
HAL Id: hal-00788463
https://hal.science/hal-00788463

Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling partially reconfigurable IP cores
parameterisation and integration using MARTE and

IP-XACT
Gilberto Ochoa-Ruiz, Ouassila Labbani, El-Bay Bourennane, Sana Cherif,

Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Gilberto Ochoa-Ruiz, Ouassila Labbani, El-Bay Bourennane, Sana Cherif, Samy Meftali, et al.. En-
abling partially reconfigurable IP cores parameterisation and integration using MARTE and IP-XACT.
2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP), Oct 2012, Finland.
pp.107 -113. �hal-00788463�

https://hal.science/hal-00788463
https://hal.archives-ouvertes.fr

ENABLING PARTIALLY RECONFIGURABLE IP CORES
PARAMETERISATION AND INTEGRATION USING MARTE AND IP-XACT

G. Ochoa-Ruiz, O. Labbani, E. Bourennane

LE2I Laboratory, Université de Bourgogne, France
C. Author: gilberto_ochoa-ruiz@etu.u-bourgogne.fr

S. Cherif, S. Meftali, J.-L. Dekeyser
INRIA Lille Nord Europe, Villeneuve d’Ascq, France

(FirstName.SecondName)@inria.fr

Abstract – This paper presents a framework which facilitates
the parameterization and integration of IP cores into partially
reconfigurable SoC platforms, departing from a high-level of
abstraction. The approach is based in a Model-Driven
Engineering (MDE) methodology, which exploits two widely
used standards for Systems-on-Chip specification, MARTE
and IP-XACT. The presented work deals with the deployment
level of the MDE approach, in which the abstract components
of the platform are first linked to the lower level IP-XACT
counterparts. At this phase, information for parameterization
and integration is readily available, and a synthesizable model
can be obtained from the generated IP-XACT through model
transformations. We detail how certain IP-XACT objects are
exploited in our approach; the emphasis is given to the
generation of IP cores in a Xilinx EDK environment. We
provide a case study in which a complete DPR platform is
modeled in MARTE and implemented in a FPGA.

 Index Terms—Dynamic Partial Reconfiguration, UML
MARTE, MDE, IP-XACT, EDA.

1. INTRODUCTION

Dynamic Partial Reconfiguration (DPR) [1] enables a set of
Partial Reconfigurable Modules (PRMs) to time-share a
pre-defined portion of the programmable fabric while the
remainder of the logic in the system remains active. A DPR
platform has advantages over conventional FPGA systems,
including partial updateability, increased flexibility,
reduced resource utilization, and low power dissipation [2].
Despite its benefits, the DPR implementation process
remains complex and time consuming, and often requires
hardware developers to have a thorough understanding of
the underlying fabric and design methodology.
 Furthermore, the creation of SoC DPR-based systems
requires IP reuse capabilities in which the parameterisation
and integration, both of DPR and non-DPR components, is
performed in such a way that facilitates the design process.
 Model Driven Engineering (MDE) in tandem with UML
has been used in co-design methodologies in the last years
with relatively success in embedded systems modeling [3].
Many of them made use of the UML profile for “Modelling
and Analysis of Real Time and Embedded Systems”
(MARTE) [4].

UML/MARTE models are used not only for communication
purposes but, using model transformations, to produce
concrete results such as a source code. For this purpose,
MDE methodologies make use of a deployment phase in
which the building blocks of the high-level models are
linked to the low implementations that embody the related
behaviour. This is basically an IP reuse problem, and in this
way the components can be configured, and a synthesizable
top-level implementation can be obtained.
 In this paper we proposed an MDE component based
approach for the parameterization and integration of IPs
into DPR SoC based systems. The generation framework
departs from a deployment model in MARTE that is
obtained from high-level library, containing abstract
representations IP-XACT objects [5]. The parameterisation
and integration of the platform takes place at this level,
effectively abstracting the low-level implementation details.
 The components in the MARTE model are linked to IP-
XACT representations that similarly reference the low-level
implementation files, used for generating the EDK system.
 This description is subsequently synthesized, and along
with the DPR IP netlists, is fed to the PlanAhead DPR
design flow. In this way, we provide framework for
facilitating the design entry phase of the DPR design flow.
 The rest of this paper is organized as follows: in Section
II, we describe briefly the similar approaches and its
limitations regarding the deployment phase. Then, in
Section III, we introduce the proposed methodology,
focusing on the deployment phase onwards. In Section IV
we embark in a thorough discussion in which we detail how
certain IP-XACT concepts are used in our framework. In
section V, a case study for the creation of EDK-based DPR
system is presented. Finally, we conclude and provide some
avenues for future work.

