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Abstract—Algorithms for supervised classification problems
usually does not consider imprecise data, e.g., observed data
whose samples can be represented by a collection of intervals,
histograms, list of values, fuzzy sets among others. Fuzzy theory
is a naturally choice for imprecise data. On the other hand,
the state of the art techniques such a kernel methods are still
a natural choice for supervised classification problems because
of its robustness. Under some assumptions, Takagi-Sugeno-Kang
(TSK) fuzzy system rules are equivalent to positive definite
kernels (PDK) but such relationship was given considering only
singleton fuzzy sets to model crisp input. Imprecise data are
better modeled by membership functions of nonsingleton fuzzy
sets but the relationship among nonsingleton fuzzy input, TSK
fuzzy systems and PDK was up to our knowledge unknown. In
this work, we study such relationship. We formulate an extension
of TSK fuzzy systems to deal with nonsingleton fuzzy input and
then we show that a new class of PDK are derived from it.
We give three examples of nonsingleton TSK kernels which are
close related to Vapnik’s vicinal kernels. Also, based on those
TSK induced kernels and on the concept of distance substitution
kernels, we formulate two PDK for interval data. Potential
applications for the proposed kernels are pattern recognition
problems with imprecise data. Experiments conducted with
interval datasets show better performance than state of the art
approaches.

I. INTRODUCTION

Machine learning algorithms usually work only with crisp

data or with crisp representation of imprecise data. Imprecise

data is due to measurement errors, missing values, noise

values, or it is usually added by instruments or by some

preprocessing data transformations that involve sampling, ran-

domness or numerical imprecision.

Some real examples of imprecise data are: (1) gene-

expression data - because of the complexity of the biological

experiments, almost all causes written before are present, in

special, the final quantification of the expression for each

gene that is due to a statistical model of the many sources

of variation; (2) some medical data - in the diagnosis of

dyslexia, for instance, patients solve graphical tests which are

subjectively evaluated by experts, in the form of linguistic

terms (e.g., “near 10”, “between 4 and 7”). Clinical data

is prune to several problems, in special, missing values; (3)

weather databases - climate indicators along the day are better

represented by intervals, for instance, temperature between 3

and 7 degrees, CO2 between 394.1 and 394.2 parts per million,

Wind between 7 and 10 miles per hour, Humidity between 10
and 16 percent and Sea level between 2.3 and 3.5 meters. (4)

economics - some data is better represented by intervals or

histograms among others, e.g., country’s income distribution,

histograms of people’s systolic pressure, among others, are

better described by density-like distributions or fuzzy sets.

Some emergent areas such as fuzzy statistics [1] and Symbolic

Data Analysis (SDA) [2] search to deal with that kind of data.

From this perspective, machine learning algorithms able

to perform some tasks using imprecise data would have a

pragmatic importance. However, imprecise data is frequently

preprocessed to obtain crisp values. The drawback is that we

loose important information about the problem.

Fuzzy theory is the naturally choice to deal with imprecise

data. On the other hand, kernel methods such as Support

Vector Machines (SVM) are the state of the art methods in

Machine Learning. It is worth noticing that fuzzy rule-base

classifiers can be trained using SVMs, introducing some of the

SVM’s advantages in fuzzy classifier design [3]–[10], such as

the nonlinear mapping given by positive definite kernels.

A. kernel methods and fuzzy rules

The research done in machine learning using fuzzy set

theory and positive definite kernels for data analysis can be

grouped in two main groups. In the first one, fuzzy theories

does not involve as a necessary consequence positive definite

kernels (or vice versa), some specific fuzzy techniques and

positive definite kernels are used to solve particular problems.

Some works in clustering [11]–[13], classification problems

with outliers or noises [14], feature extraction [15], discrimi-

nant analysis [16] among others are in this group.

In the second group, fuzzy set concepts always imply

positive definite kernels (or vice versa), we list some of them

(1) Kernels and fuzzy rules: under a general assumption

of T-norm operators and membership functions, positive def-

inite kernels are equivalent to interaction between the fuzzy

system input and fuzzy rules [5], [17]. Papers [3], [6]–[10]

use this characteristic to train fuzzy classifiers with SVM.

(2) Kernels and fuzzy basis functions: using general fuzzy

implication operators in fuzzy systems, and by constructing



vectors with fuzzy basis function as components, a positive

definite linear kernel is obtained by computing the inner

product of those vectors [18].

