/Qm(e_ﬂ) Ale — m(z)(t))e+ oFi(a,batase—t)dt = Tol@ +b) o1 (a',bya+a’; 2).
(3.15)

Proof We again use the invariance by the orthogonal group K of the determinant and of
the hypergeometric function. For k € K, we have

Ale —t)*T =T A@t) 7 ,
I = Fi(a,b; ;e —t)dt
Jiey By 2B e

/ Ale — k=)o =T A(k~ 1)~ 7
-~ Jane-o Ae —7(2) (1)) >+

oF1(a,b;a +d'se — k1) dt.
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Setting y = k!¢ in last integral, we get
o[ Alyriagrs
QN(e—Q)

/ Ale — ky)* =5 Aky)>— >
an(e-9)  Ale —m(2)(ky))*

_ (@)m (0)m k:y )ata =T Aky)b
- TG o e = B el b

oFi(a,bja+d'se — y)dy

= M A(e — y)a+a -z (y)b—% o
2 (F)m o ane-q)  Ale—m(z)(y))d'+° Ap(e —y)dy

m AeraJra’f% (e — y)A(y)b_%

%)m dm QN(e—9Q) Ale — W(Z)(y))a’-H) dy

_ (@)m (b)m Ca(b)To(m+a+d)
= E d
(a+a)m (%)

oF (a' +b,b;b+m+a+d;2)

Soat+a)m(P)m " Ta(m+a+d +0b)
T e T e
= et 2 o R e
- B el T ) e
-z . B ot 2 v v o EaeaiEny
_ kz_o (d j:%b;:(b)k dy, 1. (2) szzb(l:)LFagJ(rajj ]1) 2Fi(a,bia+a +b+ kse)
_ oy DOy ) To®lalat o) Tolatd +btbla( +)
= Gk Lo(b+a+a +k)Tola+a +k)Ta(a +b+k)
) i

We come now to the proof of Theorem 3.1.

Proof of Theorem 3.1 Let X’ be a random variable with distribution o’ ap, and define
V = 771(X')(e — X'). Then showing (3.14) is equivalent to show that V and m(X)(W)

have the same distribution. Let h be a bounded measurable function. Then

BOV)) = [ b @) ) as(da)

= C(d,a,b) / h(r (@) (e — 2))A(2) 7 Ale — 2)" 7 9F1(d,b;a+ d'; 2)dx.

QN(e—Q)



Setting y = 7~ !(z)(e — x), or equivalently z = 7~ 1(e + y)(e), then dov = A(e + y)_2_
and we have

" dy,
EWV)) = C(d,a,b) /h

gFl(a b'a+a'7r

7T

Het+y)(e)? FAle—m e+ y)(e) 7
<e+y><e>>A<e +y) T dy

Cldab) [ AT (e +p)e) AW 2R, bia+ain e+ y)(©)dy.
Hence the density of V is

Fr(@) = C(d, a, B)A(r (e +v)(€) PAW)PF 2R, ba+ a7 (e +v)(€))1a(v).

X)(W) is given by (319

ooy X @) A )

C(a,d b)% /Q e A@) 7 Ale — )% 9Fi(a,bya + as2)A(r ™ (@) (w)P
Ale+m ! (z)(w) " A(z) ¥ da

C(a,a’ b)irl;j‘((a) s ?;)A w)br /Q o A@) T Ale — ) T Az +u) 0

oFy(a,b;a+ a5 x)dx.
With the change t = e — x, we get

On the other hand, the density of U = m(

fu(uw)

fulw) = Clad, b)%““)b% /me_m Ale =) AW Ale+u—1) "

oFi(a,b;a+a';e —t)dt

DA

Po(a)Ta(b) Ale +u)?* Ale—7m1(e+ )(t))”“
oFi(a,b;a+ d'5e — t)dt.
Using the fact that 7—!(e + u)(t) =
obtain that
Afe—t)at —F AW~ F
Jon(e—a EW( )—1(e+u)(e§))(t))a/+b oF1(a,b;a+a';e —t)dt

