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existence of boundary layers, caused by the smallness of the flex
ural terms (nearly singular equations). A simple two degree of
freedom nonlinear system is then derived from the continuous
model via a Galerkin procedure, and the critical and post critical
aeroelastic behavior of the cable investigated in resonant and

configuration C, all the internal forces and moments are considered
to contribute to the dynamic equilibrium of the body.

The equations of motion governing the dynamics of the cable,
referred to the configuration C, are derived in the following. The
mechanical model and the aerodynamic model are formulated
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non resonant cases via a Multiple Scale perturbation approach
(see [12]). The role played by the dynamic twist is finally
highlighted.

The paper is organized as follows. The reduced equations of mo
tion are formulated in Section 2. The discretization is performed in
Section 3. The perturbation analysis is carried out in Section 4,
where the amplitude modulation equations are derived. These lat
ter are numerically studied in Section 5 for some sample systems.
Finally, some conclusions are drawn in Section 6.

2. Model

The cable is modeled as a body made of a flexible centerline and
rigid cross sections restrained to remain orthogonal to the axis
(shear undeformable beam). It is assumed to be uniformly iced
and loaded by a wind flow of mean velocity U Uaz, blowing hor
izontally. Three different configurations are considered, described
in the following (Fig. 1). (a) The initial configuration C0, taken by
the body at the time t 0, under the action of its self weight

mgay (including the ice accretion). This configuration is planar,
and belongs to the vertical ðax; ayÞ plane. The cable is prestressed
in C0 by an axial internal force T0ðs0Þ, depending on the (un
stretched) abscissa s0; other internal forces (shear, bending and
torcent moments) are neglected. (b) The reference configuration C,
assumed by the body at the time t 0þ, in which static wind forces
�baðsÞ (with the stretched abscissa s ’ s0) act on the cable. Under
the simplifying hypothesis that �ba is uniform on the length of the
cable, C still lies in a plane, forming an angle u with the vertical
plane. If shear and internal moments are still neglected, equilib
rium requires that the resultant force �b : �ba mgay lies in the
plane of the cable. By vanishing its component along the binormal
direction �a3, it follows that:

ba3 ðu;UÞ þmg sin u 0 ð1Þ

being �ba3
�ba �a3, ay �a3 sin u, and where the dependence on

the static aerodynamic force �ba3 on the configuration variable u
and on the flow velocity U has been made explicit. Eq. (1) implicitly
defines the nonlinear, non trivial equilibrium path u uðUÞ. In this
wind dependent reference configuration C, the cable is prestressed
by an axial internal force TðsÞ, modified with respect to C0 by the
static aerodynamic forces. Due to this circumstance, also the natural
frequencies and modes of the cable are modified. (c) The actual con
figuration C, assumed by the cable at the time t > 0, in which the
body is loaded also by (non uniform) dynamic wind forces
ba

�ba, depending on displacement and velocity of the cable. In this
Fig. 1. Cable configurations: (a) initial C0 and reference C configurations; (b) actual
configuration C.
separately.

2.1. Mechanical model

The reference configuration C is described by the planar curve
�x �xðsÞ and by the cross section inertial principal triad
�b : f�a1ðs; tÞ; �a2ðs; tÞ; �a3ðs; tÞg, assumed to be coincident with the
Frenet triad (Fig. 1b). Here, �a1 � �x0 is the tangent, �a2 the normal
and �a3 the binormal to the curve, the dash denoting s differentia
tion. Therefore, �a01 �j�a2, �a02 �j�a1, �a03 0, with �j �jðsÞ the cur
vature in C.

The actual configuration of the body is described by the non
planar curve x xðs; tÞ and the inertial principal triad b :

fa1ðs; tÞ; a2ðs; tÞ; a3ðs; tÞg.
The transport is described by the displacement vector field

uðs; tÞ and the rotation tensorial field Rðs; tÞ, which leads the triad
�b to match the triad b:

x xþ u; ai Rai; i 1;2;3: ð2Þ

The scalar representation of R, involving three elementary rotations
#i, is given in [13] and in many other papers. The shear undeformabil
ity constraints require that, in the actual configuration, the tangent x0

to the centerline is parallel to the normal a1 with regard to the cross
section, namely, x0 ð1þ eÞa1, where e is the axial strain. From this
condition, the strain e and the rotations #2 and #3 are derived as func
tions of four independent configuration variables, the three compo
nents u, v and w of vector u on �b, and the twist angle # : #1. Then,
the incremental bendings ĵ2; ĵ3 and torsion ĵ1 are introduced as inde
pendent components on �b of the skew symmetric tensor:bK RTR0: ð3Þ

