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Some remarks on the complex heat kernel on ¢
in the scalar potential case*

Thierry Hargé
January 25, 2013

Abstract

In previous works, we used a so-called deformation formula in order
to study, in particular, the Borel summability of the heat kernel of some
operators. A goal of this paper is to collect miscellaneous remarks related
to these works. Here the complex setting plays an important role. More-
over, the deformation formula provides a solution of the heat equation in
“unusual” cases. We also give a uniqueness statement concerning these
cases.

1 Introduction

In previous works [Ha4, Hab], we used a so-called deformation formula in order
to study the Borel summability of the heat kernel, p(t, z,y), associated to a
v-dimensional partial differential operator (v € N*). This formula is extended
to the non-autonomous case [Ha6]. The natural setting for this formula is a
complex one (t € C,Ret > 0 and z,y € C¥). For instance this formula is valid
for operators as

Pi=02+X® +c(x) =02 4+ +02 +Mai+ - +al)+c(z1,...,2,) (L.1)

where A € R and the function ¢ is the Fourier transform of a suitable Borel
measure. The aim of this paper is threefold:

1. Defining in a unique way the heat kernel associated to the operator P is a well
known procedure if A < 0. If A > 0, one can use the commutator theorem [Re-
Si| for instance (see Remark 3.5). However, we look for a statement adapted
to a full complex setting and covering the non-autonomous case: P = Py + ¢
where Py is defined by (3.1). Here is the purpose of Proposition 3.2. The
statement and the proof of this proposition are standard. We assume that

*This paper has been written using the GNU TEXMACS scientific text editor.
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the coefficients defining P, satisfy a reality-preserving property; see (3.2).
This implies that the operator Py|;R is symmetric with respect to the L2
inner product. The unicity is therefore a consequence of the conservation of
the L?-norm for the solutions of the time dependent Schrédinger equation
associated to Py. Let us make the following remarks.

— In our setting, the Schrodinger kernel is viewed as the boundary value
of the heat kernel for imaginary' values of .

— Our goal is not to solve the heat equation but to study the heat kernel
as a function defined on some subset of C_ , x C? (C, denotes the
Riemann? surface of the square root function).

About the existence problem, we use [Had] and [Ha6].

2. Considering a complex setting allows one to make some remarks.

We reformulate Proposition 3.2 by using the analytic dilation given by
(t,z,y) — (eiet,eiﬁ/%,e“py) , e € R/4AnZ (1.2)

(see Corollary 4.1). As a consequence, we see that the deformation formula
provides a solution for the Schrédinger equation

it = (07 + Az® +c(2))p , Pli—o =0z—y , (tER,[t| < 1,2,y €RY)

with fast growing potentials such as, for instance, ¢(z) = @’ (see Corollary
4.3 and Remark 4.4). We do not state uniqueness in this case (this can be
done by keeping the complex point of view for the space variables). This
equation, in the free case (A = 0), was considered by Kuna, Streit and West-
erkamp [K-S-W]. In this paper, the authors build a Feynman integral dealing
with such potentials. A version of the deformation formula can also be found
there [K-S-W, Remark 19].

Then we give a simple assumption on the potential ¢ providing the existence
of the heat kernel on a conical neighboorhood of R™ but with an aperture
larger than 7/2 (see Proposition 4.5).

3. We consider the Borel summability of the small time expansion of the conju-
gate of the heat kernel in the free case (A = 0): we reformulate a statement
given in [Had] by using the analytic dilation given by (1.2). As in Proposi-
tion 4.5, we consider two cases. We consider a simple class of potentials for
which Borel-Nevalinna summability (see Section 5 for the definition) holds
in an arbitrary direction. Then we give assumptions on the potential ¢ im-
plying Borel-Watson summability of this small time expansion instead of
Borel-Nevalinna summability as in [Had]. Borel-Nevalinna summability uses

LWith our notation, a physical interpretation of the parameter ¢ is the reciprocal of the
temperature which is a macroscopic variable. We denote by t the “physical” time.

2 A ramification occurs in our statements if the dimension v is odd: this is only due to the
existence of the factor t=%/2 in the expression of the free heat kernel.



that c is the Fourier transform of some Borel measure p defined on R with
a suitable convergence assumption. Borel-Watson summability uses that ¢
is the Fourier transform of an analytic function defined on a conical neigh-
bourhood of R¥, with a similar convergence assumption. Let us remark that
Borel-Watson summability of a series is a central tool when the critical time
is a non-trivial power of the variable [Bals], [Ma-Ra].