= Cf(a,d,b) Pa(d +b)  A(w)’~ / Ale -
T QN(e—Q)

m(m (e +u)(e))(t), and invoking Proposition 3.1, we

/Qﬂ( —0) Ale =) T AT Ale = m(x e + u)(e)) (1) ™ 2 Fi(a, ba + dse — t)dt

Consequently, the density of U is equal to
fu(u) = Cla,a BA (e + u) () P AWPF 2F1(d,bia +a's 7 (e + u)(e)) Lo (u)
1

10



Comparing (3.16) and (3.17), we conclude that the densities of U and V' are equal, and
consequently, their normalizing constants C'(a,a’,b) and C(d’,a,b) are equal. O

Note that the fact that C(a,d’,b) is a symmetric function of (a,a’) means that

3F2(CL, a, ba a + b,CL + CL/; 6) _ 3F2(0/,0/, ba a + ba a+ a,; 6)
Ta(a)Tq(a + b) B TLa(a)La(a’ + b)

(3.18)

We can deduce another expression of the spherical Fourier transform of the beta-hypergeometric
distribution from the following more general result.

Proposition 3.1 1. Fort= (t1,...,t,) € R" and s = (s1,...,8,) € IR", the integral

Loaslts) = [ M) Aule = toa(da)
QN(e—Q)
converges if and only if fori=1,...,r,
i—1 i—1
ti>———a si>———b,

and for all 1 < k <,

k

1
S st ka > 14 k(r— k) — 7T,
i=1

In this case, we have

Fola+b)Ta(a+t)Tab+s)sFa(a+t,a,bja+b+t+s,a+d;e)

Loy p(t, =
altss) Fa(a)La(b)Tala+b+t+s) 3Fy(a,a,b;a+b,a+d'se)
(3.19)
2. We also have under the conditions Y% _, t;+ka > 1+ k(r — k) — k@, forall 1<
k<,
Fy(d',d —t,b;a +b,a+d;e)
Loa (t,0) = A p(dr) = 2200 0 : (320
aav(1:0) /Qﬂ(e—Q) ()01 (%) sFy(a',a!,b;a’ +b,a+ a';e) (3.20)
Proof

1) For simplicity, we denote C' = C(a,a’,b). We first calculate the integral

Ia,a’,b(ta 3) = /Qﬂ(eﬂ) At(x)As(e - x)ua,a’,b(dx)

= C Ai(z)Ag(e — 2)A(2) 7 Ale — )% o Fi(a,b;a + d; x)de.
QN(e—Q)

As the determinant and the hypergeometric function are K- invariant, for k € K, we have

Liaws(t,s) = C o) Ay(z)Ag(e — 2)A(K™ ) Ale — k™ 2)"™ oFi(a,bya +ds k™ a)da.
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Setting y = k', we get

Luap(t,s) = C o) Ay(ky)Agle — k) A@y)* " Ale — )P~ 9Fi(a,b;a +d'sy)dy
n n b)md
- Ay (k) Ag(e — k) A(ky)* % Ale — ky)b—> Mmd.
C o) Wk Ag(e — ky)A(ky) (e — ky) mz;o (@t (@ 9 (y)dy

Since all terms are positive we can invert sums and integrals, whether they converge or
not. Hence

Laltys) = 03 ADnlute | o e A e kA A b

>0 ((Z + G/)m )m
A (ky)dkdy.
It follows that
(@)m (b)m
Inap(t,s)=C —ndm Aprart—n(2)Agip_n(e — z)dz.
b mz>:0 (@ + @) (Z)m An(e—) +a+t T( TAVET) T( )

(3.21)
This last integral converges if and only if a + t; > % and b+ s; > and under these

conditions, it is equal to

2 I

m Fo(m+t+a)lq(s+b)
(a+a)m(2)m " Talm+t+a+s+b)

