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Abstract – This paper presents a framework which facilitates 
the parameterization and integration of IP cores into partially 
reconfigurable SoC platforms, departing from a high-level of 
abstraction. The approach is based in a Model-Driven 
Engineering (MDE) methodology, which exploits two widely 
used standards for Systems-on-Chip specification, MARTE 
and IP-XACT. The presented work deals with the deployment 
level of the MDE approach, in which the abstract components 
of the platform are first linked to the lower level IP-XACT 
counterparts. At this phase, information for parameterization 
and integration is readily available, and a synthesizable model 
can be obtained from the generated IP-XACT through model 
transformations. We detail how certain IP-XACT objects are 
exploited in our approach; the emphasis is given to the 
generation of IP cores in a Xilinx EDK environment. We 
provide a case study in which a complete DPR platform is 
modeled in MARTE and implemented in a FPGA. 
 
   Index Terms—Dynamic Partial Reconfiguration, UML 
MARTE, MDE, IP-XACT, EDA. 
 

1. INTRODUCTION 
 
Dynamic Partial Reconfiguration (DPR) [1] enables a set of 
Partial Reconfigurable Modules (PRMs) to time-share a 
pre-defined portion of the programmable fabric while the 
remainder of the logic in the system remains active. A DPR 
platform has advantages over conventional FPGA systems, 
including partial updateability, increased flexibility, 
reduced resource utilization, and low power dissipation [2]. 
Despite its benefits, the DPR implementation process 
remains complex and time consuming, and often requires 
hardware developers to have a thorough understanding of 
the underlying fabric and design methodology. 
    Furthermore, the creation of SoC DPR-based systems 
requires IP reuse capabilities in which the parameterisation 
and integration, both of DPR and non-DPR components, is 
performed in such a way that facilitates the design process.  
   Model Driven Engineering (MDE) in tandem with UML 
has been used in co-design methodologies in the last years 
with relatively success in embedded systems modeling [3]. 
Many of them made use of the UML profile for “Modelling 
and Analysis of Real Time and Embedded Systems” 
(MARTE) [4].   

 
UML/MARTE models are used not only for communication 
purposes but, using model transformations, to produce 
concrete results such as a source code.  For this purpose, 
MDE methodologies make use of a deployment phase in 
which the building blocks of the high-level models are 
linked to the low implementations that embody the related 
behaviour. This is basically an IP reuse problem, and in this 
way the components can be configured, and a synthesizable 
top-level implementation can be obtained. 
    In this paper we proposed an MDE component based 
approach for the parameterization and integration of IPs 
into DPR SoC based systems. The generation framework 
departs from a deployment model in MARTE that is 
obtained from high-level library, containing abstract 
representations IP-XACT objects [5]. The parameterisation 
and integration of the platform takes place at this level, 
effectively abstracting the low-level implementation details.     
    The components in the MARTE model are linked to IP-
XACT representations that similarly reference the low-level 
implementation files, used for generating the EDK system.    
    This description is subsequently synthesized, and along 
with the DPR IP netlists, is fed to the PlanAhead DPR 
design flow. In this way, we provide framework for 
facilitating the design entry phase of the DPR design flow. 
    The rest of this paper is organized as follows: in Section 
II, we describe briefly the similar approaches and its 
limitations regarding the deployment phase. Then, in 
Section III, we introduce the proposed methodology, 
focusing on the deployment phase onwards. In Section IV 
we embark in a thorough discussion in which we detail how 
certain IP-XACT concepts are used in our framework. In 
section V, a case study for the creation of EDK-based DPR 
system is presented. Finally, we conclude and provide some 
avenues for future work. 
 

2. RELATED WORKS 
 

   Several works have tackled the use of MARTE in SoC 
design, specifically at the deployment level, such as the 
MoPCoM [6] and GASPARD [7] frameworks. The main 
disadvantage is that, as with many other MDE 
methodologies, both approaches make use of non-