We assume in this paper that the potential ¢ is C-valued. Our statements also
hold if this potential is matrix-valued as in [Ha4] and [Ha6].

2 Notation

For z € C, we denote shz := 1(e* —e™%), chz := 1(e* + e 7). Let v > 1.
For \,u € C¥, we denote X - pn := Ajjug + -+ + Apiy, A2 := X+ X These
notations are extended to operators as 9, := (9y,,...,0z,). We also denote
A= (AL, M), A= (V- A)Y2 (if A € RY, |A| = VA2). We denote by 7 the
canonical projection from R/47Z onto R/2xZ. For § € R/4wZ, we denote by
e the element of C -+ the Riemann surface of the square root function, with
argument ¢ and modulus 1. Then C , := {z = re’®|r > 0,0 € R/4nZ}. For
z=re" e C.:, we denote 212 .= pl/20/2 If z € C, we also denote by z'/2
the square root of z which is defined up to a sign. Let m > 1 and 6 € R/27Z.
For every subset A of C™, we denote e A := {ez|z € A}. We also use this
notation if § € R/47Z and A C C .. If a € R/2knZ (k € N*) and r € R, we
denote by Ja — 7, a + |2k, the open interval® of R/2knZ with end points o —
and a + r. We denote

o=

CT :={z € ClRe(z) >0}, C+ :={z€ C|Re(z) >0}
and, if T > 0,
Dr:={2€C||z|<T}, Df:=DrnNCT, Df:=DrnC+.

Let 98 denote the collection of all Borel sets on R™. An C-valued measure p on
R™ is an C-valued function on B satisfying the classical countable additivity
property (see [Ru]). We denote by |u| the positive measure defined by

ll(E) = SUPZ [(E)I(E € B),

the supremum being taken over all partitions { E;} of E. In particular, |u|(R™) <
00.

We denote by D(e??R™) the space of smooth functions with compact support
defined on e?R™. If Q is an open domain in C™, we denote by A(f2) the space
of C-valued analytic functions on . These spaces are equipped with their

3r > k= |a—r,a+ rlopr= R/2knZ.



standard Frechet structure (the semi-norms are indexed by compact sets and
eventually differentiation order). If U = €] — T,T[ or €D} or C+ and F
is a Frechet space, C™ (U, f) denotes the standard Frechet space of smooth
functions defined on U with values in F. For instance, if the topology of F is
defined by a family of semi-norms (| - |;)jcs, the Frechet structure of C> (U, F)
is defined by the semi-norms |- |a.; (| fla.; = sup,ep 08 f(2)|;) if U = €] =T, T
or ewD}r. In the case U = CT, suprema defining the semi-norms are taken over
compact sets C+ N D(0, R) where R > 0. We now define global spaces (with
respect to the space variable). We denote by S(R™) the space of Schwartz
functions:

feSER™) < V(a,B) € N™ x N™, sup 12208 f(2)| < oo.
zem

We consider the following spaces of smooth functions
e if I=]-T,T[or I =4]—-T,T]
Je€C(IxR™) &
Y(a,B) € Nx N™ 3C > 0,Y(t,z) € I x R™,|970° f(t,2)| < C(1 + |z])°.
e if [ =Rorl=iR

feC(IxR™) & V(a,B) eNxN™  sup  [020°f(t,2)| < co.

(t,2)eIxRm

3 The heat kernel viewed from the positive di-
rection

3.1 The setting

Let U be a complex open neighbourhood of 0 € C. Let Py be the operator
acting on A(U x C¥), defined by

Py=A(t) - (0, + B(t)z) ® (0, + B(t)r) — C(t) -z ®x (3.1)

where A, B and C' are v X v complex matrix-valued analytic functions on U.
We assume that the matrices A and C' are symmetric and that the matrix A(0)
is real positive definite. We assume that

the functions A|;R, (¢B)|:R and C|;R are real-valued near 0. (3.2)

Then the equation
(%u = P()’LL

with the boundary condition

Ult=0+ = o=y (3.3)



admits an explicit solution

k(t) C L AYO) ()2
0._ 7 AT 0) (2-y) +Qu(my)
P (47rAt)V/2€ ! . (3.4)

Here A := det(A;,1(0)) 1<) k<y Uhe function & is analytic near 0 and Q; denotes
a polynomial of total degreé at most 2 in x, y whose coefficients are analytic near
0. Moreover these coefficients take their values in iR if z,y € R” and t € iR,
[t| small enough (see [Ha6] and in particular Lemma 3.4, assertion 3). By (3.3)

we mean that for every ¢ € D(R”), x € R and 0 € [—7/2,7/2]
/ u(rew, €T, y)(p(y)dy —7r—0+ (p(l')

Let us consider two particular cases. Let A € R and let w := 2(—=\)'/2. Let us
denote

h(wt)\ ~*/?
pharm — (471'8 (w )) exp(—
w

1 2 2
T 00 N )~ 20 y)

and
pfree _ (47rt)71//267(17y)2/4t.