2. RELATED WORKS

 Several works have tackled the use of MARTE in SoC
design, specifically at the deployment level, such as the
MoPCoM [6] and GASPARD [7] frameworks. The main
disadvantage is that, as with many other MDE
methodologies, both approaches make use of non-

standardized deployment representations. This means that
the deployment models obtained by these methodologies are
not interchangeable, making them highly methodology-
dependant. Another issue is that the models need to be
annotated manually, and the parameters are retrieved from
the implementation files in a non-automatic way.
 This problem has been addressed by the SoC industry, by
developing the IP-XACT standard, which aims at
facilitating the configuration, integration, and verification
in multi-vendor SoC design flows though a set of structured
XML schemas. Several industrial cases studies have
demonstrated that the adoption of IP-XACT facilitates the
configuration, integration, and verification in multi-vendor
SoC and IP integrating design flows [6], [7].
 The standard has risen the interest of the academia to
bridge the gap between high-level approaches and IP-
XACT [8, 9], where the latter is used as an intermmediate
representation to perform a series of tasks, but varying in
the intended back-ends (e.g. RTL, SystemC). However,
these approaches do not present a means of “importing” IP
important parameters from the low-level implementations
files to facilitate their deployment.
 The contributions of this paper are the introduction of an
MDE approach that uses the UML MARTE profile, and
that enables moving from high level models to HDL code
generation. IP-XACT is used as an intermediate model,
used to configure the deployed IPs in the platform and to
automate the integration of the DPR and non-DPR IPs. The
parameters needed at high levels of abstraction are stored in
the deployment level, facilitating the task of the designer.
The parameterised system and IPs are then used to generate
the necessary inputs to the DPR design flow. Our approach
simplifies the conception of FPGA-based SoCs, facilitates
the composition and generation of DPR designs.

3. PROPOSED METHODOLOGY

 In this section, we embark in a thorough description of
the proposed framework for DPR IP integration and
parameterization, emphasizing how it is embedded into the
design flow of DPR systems. The MDE methodology is
based on a Y schema approach. As with other co-design
approaches, the system specification starts by modeling the
application and architecture separately, which are
subsequently associated and deployed at a high-level of
abstraction. The models obtained at the deployment phase
are use for code generation, and we provide means for
obtaining the pertinent parameters, options and interfaces
of the IP blocks, thus facilitating the designer’s task.

3.1. Deployment phase of the MDE methodology.
.
 The deployment phase of any MDE methodology is
instrumental, since enables the generation of a

synthesizable SoC description from a high-level MARTE
model. More precisely, sufficient information must be
provided at this stage so that the code integration and
parameterization on the IPs can be performed.
 The proposed framework, in terms of models
transformations and departing from the deployment phase,
is depicted in Figure 1; the green line describes the actual
tool flow. It uses three levels of abstraction, each making
use of its corresponding component library. The entry
point is a MARTE deployment platform model (a
Composite Structure Diagram, CSD), which is created by
choosing components from a Component Model Library
(CML). The MARTE model is to be obtained after the
association phase, where sufficient information about the
components to use is available. At this phase, components
are seen as simple IP blocks containing interfaces to be
connected and parameters to be set by the designer.

