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Some remarks on the complex heat kernel on C ν

in the scalar potential case∗†

Thierry Hargé

January 25, 2013

Abstract

In previous works, we used a so-called deformation formula in order

to study, in particular, the Borel summability of the heat kernel of some

operators. A goal of this paper is to collect miscellaneous remarks related

to these works. Here the complex setting plays an important role. More-

over, the deformation formula provides a solution of the heat equation in

“unusual” cases. We also give a uniqueness statement concerning these

cases.

1 Introduction

In previous works [Ha4, Ha5], we used a so-called deformation formula in order
to study the Borel summability of the heat kernel, p(t, x, y), associated to a
ν-dimensional partial differential operator (ν ∈ N∗). This formula is extended
to the non-autonomous case [Ha6]. The natural setting for this formula is a
complex one (t ∈ C,Ret > 0 and x, y ∈ Cν). For instance this formula is valid
for operators as

P := ∂2x+λx2 + c(x) := ∂2x1
+ · · ·+ ∂2xν

+λ(x21 + · · ·+x2ν)+ c(x1, . . . , xν) (1.1)

where λ ∈ R and the function c is the Fourier transform of a suitable Borel
measure. The aim of this paper is threefold:

1. Defining in a unique way the heat kernel associated to the operator P is a well
known procedure if λ 6 0. If λ > 0, one can use the commutator theorem [Re-
Si] for instance (see Remark 3.5). However, we look for a statement adapted
to a full complex setting and covering the non-autonomous case: P = P0 + c
where P0 is defined by (3.1). Here is the purpose of Proposition 3.2. The
statement and the proof of this proposition are standard. We assume that

∗This paper has been written using the GNU TEXMACS scientific text editor.
†Keywords: heat kernel, asymptotic expansion, Wigner-Kirkwood expansion, complex

variables, Borel summation; A.M.S. subject classification: 30E15, 32W30, 35K05, 35K08,
35C20
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the coefficients defining P0 satisfy a reality-preserving property; see (3.2).
This implies that the operator P0|iR is symmetric with respect to the L2

inner product. The unicity is therefore a consequence of the conservation of
the L2-norm for the solutions of the time dependent Schrödinger equation
associated to P0. Let us make the following remarks.

− In our setting, the Schrödinger kernel is viewed as the boundary value
of the heat kernel for imaginary1 values of t.

− Our goal is not to solve the heat equation but to study the heat kernel
as a function defined on some subset of C√· × C2ν (C√· denotes the

Riemann2 surface of the square root function).

About the existence problem, we use [Ha4] and [Ha6].

2. Considering a complex setting allows one to make some remarks.

We reformulate Proposition 3.2 by using the analytic dilation given by

(t, x, y) 7→ (eiǫt, eiǫ/2x, eiǫ/2y) , ǫ ∈ R/4πZ (1.2)

(see Corollary 4.1). As a consequence, we see that the deformation formula
provides a solution for the Schrödinger equation

i−1∂tp =
(
∂2x + λx2 + c(x)

)
p , p|t=0 = δx=y , (t ∈ R, |t| ≪ 1, x, y ∈ Rν)

with fast growing potentials such as, for instance, c(x) = ex
2

(see Corollary
4.3 and Remark 4.4). We do not state uniqueness in this case (this can be
done by keeping the complex point of view for the space variables). This
equation, in the free case (λ = 0), was considered by Kuna, Streit and West-
erkamp [K-S-W]. In this paper, the authors build a Feynman integral dealing
with such potentials. A version of the deformation formula can also be found
there [K-S-W, Remark 19].

Then we give a simple assumption on the potential c providing the existence
of the heat kernel on a conical neighboorhood of R+ but with an aperture
larger than π/2 (see Proposition 4.5).

3. We consider the Borel summability of the small time expansion of the conju-
gate of the heat kernel in the free case (λ = 0): we reformulate a statement
given in [Ha4] by using the analytic dilation given by (1.2). As in Proposi-
tion 4.5, we consider two cases. We consider a simple class of potentials for
which Borel-Nevalinna summability (see Section 5 for the definition) holds
in an arbitrary direction. Then we give assumptions on the potential c im-
plying Borel-Watson summability of this small time expansion instead of
Borel-Nevalinna summability as in [Ha4]. Borel-Nevalinna summability uses

1With our notation, a physical interpretation of the parameter t is the reciprocal of the
temperature which is a macroscopic variable. We denote by t the “physical” time.

2A ramification occurs in our statements if the dimension ν is odd: this is only due to the
existence of the factor t−ν/2 in the expression of the free heat kernel.
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that c is the Fourier transform of some Borel measure µ defined on Rν with
a suitable convergence assumption. Borel-Watson summability uses that c
is the Fourier transform of an analytic function defined on a conical neigh-
bourhood of Rν , with a similar convergence assumption. Let us remark that
Borel-Watson summability of a series is a central tool when the critical time
is a non-trivial power of the variable [Bals], [Ma-Ra].

We assume in this paper that the potential c is C-valued. Our statements also
hold if this potential is matrix-valued as in [Ha4] and [Ha6].