Thus

_ (@) (b)rm, Fam+t+a)lTa(s+b)
Ia,a’,b(t,s) = C go (a+a/)m(%)m m FQ(m—l—t—i-a—i—s—i—b)

_ (@) (b)m (t + a)mdm To(t + a)Ta(s + b)

B szz:o (a+ad)mt+a+s+b)m(%)m Talt+a+s+0b)

From Proposition 2.2, this series converges if and only if for all 1 < k < r,

k
> sitka >1+k(r—k)—k
=1

(r+1)
5

and under this condition, we have that

sFh(t+a,a,b;t +a+s+b,a+ad;e) Tala+b)Ta(t+a)la(s+0b)
sFy(a,a,b;a +b,a+d';e) Fo(a)To(®)Ta(t +a+s+0b)

Ia,a’,b(t, S)

2) For this second part, we use Theorem 3.1. Consider two independent random variables
X ~ pgqp and W~ ﬁé?,. Then X' = 771 (e + m1(X)(W))(e) ~ ta.ap-
Since 7 H(X")(e — X') = 7(X)(W) and E(A{(W)) = %, we have
E(A(m(X)(W))) = E(A(X))E(A(W))
= B(A(rH(X) (e~ X))
— 1 /
= E(At(X’)At(e - X").

12



It follows that

B(A(X)) = E(AS(W))E(At(lX,)At(e—X/))
1

= ————F(A_(XAile — X')).
E(At(W)) ( t( ) t(e ))
Now we apply the first part of the proposition by replacing (a,d’,b,t,s) by (d’,a,b,—t,t),
getting the result for 51 — b < t; < o’ — 5 and Sk ti+ka > 14+ k(r — k) —
k@ for all 1 < k < r. Under these conditions, we obtain that the spherical Fourier
transform of X is

Fy(d',d' —t,b;a' +b,a+d;e)
E(A(X :3 ) s Uy ) ) )
(A:(X)) sFy(a’,a’ bya’ +b,a+ a'se)

(3.22)

Finally, we observe that the right hand side of (3.22) is finite if and only if forall 1 <k <,
Sk tidka>1+k(r—k)— k% and it is a positive analytic function of ¢ satisfying
this condition. The principle of maximal analyticity implies that (3.20) holds for ¢ such
that for all 1 <k <r, ¢  t; + ka > 1+k(r—k)—k@.

O

Remark 3.1 1. From (3.19) and (3.20), we obtain two different expressions of E(Ai(X)).
Equating these expressions and recalling (3.18), we obtain the following relation con-
cerning the function 3F5.

3F2(a+t,a,b;t+a—i—b,a+a';e) o 3F2(a/7al_tab;a/+b7a+a/;e)
PQ(G/)FQ(a+b+t) B PQ(a—i-t)PQ(a' +b) ’

(3.23)

fort; >t —a andezlti+ka>1+k(r—k:)—k@ forall 1<k<r.

2. Using the characterization of the beta-hypergeometric distribution by its spherical
Fourier transform given in (3.22), we can easily show the converse of Theorem 3.1,

that is if X and W are two independent random matrices in  such that W ~ ﬁéza),,
then 7= (e + m(X)(W))(€) ~ ar ap tmplies that X ~ fig.ar p-

Next, we give the matrix version of (1.4).

Theorem 3.2 1. Let W ~ 552(1), W'~ ﬁ,gza), and X be three independent random vari-
ables, with X wvalued in Q. Then

X ~ate+na e+ n(X)WNW))(e) if and only if X ~ Paa b (3.24)

2. If W ~ 552(1) and X € Q are two independent random variables, then

X ~a e+ n(X)W))e) if and only if X ~ faab (3.25)

13



3. Let (Wy)n>1 and (W))n>1 be two independent sequences of random variables with
respective distributions 552(1) and ﬁg/. Then fiqq 1 18 the distribution of the random
continued fraction

(3.26)

Proof We adapt the method of proof used in the real case by Asci, Letac and Piccioni [1]
to the matrix case.