standardized deployment representations. This means that 
the deployment models obtained by these methodologies are 
not interchangeable, making them highly methodology-
dependant. Another issue is that the models need to be 
annotated manually, and the parameters are retrieved from 
the implementation files in a non-automatic way.  
    This problem has been addressed by the SoC industry, by 
developing the IP-XACT standard, which aims at 
facilitating the configuration, integration, and verification 
in multi-vendor SoC design flows though a set of structured 
XML schemas. Several industrial cases studies have 
demonstrated that the adoption of IP-XACT facilitates the 
configuration, integration, and verification in multi-vendor 
SoC and IP integrating design flows [6], [7]. 
   The standard has risen the interest of the academia to 
bridge the gap between high-level approaches and IP-
XACT [8, 9], where the latter is used as an intermmediate 
representation to perform a series of tasks, but varying in 
the intended back-ends (e.g. RTL, SystemC). However, 
these approaches do not present a means of “importing” IP 
important parameters from the low-level implementations 
files to facilitate their deployment. 
   The contributions of this paper are the introduction of an 
MDE approach that uses the UML MARTE profile, and 
that enables moving from high level models to HDL code 
generation. IP-XACT is used as an intermediate model, 
used to configure the deployed IPs in the platform and to 
automate the integration of the DPR and non-DPR IPs. The 
parameters needed at high levels of abstraction are stored in 
the deployment level, facilitating the task of the designer. 
The parameterised system and IPs are then used to generate 
the necessary inputs to the DPR design flow. Our approach 
simplifies the conception of FPGA-based SoCs, facilitates 
the composition and generation of DPR designs.  
 

3. PROPOSED METHODOLOGY 
 
    In this section, we embark in a thorough description of 
the proposed framework for DPR IP integration and 
parameterization, emphasizing how it is embedded into the 
design flow of DPR systems. The MDE methodology is 
based on a Y schema approach. As with other co-design 
approaches, the system specification starts by modeling the 
application and architecture separately, which are 
subsequently associated and deployed at a high-level of 
abstraction. The models obtained at the deployment phase 
are use for code generation, and we provide means for 
obtaining the pertinent parameters, options and interfaces 
of the IP blocks, thus facilitating the designer’s task. 
 
3.1. Deployment phase of the MDE methodology. 
. 
    The deployment phase of any MDE methodology is 
instrumental, since enables the generation of a 

synthesizable SoC description from a high-level MARTE 
model. More precisely, sufficient information must be 
provided at this stage so that the code integration and 
parameterization on the IPs can be performed. 
    The proposed framework, in terms of models 
transformations and departing from the deployment phase, 
is depicted in Figure 1; the green line describes the actual 
tool flow. It uses three levels of abstraction, each making 
use of its corresponding component library.  The entry 
point is a MARTE deployment platform model (a 
Composite Structure Diagram, CSD), which is created by 
choosing components from a Component Model Library 
(CML). The MARTE model is to be obtained after the 
association phase, where sufficient information about the 
components to use is available. At this phase, components 
are seen as simple IP blocks containing interfaces to be 
connected and parameters to be set by the designer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig  1. MDE framework  for DPR system and IP composition 
 
3.2. Models transformations from the deployment level. 
 
The CML library abstracts the low-level details contained 
in the IP-XACT library, which contains information about 
different concepts deployed in our approach (e.g. bus 
interfaces, component and design descriptions). 
Subsequently, the MARTE model created in the 
deployment phase is parsed to obtain an   IP-XACT system 
description, which contains the component instantiations, 
their interconnections, and the configurable elements (CE). 
Depending on the type of CE, some might require to be set 



at this stage, whereas others are to be configured by 
external tools in the flow. The way different IP-XACT 
concepts are used in our methodology will be further 
discussed in Section 4; the mapping between MARTE and 
IP-XACT objects can be found in previous work [13].  
   The IP-XACT descriptions for the top level design and 
for the constituent IPs are fed to so-called Platform 
configuration tool. We make use of Sodius MDWorkbench 
[14], a MDE platform which enables the definition of meta-
models and to carry out model transformations.  
   The IP-XACT XML schemas have been processed by an 
improved XSD/Ecore meta-model importer in 
MDWorkbench, which leads to a Java/EMF 
implementation of the IP-XACT meta-model. The tool is in 
charge of producing the desired outputs for the rest of the 
flow, by using transformation rules that can be tailored to 
the design flow needs, or evolved depending in the back-
end requirements. In this work, we have decided to target 
the Xilinx EDK design flow [15], as explained previously. 
This allows us to build SoC based platform which is easier 
to manage and in which DPR concepts can be integrated in 
the design flow. 
      Xilinx EDK makes use of a collection of files defined in 
the Platform Specification Format (PSF) document [16], 
which formalizes the description of different components in 
the Xilinx design flow for processor-based systems. Being 
able to handle such Xilinx platform models allows 
interoperating with platform-independent standards such as 
IP-XACT. Xilinx PSF files are structured in a textual 
format, which can easily be understandable by machines by 
defining a parser, but the first mandatory step if the meta-
model definition. The Ecore formalization of these meta-
models does not exist, and has to be entered, in UML for 
instance. We have created meta-models for the different 
Xilinx files used in the EDK environment, such as the 
Microprocessor Hardware Specification (MHS) and the 
Microprocessor Peripheral Definition (MPD), among 
others. As an example, Figure 2 depicts the UML Model for 
the MHS file, used to describe how a top-level is 
implemented in Xilinx EDK.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Model UML Model of Xilinx PSF Meta-model – MHS 