2 Notation

For z ∈ C, we denote sh z := 1
2 (e

z − e−z), ch z := 1
2 (e

z + e−z). Let ν > 1.
For λ, µ ∈ Cν , we denote λ · µ := λ1µ1 + · · · + λνµν , λ

2 := λ · λ. These
notations are extended to operators as ∂x := (∂x1

, . . . , ∂xν
). We also denote

λ̄ := (λ̄1, . . . , λ̄ν), |λ| := (λ · λ̄)1/2 (if λ ∈ Rν , |λ| =
√
λ2). We denote by π the

canonical projection from R/4πZ onto R/2πZ. For θ ∈ R/4πZ, we denote by
eiθ the element of C√·, the Riemann surface of the square root function, with

argument θ and modulus 1. Then C√· := {z = reiθ|r > 0, θ ∈ R/4πZ}. For

z = reiθ ∈ C√·, we denote z1/2 := r1/2eiθ/2. If z ∈ C, we also denote by z1/2

the square root of z which is defined up to a sign. Let m > 1 and θ ∈ R/2πZ.
For every subset A of Cm, we denote eiθA := {eiθz|z ∈ A}. We also use this
notation if θ ∈ R/4πZ and A ⊂ C√·. If α ∈ R/2kπZ (k ∈ N∗) and r ∈ R+, we

denote by ]α− r, α+ r[2kπ the open interval3 of R/2kπZ with end points α− r
and α+ r. We denoteC+ := {z ∈ C|Re(z) > 0} , C+ := {z ∈ C|Re(z) > 0}

and, if T > 0,

DT := {z ∈ C||z| < T } , D+
T := DT ∩C+ , D̄+

T := DT ∩ C+ .

Let B denote the collection of all Borel sets on Rm. An C-valued measure µ onRm is an C-valued function on B satisfying the classical countable additivity
property (see [Ru]). We denote by |µ| the positive measure defined by

|µ|(E) = sup
∞∑

j=1

|µ(Ej)|(E ∈ B),

the supremum being taken over all partitions {Ej} ofE. In particular, |µ|(Rm) <
∞.

We denote by D(eiθRm) the space of smooth functions with compact support
defined on eiθRm. If Ω is an open domain in Cm, we denote by A(Ω) the space
of C-valued analytic functions on Ω. These spaces are equipped with their

3r > kπ ⇒ ]α− r, α+ r[2kπ= R/2kπZ.
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standard Frechet structure (the semi-norms are indexed by compact sets and
eventually differentiation order). If U = eiθ] − T, T [ or eiθD̄+

T or C+ and F
is a Frechet space, C∞(

U,F
)
denotes the standard Frechet space of smooth

functions defined on U with values in F . For instance, if the topology of F is
defined by a family of semi-norms (| · |j)j∈J , the Frechet structure of C∞(

U,F
)

is defined by the semi-norms | · |α,j (|f |α,j = supt∈U |∂αt f(t)|j) if U = eiθ]−T, T [
or eiθD̄+

T . In the case U = C+ , suprema defining the semi-norms are taken over

compact sets C+ ∩ D(0, R) where R > 0. We now define global spaces (with
respect to the space variable). We denote by S(Rm) the space of Schwartz
functions:

f ∈ S(Rm) ⇔ ∀(α, β) ∈ Nm ×Nm, sup
z∈Rm

|zα∂βz f(z)| <∞.

We consider the following spaces of smooth functions

• if I =]− T, T [ or I = i]− T, T [

f ∈ C∞
b,1(I × Rm) ⇔

∀(α, β) ∈ N×Nm, ∃C > 0, ∀(t, z) ∈ I × Rm, |∂αt ∂βz f(t, z)| 6 C(1 + |z|)α.

• if I = R or I = iR
f ∈ C∞

b (I × Rm) ⇔ ∀(α, β) ∈ N×Nm, sup
(t,z)∈I×Rm

|∂αt ∂βz f(t, z)| <∞.

3 The heat kernel viewed from the positive di-

rection

3.1 The setting

Let U be a complex open neighbourhood of 0 ∈ C. Let P0 be the operator
acting on A(U × Cν), defined by

P0 = A(t) · (∂x +B(t)x) ⊗ (∂x +B(t)x) − C(t) · x⊗ x (3.1)

where A, B and C are ν × ν complex matrix-valued analytic functions on U .
We assume that the matrices A and C are symmetric and that the matrix A(0)
is real positive definite. We assume that

the functions A|iR, (iB)|iR and C|iR are real-valued near 0. (3.2)

Then the equation
∂tu = P0u

with the boundary condition

u|t=0+ = δx=y (3.3)
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admits an explicit solution

p0 :=
k(t)

(4π∆t)ν/2
e−

1
4t

A−1(0)·(x−y)2+Qt(x,y). (3.4)

Here ∆ := det
(
Aj,k(0)

)
16j,k6ν

, the function k is analytic near 0 and Qt denotes

a polynomial of total degree at most 2 in x, y whose coefficients are analytic near
0. Moreover these coefficients take their values in iR if x, y ∈ Rν and t ∈ iR,
|t| small enough (see [Ha6] and in particular Lemma 3.4, assertion 3). By (3.3)
we mean that for every ϕ ∈ D(Rν), x ∈ Rν and θ ∈ [−π/2, π/2]

∫Rν

u(reiθ , x, y)ϕ(y)dy −→r→0+ ϕ(x).

Let us consider two particular cases. Let λ ∈ R and let ω := 2(−λ)1/2. Let us
denote

pharm :=

(
4π

sh(ωt)

ω

)−ν/2

exp
(
−1

4

ω

sh(ωt)
(ch(ωt)(x2 + y2)− 2x · y)

)

and
pfree = (4πt)−ν/2e−(x−y)2/4t.

Then pharm (respectively pfree) satisfies

∂tu =
(
∂2x + λx2

)
u

(respectively ∂tu = ∂2xu) with the boundary condition (3.3).