1. Observe first the series (3.26) converges almost surely, because the series >°,, (W, t +
W/~1) diverges almost surely. Consider the sequence (F},)%; of random mappings
from QN (e — Q) into itself defined by

Fo(2) = 1 (e +m e +m(2) (W) (Wn))(e)-

Since Fj o...o F,(z) has almost surely a limit X, then the distribution of X is a
stationary distribution of the Markov chain w,, = F,, o ... o Fj(z) which is unique.
According to Theorem (3.1), we have that p, 4 4 is a stationary distribution of the
Markov chain (wy)52g. It follows that X ~ pg 4 p-

2. We use the reasoning above with the random mappings G, (z) = 7~ (e+7(2)(W,))(e).

3. The proof of this part is similar to the first part.

d

In the following theorem, we establish the identifiability of the beta-hypergeometric dis-
tribution on symmetric matrices.

Theorem 3.3 Let (a,d’,b) and (ay,d},b1) in (|52, 00[)3.
If Ha,a’ b = ,U'al,a’l,bla then (aa a/, b) = (ala alla bl)

Proof For the sake of simplification, we denote C' = C(a,d’,b) and Cy = C(aq,a},by).
For z € QN (e — Q), we have that

= lim Afe— x)b—%d(;,,.,o)
= lim Ale —2)" "dgg,..0)
"l B e e



Since dq,...0) = 1, and

b-z (W) (0)m Zm Pm(x) =0,

m2>0;m#£0 (a + a,)m (r )m

lim Y Ale—=x)

z—0

<

we conclude that
lim A(e — x)b_F oFi(a,b;a+ad';x) = 1.

z—0
Thus, when z is close to 0, the densities of 14 4, and Hay o’ by BT€ respectively equivalent to

CA(z)** and C1A(z)™ ™. Since Haa'b = Hayaf bys WE get CA(z)* 7 = C1A(z)" 7.
Hence a = aq, and it follows that for all z in QN (e — Q),

Ale— )7 3Fi(a,bia+d;z) = Ale — )7 2Fi(a,by;a+ d;x).
Using Proposition XV.3.4 page 330 in [4], we can write for x in QN (e — Q),
2Fi(a,b;a+d'sx) = Ale —2) " oFy(d, bya+d's—x(e —x) ™)

and
oFi(a,br;a +al;x) = Ale — )™ oFy(a),bi;a+df; —x(e —2)7h).

Therefore
oF1(d' bja+d;2) = oFi(d),b;a+al;2),

or equivalently

where ¢ = a+a’ and ¢; = a + d}.
Since ¢y, (2) is a polynomial in z with degree equal to |m| = mj + ... + m,, this implies
that

for each m > 0.
For m = (1,0,...,0), we obtain

For m = (1,1,0,...,0), we obtain

(@' — 3)(

Finally, for m = (1,1,1,0,...,0), we obtain

(@ - DO-1) _ (@ -1 —1)

(c=1) (e1—1)

Let



By taking suitable linear combination, we get

1
C()\2+)\0—2)\1)—|—)\1—)\2——=O.

1 1
a’b = ey, a'+b:20)\0—2(c—§))\1+— 2

27

From this, ¢ can be uniquely determined, we get ¢ = ¢; then ¢’ = af, and b = b;. a

Theorem 3.4 Let X be a beta-hypergeometric random matriz, X ~ pgqp. Then
(e = X) ~ taya, if and only if a1 =a', a=a) and by =b=a+d = a1 +aj.

Proof (<) This way is obvious.
(=) Suppose that X ~ fi4p and e — X ~ Hay a), by - Since the beta-hypergeometric
distribution is K-invariant, it is characterized by its spherical Fourier transform.