(3) Kernels and fuzzy equivalence relations: positive

definite kernels that maps to the unit interval with constant

one in the diagonal can be seen as fuzzy equivalence relations,

and vice versa under some assumptions [19], [20]. A recent

work [21] describe kernels that include some prior knowledge

as fuzzy equivalence relations.

B. Contributions

All the precedent works relating positive definite kernels and

fuzzy rules only consider crisp inputs in the form of singletons

fuzzy sets in their analysis. Because imprecision in data is

better modeled by some functions rather that crisp values, i.e.,

nonsingleton fuzzy sets, we will consider that situation in the

context of positive definite kernel methods and Takagi-Sugeno-

Kang fuzzy systems.

We claim the following contributions.

• Nonsingleton TSK fuzzy logic system. We present an

extension of classical TSK fuzzy systems to deal with

nonsingleton fuzzy input.

• Nonsingleton TSK positive definite kernels. We show

that interaction between nonsingleton TSK fuzzy rules

and nonsingleton fuzzy inputs induce a class of positive

definite kernel functions.

• Kernels for interval data. Using nonsingleton TSK fuzzy

kernels, and distance substitution kernels, we give a new

general view to construct positive definite kernels for

interval data.

Experiments are conducted for all the proposed kernels

using a Soft C-SVM [22] in datasets with samples containing

missing and interval values.

II. FUZZY SYSTEMS

Fuzzy systems are universal approximators of func-

tions [23]. They are composed of a set of if-then rules

called the rule-base, a fuzzifier and, optionally, an inference

algorithm and a defuzzifier.

A. Fuzzy set, Rule base and T-norm

Let U the universe of discourse. A fuzzy set F is the set

defined on U and with membership function (MF) µF : U →
[0, 1].

A rule-base is a set of If-Then rules indexed by l ∈
{1, 2, . . . , L}, of the form:

If ũ1 is F̃ l
1 and. . . and If ũp is F̃ l

p Then ṽ is G̃l, (1)

where {ũj}pj=1
∪ {ṽ} are called linguistic variables and

{F̃ l
j}pj=1

∪ G̃l are their respective linguistic values [24].

In fuzzy systems, linguistic values are represented by fuzzy

sets. Rules can be completely described by fuzzy sets. For

example, the rule l given by Equation (1) can be described

by the fuzzy sets {F l
j}pj=1

∪ Gl defined in their respective

universes of discourse {Uj}pj=1
∪ V .

Fuzzy relations, i.e., fuzzy sets defined in the Cartesian

product of several universes of discourses, are used to rep-

resent the if part of rules or antecedent part. The MF’s of

such fuzzy relations are obtained by T-norms operators [25]

which are used to implement conjunction in fuzzy logic and

consequently fuzzy set intersection.

A triangular norm or T-norm is the function T : [0, 1]2 →
[0, 1], that for all x, y, z ∈ [0, 1] satisfy:

T1 commutativity: T (x, y) = T (y, x);
T2 associativity: T (x, T (y, z)) = T (T (x, y), z);
T3 monotonicity: y ≤ z ⇒ T (x, y) ≤ T (x, z);
T4 boundary condition T (x, 1) = x.

Using n ∈ N and associativity, a multiple-valued extension

Tn : [0, 1]n → [0, 1] of a T-norm T is given by

Tn(x1, x2, . . . , xn) = T (x1, Tn−1(x1, x2, . . . , xn−1)). (2)

We will use T to denote T or Tn.

Definition II.1 (Rule antecedent part representation by fuzzy

relation and T-norm). Let
∏p

j=1
Uj the Cartesian product of

universes of discourse. Let x = (x1, x2, . . . , xp) ∈
∏p

j=1
Uj .

Let {F l
j ⊂ Uj}pj=1

fuzzy sets with their respective MF’s

{µF l
j
}pj=1

. The antecedent part of the l rule given by

If ũ1 is F̃ l
1 and. . . and If ũp is F̃ l

p, (3)

is represented by the fuzzy relation Al ⊂ ∏p
j=1

Uj with MF

µAl :
∏p

j=1
Uj → [0, 1] given by

µAl(x) = T (µF l
1

(x1), µF l
2

(x2), . . . , µF l
p
(xp)), (4)

Following Definition (II.1), fuzzy rules from Equation (1)

can be characterized by fuzzy relations Rl ⊂ ∏p
j=1

Uj × V
with MF µRl :

∏p
j=1

Uj × V → [0, 1] given by

µRl(x, y) = I(µAl(x), µGl(y)), (5)

where I is some fuzzy implication operator (see [26]).