3.2 An existence and uniqueness statement

In this section, our aim is to give an existence and uniqueness statement con-
cerning the equation

∂tu =
(
P0 + c(t, x)

)
u (3.5)

We also use the following definition in this section.

Definition 3.1 Let Tb > 0. Let f be a measurable C-valued function on DTb
×Rν , analytic with respect to the first variable and let µ∗ be a positive measure

on Rν such that for every R > 0

∫Rν

exp(R|ξ|) sup
|t|<Tb

|f(t, ξ)|dµ∗(ξ) <∞.

We denote by c the function belonging to A(DTb
× Cν) defined by

c(t, x) =

∫
exp(ix · ξ)f(t, ξ)dµ∗(ξ).
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Proposition 3.2 Let P0 be as above and let Tb > 0. There exists T > 0 such
that, for every f and µ∗ as in Definition 3.1, the following assertions hold.

1. For every ϕ ∈ S(Rν) there exists a unique ψ ∈ C∞(
i]−T, T [,S(Rν)

)
such

that 



∂tψ =
(
P0 + c(t, x)

)
ψ

ψ|t=0 = ϕ
(3.6)

and the mapping ϕ 7−→ ψ is continuous from S(Rν) onto C∞(
i]−T, T [,S(Rν)

)
.

2. Let p = p(t, x, y) be the kernel of the operator Pt : S(Rν) → S(Rν) defined
by Pt(ϕ) = ψ(t, ·) for t ∈ i]− T, T [. Then p can be uniquely extended as a
function in C∞(

D̄+
T −{0},A(C2ν)

)
∩A

(
(D+

T −{0})×C2ν
)
. This function

satisfies (3.5) on (D̄+
T − {0})× C2ν and (3.3). Moreover

p = p0 × pconj

where pconj = pconj(t, x, y) ∈

A(D+
T × C2ν) ∩ C∞(

D̄+
T ,A(C2ν)

)
∩ C∞

b,1(i]− T, T [×R2ν).

3. Let us assume that P0 = ∂2x (free case). Then

pconj ∈ A(C+ × C2ν) ∩ C∞(C+ ,A(C2ν)
)
∩ C∞

b (iR× R2ν).

Remark 3.3 The spaces C∞(
D̄+

T ,A(C2ν)
)
and A(D+

T × C2ν) are local in the
following meaning: the semi-norms are defined by taking suprema over compact
sets. The spaces S(Rν ) and C∞

b,1(i]− T, T [×R2ν) are global, which is useful for
the uniqueness statement. By (3.4)

p0 = pfree × p1

where p1 ∈ A(DT × C2ν) for some T > 0. However one can not replace p0 by
pfree in the statement of Proposition 3.2 since p1 6∈ C∞

b,1(i]− T, T [×R2ν) in the
general case.

Remark 3.4 The reality-preserving property (3.2) is useful for the uniqueness
statement. This assumption implies that the operator P0|iR is symmetric with
respect to the L2 inner product.

Remark 3.5 Let us assume that P0 = ∂2x+λx
2 where λ ∈ R, that the potential

c does not depend on t. Since c ∈ L∞(Rν), by [Re-Si, Th. X.36], the operator
P0+c is self-adjoint on a domain containing the domain of the operator −∂2x+x2.
See also [Bo-Ca-Hä-Mi]. Therefore one can define the Schrödinger operator for
the operator P0. By [Ha4], its kernel admits a (unique) analytic continuation on
(D̄+

T − {0})× C2ν if T is small enough. This yields an alternative formulation
of Proposition 3.2 in the harmonic case.
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3.3 Proof of Proposition 3.2

We need the following lemma.

Lemma 3.6 Let T > 0 and let B be a ν × ν real positive definite symmetric
matrix. Let Pt be a polynomial with respect to x, y ∈ Rν , of degree at most 2,
with coefficients belonging to C∞(] − T, T [,R). There exists T2 > 0 such that,
for every u ∈ C∞

b,1(]− T, T [×R2ν) and every ϕ ∈ S(Rν), the function ψ defined
by

ψ(t, x) :=

∫Rν

(detB
4πit

)ν/2

e−B·(x−y)2/4iteiPt(x,y)u(t, x, y)ϕ(y)dy (3.7)

belongs to C∞(
] − T2, T2[,S(Rν)

)
. The mapping ϕ 7−→ ψ is continuous from

S(Rν) into C∞(
]− T2, T2[,S(Rν)

)
. Moreover, if eiP0(y,y) × u(0, y, y) = 1, then

ψ|t=0 = ϕ.

Such a result is standard. The proof is given in the Appendix.
Let us prove Proposition 3.2. The assertion 1, of course, is a well-known

statement. However, for the convenience of the reader and the completeness of
the paper, we give its proof.

-1- In view of the uniqueness statement in assertion 1, let us consider ψ ∈
C∞(

i]− T, T [,S(Rν)
)
satisfying (3.6) with ϕ = 0. Let

E(t) :=

∫Rν

ψ(it, x)ψ̄(it, x)dx,

R(t) := −2

∫Rν

Im
(
c(it, x)

)
ψ(it, x)ψ̄(it, x)dx.

Then by (3.2), for every t ∈] − T, T [, ∂tE = R(t). Since the function |c| is
bounded, there exists K > 0 such that |∂tE| 6 KE. Since ψψ̄ is bounded by
C(1 + |x|)−ν−1 for (t, x) ∈] − T, T [×Rν, one gets E|t=0 = 0 by the dominated
convergence theorem. Therefore E = 0 and ψ|i]−T,T [×Rν ≡ 0.