The following strain measures, expanded up to second order terms,
are obtained [13]:

e u0 jvþ 1
2
½ðv0 þ juÞ2 þw0�;

ĵ1 #0 þ jw0 þ j2vw0 þw0v00 þ j0uw0;

ĵ2 w00 þ j#þ ½ðu0 jvÞw0�0 þ #½ðjuÞ0 þ v00�;

ĵ3 v00 þ ðjuÞ0 þ #w00
1
2
jð#2 þw02Þ ½ðjuþ v0Þðu0 jvÞ�0:

ð4Þ

The equations of motion are derived via the extended Hamilton
principle (see, e.g. [14]):

dH :

Z t2

t1

Z ‘

0
fmð _ud _uþ _vd _vþ _wd _wÞ þJ1

_#d _#þ ðb1 cu _uÞdu

þ ðb2 cv _vÞdvþ ðb3 cw _wÞdwþ ðc1 c# _#Þd#þ EAede

þ GJĵ1dĵ1 þ EI2ĵ2dĵ2 þ EI3ĵ3dĵ3 TeIIdeIIgdsdt 0
8du; dv; dw; d#; ð5Þ

where ‘ is the cable length; EA, GJ, EI2 and EI3 are the axial, torsional
and bending stiffnesses, respectively; b1, b2, b3 and c1 are the exter
nal forces and couple densities; cu, cv, cw and c# are the structural
damping coefficients; eII is the second order part of the axial strain,
accounting for the prestress working; m is the mass linear density
and I1 is the inertia polar moment of the section. It should be noted
that an uncoupled constitutive law among the incremental internal
forces and the incremental strains has been assumed in Eq. (5). By
substituting Eq. (4) in Eq. (5), performing the variations and inte
grating by parts, a set of four differential equations in the indepen
dent configuration variables is drawn. By enforcing the constraint



conditions du dv dw 0 and d# arbitrary at the ends (spherical
hinges), the boundary conditions also follow from the variational
principle. Identical equations were obtained in [13], where a differ
ent approach, based on direct equilibrium and later condensation of
the shear forces, was followed.

Eqs. (6) and (7) can be further simplified if the assumption of
quasi steady stretching and twisting is introduced. It is based on
the fact that the transversal to longitudinal and transversal to tor
sional squared frequency ratios are small. Therefore, inertia and
damping forces can be neglected in Eqs. (6)a,d and the tangential

adopted; (b) the curvature of the cable is neglected; (c) loads are
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The boundary value problem so far obtained is not reported
here, since the equations are too complicated. They, however, as
sume a much simpler form if a order of magnitude analysis is per
formed along the lines already followed in [10] for the associated
linear problem, and only the leading terms are retained in each
equation. The analysis is based on the following assumptions:
the nondimensional parameter d : 8d=‘, expressing the sag to
length ratio, is small; consequently, �jðsÞ ’ const, TðsÞ ’ const;
the nondimensional prestress s : T=EA is small of order d3; the
nondimensional characteristic inertia radius . r=‘ of the section
is also small of order d3; the nondimensional stiffness parameter
b : GJ=EI is of order 1; the transversal displacements v and w
are of the same order, while Oðu=vÞ d and Oð#d=wÞ 1; the
translations vary on a typical scale of length ‘ (since they vanish
at the ends) while the twist varies on a much greater length (since
it does not vanish at the ends). The following reduced equations are
thus obtained:

EA u0 jvþ 1
2

v02 þ 1
2

w02
� �0

þ b1 m€u cu _u 0;

EA jðu0 jvþ 1
2

v02 þ 1
2

w02Þ þ ½ðu0 jvþ 1
2

v02 þ 1
2

w02Þv0�0
� �
þ Tv00 þ b2 m€v cv _v 0;

EA ðu0 jvþ 1
2

v02 þ 1
2

w02Þw0
� �0

þ Tw00 þ b3 m €w cw _w 0;

GJ#00 EIj2#þ ðEI þ GJÞjw00 EIj#v00 þ GJðv00w0Þ0

þ c1 J1
€# c# _# 0

ð6Þ

with the relevant boundary conditions:

u v w 0; GJð#0 þ jw0 þw0v00Þ 0; at s 0; ‘: ð7Þ

As a major result of the analysis, and in perfect analogy with the lin
ear problem [10], Eqs. (6) and (7) show that, at the leading order,
the dynamics of the cable are governed by the classical equations
of the perfectly flexible model (Eq. (6)a–c, identical to that of Lee
and Perkins [5] and usually adopted in the literature) plus an addi
tional Eq. (6)d, governing the twist around the tangent. It is interest
ing to note that, while the bending does not affect the translational
dynamics, it, in contrast, contributes to the twist dynamics, differ
ently from certain models used in the literature [7 9], where it is
inconsistently neglected.