Fig 1. MDE framework for DPR system and IP composition

3.2. Models transformations from the deployment level.

The CML library abstracts the low-level details contained
in the IP-XACT library, which contains information about
different concepts deployed in our approach (e.g. bus
interfaces, component and design descriptions).
Subsequently, the MARTE model created in the
deployment phase is parsed to obtain an IP-XACT system
description, which contains the component instantiations,
their interconnections, and the configurable elements (CE).
Depending on the type of CE, some might require to be set

at this stage, whereas others are to be configured by
external tools in the flow. The way different IP-XACT
concepts are used in our methodology will be further
discussed in Section 4; the mapping between MARTE and
IP-XACT objects can be found in previous work [13].
 The IP-XACT descriptions for the top level design and
for the constituent IPs are fed to so-called Platform
configuration tool. We make use of Sodius MDWorkbench
[14], a MDE platform which enables the definition of meta-
models and to carry out model transformations.
 The IP-XACT XML schemas have been processed by an
improved XSD/Ecore meta-model importer in
MDWorkbench, which leads to a Java/EMF
implementation of the IP-XACT meta-model. The tool is in
charge of producing the desired outputs for the rest of the
flow, by using transformation rules that can be tailored to
the design flow needs, or evolved depending in the back-
end requirements. In this work, we have decided to target
the Xilinx EDK design flow [15], as explained previously.
This allows us to build SoC based platform which is easier
to manage and in which DPR concepts can be integrated in
the design flow.
 Xilinx EDK makes use of a collection of files defined in
the Platform Specification Format (PSF) document [16],
which formalizes the description of different components in
the Xilinx design flow for processor-based systems. Being
able to handle such Xilinx platform models allows
interoperating with platform-independent standards such as
IP-XACT. Xilinx PSF files are structured in a textual
format, which can easily be understandable by machines by
defining a parser, but the first mandatory step if the meta-
model definition. The Ecore formalization of these meta-
models does not exist, and has to be entered, in UML for
instance. We have created meta-models for the different
Xilinx files used in the EDK environment, such as the
Microprocessor Hardware Specification (MHS) and the
Microprocessor Peripheral Definition (MPD), among
others. As an example, Figure 2 depicts the UML Model for
the MHS file, used to describe how a top-level is
implemented in Xilinx EDK.

Fig 2. Model UML Model of Xilinx PSF Meta-model – MHS

3.2. Model transformation tool and intended back-end.

In our approach, Sodius MDWorkbench model tool
provides a means of generating different outputs that are to
be fed to the Xilinx EDK XFlow. As mentioned before, the
Code Generation phase produces a set of files that are used
by EDK to describe a SoC platform intended for
implementation in Xilinx FPGAs. The MHS file is
deployed to generate the top-level implementation of the
embedded platform by using the PlatGen tool.
 In this way, the top level VHDL implementation is
obtained and can be synthesized; this intermediate
architecture can be used for testing the platform, by using
non-DPR implementation of the IPs. Individual IP
specification is achieved through the use of files such the
Microprocessor Peripheral Definition (MPD). Generating it
for already existent IP cores (e.g. DDR2, TFT Display, RS-
232) is redundant. However, being able to handle these files
in MDWorkbench, enables for their parameterization.
 Nonetheless, the Xilinx DPR flow requires, at the entry
design phase, the definition of the top-level implementation
and of the individual DPR IPs, which are intrinsically
parametrisable. The features added to the IP in terms of
their interfaces and functionalities affect the resulting
Xilinx EDK specification files. Therefore, configuring such
IPs at a higher level of abstraction facilitates the entry
design phase. Therefore, by using IP-XACT, we provide a
means to integrate the high-level models in a generation
chain; IP-XACT functions as glue intermediate level,
allowing us to represent the intermediate components and
to obtain the necessary IP metadata for the MARTE
deployment models. Subsequently, the IP-XACT desing
description in converted to an EDK MHS description, used
for creating the top-level HDL design that, along the IPs
descriptions, is fed in the form of netlists

4. IP-XACT FOR COMPONENT DESCRIPTIONS.

In the previous section we have provided hints on how
IP-XACT is used as an intermediate representation, but
also as the backbone for passing from a MARTE
description to an EDK system, via model transformations.
In this section, we further describe how certain IP-XACT
concepts are used in our methodology, emphasizing the link
to concepts in MARTE and EDK.
 The standard defines four central object descriptions,
which are bus and abstract definitions, component, and
design descriptions. These four elements are sufficient for
structurally describing a system and the IP cores the
compose it. We concentrate then our efforts in describing
IP-XACT components, specifically hierarchical modules,
for which a sub-system design description is attached.
 A component description packages the information
related to an IP core, as depicted in Figure 3. We have

chosen this block-like representation of the IP-XACT
concepts instead of the schemas in the standard, since it
facilitates their comprehension. The elements contained in
the component schema are intended for describing as many
different kinds of IP cores as possible, but it is obvious that
not all of them will be required in all instances. Here, we
have included the most widely used concepts for structural
and logical implementation and parameterization. In the
next sub-sections, we will briefly discuss how the different
elements are exploited in our approach.