-2- Let us prove the existence statement in assertion 1. Let pconj be as in
[Ha6, Theorem 2.1]. Let ϕ ∈ S(Rν). Let

ψ(t, x) :=

∫Rν

(p0 × pconj)(t, x, y)ϕ(y)dy.

By (3.4)

(p0 × pconj)(it, x, y) = (4πi∆t)−ν/2e−A−1(0)·(x−y)2/4it × eiPt × k(it)pconj(it, x, y)

where the polynomial Pt satisfies the assumptions of Lemma 3.6. Then, by
Lemma 3.6, there exists T2 ∈]0, T ] such that ψ ∈ C∞(

i]−T2, T2[,S(Rν)
)
. More-

over the mapping ϕ 7−→ ψ is continuous from S(Rν) onto C∞(
i]−T, T [,S(Rν)

)
.

Since p0 × pconj satisfies (3.5) and pconj|t=0 = 1, (3.6) holds.
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-3- Let us prove assertion 2. By the regularity properties of pconj [Ha6,
Theorem 2.1], one gets a suitable extension of the kernel of the operator Pt. We
claim that this extension is unique. Let p1 and p2 be two extensions. Then

p = p1 − p2 ∈ A
(
(D+

T − {0})× C2ν
)
∩ C∞(

D̄+
T − {0},A(C2ν)

)

and p|(i]−T,T [−{0})×Rν = 0. Let (x, y) ∈ R2ν and let p̆ be the function on
DT − {0} defined by p̆(t) := 1Ret>0p(t, x, y). By regularity properties of p and
Cauchy-Riemann equations with respect to t, p̆ is smooth near iT/2 and satisfies
Cauchy-Riemann equations. Therefore the function p̆ is analytic near iT/2,
vanishes near iT/2 and actually on D+

T − {0}. Then by analytic continuation
with respect to the space variables the function p vanishes on (D+

T −{0})×C2ν.

-4- Assertion 3 can also be checked by considering the deformation formula
in the free case.

4 The heat kernel viewed from an arbitrary di-

rection

We must take into account the ramification of the heat kernel at t = 0 in
our statements. The ramification is only due to the term t−ν/2 in (3.4). Let
ǫ ∈ R/4πZ. Then the free heat kernel pfree is invariant, up to a multiplicative
constant, under the change of variables

(t, x, y) 7→ (eiǫt, eiǫ/2x, eiǫ/2y) (4.1)

and the free heat equation is invariant under the change of variables (t, x) 7→
(eiǫt, eiǫ/2x). This elementary remark allows a reformulation of Proposition 3.2
(we only consider the harmonic case for the sake of simplicity). We denote4

pharmǫ :=
(
4πe−iǫt

)−ν/2 ×
(
sh(ωe−iǫt)

ωe−iǫt

)−ν/2

exp
(
−1

4

e−iπ(ǫ)ω

sh(ωe−iǫt)
(ch(ωe−iǫt)(x2+ y2)− 2x ·y)

)
, |t| ≪ 1 ,

pfreeǫ :=
(
4πe−iǫt

)−ν/2
exp

(
− 1

4t
(x− y)2

)
.

Corollary 4.1 Let λ ∈ R and ǫ ∈ R/4πZ. There exists T > 0 such that the
following statement holds. Let µ be a complex measure on Rνsuch that for every
R > 0 ∫Rν

exp(R|ξ|)d|µ|(ξ) <∞. (4.2)

Let

c(x) =

∫Rν

exp(ie−iǫ/2x · ξ)dµ(ξ).

Then the following assertions hold.

4Only the first factor of the product defining pharmǫ is concerned by the ramification.
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1. For every ϕ ∈ S(eiǫ/2Rν) there exists a unique ψ ∈ C∞(
ieiǫ]−T, T [,S(eiǫ/2Rν)

)

such that 



∂tψ =
(
∂2x + λe−2iπ(ǫ)x2 + c(x)

)
ψ

ψ|t=0 = ϕ

and the mapping ϕ 7−→ ψ is continuous from S(eiǫ/2Rν) onto C∞(
ieiǫ]−

T, T [,S(eiǫ/2Rν)
)
.

2. Let p = p(t, x, y) be the kernel of the operator Pt : S(eiǫ/2Rν) → S(eiǫ/2Rν)
defined by Pt(ϕ) = ψ(t, ·) for t ∈ ieiǫ] − T, T [. Then p can be uniquely
continued as a function belonging to

A
(
eiǫ(D+

T − {0})× C2ν
)
∩ C∞(

eiǫ(D̄+
T − {0}),A(C2ν)

)
.

Moreover
p = pharmǫ × pconj

where pconj = pconj(t, x, y) ∈

A(eiπ(ǫ)D+
T × C2ν) ∩ C∞(

eiπ(ǫ)D̄+
T ,A(C2ν)

)
∩ C∞

b,1(ie
iπ(ǫ)]− T, T [×R2ν).

3. Let us assume that λ = 0. Then

pconj ∈ A(eiπ(ǫ)C+ ×C2ν)∩C∞(
eiπ(ǫ)C+ ,A(C2ν)

)
∩C∞

b (ieiπ(ǫ)R×R2ν).