3.2. Model transformation tool and intended back-end. 
 
In our approach, Sodius MDWorkbench model tool 
provides a means of generating different outputs that are to 
be fed to the Xilinx EDK XFlow. As mentioned before, the 
Code Generation phase produces a set of files that are used 
by EDK to describe a SoC platform intended for 
implementation in Xilinx FPGAs. The MHS file is 
deployed to generate the top-level implementation of the 
embedded platform by using the PlatGen tool.  
    In this way, the top level VHDL implementation is 
obtained and can be synthesized; this intermediate 
architecture can be used for testing the platform, by using 
non-DPR implementation of the IPs. Individual IP 
specification is achieved through the use of files such the 
Microprocessor Peripheral Definition (MPD). Generating it 
for already existent IP cores (e.g. DDR2, TFT Display, RS-
232) is redundant. However, being able to handle these files 
in MDWorkbench, enables for their parameterization. 
   Nonetheless, the Xilinx DPR flow requires, at the entry 
design phase, the definition of the top-level implementation 
and of the individual DPR IPs, which are intrinsically 
parametrisable. The features added to the IP in terms of 
their interfaces and functionalities affect the resulting 
Xilinx EDK specification files. Therefore, configuring such 
IPs at a higher level of abstraction facilitates the entry 
design phase. Therefore, by using IP-XACT, we provide a 
means to integrate the high-level models in a generation 
chain; IP-XACT functions as glue intermediate level, 
allowing us to represent the intermediate components and 
to obtain the necessary IP metadata for the MARTE 
deployment models. Subsequently, the IP-XACT desing 
description in converted to an EDK MHS description, used 
for creating the top-level HDL design that, along the IPs 
descriptions, is fed in the form of netlists  
     

4. IP-XACT FOR COMPONENT DESCRIPTIONS. 
 
In the previous section we have provided hints on how      
IP-XACT is used as an intermediate representation, but 
also as the backbone for passing from a MARTE 
description to an EDK system, via model transformations. 
In this section, we further describe how certain IP-XACT 
concepts are used in our methodology, emphasizing the link 
to concepts in MARTE and EDK. 
   The standard defines four central object descriptions, 
which are bus and abstract definitions, component, and 
design descriptions. These four elements are sufficient for 
structurally describing a system and the IP cores the 
compose it. We concentrate then our efforts in describing 
IP-XACT components, specifically hierarchical modules, 
for which a sub-system design description is attached.   
    A component description packages the information 
related to an IP core, as depicted in Figure 3. We have 



chosen this block-like representation of the IP-XACT 
concepts instead of the schemas in the standard, since it 
facilitates their comprehension. The elements contained in 
the component schema are intended for describing as many 
different kinds of IP cores as possible, but it is obvious that 
not all of them will be required in all instances. Here, we 
have included the most widely used concepts for structural 
and logical implementation and parameterization. In the 
next sub-sections, we will briefly discuss how the different 
elements are exploited in our approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig  3. IP-XACT concepts for a component description. 
 
4.1. Bus interfaces 
 
Each IP core identifies one or more <busInterfaces>, which 
are groups of ports that belong to an identified <busType>. 
Apart from defining standard bus interfaces, they can be 
used for other ports of the IP, such as DMA or VFBC ports. 
     The ensemble of these interfaces comprise the ports in 
the VHDL entity, and in EDK, they appear in the MPD file 
to define the ports of the IP. In both cases, the information 
is used for IP integration and top-level stitching.  Moreover, 
core ports external to the FPGA need to be defined in the 
User Constraints File (UCF).  
 