B. Fuzzifier and fuzzy input

Because all the operations performed in fuzzy systems are

done using fuzzy sets, it is necessary to turn crisp input into

fuzzy sets, this is done by the fuzzifier.

The fuzzifier transform the crisp input (x1, . . . , xp) ∈∏p
j=1

Uj into fuzzy sets X1 ⊂ U1, . . . , Xp ⊂ Up with MF’s

{µXj
: Uj → [0, 1]}pj=1

1.

The singleton fuzzifier converts a value xj ∈ R in a

singleton fuzzy set whose support is a single value. i.e., the

membership function satisfy µXj
(xj) = 1 and µXj

(x) = 0
for all x ∈ R with x 6= xj .

On the other hand, the nonsingleton fuzzifier converts the

value xj ∈ R in a fuzzy set whose support are several values,

for example, the Gaussian fuzzifier converts the point xj in a

fuzzy set with membership function µXj
(x) = exp(−γ(x −

1The fuzzifier can also be applied to transform sets into fuzzy sets or to
increase the fuzziness of fuzzy sets, but we are only interested in the above
definition.



xj)
2), γ ∈ R

+ and the triangular fuzzifier in the fuzzy set with

membership function µXj
(x) = (1− |x− xj |/bj), bj ∈ R

+.

Definition II.2 (Fuzzy input). Let X1 ⊂ U1, . . . , Xp ⊂ Up

be fuzzy sets with MF’s {µXj
: Uj → [0, 1]}pj=1

obtained

after the fuzzification of x = (x1, x2, . . . , xp) ∈ ∏p
j=1

Uj .

The fuzzy input is the fuzzy relation I ⊂ ∏p
j=1

Uj with MF

µI :
∏p

j=1
Uj → [0, 1] given by

µI(x) = T (µX1
(x1), µX2

(x2), . . . , µXp
(xp)). (6)

We will call singleton fuzzy input if it was used the

singleton fuzzifier or nonsingleton fuzzy input if it was used

the nonsingleton fuzzifier.

C. Inference Algorithm

The third part of a fuzzy system is an inference algorithm

whose arguments are the fuzzy input and the rule-base. In

Mamdani fuzzy systems, the inference algorithm uses fuzzy

composition between the fuzzy input I (Definition II.2) and

one element of the rule base given by Rl (Equation 5) to obtain

the fuzzy set Y l with membership function

µY l(y) = sup
x∈Rp

T (µI(x), µRl(x, y)).

The system output is a fuzzy set given by computing

⊕L
l=1

Y l. where ⊕ is a T-conorm operator [25]. Optionally,

it can be used a defuzzifier to convert the output fuzzy set to

a crisp value.

D. Takagi-Sugeno-Kang fuzzy system

Takagi-Sugeno-Kang (TSK) fuzzy system does not have a

fuzzy set in the consequent part of their rules, it has a function

of the p antecedents values instead, then, it is not necessary

either fuzzy composition or defuzzification step. In first order

TSK fuzzy systems each rule is written as

If ũ1 is F̃ l
1. . . If ũp is F̃ l

p Then gl(x) = cl0 +

p∑

j=1

cljxj .

(7)

The input space is divided into fuzzy regions by antecedents

(if -part) and the system behavior in those regions is described

by consequents in the form of functions gl(x) : Rp → R given

by gl(x) = cl0 + 〈x, c〉, x, c ∈ R
p, cl0 ∈ R.

Following Definition (II.1) and setting all the universe of

discourses equals to R, each rule of a TSK fuzzy system define

a function f l : Rp → R given by

f l(x) = gl(x)µAl(x), (8)

The output of the first order TSK fuzzy system is given by

the combination of the their L rules in the following manner

h(x) =

∑L
l=1

f l(x)
∑L

l=1
µAl(x)

. (9)

III. KERNELS AND FUZZY RULES

A Kernel is a function k from X × X to R, where X
is an arbitrary finite set. The function k is called positive

definite if the n × n matrix Qij = k(xi, xj) is positive

semidefinite, that is, c⊤Qc ≥ 0 for any choice of c ∈ R
n and

any choice of xi ∈ X (see for instance ref. [27] or [28] for

details). In machine learning this property is important because

k(xi, xj) defines implicitly an inner product 〈Φ(xi),Φ(xj)〉
in a Reproducing Kernel Hilbert Space Hk, using the implicit

map Φ : X → Hk. Also, positive definite kernels are useful to

construct optimization algorithms for machine learning prob-

lems, ensuring that kernel algorithms converge to a relevant

solution.