Figure 4.1:

eiπ(ǫ)R+

eiπ(ǫ)D
+

T

Re t

Imt

T

π(ǫ)
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Remark 4.2 Let ǫ ∈ R/4πZ. Let f = f(t, x, y) be a continuous function on(
eiǫ(D̄+

T − {0})
)
× Cν × Cν . We say that f goes to δx=y in the direction eiǫ

and write
f |t=eiǫ0+ = δx=y

if and only if for every θ, ϑ ∈ R/4πZ, |θ − ǫ| 6 π/2, |θ − 2ϑ| 6 π/2 and every
ϕ ∈ D(eiϑRν), x ∈ eiϑRν

∫

eiϑRν

f(reiθ, x, y)ϕ(y)dy −→r→0+ ϕ(x).

Here dy = eiϑνdm(y) where m denotes the standard (non negative) Lebesgue
measure on eiϑRν . Then the kernel p satisfies on eiǫ(D+

T − {0})× C2ν





∂tp =
(
∂2x + λe−2iπ(ǫ)x2 + c(x)

)
p

p|t=eiǫ0+ = δx=y

(4.3)

since, for every smooth function g = g(t, x, y) on eiπ(ǫ)D̄+
T ×Cν ×Cν such that

g|t=0 = 1, the function pfreeǫ × g goes to δx=y in the direction eiǫ.

Let us choose ǫ = π. Then we get a solution p such that pconj is defined on

{
t = |t|eiθ ∈ C|θ ∈ [π/2, 3π/2]4π, |t| < T

}
× C2ν

or
{
t ∈ C|θ ∈ [π/2, 3π/2]4π

}
× C2ν if λ = 0. In particular, by considering

values of t such that arg t = π/2, 3π/2, we obtain the following result about the
standard Schrödinger equation.

Corollary 4.3 Let µ as in Corollary 4.1. Let

c(x) =

∫Rν

exp(x · ξ)dµ(ξ). (4.4)

Let λ ∈ R. Then there exist T > 0 and

pconj = pconj(t, x, y) ∈ C∞(
]− T, T [,A(C2ν)

)

such that p = pharmǫ × pconj satisfies





1
i ∂tp =

(
∂2x + λx2 + c(x)

)
p , x ∈ Rν , t ∈]− T, T [

p|t=0 = δx=y , y ∈ Rν
. (4.5)

If λ = 0, pconj ∈ C∞(R,A(C2ν)
)
.

Remark 4.4 The assumption (4.2), since c is given by (4.4), allows potentials
such as

V (x) = λx2 ± ex
2

, V (x) = λx2 ± ex1, . . .
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In the case λ = 0, this fact was noticed by Kuna, Streit and Westerkamp [K-

S-W]. In particular the function x 7−→ ex
2

is viewed as a perturbation of the
operator ∂2x + λx2 (the deformation formula is used to deal with this part of the
potential V ) whereas the function x 7−→ λx2 is not viewed as a perturbation of
the operator ∂2x in our method. Using a complex point of view with respect to the
space variables perhaps explains this “paradox”. A related remark can be done
for the uniqueness problem: we do not claim that (4.5) has a unique solution
in its natural real setting. However it does, if we consider complex values for
the space variables (x, y ∈ eiπ/2Rν), by taking advantage of the uniqueness
statement of Corollary 4.1.

Notice that the dilation given by (t, x, y) 7→ (eiπt, ix, iy) (ǫ = π in 4.1), which
allows one to view Corollary 4.3 as a consequence of Corollary 4.1, “reverses”
the direction of t.

Another viewpoint is formally related to the previous proposition. For θ > 0,
let R+,ν

≺,θ := {eiϕx ∈ Cν |x ∈ (R+)ν , ϕ ∈]− θ, θ[2π},Rν
≺,θ := {eiϕx ∈ Cν |x ∈ Rν , ϕ ∈]− θ, θ[2π},R+

≺,θ := {reiϕ ∈ C|r > 0, ϕ ∈]− θ, θ[2π}.
One has

Proposition 4.5 Let θ, α ∈]0, π/4[. Let µ be a C-valued Borel measure on Cν .
Let us assume (case 1) that R+,ν

≺,θ contains the support of µ and that

∀R > 0,

∫Cν

exp(R|ξ|)d|µ|(ξ) <∞

or (case 2) that dµ(ξ) = ĉ(ξ)dξ where ĉ denotes an analytic function on Rν
≺,α

satisfying
∀R > 0, ∃K > 0, ∀ξ ∈ Rν

≺,α , |ĉ(ξ)| 6 Ke−R|ξ|.

Let F = Cν (case 1) or F = Rν (case 2). Let

c(x) :=

∫

F

exp(ix · ξ)dµ(ξ).

Then, by the deformation formula,

− case 1: The heat equation associated to the operator ∂2x+c(x) has a solution
p defined on

(R+
≺,π/2−2θ − {0}

)
× C2ν satisfying the following boundary

condition. For every ϕ ∈ D(Rν), x ∈ Rν and α ∈]− π/2 + 2θ, π/2− 2θ[
∫Rν

p(reiα, x, y)ϕ(y)dy −→r→0+ ϕ(x).

− case 2: The heat kernel of the operator ∂2x + c(x), which is defined onR+ ×R2ν , admits an analytic continuation on
(R+

≺,π/2+2α − {0}
)
×C2ν .