Then ph™ (respectively pfr®®) satisfies
Oyu = (82 + )\xQ)u

(respectively d;u = 0%u) with the boundary condition (3.3).

3.2 An existence and uniqueness statement

In this section, our aim is to give an existence and uniqueness statement con-

cerning the equation
du = (Py+c(t,z))u (3.5)

We also use the following definition in this section.

Definition 3.1 Let T, > 0. Let f be a measurable C-valued function on D, X
R, analytic with respect to the first variable and let u, be a positive measure
on RY such that for every R >0

/R exp(RIE]) sup |F(1,6)dpe (€) < oo

[t|<Ty

We denote by ¢ the function belonging to A(Dp, x C¥) defined by

et x) = / expliz - €) (£, €)djus (€).



Proposition 3.2 Let Py be as above and let Ty, > 0. There exists T > 0 such
that, for every f and p. as in Definition 3.1, the following assertions hold.

1. For every p € S(R”) there exists a unique ¢ € C* (i) =T, T[,S(R")) such

that
O = (Po+ c(t,x))y
(3.6)
¢|t:0 =@

and the mapping ¢ — 1 is continuous from S(R”) onto C>(i|-T,T[,S(R")).

2. Letp = p(t,z,y) be the kernel of the operator Py : S(R¥) — S(R”) defined
by Pe(p) = (t,-) fort € i]—T,T[. Then p can be uniquely extended as a
function in C> (D} — {0}, A(C*)) NA((DF —{0}) x C?¥). This function
satisfies (3.5) on (DF —{0}) x C* and (3.8). Moreover

conj

p=p"xp
where peo™ = p<(t, x,y) €

A(DF x C*)nC>(DE, A(C*))n Cpa(i] =T, T[xR*).
3. Let us assume that Py = 0% (free case). Then

pM € A(CT x C*)NC>™(CH, A(C?)) NC° (iR x R™).

Remark 3.3 The spaces C*°(DF, A(C*)) and A(D3. x C?¥) are local in the
following meaning: the semi-norms are defined by taking suprema over compact
sets. The spaces S(R”) and C5 (i) — T, T[xR*") are global, which is useful for
the uniqueness statement. By (34)

0 __, free

p? =p"° x p!

where pt € A(Dy x C*) for some T > 0. However one can not replace p° by
free

p'*®® in the statement of Proposition 3.2 since p* & C9(i] — T, T[xR?”) in the
general case.

Remark 3.4 The reality-preserving property (3.2) is useful for the uniqueness
statement. This assumption implies that the operator Py|:R, is symmetric with
respect to the L? inner product.

Remark 3.5 Let us assume that Py = 0%+ Az where A € R, that the potential
¢ does not depend on t. Since ¢ € L°(R"), by [Re-Si, Th. X.36], the operator
Po+c is self-adjoint on a domain containing the domain of the operator —92+x2.
See also [Bo-Ca-Hda-Mi]. Therefore one can define the Schrodinger operator for
the operator Py. By [Ha4], its kernel admits a (unique) analytic continuation on
(DF — {0}) x C? 4f T is small enough. This yields an alternative formulation
of Proposition 3.2 in the harmonic case.



3.3 Proof of Proposition 3.2

We need the following lemma.

Lemma 3.6 Let T > 0 and let B be a v X v real positive definite symmetric
matriz. Let Py be a polynomial with respect to x,y € R”, of degree at most 2,
with coefficients belonging to C*°(] — T, T[,R). There exists To > 0 such that,
for every u € Cp5(] = T, T[xR?) and every ¢ € S(RY), the function v defined
by

det B\v/2 2400
it o) = / (Gp ) e B ARyt yp(y)dy  (37)
v\ 4t

belongs to C* (] — TQ,TQ[,S(RU)). The mapping ¢ — 1 is continuous from
S(RY) into C=(] — Tz, T»[,S(R”)). Moreover, if e0W:¥) x u(0,y,y) = 1, then
Yli=o = ¢

Such a result is standard. The proof is given in the Appendix.