To better appreciate the influence of bending on twist dynam
ics, it is instructive to derive Eq. (6)d in an alternative way. Let us
consider the moment equilibrium equation around the tangent to
the cable in the actual configuration:

M0
1 M2j3 þM3j2 þ c1 0; ð8Þ

where Mi m ai; c1 c a1; j2 ĵ2 and j3 �jþ ĵ3 are the ac
tual curvature components. If this equation is linearized, then
ai ’ �ai, j2 ’ 0 and j3 ’ �j; moreover, if reduced expressions for
the curvatures are considered, consistently with the approxima
tions introduced:

ĵ1 ’ #0 þ jw0 þ u0v00; ĵ2 ’ w00 þ j#þ #v00 ð9Þ

and the constitutive laws M1 GJĵ1, M2 EI2ĵ2 are used, Eq. (6)d is
finally recovered. The procedure shows that neglecting bending in
the twist equation leads to inconsistent equilibrium violation, since
the ignored terms are of the same order of that retained in the
analysis.
displacement u and the twist angle # determined in integral form,
this latter via a perturbation method (see Appendix A). The follow
ing expressions are found, holding for b1 0; c1 0:

uðs; tÞ s
‘

Z ‘

0
jv

1
2

v02
1
2

w02
� �

ds

þ
Z s

0
jvðn; tÞ 1

2
v0ðn; tÞ2 1

2
w0ðn; tÞ2

� �
dn ð10Þ

and

# ðA1 þ A2Þ cosh ksþ ðB1 þ B2Þ sinh ks
GJ þ EI

GJEI
p Z s

0
w00ðn; tÞ

� sinh½kðs nÞ�dn
1
k

Z s

0
ðv00ðn; tÞw0ðn; tÞÞ0 sinh½kðs nÞ�dn

þ EI
GJ

s Z s

0
v00ðf; tÞ GJ þ EI

GJEI
p Z f

0
w00ðn; tÞ sinh½kðf nÞ�dn

 

þA1 cosh kfþ B1 sinh kf

!
sinh½kðs fÞ�df; ð11Þ

where k : �j EI=GJ
p

and A1;B1;A2, B2 are determined by the bound
ary conditions.

By taking into account Eqs. (10) and (11), the problem is gov
erned by two integro differential equation (Eq. (6)b,c) in the sole
unknowns vðs; tÞ and wðs; tÞ. However, in view of a later discretiza
tion of the field equations (Section 3), it results more convenient,
from a computational point of view, do not integrate the twist
equation (6)d (i.e. do not use the cumbersome Eq. (11)), but rather
to append its static counterpart to the integro differential equa
tions. Therefore, the problem is formulated as

EA
j
‘

Z ‘

0
½jv

1
2

v02
1
2

w02�dsþ v0

‘

Z ‘

0
jv

1
2

v02
1
2

w02
� �

ds
� �0" #

þ Tv00 þ b2 m€v cv _v 0;

EA
w0

‘

Z ‘

0
jv

1
2

v02
1
2

w02
� �

ds
� �0

þ Tw00 þ b3 m €w cw _w 0;

GJ#00 EIj2#þ ðEI þ GJÞjw00 EIj#v00 þ GJðv00w0Þ0 0:

ð12Þ

2.2. Aerodynamic model

A simple aerodynamic model is adopted here, based on the fol
lowing simplifying assumptions: (a) the quasi steady theory [2] is
evaluated taking into account the twist angle, but neglecting the
(smaller) flexural rotations; (d) the ice is uniformly distributed
along the cable; (e) the aerodynamic couples are neglected. Fig. 2
shows the attitudes of the cross section in the initial configuration
(axes a20 ; a30 ), in the reference configuration (axes �a2; �a3, rotated by
u) and in the actual configuration (axes a2; a3, still further rotated
by #). The static rotation u only depends on the mean wind veloc
ity via Eq. (1); the dynamic rotation # also depends on the abscissa
s and the time t. The angle u is assumed to be large, the angle #

small but finite.
According to the quasi steady theory, the flow exerts on the

section the aerodynamic force:

ba
1
2
qaVrðcdðcÞV þ clðcÞa1 � VÞ; ð13Þ



where qa is the air density, r is a characteristic dimension of the
cable cross section, V U _v�a2 _w�a3 is the relative velocity of
the wind with respect to the center G of the section, V kVk its
modulus, and cd and cl two aerodynamic coefficients, called of drag
and lift, respectively. These latter depend on the shape of the section

ciently simple nonlinear model, a sole in plane, /vðsÞ, and a sole
out of plane, f/wðsÞ;/#ðsÞg, eigenfunction (m n 1 in Eq. (16))
are selected. By taking into account the expression (15) of aerody
namic forces, two ordinary differential equations are obtained:

€q þ 2f x _q þx2q þ h q þ c _q þ c _q þ h q2

Fig. 2. Attitudes of the cross-section (c angle of attack, bd and bl drag and lift forces,
respectively).
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and on the angle of attack

c : arcsin
V
V
� a2

� �
; ð14Þ

i.e. on the angle between V and a reference material axis, here taken
as a3. The two components of ba, along wind bd and cross wind bl,
are usually known as drag and lift forces, respectively (Fig. 2). In Eq.
(13) the relative velocity V was evaluated ignoring the effect of the
twist velocity _#. This, indeed, usually accounted for in the literature
through the rather questionable concept of characteristic radius rc

[2], is negligible in the problem at hand, since it entails velocities
at the boundary of the section of the order of _#rc, which are smaller
than the velocity _w of the centerline, being _# Oð _w=dÞ. In contrast,
the twist # does affect the aerodynamic forces via the attack angle
c; consequently, ba bað#; _v; _w; uðUÞ;UÞ.

By substituting Eq. (14) in Eq. (13), expanding for small #, _v and
_w up to cubic terms, and projecting on the �a2; �a3 axes, the follow

ing force components are derived:

bai
bai
ðuÞ þ

X3

j 1

cijðuÞnj þ
X3

j;k 1

cijkðuÞnjnk þ
X3

j;k;l 1

cijklðuÞnjnknl;

i 2;3; ð15Þ

where n : ð#; _v; _wÞT is the vector collecting the independent vari
ables, �bai

are the static forces, and cij; cijk and cijkl are coefficients
depending on cd; cl and their derivatives with respect to c, all eval
uated at C. The coefficients, which assume quite involved expres
sions, are reported in Appendix B.

3. Discrete model

A discrete model is drawn by Eq. (12) via a Galerkin procedure.
The displacement field is discretized as follows:

#ðs; tÞ
vðs; tÞ
wðs; tÞ

0B@
1CA Xm

j 1

0
/vj

0

0B@
1CAqi

j þ
Xn

k 1

/#k

0
/wk

0B@
1CAqo

k; ð16Þ

where qi
jðtÞ, j 1; . . . ;m, are the unknown amplitudes of the in

plane trial functions /vj
, and qo

kðtÞ, k 1; . . . ;n, are the unknown
amplitudes of the out of plane trial functions /wk

;/#k
. The transla

tional modes are deduced from the associated linearized Hamilto
nian problem (cij 0, [15]) whereas the torsional mode is derived
from the later Eq. (35)a (Appendix A). In order to obtain a suffi
2 2 2 2 2 2 23 3 a22 2 a23 3 1 2

þ h2q2
3 þ h3q2q2

3 þ h4q3
2 þ h5q3

3 þ d1q3 _q2 þ d2q3 _q3

þ d3 _q2
2 þ d4 _q2 _q3 þ d5 _q2

3 þ d6q2
3

_q2 þ d7q2
3

_q3 þ d8q3 _q2
2

þ d9q3 _q2 _q3 þ d10q3 _q2
3 þ d11 _q3

2 þ d12 _q2
2 _q3

þ d13 _q2 _q2
3 þ d14 _q3

3 0;
€q3 þ 2f3x3 _q3 þx2

3q3 þ h33q3 þ ca32 _q2 þ ca33 _q3 þ h6q2q3

þ h7q2
3 þ h8q2

2q3 þ h9q3
3 þ d15q3 _q2 þ d16q3 _q3 þ d17 _q2

2

þ d18 _q2 _q3 þ d19 _q2
3 þ d20q2

3 _q2 þ d21q2
3 _q3 þ d22q3 _q2

2 þ d23q3 _q2 _q3

þ d24q3 _q2
3 þ d25 _q3

2 þ d26 _q2
2

_q3 þ d27 _q2 _q2
3 þ d28 _q3

3 0;

ð17Þ

where q2ðtÞ and q3ðtÞ describe the in plane and out of plane time
laws, respectively; x2 and x3 are the in plane and out of plane nat
ural frequencies of the cable; the ca’s are the aerodynamic damping
coefficients; the coefficients f2 and f3 are structural damping ratios
assumed to be of proportional type. Both quadratic and cubic non
linearities appear in the equations of motion. The twist # leads, in
particular, to the appearance of a 2� 2 circulatory matrix
H ½0; h23; 0;h33�, and of terms mixed in velocity displacement;
moreover, it also contributes to some nonlinear mechanical coeffi
cients. All the coefficients of Eq. (17) are defined in Appendix C.
The effect of the mean wind velocity is implicit in Eq. (17), since
it is included in the static angle of rotation u, from which, in turn,
all the coefficients of the equations depend on through the refer
ence axial tension T or the aerodynamic coefficients.