11



Figure 4.2:

R+
≺,π

2
−2θ

Re t

Imt

π
2 − 2θ

case 1

R+
≺,π

2
+2α

Re t

Imt

π
2 + 2α

case 2

Proof Let pconj :=
∑

n>0 vn where

vn := tn
∫

0<s1<···<sn<1

∫

F

ei
(
y+s(x−y)

)
·ξ exp

(
−ts(1− s) ·n ξ ⊗ ξ

)
dνnµ⊗(ξ)dns,

(
y + s(x− y)

)
· ξ :=

(
y + s1(x − y)

)
· ξ1 + · · ·+

(
y + sn(x− y)

)
· ξn,

s(1− s) ·n ξ ⊗ ξ :=

n∑

j,k=1

sj∧k(1− sj∨k)ξj · ξk,

dνnµ⊗(ξ) := dµ(ξn) · · · dµ(ξ1).
We first check that the series defining pconj is convergent.

(case 1) We claim that pconj = pconj(t, x, y) ∈ A(R+
≺,π/2−2θ ×C2ν). One has

|x|, |y| 6 R⇒
∣∣ exp

(
i
(
y + s(x− y)

)
· ξ
)∣∣ 6 eR|ξ1| × · · · × eR|ξn|.

Since 2θ < π/2, R+
≺,2θ is a convex cone. Then

t ∈ R+
≺,π/2−2θ, ξ ∈ supp(µ⊗) ⇒ Re

(
ts(1 − s) ·n ξ ⊗ ξ

)
> 0.

This implies the convergence of the series defining pconj and the analyticity of
pconj.

(case 2) We claim that pconj ∈ A(R+
≺,π/2+2α × C2ν). Let β ∈]0, α[. Since

the function ĉ is analytic on Rν
≺,α, one gets by a deformation of the integration

contour,

vn := e−iνnβtn
∫

0<s1<···<sn<1

∫Rνn

eie
−iβ

(
y+s(x−y)

)
·ξ

12



exp
(
−te−2iβs(1− s) ·n ξ ⊗ ξ

)
ĉ(e−iβξ1) · · · ĉ(e−iβξn)d

νnξdns.

Therefore the convergence of the series defining pconj and the analyticity of
pconj hold for Re

(
e−2iβt

)
> 0 and x, y ∈ Cν . Since β is arbitrary, one gets that

pconj ∈ A(R+
≺,π/2+2α × C2ν).

By proceeding as in [Ha4], one can show that p = pfree × pconj satisfies the
heat equation. Moreover the boundary condition is satisfied. �

Example 4.6 Let θ1, . . . , θq ∈]− π/4, π/4[ and λ1, . . . , λq ∈ (R+)ν . Let

c(x) = exp
(
ieiθ1λ1 · x

)
+ · · ·+ exp

(
ieiθqλq · x

)
.

Then the function c satisfies the assumptions of Proposition 4.5 (case 1). We
do not attempt to give a uniqueness statement in this case.

Example 4.7 Let c(x) = e−x2

. By Proposition 4.5 (case 2) the heat kernel is
well defined on (C−]−∞, 0])× C2ν .

Remark 4.8 One can generalize Proposition 4.5 (case 2) in the harmonic case.
The proof needs a modification of [Ha4, Lemma 4.2].

5 Borel summability of the conjugate of the heat

kernel in an arbitrary direction

For the sake of simplicity, we only consider the free case in this section. Let
κ, T > 0. Let

S̃κ :=
{
z ∈ C|d(z, [0,+∞[) < κ

}
, D̃T :=

{
z ∈ C|Re(1

z

)
>

1

T

}
.

D̃T is the open disk of center T
2 and radius T

2 .

Definition 5.1 Let ǫ̇ ∈ R/2πZ. Let a1, . . . , ar, . . . ∈ C. The formal power
series f̃ =

∑
r>0 art

r is called Borel-Nevalinna (respectively Borel-Watson)

summable in the direction eiǫ̇ if

• the radius of convergence of the Borel transform of f̃ , f̂(τ) :=
∑∞

r=0
ar

r! τ
r,

does not vanish

• there exist κ > 0 (respectively θ > 0) such that the Borel transform can be
analytically continued on eiǫ̇S̃κ (respectively eiǫ̇R+

≺,θ)

• there exist K,T > 0 such that for every τ ∈ eiǫ̇S̃κ (respectively eiǫ̇R+
≺,θ)

|f̂(τ)| 6 Ke|τ |/T .
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If the power series f̃ is Borel-Nevalinna or Borel-Watson summable, the
Laplace transform of f̂

f(t) :=

∫ +∞

0

f̂(τ)e−
τ
t
dτ

t

is called the Borel sum of f̃ .

Figure 5.1:

eiǫ̇R+

eiǫ̇S̃κ

eiǫ̇R+
≺,θ

Re τ

Imτ

κ ǫ̇

θ

Figure 5.2:

eiǫ̇D̃T

Re t

Imt

eiǫ̇R+

ǫ̇
θ

eiǫ̇R+
≺,θ ∩DT
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Remark 5.2 If a power series f̃ is Borel-Nevalinna (respectively Borel-Watson)
summable in the direction eiǫ̇, then there exist T > 0 and θ > π/2 such that its
Borel sum is well defined for t ∈ eiǫ̇D̃T (respectively eiǫ̇R+

≺,θ ∩DT ). See [So].

The change of variables (4.1) allows us to give the following corollary of Theorem
3.1 [Ha4].

Corollary 5.3 Let ε > 0 and ǫ ∈ R/4πZ. Let µ be a C-valued measure on Rν

verifying ∫Rν

exp(εξ2)d|µ|(ξ) <∞. (5.1)

Let

c(x) =

∫
exp(ie−iǫ/2x · ξ)dµ(ξ) (5.2)

and let u be the solution of (4.3) where λ = 0. Let pconj be defined by u=pfreepconj.