Let us prove Proposition 3.2. The assertion 1, of course, is a well-known

statement. However, for the convenience of the reader and the completeness of
the paper, we give its proof.

-1- In view of the uniqueness statement in assertion 1, let us consider ¥ €
C>=(i] = T,T[,S(R")) satisfying (3.6) with ¢ = 0. Let

/ Y(it, x)Y(it, v)dx

R(t) := -2 /Rv Im(c(it,z))z/)( x)Y(it, x)dx

Then by (3.2), for every t €] — T,T[, 0:F£ = R(t). Since the function |c| is
bounded, there exists K > 0 such that |0;E| < KE. Since 9 is bounded by
C(1+ |z|)7v=! for (t,x) € — T, T[xRY, one gets E|¢—o = 0 by the dominated
convergence theorem. Therefore £ = 0 and 1/J|Z-],T1T[XRU =0.

-2- Let us prove the existence statement in assertion 1. Let p®™ be as in
[Ha6, Theorem 2.1]. Let p € S(R”). Let

Blt,a) = /R (5° x ) (t, 2, y) o () dy.
By (3.4)
(0° X o) (it 2, y) = (AmiAg) /26 AT O v /8it o 3P sk (it)peomi it 2, y)

where the polynomial P, satisfies the assumptions of Lemma 3.6. Then, by
Lemma 3.6, there exists 75 €]0, 7] such that ¢ € C>(i] — T3, T»[, S(R”)). More-
over the mapping ¢ — ¢ is continuous from S(R”) onto C* (i] - T, T[, S(R")).
Since p® x p°W satisfies (3.5) and p°°M|;—o = 1, (3.6) holds.



-3- Let us prove assertion 2. By the regularity properties of p*™ [Ha6,
Theorem 2.1], one gets a suitable extension of the kernel of the operator P;. We
claim that this extension is unique. Let p; and ps be two extensions. Then

p=p1—p2 € A((DF — {0}) x C*) NC> (D7 — {0}, A(C*™))

and pli—7r—fopxR = 0. Let (z,y) € R* and let  be the function on
Dy — {0} defined by p(t) := 1get=0p(t, x,y). By regularity properties of p and
Cauchy-Riemann equations with respect to ¢, p is smooth near ¢7'/2 and satisfies
Cauchy-Riemann equations. Therefore the function p is analytic near iT/2,
vanishes near i7'/2 and actually on DF — {0}. Then by analytic continuation
with respect to the space variables the function p vanishes on (D7 — {0}) x C?.

-4- Assertion 3 can also be checked by considering the deformation formula
in the free case.

4 The heat kernel viewed from an arbitrary di-
rection

We must take into account the ramification of the heat kernel at ¢ = 0 in

our statements. The ramification is only due to the term ¢~/ in (3.4). Let

€ € R/47Z. Then the free heat kernel p™® is invariant, up to a multiplicative
constant, under the change of variables

(t,z,y) = (e"t, e/ 2, e/ 2y) (4.1)

and the free heat equation is invariant under the change of variables (¢, z) —
(e’“t, e*/2z). This elementary remark allows a reformulation of Proposition 3.2
(we only consider the harmonic case for the sake of simplicity). We denote?

p?arm = (47”3,1-%)71//2 X

—i —v/2 .
sh(we™"t) 1 ey W 9 o
—_— ——— (ch ¢ —2x- ) t 1
< we et > eXp( 4Sh(w€_“t) (C (we )(1‘ +y ) € y) ’ | | < )

o 1
plree = (4me™"t) 2 eXp(—E(a: - y)2)

Corollary 4.1 Let A € R and € € R/4xZ. There exists T > 0 such that the
following statement holds. Let i be a complex measure on RY such that for every
R>0

[ explRIENdlul(e) < . (12)

Let
(o) = [ explie™/2a - €)dp(e).

Then the following assertions hold.

4Only the first factor of the product defining p2®™ is concerned by the ramification.



1. For every p € S(e'/?RY) there exists a unique 1) € C® (ie’]=T,T7, S(e“/QR”))
such that _
o = (3% + Xe 22 4 C(:L'))i/}

1/J|t:0 =y

and the mapping ¢ — 1 is continuous from S(e*/>R¥) onto C>® (ie“] —
T,T[,S(e*/?R")).