4.2. Parameters and Choices 
 
    The <Parameters/Choices> sub-elements permit the 
configuration of an IP core, and enable to automate the 
parameterization of an IP within a tool flow. <Parameters> 
are normally set at the design level, and only if they are 
defined as being configurable in the IP-XACT description. 
The <resolve> attribute in the configurable element 
description defines exactly how a parameter must be set. 
    In our approach, most of the parameters are immediate, 
their values being obtained from the MARTE description 
itself. In other cases, certain values can be set by the user 
(e.g. through a GUI), be dependent on other parameters in 
the IP-XACT description (using a dependency equation that 
takes the parameters IDs as inputs), or generated.  

4.3. FileSets, Models and Views. 
 
The <fileSets> element contains a list of the <files> and 
directories associated with a component. These files might 
include drivers, implementation files, netlists, and other 
files related with a particular tool. Files can be grouped for 
describing particular functions and purposes, greatly 
promoting EDA and IP reuse. This separates the high-level 
models from the intended back-ends, which can adapted, 
thus providing extensibility mechanisms. 
      The <model> element describes the <views>, <ports> 
and model-related <parameters> of a component. An IP 
can contain different views such as RTL, TLM, software, 
and documentation, to name just a few. Views are used in 
tandem with <filesSets> and generators to enable the 
automation of component related tasks, such as FPGA 
synthesis and source code compilation. 
    In our methodology, we exploit this capability of the 
<view> elements for describing components with different 
purposes, but having the same interface. The Xilinx DPR 
design flow requires, as inputs, the netlists of the top-level 
design, but also of those DPR modules. In the latter case, 
the modules functionality must be synthesized 
independently, while maintaining the same interface in the 
top level implementation. Let us consider the example in 
Figure 4, which depicts the implementation of a simple IP 
attached to a bus via the Xilinx IPIF interface. 
 
 
 
 
 
 
 
 
 
 
 

Fig  4. IP-XACT abstract representation for the DPR IP 
 
   Each of the depicted components corresponds to a VHDL 
file. The hardware accelerator (HWA) is wrapped by what 
we call a “Static Wrapper”, which in our example is 
represented attachment to the IPIF interface. Additional 
components might be necessary for attaching a given HWA 
to the IPIF logic, for instance a Protocol Adaptation Logic 
(PAL).  Along with the HWA, the PAL comprises the so-
called “Dynamic Wrapper” (DWR).  
   The DWR corresponds to the logic that is to be swapped 
during the DPR run-time phase, whilst the rest of the 
system (and in this case, the static wrapper), remains 
unchanged. The dynamic wrapper corresponds to a black 
box (BB) that defines logically where the Partially 
Reconfigurable Modules (PRMs) are to be mapped. 



Afterwards, this BB will be assigned to a fixed Partial 
Reconfigurable Region (PRRs) during the floorplanning 
phase of the DPR design flow. This means that, for the 
DPR design to be generated, the functionality of the DW 
must be synthesized independently.  
   The View_1 is associated to a <<NonDPR_source>> 
fileSet, which contains all the implementation files, 
including the DWR logic, whilst the View_2 references a 
fileSet called <<DPR_source>>, which makes reference to 
an IP-XACT Black Box element. Since the component 
instances and interconnections remain unchanged, only a 
design description, which is obtained from the MARTE 
model, is necessary. 

 
5. CASE STUDY FOR SYSTEM IMPLEMENTATION. 
 
    In this section, we present a case study in which we show 
how the methodology is used to implement a MicroBlaze-
based SoC platform integrating some DPR blocks. We start 
by describing MARTE related modeling concepts for the 
individual components and the platform, and how they are 
related to their IP-XACT counterparts. Afterwards, we 
describe how a DPR component can be parameterized and 
integrated from a MARTE description. As mentioned 
before, DPR cores require non-DPR and DPR descriptions 
using different views, to target different scenarios. 
 
5.1. Parameterization View. 
 
At the deployment level, the designer of the DPR 
application has enough information to choose the 
components to build its application; these components are 
gathered from a CML library, which contains abstract 
representations of the IPs, described in MARTE. 
     The designer creates first what we call a 
“Parameterization View”, which contains the set of 
components to be used in the platform. Figure 5a) depicts a 
section of this view, showing three components: 
PLB_UART, PLB_HWICAP, and PLB_TFTcntr. Each 
component contains a specific MARTE stereotype; most of 
the components in this figure are <<HwComponent>>, 
since they reference real IP cores. The components in the 
CML library are related to their IP-XACT counterparts by 
their VLNV value (IP-XACT unique identifier for objects).  
Each class in this diagram holds references to the 
configurable elements that this component instance 
contains, and which must be set by the designer. This view 
has been separated to avoid cluttering the models. Thus, 
only those parameters with “immediate” attributes are 
visible in the “Parameterization View”. Apart from having 
an immediate attribute, we have defied vendor extensions to 
specify dependencies and validity, in order to control which 
parameters, interfaces or ports can appear in the MARTE 
component. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: Modeling of the system: a) Parameterisation and b) Platform Views 
 