Then pconj admits a Borel transform p̂conj (with respect to t) which is analytic
on C1+2ν . Let κ,R > 0 and let

C := 2
(∫

exp
(2κ
ε

+
ε

2
ξ2 +R|ξ|

)
d|µ|(ξ)

)1/2

.

Then, for every (τ, x, y) ∈ eiπ(ǫ)S̃κ × C2ν such that
∣∣Im(e−iǫ/2x)

∣∣ < R and∣∣Im(e−iǫ/2y)
∣∣ < R, ∣∣p̂conj(τ, x, y)

∣∣ 6 exp
(
C|τ |1/2

)
. (5.3)

Remark 5.4 By the estimate (5.3), the small time expansion of the conjugate
heat kernel is Borel-Nevalinna summable in the direction eiπ(ǫ) and its Borel
sum is equal to pconj.

We now illustrate Corollary 5.3 by simple examples.

Example 5.5 Let ǫ ∈ R/4πZ, ξ0 ∈ e−iǫ/2Rν−{0} and c(x) = exp(ix·ξ0). The
function c satisfies the assumptions of Corollary 5.3 hence the small time expan-
sion of the conjugate heat kernel is Borel-Nevalinna summable in the direction
eiπ(ǫ). For ǫ′ ∈ R/4πZ, π(ǫ′) 6= π(ǫ), the function c is not bounded on eiǫ

′/2Rν

and therefore does not satisfy the assumptions of Corollary 5.3 in the direction
eiε

′

: Corollary 5.3 can not be used to study the Borel-Watson summability of
this expansion in the direction eiπ(ǫ).

Example 5.6 Let c(x) = exp
(
ix1 + ieiπ/8x2

)
and let p be the solution given by

Proposition 4.5 (case 1). Then Corollary 5.3 can not help us to study the Borel
summability of the small time expansion of p.

Let us now consider c(x) = exp
(
ix1

)
+ exp

(
ieiπ/8x2

)
. Then by separation

of variables, the solution given by Proposition 4.5 is the product of two Borel-
Nevalinna summable expansions but in different directions.
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Example 5.7 Let K,A > 0 and α ∈]0, π/2[. Let ĉ be an analytical function onRν
≺,α satisfying, for every ξ ∈ Rν

≺,α,

|ĉ(ξ)| 6 Ke−A|ξ|2.

Let

c(x) :=

∫Rν

exp(ix · ξ)ĉ(ξ)dξ.

Let ǫ ∈ I :=]− 2α, 2α[4π and ε < A. Then there exists a measure µ satisfying
(5.1) such that the function c is also defined by (5.2) (see also Proposition
4.5 case 2). Therefore the small time expansion of the conjugate heat kernel
is Borel-Nevalinna or Borel-Watson summable in every direction belonging to
π(I). Functions like c = e−γx2

, γ > 0, satisfy such a property.

6 Appendix

Here is a proof of Lemma 3.6.
For the sake of simplicity, we assume B = Id. For δ ∈ Nν , we denote

|δ| = δ1 + · · ·+ δν . For m, k ∈ R and p ∈ N, we denote by

Sm,k
p (]− T, T [×Rν × Rν)

the set of smooth functions f = f(t, x, y) on ]− T, T [×Rν × Rν such that

∀(q, r) ∈ N2, ∃C > 0, ∀(α, β, γ) ∈ N×Nν ×Nν , ∀(t, x, y) ∈]− T, T [×Rν × R,
α 6 p, |β| 6 q, |γ| 6 r ⇒ |∂α

t
∂βx∂

γ
y f | 6 C(1 + |x|)m+α(1 + |y|)k+α.

For such a function, we denote by |f |m,k,p,q,r the best constant C satisfying the
previous inequality. For f ∈ Sm,k

p (k < −ν), let us denote

Ff(t, x) :=
∫Rν

(4πit)−ν/2e−(x−y)2/4iteiPt(x,y)f(t, x, y)dy.

We first establish some useful properties of this transform. Let f ∈ Sm,k
r . Let

j = 1, . . . , ν.

• Using the symmetry of the free Schrödinger kernel and integration by
parts, one gets

∂xj
Ff = F f̃ (6.1)

where

f̃ := e−iPt(x,y)(∂xj
+ ∂yj

)
(
eiPt(x,y)f(t, x, y)

)
∈ Sm+1,k+1

r−1 .

Moreover there exists c2 > 0, which only depends on the coefficients of
Pt(x, y), such that

|f̃ |m+1,k+1,p,q−1,r−1 6 c2|f |m,k,p,q,r.
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• Since

1

i
∂t
(
(4πit)−ν/2e−(x−y)2/4it

)
= ∂2y

(
(4πit)−ν/2e−(x−y)2/4it

)

and by integrations by parts, one gets

∂tFf = F f̃ (6.2)

where

f̃ := e−iPt(x,y)(i∂2y + ∂t)
(
eiPt(x,y)f(t, x, y)

)
∈ Sm+2,k+2

r−2 .

Moreover there exists c1 > 0 such that

|f̃ |m+2,k+2,p−1,q,r−2 6 c1|f |m,k,p,q,r.

• We shall need to estimate xjFf . For this, we express the multiplication
operator by xj in a convenient way. Let us denote

φ :=
(x− y)2

4t
+ Pt(x, y).