2. Letp = p(t,x,y) be the kernel of the operator Py : S(e'/?R?) — S(e'*/?RY)
defined by Pi(p) = (t,-) for t € ie’] — T,T[. Then p can be uniquely
continued as a function belonging to

A(e"(DE — {0}) x C*) nc>(e"(D5 — {0}), A(C*)).

Moreover
harm conj

D =P Xp
where p°° = peoni(t x,y) €

A(e™EDF x C*)nC>(e™©DDF, A(C*)) NS (€™ 9] — T, T[xR*).

8. Let us assume that A = 0. Then

PN € A(eTICT x C)NC (e ITH, A(C™)) NCe (ie"™ IR x R*).

Figure 4.1:
Imt

\ N




Remark 4.2 Let € € R/4nZ. Let f = f(t,x,y) be a continuous function on
(e'*(DF —{0})) x C¥ x C*.  We say that f goes to 6,—, in the direction e’
and write

f|t:e'560Jr = 6$:y

if and only if for every 0,9 € R/47Z, |0 — e| < w/2, |0 — 29| < 7/2 and every
¢ € D(e™RY), x € R

/.0R Fre® a,y)p(y)dy — 0+ o(x).

Here dy = e"’Vdm(y) where m denotes the standard (non negative) Lebesgue
measure on e?’RY. Then the kernel p satisfies on e(D} — {0}) x C%

Op = (02 + Xe™ 2™ (g2 + c(z))p
(4.3)
p|t:e“0Jr = 5m:y

since, for every smooth function g = g(t,z,y) on ei“(e)D}r x C¥ x C¥ such that
gli=o = 1, the function p*® x g goes to Oz—y in the direction e**.

Let us choose € = m. Then we get a solution p such that p°°™ is defined on
{t =|t|e" € C|0 € [7/2,37/2]4r, |t| < T} x C*
or {t € C|f € [r/2,37/2]4=} x C* if A = 0. In particular, by considering

values of ¢ such that argt = m/2,37/2, we obtain the following result about the
standard Schrédinger equation.

Corollary 4.3 Let i as in Corollary 4.1. Let

(o) = [ expla-€)dn(e) (4.4)
Let A € R. Then there exist T > 0 and
P = pi(t z,y) € C(] - T, T[, A(C™))

such that p = pha™™ x peoni satisfies

10p=(02+ a? +c(x))p, xR, L€l -T,T]

Plt=0 = 0z=y , Yy ERY
IfA=0, p™™ € C=(R, A(C?)).
Remark 4.4 The assumption (4.2), since ¢ is given by (4.4), allows potentials

such as ,
Viz) = 2 £e* ,V(z) = \a® +e™,...

10



In the case X = 0, this fact was noticed by Kuna, Streit and Westerkamp [K-
S-W]. In particular the function x — e is viewed as a perturbation of the
operator 0% + \x? (the deformation formula is used to deal with this part of the
potential V') whereas the function x — \z? is not viewed as a perturbation of
the operator 8% in our method. Using a complex point of view with respect to the
space variables perhaps explains this “paradox”. A related remark can be done
for the uniqueness problem: we do not claim that (4.5) has a unique solution
in its natural real setting. However it does, if we consider complex values for
the space variables (z,y € ei“/QRV), by taking advantage of the uniqueness
statement of Corollary 4.1.

Notice that the dilation given by (t,x,y) — (€™t iz, iy) (e = w in 4.1), which
allows one to view Corollary 4.8 as a consequence of Corollary 4.1, “reverses”
the direction of t.

Another viewpoint is formally related to the previous proposition. For § > 0,
let
Ry = {ez € C'|z € RY)",p €] — 0,002},
Yo ={e¥reC’lzeR",p €] —0,0[2},
RY ;= {re’” € Clr > 0, €] — 0,00}

One has

Proposition 4.5 Let 0,« €]0,7/4[. Let p be a C-valued Borel measure on C".
Let us assume (case 1) that Ri’g contains the support of p and that

VR >0, | exp(RIEDdlp©) < o

or (case 2) that du(§) = ¢(§)d§ where ¢ denotes an analytic function on R, ,
satisfying
VR > 0,3K > 0,V¢ € R ., |6()] < Ke Tl

<,a)
Let F = C” (case 1) or F =RY (case 2). Let

(o) = [ explia )dn(e).