BAe~X) = Clad't) [ Ae—2)A@)" Al —2)F 2Fi(aba+ dsa)ds
QN(e—Q)
= C(a,d, b)/ Apy_n(e—2)A(@)* 7 oF (a,b;a+ d';2)dz.
QN(e—Q) "
= C((Z, 0/, b) / At-f—b—ﬂ (6 - :C)A(x)ai% 2 F (CL, ba a+ 0/; kilx)dx’
QN(e—Q) "

where the last equality is due to the fact that the hypergeometric function is K-invariant.
Setting y = k', we obtain that

B(Aie=X)) = Cladb) [ y 7Q)At+b-%<e—ky>A<ky>“*% 2Py (a, b0+ dsy)dy
b)m,
- C ,/,b}j(“)m( / /A 2 (e — ky) A yaz (ky)dkd
(a,a’,b) ata an(e—9) t-+b— (6 Y) Ay (ky) Y

o (a+a)m
B (a)m (b)m B )
= C(a,d,b) ZZ (a +d)m ( ) / (e At—i—b—%(e y)Am+a—7(y)dy-

The last integral converges when ¢; + b > % for all 1 <4 < r. Under this condition we

can write that

m(0)m  dm PQ(m—i-a)FQ(t—i-b)

E(Aile — X)) = Cla,d,b (@)

( t(e )) (a a )mz>0 (a—l—a/)m (%)m FQ(m—l—a—l—t—l—b)

B Z (@)m (D) m(a)m dm Fa(a+b)Ta(t +b)
o lata)m(@+t+0)m (F)mTa®lala+1t+0b) sF(a,a,b;a + b,a+d'se)
Fola+b)Ta(t+b) sky(a,a,b;a+ad,a+b+t;e)
Fab)Tala+t+0b) s3Fy(a,a,b;a+ba+ad5e)

which is defined for ¢ such that Y%, t; + ka’ > 1 + k(r — k) — k(rﬂ) for all 1< k < T
Also since e — X ~ fg, a1 p,» We use (2.13) for ¢ such that for 1 < z <r t;+a >5, to

obtain that
Cala+b)La(t+0b) sFy(a,a,b;a+da';a+b+t;e)

Fa®lala+t+b) sFy(a,a,b;a+b,a+a;5e)
Q(al + bl)FQ(t + al) 3F2(a1,b1,a1 +ta1 + al,al + b1 +t; 6)
ala)lalar +t+b1) 3fh (a1, a1,bi;a1 + bi,a1 + dlse)

T
T
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The last equality is equivalent to

3Fy(a1,b1,a1 +t;a1 +ay, a1 + by +te)
sFy(a,a,b;a+d',a+b+te)

_ Fa(a+b)Tq(ar) sFr(ar,a1,bi;a; +by,a1 + a’l; e)Ta(t+b)Tqla; +t+bp)
Co(b)Talar +b1)  sfa(a,a,bja+ba+a'se)  Tola+t+b)lo(t+ar)’

3F2(a1,b1,a1+t;a14a] t+a1+bise)
3F»(a,a,b;a+a’ t+a+bse)
tions. This happens if and only if by = a1 + @} and b = a + @/. In this case we have that

e—X ~ @S),a/l and X ~ ﬁéz,. However when X ~ 5(1) we have that e — X ~ ﬁé}?a.

a,a’’

Hence the function ¢ —

is expressed in terms of gamma func-

Hence a; = o’ and o} = a. 0

Proposition 3.2 The following convergences in law hold:

L. UIL% Ha,a’ b = do and all{glo Ha,a’ b = Je,
2. lim prgarp =06 and lm pg o p = ﬁgg,

a—0 7 a'—oo0 ] ’

. . ) r—1 . (1) .y r—1
3. lim /p = 0, lim iy =00 if a— —— <d and lim 'y = if a <a-—

b0 Ha,a’ b e b oo Ha,a’ b 0 f 2 >~ b oo Ha,a’ b ﬁafa/,a/ f 9

Proof For the proof, we will use the spherical Fourier transform.
1) For the first part, we need to show that, for ¢ € R" such that >°;_;¢t; > 1+ k(r — k) —