Fig 3. IP-XACT concepts for a component description.

4.1. Bus interfaces

Each IP core identifies one or more <busInterfaces>, which
are groups of ports that belong to an identified <busType>.
Apart from defining standard bus interfaces, they can be
used for other ports of the IP, such as DMA or VFBC ports.
 The ensemble of these interfaces comprise the ports in
the VHDL entity, and in EDK, they appear in the MPD file
to define the ports of the IP. In both cases, the information
is used for IP integration and top-level stitching. Moreover,
core ports external to the FPGA need to be defined in the
User Constraints File (UCF).

4.2. Parameters and Choices

 The <Parameters/Choices> sub-elements permit the
configuration of an IP core, and enable to automate the
parameterization of an IP within a tool flow. <Parameters>
are normally set at the design level, and only if they are
defined as being configurable in the IP-XACT description.
The <resolve> attribute in the configurable element
description defines exactly how a parameter must be set.
 In our approach, most of the parameters are immediate,
their values being obtained from the MARTE description
itself. In other cases, certain values can be set by the user
(e.g. through a GUI), be dependent on other parameters in
the IP-XACT description (using a dependency equation that
takes the parameters IDs as inputs), or generated.

4.3. FileSets, Models and Views.

The <fileSets> element contains a list of the <files> and
directories associated with a component. These files might
include drivers, implementation files, netlists, and other
files related with a particular tool. Files can be grouped for
describing particular functions and purposes, greatly
promoting EDA and IP reuse. This separates the high-level
models from the intended back-ends, which can adapted,
thus providing extensibility mechanisms.
 The <model> element describes the <views>, <ports>
and model-related <parameters> of a component. An IP
can contain different views such as RTL, TLM, software,
and documentation, to name just a few. Views are used in
tandem with <filesSets> and generators to enable the
automation of component related tasks, such as FPGA
synthesis and source code compilation.
 In our methodology, we exploit this capability of the
<view> elements for describing components with different
purposes, but having the same interface. The Xilinx DPR
design flow requires, as inputs, the netlists of the top-level
design, but also of those DPR modules. In the latter case,
the modules functionality must be synthesized
independently, while maintaining the same interface in the
top level implementation. Let us consider the example in
Figure 4, which depicts the implementation of a simple IP
attached to a bus via the Xilinx IPIF interface.

Fig 4. IP-XACT abstract representation for the DPR IP

 Each of the depicted components corresponds to a VHDL
file. The hardware accelerator (HWA) is wrapped by what
we call a “Static Wrapper”, which in our example is
represented attachment to the IPIF interface. Additional
components might be necessary for attaching a given HWA
to the IPIF logic, for instance a Protocol Adaptation Logic
(PAL). Along with the HWA, the PAL comprises the so-
called “Dynamic Wrapper” (DWR).
 The DWR corresponds to the logic that is to be swapped
during the DPR run-time phase, whilst the rest of the
system (and in this case, the static wrapper), remains
unchanged. The dynamic wrapper corresponds to a black
box (BB) that defines logically where the Partially
Reconfigurable Modules (PRMs) are to be mapped.

Afterwards, this BB will be assigned to a fixed Partial
Reconfigurable Region (PRRs) during the floorplanning
phase of the DPR design flow. This means that, for the
DPR design to be generated, the functionality of the DW
must be synthesized independently.
 The View_1 is associated to a <<NonDPR_source>>
fileSet, which contains all the implementation files,
including the DWR logic, whilst the View_2 references a
fileSet called <<DPR_source>>, which makes reference to
an IP-XACT Black Box element. Since the component
instances and interconnections remain unchanged, only a
design description, which is obtained from the MARTE
model, is necessary.