Then, by the deformation formula,

— case 1: The heat equation associated to the operator 8*+c(x) has a solution
p defined on (Ri n/2-20 {0}) x C? satisfying the following boundary
condition. For every ¢ € D(RY), x € R¥ and oo €] — /24 260, m/2 — 20|

/ p(re’™, z,y)p(y)dy — o+ @().

— case 2: The heat kernel of the operator 92 + c(z), which is defined on

R* x R?, admits an analytic continuation on (R‘i,w/2+2a —{0}) x C?.

11



Figure 4.2:

Imt Imt
/ Z+ 20
T _ 29 S
Ret Ret
+ +
R<,gf20 R<,g+2a
case 1 case 2

Proof Let p*™ := > n>0Un Where
Up = t"/ / ei(y“(z*y))'g exp(—ts(l — s) - @ &)d"" u®(&)d"s,
0<s1< <8, <1 JF

(y+sx—y) -&=Wy+silz—y) &+ + y+sale—y) &,

S(1=5) €96 = Y sl = e -6

G k=1
A" u®(€) = dp(&n) - - dp(&r).

We first check that the series defining p°®™ is convergent.
(case 1) We claim that p®™ = p®i(t, z,y) € AR /220 % C?¥). One has

2|, |yl < R=|exp(i(y + s(z —y)) - €)] < efleal .. x eRlEnl,
Since 26 < 7/2, Ri,26 is a convex cone. Then
te Riyﬂ/2*29’§ € supp(p®) = Re(ts(l —8)né ®§) > 0.
This implies the convergence of the series defining p°°™ and the analyticity of
peon,

(case 2) We claim that p®™ € ARY /2420 % C?). Let B €]0,a]. Since

the function ¢ is analytic on R% ,, one gets by a deformation of the integration

o o 18 _ .
——— [ el
0<s1 <+ <8, <1 yn

12
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exp(—te 2Ps(1 — 8) - E@ E)e(e Py - (e PE,)dVEd s

Therefore the convergence of the series defining p°®™ and the analyticity of
™ hold for Re (e_%ﬂt) > 0 and z,y € C”. Since 3 is arbitrary, one gets that

pom € A(Ri,w/2+2a x C?). .
By proceeding as in [Ha4], one can show that p = p™® x p°°™ satisfies the
heat equation. Moreover the boundary condition is satisfied. (I

Example 4.6 Let 0y,...,0, €| — /4, 7/4[ and \1,..., g € (RT)". Let
c(x) = exp(iewl)\l . ac) +---+ exp(iewq Ag - x)
Then the function ¢ satisfies the assumptions of Proposition 4.5 (case 1). We

do not attempt to give a uniqueness statement in this case.

Example 4.7 Let ¢(z) = e=* . By Proposition 4.5 (case 2) the heat kernel is
well defined on (C—] — o0, 0]) x C?”.

Remark 4.8 One can generalize Proposition 4.5 (case 2) in the harmonic case.
The proof needs a modification of [Ha4, Lemma 4.2].

5 Borel summability of the conjugate of the heat
kernel in an arbitrary direction

For the sake of simplicity, we only consider the free case in this section. Let
Kk, T > 0. Let

S, :={z € Cld(,[0,+)) < &}, Dr:= {z € C|Re(%) > %}

Dy is the open disk of center % and radius %

Definition 5.1 Let ¢ € R/27Z. Let ai,...,a,,... € C. The formal power
series f = > sqart" is called Borel-Nevalinna (respectively Borel-Watson)
summable in the direction e if

e the radius of convergence of the Borel transform of f, f(T) =200 T
does not vanish

e there exist k > 0 (respectively 0 > 0) such that the Borel transform can be
analytically continued on €S, (respectively eiéRi o)

o there exist K,T > 0 such that for every T € ¢S, (respectively eiéRiﬁ)

[f(7)] < KelTV/T
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If the power series f is Borel-Nevalinna or Borel-Watson summable, the
Laplace transform of f

Too - dr
f0= [ et
0
is called the Borel sum of f
Figure 5.1:
eiéRi,g
ImT CHR+F
0
R €

\\ ReTt

Figure 5.2:
Imt
: e“R*
/ \\eiéRi)9 NnD
\ L.~
\\ ezeDT
\
\ 9 g
€
Ret
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Remark 5.2 If a power series f is Borel-Nevalinna (respectively Borel-Watson)
summable in the direction e, then there exist T'> 0 and 0 > /2 such that its
Borel sum is well defined for t € e’ Dr (respectively eiéR:e N Dr). See [So].

The change of variables (4.1) allows us to give the following corollary of Theorem
3.1 [Had].