A. Takagi-Sugeno kernel

By the form of consequents, there are two positive definite

kernels induced from interaction between TSK fuzzy rules and

fuzzy inputs.

Lemma 1 (PDFC kernel [5]). If all the MF’s of the fuzzy

sets of the antecedent part of the l rule (Definition (II.1))

are generated by translating the positive definite functions

u : R → [0, 1] defined as:

u(x) =

{
u(−x) if x 6= 0

1 if x = 0,
, x ∈ R, (10)

such that µF l
j
(xj) = uj(xj − zlj) for some parameter zlj ∈ R,

then the kernel k : Rp × R
p → R given by

k(x, zl) =

p∏

j=1

uj(xj − zlj) =

p∏

j=1

µF l
j
(xj),x, z ∈ R

p, (11)

is a positive definite invariant translation kernel.

The proof can be found in reference [5] (Theorem 3.11).

Lemma (1) assume algebraic product as T-norm operator.

By setting g(x)l = c0, where c0 is some constant value.

Equation (8) can be rewritten as

f l(x) = c0k(x, z
l). (12)

It is worth to noting that by using Gaussian functions in

Equation (10), the gaussian RBF kernel is obtained, but in

general PDFC kernels are not RBF kernels [17].

Lemma 2 (First order TSK-kernel [7], [10]). If all the MF’s

of the fuzzy sets of the antecedent part are gaussian functions,

and the consequent part is the function gl(x) = 〈x, z〉, then

the kernel k : Rp × R
p → R given by

k(x, zl) =
〈
x, zl

〉
exp(−γ||x− z

l||2), (13)

is positive definite.

The proof is given in [7], [10]. Using Lemma (2), Equa-

tion (8) can be rewritten as

f l(x) = k(x, zl). (14)

It is worth to noting that a more general case can be

derived using PDFC kernels for the antecedent part and the



inhomogeneous polynomial kernel in the consequent part to

represent TSK fuzzy rules, supported by the following fact.

Lemma 3. Let µAl(x) in Equation (8) equals to the PDFC

kernel k(x, zl) given in Lema (1). Let the consequent function

gl(x) = (〈x, zl)〉 + z0)
d for d = 0, 1, . . . , n, then the TSK

fuzzy rule (Equation (8)) defines the positive definite kernel

f l(x) = k̂(x, zl) = (〈x, zl)〉+ z0)
dk(x, zl). (15)

Proof: The inhomogeneous polynomial kernel is a posi-

tive definite kernel, the PDFC is positive definite. The product

of two positive definite kernels is also positive definite.

IV. KERNELS AND NONSINGLETON FUZZY INPUT

Positive definite kernels related to TSK rules described in

the previous section only consider singleton fuzzy inputs, In

this section, we define an extension of TSK fuzzy systems

for nonsingleton fuzzy inputs and then we relate the resulting

fuzzy rules to positive definite kernel functions.

A. TSK fuzzy system with nonsingleton input

Nonsingleton fuzzy logic system (NFLS) [29] is a Mamdani

fuzzy system that accounts for the uncertainty in the input.

NFLS has been applied successfully in engineering applica-

tions [29]–[33], with better results that singleton Mamdani

fuzzy systems [34]. Its principal characteristic is the nons-

ingleton fuzzification step with the effect of noise suppression

[29].

In TSK fuzzy systems only the antecedent part of the rules is

represented by fuzzy relations (Definition (II.1)), because the

consequent is a function. For TSK fuzzy system can to deal

with nonsingleton fuzzy inputs we compute a representative

value of the intersection between the fuzzy relations that

represent the nonsingleton fuzzy input and rules.

Definition IV.1. Let Al, I ⊂ ∏p
j=1

Uj two fuzzy relations

that represent the antecedent part of the l TSK rule and the

nonsingleton fuzzy input with MF’s given by Definition (II.1)

and Definition (II.2) respectively. Let gl :
∏p

j=1
Uj → R the

function that represent the consequent part of the TSK rule.

The function f l :
∏p

j=1
Uj → R induced by Al, I and gl for

the rule l is given by

f l(x) = gl(x)r(µA∩B(x)), (16)

where µA∩B :
∏p

j=1
Uj → [0, 1] is the MF of the fuzzy set

A ∩ I given by

µA∩B = T (µI(x), µAl(x)), (17)

and r : [0, 1] → [0, 1].

Using this definition, TSK fuzzy system can naturally

extended to deal with nonsingleton fuzzy input.