4. Amplitude modulation equations

The Multiple Scale perturbation method (MSM) is employed to
attack Eq. (17). As a first hypothesis, let us assume that in plane
and out of plane natural frequencies are different, x2–x3, i.e.
the cable has a small but finite sag. Then, a dimensionless pertur
bation parameter � is introduced (�� 1), and the unknowns q2; q3

are expanded in series of �:

qk �qk1 þ �2qk2 þ �3qk3; k 2;3: ð18Þ

Two independent slow time scales, t1 and t2, are introduced, in
addition to the fast scale t0 (tn �nt, n 0;1;2), so that the first
and second time derivatives are expressed as d=dt d0 þ �d1þ
�2d2 þ , and d2

=dt2 d2
0 þ 2�d0d1 þ �2ðd2

1 þ 2d0d2Þ þ , where
dn o=otn. Moreover, it is assumed that the linear dissipative forces
depending on velocity (both mechanical and aerodynamic damp
ing) are small of order �, while the coefficients of the circulatory
matrix H (depending on U2, see Appendices C and B) are of order
1, since they can become comparable to the stiffnesses when the
mean wind velocity takes sufficiently high values. The � order per
turbation equations are thus obtained:

d2
0q21

d2
0q31

 !
þ

x2
2 h23

0 x3
3

" #
q21

q31

� �
0
0

� �
ð19Þ

being �x3 x2
3 þ h33

q
; from Eq. (19) the following generating solu

tions come out:

q21

q31

� �
A2ðt1; t2Þ

1
0

� �
eix2t0 þ A3ðt1; t2Þ

h23
x2

2 x2
3

1

 !
eix3t0 þ c:c:;

ð20Þ

where i is the imaginary unit, A2;A3 are the complex amplitudes,
which are unknowns functions of the slow times, and the term



c:c: denotes the complex conjugate. It should be noted that the cir
culatory terms hij strongly affect the generating solution (20), both
directly and through an alteration of the out of plane natural fre
quency x3. In particular, since the matrix of the generating problem
(19) is not symmetric, it is necessary to find its right and left eigen

where the coefficients p are functions of the mean wind velocity U.
They are defined in Appendix E with regards to the linear terms,
which furnishes an analytical approximation of the eigenvalues.
All the symbolic manipulation, indispensable to obtain the cumber
some expressions of nonlinear p coefficients, are performed

Fig. 3. Steady-state amplitude solutions vs. mean wind velocity: qualitative
behavior.
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vectors (Appendix D), these latter necessary to impose the solvabil
ity conditions at the higher orders.

At this point, in order to obtain the high order perturbation
equations, one needs to distinguish between non resonant and
internal resonant conditions (of m:1 type, with m–1). For a sagged
cable two cases are usually of interest: (a) 2:1 internal resonance,
that is the in plane natural frequency is about twice the out of
plane natural frequency; (b) no internal resonance condition.

4.1. Internal resonance condition

The particular condition of 2:1 internal resonance occurs when
the cable is close to the first cross over point [15], i.e.:

x2 2x3 þ �r; r Oð1Þ; ð21Þ
r being a detuning parameter. Using the generating solution (20),
the following �k order perturbation equations are obtained:

d2
0q2k

d2
0q3k

 !
þ

x2
2 h23

0 x3
3

" #
q2k

q3k

� �
tk2 eix2t0 þ tk3 eix3t0 þ NST;

k 2;3; ð22Þ

where tk2; tk3 are two vectors collecting coefficients that multiply
the resonant exponential, eix2t0 and eix3t0 , respectively, in the two
equations; NST denotes not secular terms. The solvability condition
requires that the resonant vectors tk2; tk3 are orthogonal to the left
eigenvectors (Appendix D), v2 tk2 0, v3 tk3 0, leading to equa
tions of the type:

d1A2 I12ðA2;A
2
3; UÞ; d2A2 I22ðA2;A

2
3;A2A3A3;A

2
2A2; UÞ;

d1A3 I13ðA3;A3A2; UÞ; d2A3 I23ðA3;A3A2;A2A2A3;A
2
3A3; UÞ:

ð23Þ

Eq. (23) govern the amplitude modulation on the slow temporal
scales. In order to return to the time t one needs to apply the recon
stitution rule _Ak �d1Ak þ �2d2Ak, k 2;3, and then to reabsorb the
perturbation parameter in the coefficients, obtaining the (complex)
amplitude equations:

_A2 I2ðA2;A
2
3;A2A3A3;A

2
2A2; UÞ;