Let ς = 1, . . . , ν. Then

∂yς
φ =

yς − xς
2t

+
1

2
c(t) +

1

2

ν∑

ς′=1

(
aς,ς′(t)xς′ + bς,ς′(t)yς′

)

where aς,ς′ , bς,ς′ , c are smooth R-valued functions defined on ] − T, T [.
Then

(
1−taς,ς(t)

)
xς−t

ν∑

ς′ = 1
ς′ 6= ς

aς,ς′(t)xς′ = yς+tc(t)−2t∂yς
φ+t

ν∑

ς′=1

bς,ς′(t)yς′ .

Let us consider the above equations as a system of ν equations where
the unknowns are x1, . . . , xν . Then there exists T2 ∈]0, T [ such that, for
t ∈]− T2, T2[,

xj = u(t) · ∂yφ+ v(t) · y + w(t)

where u, v (respectively w) are smooth Rν -valued (respectively R-valued)
functions defined on ] − T2, T2[. These functions and T2 only depend on
the coefficients of the polynomial Pt. Then, by integration by parts,

xjFf := F f̃ (6.3)

where
f̃ := iu(t) · ∂yf +

(
v(t) · y + w(t)

)
f ∈ Sm,k+1

r−1 .

Moreover there exists c3 > 0 such that

|f̃ |m,k+1,p,q,r−1 6 c3|f |m,k,p,q,r.
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- Let k ∈ R and r ∈ N. Let ϕ ∈ S(Rν) and u ∈ C∞
b,1(]− T, T [×R2ν). Let us

denote
‖ϕ‖k,r := sup

|γ|6r,y∈Rν

(1 + |y|)−k|∂γyϕ|.

By Leibniz formula, the function

f : (t, x, y) 7−→ u(t, x, y)ϕ(y)

belongs to S0,k
r and for every p, q ∈ N, there exists C > 0 such that

|f |0,k,p,q,r 6 C‖ϕ‖k,r

(C depends on the function u and the numbers k, p, q, r). Let ψ be defined by
(3.7). Then ψ = Ff . Let (α, β, δ) ∈ N×Nν ×Nν . Let us assume that





k + 2α+ |β|+ |δ| < −ν − 1

p− α > 0 , q − |β| > 0 , r − 2α− |β| − |δ| > 0
. (6.4)

Then, by (6.1), (6.2) and (6.3),

xδ∂α
t
∂βxψ = F f̃

where
f̃ ∈ S

2α+|β|,k+2α+|β|+|δ|
r−2α−|β|−|δ|

and
|f̃ |2α+|β|,k+2α+|β|+|δ|,p−α,q−|β|,r−2α−|β|−|δ| 6 cα1 c

|β|
2 c

|δ|
3 C‖ϕ‖k,r.

Hence, for t ∈]− T2, T2[−{0} and x ∈ Rν ,

∣∣xδ∂α
t
∂βxψ

∣∣ 6 C1|4πt|−ν/2(1 + |x|)2α+|β|
∫Rν

(1 + |y|)−ν−1dy × ‖ϕ‖k,r

6 C2|t|−ν/2(1 + |x|)2α+|β| × ‖ϕ‖k,r.

- Let p, q, k′ > 0. Let us choose k ∈ R and r ∈ N such that




k + 2p+ q + k′ < −ν − 1

r − 2p− q − k′ > 0
.

Then, if α 6 p, |β| 6 q and |δ| 6 k′, (6.4) is satisfied and

∀t ∈]− T2, T2[−{0}, ∀x ∈ Rν ,
∣∣xδ∂α

t
∂βxψ

∣∣ 6 C3|t|−ν/2(1 + |x|)2p+q

where C3 is a positive number. Let k̄ ∈ R. Then there exists C4 > 0, such that,
for t ∈]− T2, T2[−{0} and x ∈ Rν ,

α 6 p, |β| 6 q ⇒
∣∣∂α

t
∂βxψ

∣∣ 6 C3|t|−ν/2(1 + |x|)−k̄.
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If κ > 0 and g is a smooth function on ] − T2, T2[−{0} satisfying, for every
N ∈ N, maxn6N |∂n

t
g(t)| 6 CN |t|−κ, then g is smooth on ]− T2, T2[ and

sup
t∈]−T2,T2[,n6N

|∂n
t
g(t)| 6 cCN+[κ]+2

where c only depends on κ and T2. Therefore, for every n ∈ N, ∂n
t
ψ(t, ·) ∈

S(Rν) and for every (k′, q) ∈ R×N there exist (k, r) ∈ R×N and C > 0 such
that

sup
t∈]−T2,T2[

‖∂n
t
ψ(t, ·)‖k′,q 6 C‖ϕ‖k,r.

i.e. the mapping ϕ 7−→ ψ is continuous.

- Let us consider the assertion on ψ|t=0. Let γ ∈ D(Rν) be such that
γ(z) = 1 if |z| 6 1. Let x ∈ Rν . Then ϕ = ϕ1 +ϕ2 where ϕ1(y) = γ(y− x)ϕ(y)
and ϕ2(y) =

(
1 − γ(y − x)

)
ϕ(y). Since both functions belong to the Schwartz

space, it suffices to check the claim for the corresponding ψ1 and ψ2. Since ϕ2

vanishes on a neighbourhood of x, one gets ψ2(t, x) = O(t∞) by integrations
by parts. Since the support of the function ϕ1 is compact, ψ2(·, x)|t=0 = ϕ2(x).
This proves ψ|t=0 = ϕ.
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