5.2. Architectural View and Mapping to IP-XACT 
  
   On the other hand, Figure 5b) shows the modeling of a 
reconfigurable system, targeted to an embedded architecture 
to be exploited by the Xilinx’s EDK environment. This 
diagram represents a merged functional/physical view of 
the system used to express the attributes related to 
physical/logical stereotypes. This is the so-called 
“Structural View”; using a CSD, the designer is interested 
in describing the way the system is to be connected, not 
concerned to the low level aspects of the design. 
Every component instance has two type definitions, one 
being functional (the type of modules) and the other 
physical (e.g. areatype, Static or DynamicReconfigurable). 
In this case study, we make use of two dynamic 
reconfigurable regions (labeled as PRR in the diagram).       
     Both descriptions are parsed for generating the            
IP-XACT description for the top-level implementation. As 
mentioned before, the “Structural View” is used for 
generating the IP-XACT design description of the top level 
design and of the hierarchical IPs.  
       In order to perform the aforementioned mapping, a 
step must be defined in which the MARTE specification is 
parsed. Certain elements in the MARTE platform model 
will correspond to IP-XACT objects in the model library. 
The objective is to identify all the elements in the platform 
specification, generating a top-level design file.  Table 1 
defines these mapping for obtaining the IP-XACT design. 



Table 1. Transformations from a deployed model to an IP-XACT design. 

 
These transformations have been implemented using Sodius 
MDWorkbench, where our Xilinx XPS and IP-XACT 
meta-models reside. The obtained IP-XACT design is fed to 
our tool, where is used to generate the files used by Xilinx 
to obtain the synthesizable top-level description. 
 
5.3. Modeling of the DPR Cores. 
 
We have chosen to concentrate our efforts in targeting EDK 
compatible IP cores, since we aim to generate DPR systems 
in a Xilinx flow.  Figure 6 shows a detailed block 
representation of the PRM components in Figure 4. We 
have implemented an image processing IP that receives a 
complete line of the image and stores it in FIFO_in; when a 
complete line has been stored, is processed by the HW 
accelerator and the results written to the FIFO_out 
component.  
 
 
 
 
 
 
 
 
 
 
 

Fig 6.) Underlying HDL description 
 
The resulting processed line is sent via a master to the DDR 
memory.  The two FIFO components and their control logic 
are the PAL; this component is associated with a VHDL file 
describing its functionalities. The HWA is associated with 
another VHDL file. Similarly, the IPIF logic containing the 
write/read interfaces is represented by another VHDL file, 
which is generated by choosing the required services 
through a GUI. If the PAL changes between changes of the 
IP core in a DPR system, forms part the DPR Wrapper, this 
is, the Black Box used by the Xilinx DPR flow to specify 
that a component in the design is to be a PRM. This is the 
case of our example. The rest of the IP is labelled here as 
Static Wrapper, since its functionalities do no change 
between different configurations of the IP. 

   We have modelled the DPR IPs in our approach in such a 
way that, by using the <views> and <fileSets> elements of 
the IP-XACT description we provide a means for pointing 
the location of the different implementations of the DWr 
into the IP implementation directory.  The <fileSets> 
element in the component description specifies all the files 
used to describe a component. In particular, a least one 
<fileSet> is destined for specifying the HDL sources using 
to implement the IP functionalities. A component can 
contain multiple implementations, each represented by a 
<View> referencing a <fileSet>, as depicted in the IP-
XACT component description of Figure 3. 
  The <<DPR_Source>> fileSet, which is parsed during the 
generation phase to retrieve the location of the different 
implementations of the IP, which are synthesized 
separately, as required by the DPR design flow, and that 
otherwise has to be done manually and using a separate tool 
(Xilinx ISE). In Figure 6 we show a block representation of 
the implemented IPs; there are two of them in the platform 
of Figure 5b): each of them treats a half of a input image 
and sent to the TFT controller in the card for display, and 
implemented several image processing tasks (binarization, 
inversion, edge detection, and greyscale reduction) was 
hardware accelerators. 
   Since we are targeting the Xilinx EDK design flow, we 
have decided to implement all our IPs following the 
directory structure depicted in Figure 7, which is used to 
separate HDL implementation files from others used by the 
Xilinx tools; the function of the different files is out of the 
scope of this paper, for a more information, the reader is 
director to the Xilinx platform specification guide [16].  
The most important aspect, as previously discussed, is the 
location of the implementation files that lies under the HDL 
directory. The IP-XACT component description contains 
this information under the <fileSets> element; when 
choosing a component in the top-level MARTE description 
each of the possible implementations is referenced via the 
<View> elements, pointing at the location of the 
corresponding HW accelerator implementation. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.) Underlying HDL description 