_A3 I3ðA3;A3A2;A2A2A3;A
2
3A3; UÞ

ð24Þ

being Ik I1k þ I2k. They can be written in real form adopting the
polar representation Ak 1=2akeiak , k 2;3, being ak the real ampli
tude and ak the phase of Ak, respectively. By separating Eq. (24) into
real and imaginary parts, four state equations in the real variables ak

and ak are obtained. These equations can be transformed into an
autonomous system by letting:

d a2 2a3 þ rt: ð25Þ

The result is a set of three equations called amplitude modulation
equations (AME):

_a2 a2p10 þ
1
2

a2
3ðp�21 cos dþ p�22 sin dÞ þ 1

4
a2a2

3p31 þ
1
4

a3
2p41;

_a3 a3 p50 þ
1
2

a2ðp�61 cos d p�62 sin dÞ þ 1
4

a2
2p71 þ

1
4

a2
3p81

� �
;

a2a3
_d a3 a2ðp12 2p52 þ rÞ a2

2ðp�61 sin dþ p�62 cos dÞ
�
þ a2

3

2
ð p�21 sin dþ p�22 cos dÞ þ a3

2

4
ðp42 2p72Þ

þ a2a2
3

4
ðp32 2p82Þ

�
;

ð26Þ
through the software Mathematica� [16], with the help of advice in
cluded in Nayfeh and Chin [17]. The fixed points ða2; a3; dÞ of the
dynamical system (26) correspond to limit cycles of the original dis
crete system (17).

The AME (26) are formally identical to those obtained in Luongo
and Piccardo [3] for large static displacement, where the effect of
the dynamic twist # was not taken into account. On the other hand,
as already observed, the dynamic twist is able to deeply modify the
generating solutions, then the quantitative values of all the coeffi
cients p. Anyway, the qualitative properties of the solutions are
maintained and, from the analysis of Eq. (26), the existence of
the following branches of fixed points is proved ([3], see Fig. 3):
branch I, a2 a3 0, d arbitrary, 8U; branch II, a3 0, a2

a2ðUÞ 4p10=p41

p
; d arbitrary; branch III, a3 a3ðUÞ, a2 a2ðUÞ,

d dðUÞ.
Studying the bifurcation of branch I (a2 ! 0; a3 ! 0;U ! Ucr)

Eq. (26) reduce to

a2pcr
10 0;

a3pcr
50 0;

a2a3ðpcr
12 2pcr

52 þ rÞ 0;
ð27Þ

where pcr
i piðUcrÞ, being Ucr the critical mean wind velocity at

which the bifurcation occurs. Two different solutions of Eq. (27)
can exist: a2 bifurcation, a3 0, a2–0 when pcr

10 0; a3 bifurcation,
a2 0, a3–0 when pcr

50 0. In the first case the branch bifurcates in
a2 direction (branch II in Fig. 3), while, in the second case, it bifur
cates in a3 direction. However, if the static rotation of cable is ne
glected (u 0), the coefficient p50 is always negative for value of
U of technical interest because of the physics of the problem (the
drag coefficient cd is positive for any kind of cross section); there
fore, critical conditions in a3 direction can occur for large mean
wind velocity only (i.e. large static rotation u), not considered here.
Anyhow, galloping is mono modal in both the cases, since only one
mode is triggered at bifurcation. In the sequel of the paper the name
‘‘branch II” (ða2; a3Þ ða2ðUÞ; 0Þ) denotes a curve bifurcated in the
ða2;UÞ plane; its particular shape (with a first bifurcation at B1

and a return to stability at B2) is essentially due to the effect of
the mean wind (i.e. the static rotation u), whose rise produces a



decreasing of the self excited aerodynamic forces [18]. In order to
have a bi modal galloping (branch III), one needs to analyze possi
ble bifurcations of branch II, looking for the existence of two com
ponent solutions (a3–0; a2–0) close to the branch. Bi modal
galloping can occur for a sufficiently high value of in plane oscilla

x2p41 þ x3p̂31 4p10;

x2p̂71 þ x3p̂81 4p50
ð31Þ

being x2 a2
2 and x3 a2

3. The solutions of Eq. (31) can be easily
studied using the well known Kramer’s rule. Therefore, the exis

Fig. 4. (a) U-shaped conductor; (b) attitude of cross-section to wind (u positive
anticlockwise).
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tions [18] as a consequence of the nonlinear interaction between
the two internally resonant modes, mainly governed by quadratic
mechanical terms.