Mot 1<k <,

. sFy(d',a' —t,b;a’ +b,a+ d'se)

im =
a—0 3Fy(a,a’,b;a’ +b,a+ a';e)
(a,_t)m(b)mdm

@H5)m (T

is a decreasing function of a on (%51, 00) and that

(a,)m
(ata’)m

In fact, as 3Fh(a’,a’ —t,b;a" +b,a+a’5e) = 3,50

(a,)m

(a+a")m

X , then using the

fact that a —

(@' = )m(b)mdm
Z | (al+b)m(%)m | < 0,

m>0

the monotone convergence theorem enables us to invert sum and limit to get

lirr(l)gFg(a',a/—t,b;a'—i—b,a—i—a';e) = oF1(d —t,b;d + bse).
a—

Similarly, we show that
lim 3F5(a’,a’,b;a’ +b,a+d;e) = cc.
a—0
Therefore
lim Ha,a’ b = do-
a—0

On the other hand, when a — oo, all the terms in the numerator and in the denominator go
to zero except the one corresponding to m = (0, ...,0) which is equal to 1. Thus spherical
Fourier transform tends to 1, which implies that

lim 'y = (5 .
00 Ha,a’ b e
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2) We will use the result established in Theorem 3.1, that is if X ~ ji4/ 45 is independent of

W~ ﬁéza), then 71 (e +7(X)(W))(e) ~ fia,ap- Thus according to the point 1) established
above, we have that

if lm g qp = 0o, then lim pg o p = 0.
a’—0 Y a’—0

With the same reasoning, we see that

: _ 5
a’lgnoo Ha,a’ b = 5(1,1; .
3) Similarly, except the term corresponding to m = (0,...,0), which is equal to 1, all the
other terms in the numerator and in the denominator go to zero when b tends to zero.

Thus the spherical Fourier transform tends to 1, which implies that

lim 1y = Oe.
b0 Ha,a’ b e

When b — 0o, we have, for t € IR” such that % t;4+k(a—d’) > 1—{—]{:(7“—]{:)—]{:(“;1), 1<
k<,

. I g N 1 (@' = )m(a )mdnm (O)m
blggo shy(a,a =t bia +bataze) = blggo Z (a—i—a’)m(%)m x (@ +b)m

m>0

Here also, we can invert the sum and the limit to obtain that
blim sky(a',a —t,b;a' +b,a+dse) = oFi(d,d —t;a+dse).
— 00

Similarly,

lim gFy(a',d' b;a’ +b,a+d’5e) = oFi(d,d;a+ d'se).
b—oo

In the case where a’ < a — 7"—51, the spherical Fourier transform of pg o tends to

oFi(d/,d’ —tiata’ye)  To(a)lo(a—ad +1)
oFi(d/,a';a+a's5e)  Tala—a)Tqla+t)

e

which is the spherical Fourier transform of 8, , ..
Otherwise the spherical Fourier transform of p o tends to 0, in which case

lim Ha,a’ b = do-
b—oco 7

References

[1] Asci, C., Letac G., Piccioni, M. (2008). Beta-hypergeometric distributions and ran-
dom continued fractions, Statistic and probability letters. 78, 1711-1721

18



Casalis M. and Letac, G. (1996). The Lukacs-Olkin-Rubin characterization of the
Wishart distributions on symmetric cone, Ann. Statist. 24, 763-786

Chamayou J.F., Letac, G. (1991). Explicit stationary distributions for composition
of random functions and products of random matrices , J. Theor. Probab. 4 , 3-36

Faraut J., Koranyi, A. (1994). Analysis on symmetric Cones, Oxford Univ. Press

Hassairi, A., Regaig, O. (2009). Characterizations of the beta distribution on sym-
metric matrices, J. Multivariate Analysis. 100(8), 1682-1690

Hassairi, A., Farah, M. (2009). On the Dirichlet distributions on symmetric matrices,
J. of Stat Plan Inf 139, 2559-2570

19