MARTE IP - XACT 
CSD Diagram Design 
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Parameter = value spirit:configurableElement:ReferenceID 

Connector = name spirit: interconnection  portRef (busIF name) 

Ednpoint = name AdHoc Connection = name 
  with intPortRef and extPortRef 



6. RESULTS AND DISCUSSION.  
 
   The system described in Figure 5 has been used for 
implementing an image processing platform. In Table 2a) 
we can observe the implementation results of two simple 
pixel-based operations, as detailed in the previous section. 
The resource utilization of each of the PRMs in the same; 
we provide as well the partial bitstream size (5KB for 
each), which means that for using the throughput provided 
by the HWICAP we can attain a configuration time of 50 
microseconds. In Table 2b) we provide a more complex 
example, in which we have mapped a Discrete Cosine 
Transform (DCT) and the Discrete Wavelength Transform 
(DWT); as it can be observed, the increased resource 
utilization increases the partial bitstream sizes and 
accordingly, the configuration times.  
 
 Table 2. Implementation details for two image processing implementations. 

 
By combining MARTE and IP-XACT, we provide a means 
to facilitate IP deployment. However, the design effort is 
also significantly reduced; ff the system had to be created 
using a pure VHDL description, the design capture might 
take days, in process very prone to errors and difficult to 
maintain. Using EDK simplifies the task, but requires a 
great deal of expertise on the necessary tools and the used 
files if an MDE approach is to be adopted. Using our 
approach, which is based on the IP-XACT standard, 
facilitates the creation of EDK systems, since we provide a 
means to pass from MARTE to the Xilinx Platform studio 
formalism; not only the design effort is reduced (as depicted 
in Table 3), but the maintainability is improved. Also, we 
can adapt the methodology to changes in the back-end by 
only modifying the transformations from IP-XACT. 

Table 3. Design efforts using VHDL, XPS and the proposed methodology 

7. CONCLUSIONS. 
 
In this paper we have presented a design methodology that 
enables the parameterization and integration of IPs into a 
DPR platform at multiple levels of abstraction. The 
presented approach uses the IP-XACT standard as a centric 
representation of the platform, and as backbone for 
federating the heterogeneous data used in the design flow of 
DPR based SoCs. Furthermore, as we have show in this 
paper, IP-XACT can also be exploited as a means for 
providing an intermediate system description to pass from 
MARTE models to an EDK back-end, our chosen target for 
creating DPR, processor-based systems.  
     Moreover, we have showed how IP-XACT can be 
exploited as a means to perform the parameterization of IPs 
and their subsequent integration into a design description.  
Our approach also promotes IP reuse in by integrating 
several implementations of the same IP, intended for 
different scenarios and whose selection can be selected from 
the MARTE description.  
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a) Example 1                             Resources Utilization 

DPR Module LUT FF DSP RAM 
KB 
Size 

Conf 
Time 

IMG Proc 1 1008 847 0 0 5 KB 0.05 ms 

IMG Proc 2 1008 847 0 0 5 KB  0.05 ms 
b) Example 2                            Resources Utilization 

DPR Module LUT FF DSP RAM 
KB 
Size 

Conf 
Time 

DCT 1419 1636 8 8 47 KB 0.47 ms 

DWT 940 389 0 4 44KB  0.44 ms 

Type of design capture Time  Description 

Pure VHDL Approach    

Manually integrating the platform Days 
Less reliable, long and prone 
to  errors. 

Using Xilinx EDK   
EDK is justifiable for systems 
containing  at least  one 

Platform Integration in XPS 1h30 min processor (DPR manager) 

Proposed Approach   
The time required for a 
platform creation is 

Platform Integration 40 mins 
reduced, and the 
maintainability is improved 