4.2. No internal resonance condition

Let us consider a suspended cable with a small but finite sag, so
that its natural frequencies are sufficiently well separated, x2–x3.
Using the generating solution (20), �k order perturbation equations
are found, having a structure formally similar to Eq. (22). The solv
ability condition leads to equations of the type:

d1A2
bI12ðA2; UÞ; d2A2

bI22ðA2;A2A3A3;A
2
2A2; UÞ;

d1A3
bI13ðA3; UÞ; d2A3

bI23ðA3;A2A2A3;A
2
3A3; UÞ;

ð28Þ

that are simpler than the corresponding resonant Eq. (23). By apply
ing the reconstitution rule _Ak �d1Ak þ �2d2Ak, k 2;3 and reab
sorbing the perturbation parameter, one obtains the (complex)
amplitude equations:

_A2
bI2ðA2;A2A3A3;A

2
2A2; UÞ;

_A3
bI3ðA3;A2A2A3;A

2
3A3; UÞ

ð29Þ

being bIk
bI1k þ bI2k. Similarly to the resonant case, they can be

written in real form adopting the polar representation and separat
ing real and imaginary parts:

_a2 a2p10 þ
1
4

a2a2
3p̂31 þ

1
4

a3
2p41;

_a3 a3p50 þ
1
4

a2
2a3p̂71 þ

1
4

a3
3p̂81;

_a2 p12 þ
1
4

a2
3p̂32 þ

1
4

a2
2p42;

_a3 p52 þ
1
4

a2
2p̂72 þ

1
4

a2
2p̂82;

ð30Þ

where the hat remembers that the expression of these coefficients
is not coincident to the resonant case. Eq. (30) represents the
non resonance AME, in which the four equations are two by two
uncoupled; then, the fixed points are determined by the first two
Eq. (30), directly. Moreover, the coefficients p’s related to linear
amplitudes are equal to those of the resonant AME (26) (Appendix
E). This occurrence implies that the internal resonance doesn’t af
fect the critical conditions of the system (i.e. the bifurcation points)
but only its post critical behavior.

The discussion of the AME (30) is initially similar to the reso
nant case. In particular, the branch I (a2 a3 0, 8U) and the
branch II (a3 0, a2 a2ðUÞ 4p10=p41

p
) have the same expres

sion of branches determined in internal resonance conditions. Dif
ferences subsist concerning the possible existence of a bi modal
galloping defined by the branch III, a3 a3ðUÞ, a2 a2ðUÞ. A non
resonant bi modal branch can arise from the mono modal branch
II or in an independent way. In the first case, the existence of a
two component solutions is analyzed solving the limit of equa
tions (30)a and (30)b for a2 ! a20 , a3 ! 0, U ! U0, being
a20 a2ðU0Þ and marking with the index 0 a possible bifurcation
point on the mono modal branch II. The existence of this kind of
branch III results possible only if p0

50 þ a2
20

p0
71=4 0. The second

case happens observing that, in the fixed point analysis, Eqs.
(30)a and (30)b can be simplified in the following linear form:
tence of this kind of branch III is possible only when the three deter
minants deriving from the linear problem have all the same sign
(since x2; x3 must be positive). In both these cases the existence of
branch III seems more unlikely for non resonant cases because of
the absence of internal resonance conditions.

5. Numerical results

In order to numerically illustrate the proposed theory, the
mechanical and aerodynamic cable properties are selected, to
gether with the eigenfunctions to be used in the discrete model.
Then, the critical conditions are analyzed with particular attention
to the influence of the twist angle and to the accuracy of the per
turbation solutions. Finally, the post critical equilibrium patterns
are investigated, pointing out the alterations due to the torsional
effects.

5.1. Cable properties and static response

The mechanical and aerodynamic properties of the sample
cable was taken from the literature [7,3]. Concerning the mechan
ical aspects, it is assumed that the axial stiffness EA is 29:7� 106 N,
the torsional stiffness GJ is 159 N m2, the cable diameter is
0.0281 m, the cable length ‘ is about 267 m, the sag d is 6.18 m
and the damping ratio coefficients f are equal to 0.44% (setting
f2 f3 f); moreover, a bending stiffness EI 2100 N m2 is as
sumed, in accord with experimental observations of sufficiently
tensioned cables [19]. Therefore, the sample cable is initially close
to the first cross over point [15], with an internal resonance condi
tion of 2:1 type. It is easy to verify that the squared ratio between
the transversal frequency x3 and the torsional frequency x# is
small, justifying the assumption of quasi steady twisting [10].

As regards the aerodynamic properties, two different U shaped
conductors are taken into account, always referring to the litera
ture: a first cross section with the symmetry axis placed on
az direction (CS1 in the sequel, Fig. 4a), having its maximum ice
eccentricity opposite to the mean wind (m 1:80 kg=m ice
included [7]), and a second cross section with the symmetry axis
rotated of 44.4� with respect to az direction (CS2 in the sequel),
having greater ice thickness (m 2:0 kg=m ice included [20]). In
both the cases the specified configuration is the most prone to
instability, as it happens in the usual galloping analysis. On the
contrary, in the proposed theory, this really occurs in no wind
conditions only, since the attitude of the section to wind, and

a b



therefore, its aerodynamic coefficients, statically vary through the
angle of rotation u (Fig. 4b). Therefore, when galloping actually oc
curs, the cable cross section is generally rotated with respect to the
most dangerous configuration.