5. CASE STUDY FOR SYSTEM IMPLEMENTATION.

 In this section, we present a case study in which we show
how the methodology is used to implement a MicroBlaze-
based SoC platform integrating some DPR blocks. We start
by describing MARTE related modeling concepts for the
individual components and the platform, and how they are
related to their IP-XACT counterparts. Afterwards, we
describe how a DPR component can be parameterized and
integrated from a MARTE description. As mentioned
before, DPR cores require non-DPR and DPR descriptions
using different views, to target different scenarios.

5.1. Parameterization View.

At the deployment level, the designer of the DPR
application has enough information to choose the
components to build its application; these components are
gathered from a CML library, which contains abstract
representations of the IPs, described in MARTE.
 The designer creates first what we call a
“Parameterization View”, which contains the set of
components to be used in the platform. Figure 5a) depicts a
section of this view, showing three components:
PLB_UART, PLB_HWICAP, and PLB_TFTcntr. Each
component contains a specific MARTE stereotype; most of
the components in this figure are <<HwComponent>>,
since they reference real IP cores. The components in the
CML library are related to their IP-XACT counterparts by
their VLNV value (IP-XACT unique identifier for objects).
Each class in this diagram holds references to the
configurable elements that this component instance
contains, and which must be set by the designer. This view
has been separated to avoid cluttering the models. Thus,
only those parameters with “immediate” attributes are
visible in the “Parameterization View”. Apart from having
an immediate attribute, we have defied vendor extensions to
specify dependencies and validity, in order to control which
parameters, interfaces or ports can appear in the MARTE
component.

Fig 5: Modeling of the system: a) Parameterisation and b) Platform Views

5.2. Architectural View and Mapping to IP-XACT

 On the other hand, Figure 5b) shows the modeling of a
reconfigurable system, targeted to an embedded architecture
to be exploited by the Xilinx’s EDK environment. This
diagram represents a merged functional/physical view of
the system used to express the attributes related to
physical/logical stereotypes. This is the so-called
“Structural View”; using a CSD, the designer is interested
in describing the way the system is to be connected, not
concerned to the low level aspects of the design.
Every component instance has two type definitions, one
being functional (the type of modules) and the other
physical (e.g. areatype, Static or DynamicReconfigurable).
In this case study, we make use of two dynamic
reconfigurable regions (labeled as PRR in the diagram).
 Both descriptions are parsed for generating the
IP-XACT description for the top-level implementation. As
mentioned before, the “Structural View” is used for
generating the IP-XACT design description of the top level
design and of the hierarchical IPs.
 In order to perform the aforementioned mapping, a
step must be defined in which the MARTE specification is
parsed. Certain elements in the MARTE platform model
will correspond to IP-XACT objects in the model library.
The objective is to identify all the elements in the platform
specification, generating a top-level design file. Table 1
defines these mapping for obtaining the IP-XACT design.

Table 1. Transformations from a deployed model to an IP-XACT design.

These transformations have been implemented using Sodius
MDWorkbench, where our Xilinx XPS and IP-XACT
meta-models reside. The obtained IP-XACT design is fed to
our tool, where is used to generate the files used by Xilinx
to obtain the synthesizable top-level description.

5.3. Modeling of the DPR Cores.

We have chosen to concentrate our efforts in targeting EDK
compatible IP cores, since we aim to generate DPR systems
in a Xilinx flow. Figure 6 shows a detailed block
representation of the PRM components in Figure 4. We
have implemented an image processing IP that receives a
complete line of the image and stores it in FIFO_in; when a
complete line has been stored, is processed by the HW
accelerator and the results written to the FIFO_out
component.

Fig 6.) Underlying HDL description

The resulting processed line is sent via a master to the DDR
memory. The two FIFO components and their control logic
are the PAL; this component is associated with a VHDL file
describing its functionalities. The HWA is associated with
another VHDL file. Similarly, the IPIF logic containing the
write/read interfaces is represented by another VHDL file,
which is generated by choosing the required services
through a GUI. If the PAL changes between changes of the
IP core in a DPR system, forms part the DPR Wrapper, this
is, the Black Box used by the Xilinx DPR flow to specify
that a component in the design is to be a PRM. This is the
case of our example. The rest of the IP is labelled here as
Static Wrapper, since its functionalities do no change
between different configurations of the IP.