Corollary 5.3 Let e >0 and e € R/4nZ. Let pu be a C-valued measure on R
verifying
[ explee)dlul(e) < . 1)

cw=/wwfw%@ww (5.2)

and let u be the solution of (4.3) where )‘/i 0. Let p®™ be defined by u=pTeepeon.

Then p°™ admits a Borel transform pco™ (with respect to t) which is analytic
on CY2 . Let k, R > 0 and let

9 1/2
Ci=2( [[exp( + 56+ Riel)dnl©)

Then, for every (1,x,y) € ™8, x C? such that |Zm(e~*“/?z)| < R and
|Zm(e/?y)| < R,

—

|peoni(r, 2, y)| < exp(C|r|*/?). (5.3)

Remark 5.4 By the estimate (5.3), the small time expansion of the conjugate
heat kernel is Borel-Nevalinna summable in the direction e'™€) and its Borel
sum is equal to p™.

We now illustrate Corollary 5.3 by simple examples.

Example 5.5 Let e € R/477Z, & € e */?R¥ — {0} and c(z) = exp(iz-&). The
function c satisfies the assumptions of Corollary 5.3 hence the small time expan-
sion of the conjugate heat kernel is Borel-Nevalinna summable in the direction
e™(©) . For ¢ € R/4nZ, w(') # 7 (€), the function ¢ is not bounded on '€ /2R¥
and therefore does not satisfy the assumptions of Corollary 5.3 in the direction
et Corollary 5.8 can not be used to study the Borel-Watson summability of
this expansion in the direction e™(¢) .

Example 5.6 Let ¢(x) = exp (ixl + iei”/8x2) and let p be the solution given by
Proposition 4.5 (case 1). Then Corollary 5.3 can not help us to study the Borel
summability of the small time expansion of p.

Let us now consider c(x) = exp(izl) + exp(iei“/gzg). Then by separation
of variables, the solution given by Proposition 4.5 is the product of two Borel-
Nevalinna summable expansions but in different directions.
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Example 5.7 Let K, A > 0 and a €]0,7/2[. Let ¢ be an analytical function on
RY, , satisfying, for every & € RY, ,,

(&) < Ke AP,

(o) = [ explia-)e(e)ds.

Let e € T :=] — 2c,2af4r and € < A. Then there exists a measure p satisfying
(5.1) such that the function c is also defined by (5.2) (see also Proposition
4.5 case 2). Therefore the small time expansion of the conjugate heat kernel
1s Borel-Nevalinna or Borel-Watson summable in every direction belonging to
7(I). Functions like ¢ = e‘”lz, ~v > 0, satisfy such a property.

6 Appendix

Here is a proof of Lemma 3.6.
For the sake of simplicity, we assume B = Id. For § € N”, we denote
[0] =861+ ---+d,. For m,k € R and p € N, we denote by

m,k v v
Sy (] =T, T[xR” x R”)
the set of smooth functions f = f(¢t,x,y) on | — T, T[xR” x R” such that
Y(¢q,7) € N*,3C > 0,Y(a, B,7) € N x N” x N”, ¥(t,x,9) €] — T, T[xR” x R,

a<p Bl < a1yl <= 107070) fI < O(L+ |a])™ (1 + [y])**.

For such a function, we denote by |f|m.k,p.q,» the best constant C satisfying the
previous inequality. For f € Sg“k (k < —v), let us denote

Ff(tz):= /R (47m't)*”/267(z*y)z/“teipt(z’y)f(t,x,y)dy.
We first establish some useful properties of this transform. Let f € S™*. Let

j=1..v.

e Using the symmetry of the free Schrodinger kernel and integration by
parts, one gets

Ou, Ff =Ff (6.1)

where

fom e D@y, 4 0y,) (Y f (8, ) € ST

Moreover there exists co > 0, which only depends on the coefficients of
Pi(x,y), such that

|f|m+1,k+1,p,q—1w—1 < 2| flm.k,p,gr
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e Since
1 N1 /D ()2 /i D)2 (o2 /i
;at((élmt) 12e=(z=y)"/4 Y = 85((47th) 12e=(z=y)"/4 )
and by integrations by parts, one gets
WFf=Ff (6.2)

where

fi= e—iPt(zvy)(iai +at)(eipt(zvy)f(t,$,y)) c S:n_g2,k+2_
Moreover there exists ¢; > 0 such that
|f|m+2,k+2,p71,q,r72 g Cl|f|m,k,p,q,r-

e We shall need to estimate x;F f. For this, we express the multiplication
operator by z; in a convenient way. Let us denote

(z —y)*
= —+ P .
¢ At + t(zay)
Let ¢ =1,...,v. Then
Yo —xg 1 1 ¢
ayg¢ = ot =+ §C(t> =+ 5 Z (ac,c’ (t>$<’ + b<,</(t)y</)
¢'=1
where ac ¢/, bc ¢, ¢ are smooth R-valued functions defined on | — T, T7.