Definition IV.2 (Output of nonsingleton TSK fuzzy system).

The output of TSK fuzzy system with nonsingleton fuzzy input

is given by the function ĥ :
∏p

j=1
Uj → R given by

ĥ(x) =

∑L
l=1

f l(x)
∑L

l=1
r(µA∩B(x))

=

∑L
l=1

gl(x)r(µA∩B(x))∑L
l=1

r(µA∩B(x))
. (18)

In the same manner that classical TSK fuzzy systems, the

output of the above formulation is a weighted combination of

functions {gl}Ml=1
by values between [0, 1].

Lemma 4. Let function r (Definition (IV.1)) be the sup
function. If the fuzzifier is a singleton fuzzifier, then the output

of nonsingleton TSK fuzzy system (Definition (IV.2)) reduces

to output of TSK fuzzy system (Equation (9))

Proof:

ĥ(x) =

∑L
l=1

gl(x) sup
x∈U1×...Up

{T (µI(x), µAl(x))}
∑L

l=1
sup

x∈U1×...Up

{T (µI(x), µAl(x))}

=

∑L
l=1

gl(x) sup
x∈U1×...Up

{T (1, µAl(x))}
∑L

l=1
sup

x∈U1×...Up

{T (1, µAl(x))}

=

∑L
l=1

gl(x)µAl(x)
∑L

l=1
µAl(x)

Then ĥ = h.

B. Relation between TSK rules for nonsingleton fuzzy inputs

and positive definite kernels

Lemma 5 (Positivity of the nonsingleton TSK fuzzy kernel).

Let U =
∏p

j=1
Uj the Cartesian product of universes of

discourse. Let the set of MF’s of normal fuzzy sets.

X = {µ|µ : U → [0, 1] and ∃x ∈ U : sup
x∈U

(µ(x)) = 1}.

Let I a nonempty and finite set of indices. Let µi, µj ∈ X for

i, j ∈ I. Then, the kernel k : X × X → [0, 1] given by

k(µi, µj) = sup
x∈U

T (µi(x), µj(x)), (19)

is positive definite.

Proof: By commutativity property of T-norms k is sym-

metric. Noting that
∑

i,j∈I

cicjk(µi, µj) =
∑

i∈I

c2i k(µi, µi)+2
∑

i>j,i,j∈I

cicjk(µi, µj)

and sup
x∈U T (µi(x), µi(x)) = 1, ∀i ∈ I then

∑

i,j∈I

cicjk(µi, µj) =
∑

i∈I

c2i + 2
∑

i>j,i,j∈I

cicjk(µi, µj)

Using (
∑

i∈I ci)
2 =

∑
i∈I c2i + 2

∑
i>j,i,j∈I cicj ≥ 0 and by

the fact that k(µi, µj) ∈ [0, 1], we have



a) If k(µi, µj) = 0, ∀i, j ∈ I : i > j, then
∑

i,j∈I

cicjk(µi, µj) =
∑

i∈I

c2i ≥ 0

b) If k(µi, µj) = 1, ∀i, j ∈ I : i > j, then
∑

i,j∈I

cicjk(µi, µj) =
∑

i∈I

c2i + 2
∑

i,j∈I,i 6=j.i>j

cicj

= (
∑

i∈I

ci)
2 ≥ 0

Thus k is positive definite.

Lemma 6. Function induced by nonsingleton TSK fuzzy rule

(Equation (16)) can be written as

f l(x) = gl(x)k(µI , µ
l
A) (20)

Proof: Let function r (Definition (IV.1)) be the sup
function, substituting µI = µi, µ

l
A = µj in Equation (17)

and by Lemma (5) completes the proof

By basic properties of kernels, if gl(x) = c0 where c0 is

some positive constant then f l(x) = c0k(µI , µ
l
A) is positive

definite, also if If gl(x) is a positive definite function then

f l(x) = gl(x)k(µI , µ
l
A) is positive definite

The above results mean that we could use whatever T-norm

operator and MF’s of normal fuzzy sets, we could obtain a

positive definite kernel k.

Also, kernel given by Lemma (5) is a fuzzy equivalence

relation [19] with respect to a given T-norm and can be

represented by a fuzzy bi-implication formula [20], because

every positive definite kernel that maps to the unit interval

with constant one in the diagonal fullfill these requeriments.

Details are omitted due to space constraints.

C. Positive definite TSK gaussian kernels

We follows with a classical result of NFLS’s [29].