 We have modelled the DPR IPs in our approach in such a
way that, by using the <views> and <fileSets> elements of
the IP-XACT description we provide a means for pointing
the location of the different implementations of the DWr
into the IP implementation directory. The <fileSets>
element in the component description specifies all the files
used to describe a component. In particular, a least one
<fileSet> is destined for specifying the HDL sources using
to implement the IP functionalities. A component can
contain multiple implementations, each represented by a
<View> referencing a <fileSet>, as depicted in the IP-
XACT component description of Figure 3.
 The <<DPR_Source>> fileSet, which is parsed during the
generation phase to retrieve the location of the different
implementations of the IP, which are synthesized
separately, as required by the DPR design flow, and that
otherwise has to be done manually and using a separate tool
(Xilinx ISE). In Figure 6 we show a block representation of
the implemented IPs; there are two of them in the platform
of Figure 5b): each of them treats a half of a input image
and sent to the TFT controller in the card for display, and
implemented several image processing tasks (binarization,
inversion, edge detection, and greyscale reduction) was
hardware accelerators.
 Since we are targeting the Xilinx EDK design flow, we
have decided to implement all our IPs following the
directory structure depicted in Figure 7, which is used to
separate HDL implementation files from others used by the
Xilinx tools; the function of the different files is out of the
scope of this paper, for a more information, the reader is
director to the Xilinx platform specification guide [16].
The most important aspect, as previously discussed, is the
location of the implementation files that lies under the HDL
directory. The IP-XACT component description contains
this information under the <fileSets> element; when
choosing a component in the top-level MARTE description
each of the possible implementations is referenced via the
<View> elements, pointing at the location of the
corresponding HW accelerator implementation.

Fig 7.) Underlying HDL description

MARTE IP - XACT
CSD Diagram Design

Part spirit:ComponentInstance

id: identifier spitir:ComponentRef

Parameter = value spirit:configurableElement:ReferenceID

Connector = name spirit: interconnection portRef (busIF name)

Ednpoint = name AdHoc Connection = name
 with intPortRef and extPortRef

6. RESULTS AND DISCUSSION.

 The system described in Figure 5 has been used for
implementing an image processing platform. In Table 2a)
we can observe the implementation results of two simple
pixel-based operations, as detailed in the previous section.
The resource utilization of each of the PRMs in the same;
we provide as well the partial bitstream size (5KB for
each), which means that for using the throughput provided
by the HWICAP we can attain a configuration time of 50
microseconds. In Table 2b) we provide a more complex
example, in which we have mapped a Discrete Cosine
Transform (DCT) and the Discrete Wavelength Transform
(DWT); as it can be observed, the increased resource
utilization increases the partial bitstream sizes and
accordingly, the configuration times.

 Table 2. Implementation details for two image processing implementations.

By combining MARTE and IP-XACT, we provide a means
to facilitate IP deployment. However, the design effort is
also significantly reduced; ff the system had to be created
using a pure VHDL description, the design capture might
take days, in process very prone to errors and difficult to
maintain. Using EDK simplifies the task, but requires a
great deal of expertise on the necessary tools and the used
files if an MDE approach is to be adopted. Using our
approach, which is based on the IP-XACT standard,
facilitates the creation of EDK systems, since we provide a
means to pass from MARTE to the Xilinx Platform studio
formalism; not only the design effort is reduced (as depicted
in Table 3), but the maintainability is improved. Also, we
can adapt the methodology to changes in the back-end by
only modifying the transformations from IP-XACT.

Table 3. Design efforts using VHDL, XPS and the proposed methodology

7. CONCLUSIONS.

In this paper we have presented a design methodology that
enables the parameterization and integration of IPs into a
DPR platform at multiple levels of abstraction. The
presented approach uses the IP-XACT standard as a centric
representation of the platform, and as backbone for
federating the heterogeneous data used in the design flow of
DPR based SoCs. Furthermore, as we have show in this
paper, IP-XACT can also be exploited as a means for
providing an intermediate system description to pass from
MARTE models to an EDK back-end, our chosen target for
creating DPR, processor-based systems.
 Moreover, we have showed how IP-XACT can be
exploited as a means to perform the parameterization of IPs
and their subsequent integration into a design description.
Our approach also promotes IP reuse in by integrating
several implementations of the same IP, intended for
different scenarios and whose selection can be selected from
the MARTE description.