Then

(1_ta§,§(t))$§_t Z ac,or(t)zgr = yo+te(t)—2t0y o+t Z becr (t)yer-
¢'=1

=1

XS
Let us consider the above equations as a system of v equations where
the unknowns are x1,...,x,. Then there exists T €]0,T[ such that, for
t E] — TQ, TQ[,

zj =u(t) - 0yd+o(t) -y +w(t)

where u, v (respectively w) are smooth R¥-valued (respectively R-valued)
functions defined on | — T, T[. These functions and T only depend on
the coefficients of the polynomial P;. Then, by integration by parts,

a; Ff:=Ff (6.3)

where ~
Fi=iu(t)-0,f + (v(t) -y +w(t)) f € STHHL

Moreover there exists ¢3 > 0 such that

|J;|m,k+17p7q7r—1 < 3 flm,k,pq.r-
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- Let k € Rand r € N. Let ¢ € S(R”) and u € Cp5 (] — T, T[xR?). Let us
denote

leller == sup _ (1+y))~*|07 -

[v|<ryely

By Leibniz formula, the function
[tz y) — ult,z,y)e(y)
belongs to S%F and for every p,q € N, there exists C' > 0 such that

|f|0,k,p,q,r < CH‘P”k,T

(C' depends on the function u and the numbers k,p, ¢,7). Let @ be defined by
(3.7). Then ©p = Ff. Let (o, 8,6) € N x N” x N¥. Let us assume that

E+2a+ B+ 0] < —v—1

. (6.4)
p—az20, ¢8>0, r—2a—B][—[6][ >0
Then, by (6.1), (6.2) and (6.3),
2 0p 0y = Ff

where 18],k [81+15]

3 20+ |8, k+2a+| 8]+

€5 aaisl ol
and 181 5]

| fl2a4181,k+20-+181+15],p—asa—|8l,r—2a—18]—|5] < €TCy 5 Cllo|lk,r-
Hence, for t €] — T, To[—{0} and = € RY,
|z00p00w| < Culamt| V2 (1 + |z])> ] /R 1+ |y~ dy x ||,

< Colt] TP+ )P ol
- Let p,q,k’ > 0. Let us choose k € R and r € N such that
k4+2p+q+k < -v—1
r—2p—q—k'>20
Then, if a < p, |8] < ¢ and |[6] < K/, (6.4) is satisfied and
Vt €] — Ty, To[—{0},Vz € RY, [2°03 00| < Calt|™/2(1 + |=[)*T4

where Cj is a positive number. Let & € R. Then there exists C; > 0, such that,
for t €] — To, To[—{0} and = € R”,

a < p,|B] < q= |0§0%p| < Cult| ™21+ |z)) .
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If Kk > 0 and g is a smooth function on | — Ty, To[—{0} satisfying, for every
N € N, max,<n |07g(t)] < Cnlt|~", then g is smooth on | — Ts, T5[ and

Sup 10y g(t)] < CCN+[K]+2
te]ng,TQ[,ngN

where ¢ only depends on x and Ty. Therefore, for every n € N, 9pp(t, ) €
S(R¥) and for every (K, q) € R x N there exist (k,r) € R x N and C > 0 such
that

sup (|0 (2, )|k g < Cllg]
te] -T2, Ts|

k,r-

i.e. the mapping ¢ — 1 is continuous.

- Let us consider the assertion on t|t—g. Let v € D(R”) be such that
v(z) =1if |z| < 1. Let x € R”. Then ¢ = 1 + 2 where ¢1(y) = v(y — 2)o(y)
and p2(y) = (1 —v(y — #))¢(y). Since both functions belong to the Schwartz
space, it suffices to check the claim for the corresponding v; and 1,. Since @2
vanishes on a neighbourhood of z, one gets 1, (t,2) = O(t™) by integrations
by parts. Since the support of the function ¢; is compact, ¥4 (-, z)|t=0 = p2(x).
This proves ¥|i—o = ¢.
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