Lemma 7. Let µX1
, µX2

, . . . , µXp
be the MF’s of the

fuzzy sets of the fuzzy input with parameters given by

(m1, . . . ,mp)
⊤ ∈ R

p, (σ1, . . . , σp)
⊤ ∈ R

p and let

µl
F1
, µl

F2
, . . . , µl

Fp
be the MF’s of the fuzzy sets of the

antecedent part of the rule l with parameters given by

(ml
1, . . . ,m

l
p)

⊤ ∈ R
p, (σl

1, . . . , σ
l
p)

⊤ ∈ R
p such that for

j = 1, 2 . . . p

µXj
(xj) = exp

(
−0.5(xj −mj)

2/σ2
j

)
,

µF l
j
(xj) = exp

(
−0.5(xj −ml

j)
2/(σl

j)
2
)
,

Let µl
A and µI given by Definition (II.1) and (II.2) respectively.

If is used algebraic product as T-norm operator, then

sup
x∈Rp

T (µI(x), µAl(x)) =

p∏

j=1

exp

(
−1

2

(mj −ml
j)

2

σ2
j + (σl

j)
2

)
,

(21)

The proof is in [35].

Lemma 8. Let the set of MF’s

X = {µ|µ : Rp → [0, 1] and ∃x ∈ R
p : sup

x∈Rp

(µ(x)) = 1}.

Let µi, µj ∈ X for i, j ∈ I = {1, 2, . . . , N}. The kernel

k : X × X → [0, 1] given by

k(µi, µj) =sup
x∈U

T (µi(x), µj(x))

=

p∏

j=1

exp

(
−1

2

(mj −ml
j)

2

σ2
j + (σl

j)
2

)
,

(22)

is positive definite.

Proof: By Lemma (5), k is a positive definite kernel.

Lemma 9. Let k given in Lemma (8). If gl given in Definition

(IV.1) is a positive definite function or gl is an affine function,

then the function f l given in Definition (IV.1) can be written

as the positive definite kernel k : Rp × R
p → [0, 1] given by

k(x,xl) = g(x− x
l)k(µI , µAl). (23)

Proof: Kernel g is positive by hypothesis and k through

the previous lemma. The results product kernel is then positive

since the product of two positive kernels is positive, then

following Lemma (6) completes the proof.

Note that the kernel kγ : X × X → [0, 1] given by

kγ(µI , µAl) =

p∏

j=1

exp

(
−1

2

(mj −ml
j)

2

σ2
j + (σl

j)
2 + γ

)
, (24)

is also positive definite by the change of variables σ′2 = σ2+
γ.

Parameter γ plays the same regularization role as it does in

the RBF kernel. Kernels given by Equations (22) and (24) are

closed related to Gaussian vicinal kernels defined by Vapnik

in [28]. These kernels can be viewed as vicinal kernels where

the vicinities are defined by the volume given by the spread

of each feature.

D. kernels for interval data

Let’s assume that imprecise data is given as the interval

[x,x] = [(x1, x2, . . . , xp)
⊤, (x1, x2, . . . , xp)

⊤] ⊂ R
p, where

each feature {[xj , xj ]}pj=1
is a closed interval in R with

{xj ≤ xj}pj=1
. In this context, all the induced TSK kernels

with nonsingleton fuzzy input can be used, e.g., it is possible

to construct a fuzzy data set by setting one fuzzy set Xj with

MF µXj
for each interval [xj , xj ].

It is possible to derive new positive definite kernels for fuzzy

data using the concept of distance substitution kernels [36], for

example the distance substitution Gaussian kernel:

krbfd (x,x′) = exp(−γd(x,x′)2), γ ∈ R
+,x,x′ ∈ X (25)

only needs to construct a specific distance measure.

Lemma 10. Let µ = (µX1
, µX2

, . . . , µXp
)⊤ and µ′ =

(µ′
X1

, µ′
X2

, . . . , µ′
Xp

)⊤ two vectors of MF’s with param-

eters: (m1, . . . ,mp)
⊤ ∈ R

p, (σ1, . . . , σp)
⊤ ∈ R

p and

(m′
1, . . . ,m

′
p)

⊤ ∈ R
p, (σ′

1, . . . , σ
′
p)

⊤ ∈ R
p respectively,



constructed for the intervals [x,x] ⊂ R
p and [x′,x′] ⊂ R

p

respectively. Functions

d1(µ, µ
′) =

∏p
j=1

(mj −m′
j)

2

∑p
j σ

2
j +

∑p
j (σ

′
j)

2

d2(µ, µ
′) =

∏p
j=1

(mj −m′
j)

2

∏
(σ2

j + (σ′
j)

2)

have zero diagonal and are pseudometrics on X .