8. ACKNOWLEDGMENTS

This work has been supported by the ANR FAMOUS Project
(ANR-09-SEGI-003) by the Agence Nationale de la Recherche.

 The authors also wish to thanks Sodius for their support in this
project and for providing access to their design tools.

9. REFERENCES

[1] P. Manet, “An Evaluation of Dynamic Partial Reconfiguration for Signal and Image
Processing in Professional Electronics Applications”, EUSASIP Journal of Embedded
Systems, 2008.
 [2]. Xilinx Corporation, Partial Reconfiguration User Guide, Xilinx UG208, 2011.
 [3] S. Taha, A. Radermacher, S.Gérard, J-L. Dekeyser: MARTE: UML-based Hardware
Design from Modelling to Simulation. FDL 2007.
[4] OMG, “Modeling and Analysis of Real-time Embedded Systems, MARTE), 2009.
[5] "IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tools Flows," IEEE Std 1685-2009, Feb. 18 2010.
[6] J. Vidal, F. de Lamotte, G. Gogniat, J.- P. Diguet, and P. Soulard, "IP reuse in an
MDA MPSoPC co-design approach," Microelectronics (ICM), 2009 International
Conference on , vol., no., pp.256-259, 19-22 Dec. 2009.
 [7] I. R. Quadri, S. Meftali, and J.-L. Dekeyser, "Designing dynamically reconfigurable
SoCs: From UML MARTE models to automatic code generation," Design and
Architectures for Signal and Image Processing (DASIP), 2010 Conference on, vol., no.,
pp.68-75, 26-28 Oct. 2010.
[8] W. Kruijtzer et al., “Industrial IP Integration Flows based on IP-XACT Standards,” in
DATE’08, March 2008, pp. 32–37.
[9] C. Lennard, “Industrially Proving the SPIRIT Consortium Specifications for Design
Chain Integration,” in DATE’06, March 2006, pp. 1–6.
 [10] C. André, F. Mallet, A. M. Khan, and R. de Simone, "Modeling SPIRIT IP-XACT
with UML MARTE", In: Proc. DATE Workshop on Modeling and Analysis of Real-
Time and Embedded Systems with the MARTE UML profile, 2008.
[11] F, Herrera, E. Villar, "A framework for the generation from UML/MARTE models
of IPXACT HW platform descriptions for multi-level performance estimation,"
Specification and Design Languages (FDL), 2011 Forum on , vol., no., pp.1-8, 13-15
[12]. G. Ochoa-Ruiz, E.B. Bourennane, H. Rabah, O. Labbani, “High-Level Modeling and
Automatic Generation of Dynamically Reconfigurable Systems,” in Proceedings of the
DASIP Conference, Tampere Finland. November 2011
[13]. G. Ochoa-Ruiz, O. Labbani, E.B. Bourennane, P. Soulard, “Model-Driven approach
for automatic dynamic partially reconfigurable ip customization, RAW 2012.
[14]. Sodius Corporation, MDWorkbench, http://www.mdworkbench.com/, 2011.
[15]. Xilinx Corporation, Embedded System Tools Reference Guide, Xilinx UG111.
[16] Xilinx Corporation, “Platform Specification Format Reference Manual”, UG642

a) Example 1 Resources Utilization

DPR Module LUT FF DSP RAM
KB
Size

Conf
Time

IMG Proc 1 1008 847 0 0 5 KB 0.05 ms

IMG Proc 2 1008 847 0 0 5 KB 0.05 ms
b) Example 2 Resources Utilization

DPR Module LUT FF DSP RAM
KB
Size

Conf
Time

DCT 1419 1636 8 8 47 KB 0.47 ms

DWT 940 389 0 4 44KB 0.44 ms

Type of design capture Time Description

Pure VHDL Approach

Manually integrating the platform Days
Less reliable, long and prone
to errors.

Using Xilinx EDK
EDK is justifiable for systems
containing at least one

Platform Integration in XPS 1h30 min processor (DPR manager)

Proposed Approach
The time required for a
platform creation is

Platform Integration 40 mins
reduced, and the
maintainability is improved