Proof: d1 and d2 are symmetric and have zero diagonal

by construction. They are positive as the product of positive

function and subadditive. Thus both functions are pseudomet-

rics distances since they can be set to zero for some distinct

variances values.

Lemma 11. The kernels

kγ(µ, µ
′) = exp(−γd1(µ, µ

′)2), γ ∈ R
+ (26)

kγ(µ, µ
′) = exp(−γd2(µ, µ

′)2), γ ∈ R
+ (27)

are positive definite

Proof: By definition of substitution kernel both kernels

are positive definite

Of course, many other kernels can be derived using the this

concept and this is question of further research.

V. EXPERIMENTS

A. Data and Implementation

Four low quality datasets from the KEEL-dataset reposi-

tory [37] were used. Low quality data [38] refers to data with

uncertainty about the actual value of a feature. These KEEL

datasets contain samples with missing values and interval

features. Table I contains the summary of these datasets.

TABLE I
SUMMARY OF LOW QUALITY DATASETS

Dataset Samples Classes Features Missing Values

Long-4 25 2 4 No
100mlI-4 52 2 4 No
100mlP-4 52 2 4 No
dyslexic-12-4 65 4 12 Yes

1) Description of the data:

• Dataset Long-4 is an athletic performance dataset, it

contains 4 features. The two first features are determined

by a coach in form of linguistic values, intervals or num-

bers; the other two indicators are measured three times

producing uncertainty information represent as intervals.

• Dataset 100mlI-4 is an athletic performance dataset used

to classify whether or not a mark in a 100 meters race

is being achieved. The features are given by the weight

to height ratio, the reaction time, the starting speed,

and 40m. speed. Measurements were obtained by three

different observers.

• Dataset 100mlP-4 is the same as Dataset 100mlI-4 but

measurements were obtained by a subjective judgment of

the coach, in linguistic terms as “ reaction time is low”.

• Dataset Dyslexic-12-4 is a dataset with twelve features

and four classes { dyslexia, no dyslexia, control, other}
that contain missing values.

Table II shows two examples of Long-4 dataset where each

feature is an interval. A detailed description of these datasets

can be found in [38], [39].

TABLE II
TWO SAMPLES OF THE LOW QUALITY DATASET Long-4

x1 x2 x3 x4 y

[8.7, 10.1] [45, 47] [2, 2.15] [5, 5.1] {1}
[9.5, 10] [60, 64] [2.21, 2.23] [5.33, 5.4] {0, 1}

2) Scaling and fuzzification: Some samples of these

datasets belong to two different classes at the same time.

Because it is not the purpose of this work, they were removed.

Next, intervals were scaled (by a linear transformation) to be

in the unit square.

For each (feature) interval [xj , xj ] of the four datasets, a

fuzzy set with Gaussian MF µXj
with mj = (xj +xj)/2 and

σi
j = (xj −xj)/(2

√
2 ln(2)) has been built2. That is, for each

sample [x,x] = [(x1, x2, . . . , xp)
⊤, (x1, x2, . . . , xp)

⊤] ⊂ R
p,

we have the fuzzy sets X1, . . . , Xp with MF’s µX1
, . . . , µXp

with the following parameter vectors (m1,m2, . . . ,mp)
⊤ and

(σ1, σ2, . . . , σp)
⊤ obtained directly from the data.

In the case of missing values, we constructed an interval

that spans the whole range of the variable.

B. Kernels Setting

Were used the kernels given by Equations (22), (23), (24),

(26) and (27). For comparison purposes, it was set the RBF

kernel as baseline.

Table III show three different setting for experiments. The

first one consider model selection (see Section V-B2 for

details) over the γ parameter. Kernels with id ∈ {0, 1, 2, 3, 4}
are in this group.

The second group is composed by one kernel id = 5 and it

does not have model selection.

The last one group is composed of kernels id ∈ {6, 7, 8, 9}
and experiments in these kernels consider model selection over

γ and multiple kernel setting for fuzzy rules.
1) Multiple kernel setting for fuzzy rules: By considering

each fuzzy rule as combination of two (or more) rules and,

using positive definite kernels to represent it. The resulting

kernel is given by k(x,x′) =
∑

r βrks(x,x
′), for βr > 0, and∑

r βr = 1. That permits to use more general approach as the

multiple kernel learning [40] to optimize the βr parameters.

For the third group of kernels id = {6, 7, 8, 9} from Table III

it was set arbitrarily β = 0.25.

Kernel arguments in Table III denoted by x and x
′ corre-

spond to crisp values, we set those values to be the means of

the intervals, i.e., x = (m1,m2, . . . ,mp)
⊤.

2This measurement for σ parameter is called the full width at half maximum.



TABLE III
GAUSSIAN FUZZY KERNELS FOR INTERVAL DATA

Model selection over γ

id kernel

0 krbf
γ (x,x′)

1 keq(24)
γ (µX , µX′)

2a keq(23)(x,x′)

3b βkeq(26)
γ (µX , µX′)

4b βkeq(27)
γ (µX , µX′)

No model selection

5c keq(23)(x,x′)

Multiple kernel setting and model selection over γ

6 βkeq(22)(µX , µX′) + (1− β)krbf
γ (x,x′)

7a βkeq(23)(x,x′) + (1− β)krbf
γ (x,x′)

8b βkeq(26)
γ′ (µX , µX′) + (1− β)krbf

γ (x,x′)

9b βkeq(27)
γ′ (µX , µX′) + (1− β)krbf

γ (x,x′)

a Function g was setting to the rbf kernel.
b The γ′ parameter in keq(26) was 1.
c Function g was setting to the one-degree polino-

mial kernel.

2) Model Selection: It was performed model selection in

the kernel parameter γ with values {24, . . . , 2−10} and in

the parameter C of soft C-SVM with values {2−1, . . . , 214}
using grid search. For each point in the grid, it was performed

10-fold cross-validation using partitions from KEEL-dataset

repository [37]. Finally, we reported the pair (C, γ) with best

cross validation accuracy.

C. Results

Table IV shows the cross validation accuracy, number of

support vectors and the best parameters C and γ from the

model selection step. A soft C-SVM [22] were used to test

all the proposed kernels. The Results show that using the

proposed kernels,in most of the cases, outperform the RBF

kernel for those datasets. Results in the datasets differ, showing

that the kernel choice is a crucial part of the supervised

classification problem.

VI. CONCLUSION

Real world applications of supervised classifiers involve

imprecise data. This is due to the fact that no measurement

instrument can produce an exact result, usually data is gathered

by subjective opinions, and is better expressed by linguistic,

TABLE IV
RESULTS EXPERIMENTS I

Dataset Long-4

Kernel Acc. svs C γ

0 73.33 15.1 20 2−3

1 73.33 15.1 20 22

2 43.33 16.2 2−5 25

3 85 13.2 21 2−3

4 73.33 9.8 211 2−7
5 46.67 16.2 23 25

6 68.33 16.2 22 2−7

7 68.33 16.2 22 2−7

8 76.67 15 21 2−6

9 78.33 16 21 24

Dataset 100mlI-4

Kernel Acc. svs C γ

0 96 11.8 215 2−4

1 98 31 21 2−5

2 98 37.1 22 2−4

3 58.33 41.4 2−2 25

4 78.67 38.1 2−1 25

5 98 41.5 20 25

6 98 37.1 23 2−8

7 98 37.1 23 2−8

8 96 12.7 216 22

9 94.33 29.5 22 232

Dataset 100mlP-4

Kernel Acc. svs C γ

0 88 28.6 23 22

1 88 18.9 24 2−2

2 84.67 42.4 21 2−1

3 65.17 16.2 211 2−5

4 83.67 16.4 215 25

5 82.67 42.3 23 25

6 88 37.2 24 2−3

7 88 37.3 24 2−3

8 88 26.4 216 24

9 88 26 22 28

Dataset Dyslexic-12-4

Kernel Acc. svs C γ

0 36 33 25 2−8

1 36 33.3 23 25

2 21.119 45 2−5 25

3 21.12 40.5 2−5 25

4 33.12 37 22 25

5 38.45 45 21 25

6 36 38.1 21 2−4

7 36 38.1 21 2−4

8 36 33.8 22 2−4

9 44.10 30.6 216 2−6



interval or fuzzy values. In kernels methods, the choice of a

kernel function is crucial because it constitutes prior knowl-

edge about a task. No free lunch theorem states that learning

algorithms with better generalisation capabilities are obtained

by using some prior information of the domain.

In this work, we show that the relationship among TSK

fuzzy systems, nonsingleton fuzzy input and positive definite

kernels a new class of positive definite kernels can be derived.

Also we give a formulation to construct kernels for interval

data using the concept of distance substitution kernels. Exper-

iments performed in interval datasets show promising results.
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