Concerning the selection of discrete modes that have to be used

stability of the planar equilibrium configuration is regained; the
curves related to the stable eigenvalue k3 are all coincident. Con
cerning CS2 (Fig. 6b), the twist angle has again quantitatively small
influence on the critical eigenvalue values, k2, but it is decisive
from a qualitative point of view, since the occurrence or not of both

b
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in the analysis, it was proved in [10], both theoretically and numer
ically, that the dynamic twist is more important in symmetric
modes than in antisymmetric ones. Therefore, in order to investi
gate the maximum effect of twist, the first symmetric in plane
and out of plane modes are considered in the discrete model.

Fig. 5 shows the nonlinear equilibrium path u uðUÞ (Fig. 5a)
for the two different cross sections previously described, and the
modifications of the reference axial tension T owing to static wind
loads (Fig. 5b); differences in the graphs are imputable to dissimi
lar aerodynamic coefficients and mass per unit length. It should be
noted that, when the mean wind velocity increases, the static rota
tion u soon achieves large values, and the pre stress T also under
goes non negligible changes.

5.2. Critical conditions

The conditions of incipient instability are examined by evaluat
ing the real part of the two couples of complex conjugate eigen
values k of the discrete system. For small U, RðkÞ < 0, for all k’s,
so that the reference configuration C is stable. At a critical velocity
Uc a couple of complex conjugate eigenvalues, having maximum
real part, crosses the imaginary axis, i.e. max RðkÞ 0. This occur
rence causes loss of stability of the equilibrium through a Hopf
bifurcation, from which a limit cycle arises. The objective of this
analysis is to highlight the role of the dynamic twist angle # on
the critical wind velocity Uc. The eigenvalues can be computed
either by numerical and perturbation algorithms. The numerical
computation calls for solving the linear eigenvalue problem associ
ated with the linearized equations (17); the AME (26) and (30) fur
nish asymptotic expressions for the real part of the eigenvalues,
namely p10 � Rðk2Þ and p50 � Rðk3Þ, being k2 and k3 the in plane
and out of plane eigenvalue, respectively. Examples here pre
sented were previously investigated in Luongo et al. [10] by using
a standard numerical approach. They are now reconsidered and
analyzed through the perturbation solutions, consistently with
the developed theory. Results are then compared.

Fig. 6 shows the real part of eigenvalues for both the sections
described in the previous Section, taking into account (continuous
lines) or neglecting (dashed lines) the circulatory matrix H; the
numerical solutions (triangular points) are also reported as regards
the complete model. About CS1 (Fig. 6a), differences are limited to
the second bifurcation B2 of the in plane eigenvalues k2, where the
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Fig. 5. (a) Nonlinear equilibrium path; (b) pr
bifurcations depends on it. In both these examples the perturba
tion solutions are practically coincident with the numerical ones.

To magnify the influence of dynamic twist on critical condi
tions, the basic examples must be modified in their mechanical
and aerodynamic properties (Fig. 7). Concerning CS1 (Fig. 7a), the
basic case has been modified with a reduction of sag (that exalts
the role of #; Luongo et al. [10]) and an initial rotation of the
cross section (e.g. 1�); in this way, the cable cross section reaches
the most dangerous attitude for galloping instability closer to the
first bifurcation point B1. Moreover, an increase of damping is con
sidered in order to have changes in the first bifurcation values as
well. Remarkable differences are found between the two different
models (Fig. 7a); in any case the perturbation approximation is
excellent. The influence of dynamic twist appears still more evi
dent if a cross section initially non symmetric, like CS2, is consid
ered (Fig. 7b). Decreasing the sag and considering an initial
rotation of 47� (instead of the basic value of 44�), large altera
tions of the critical wind velocities are found. The perturbation
solution is able to capture the critical points with a good approxi
mation, even if quantitative errors appear in the critical eigenvalue
locus.

5.3. Post critical behavior

The complete nonlinear AME (26) and (30) are now used to
investigate the effective influence of the twist on the nonlinear
range. Steady state solutions of the AME (limit cycle amplitudes)
are considered, both for resonant and non resonant cables.

First, the internal resonance case is discussed. The sag of the
cable is fixed to the value d 6:18 m, which corresponds to a
detuning r þ0:0093 rad=s for CS1 and r 0:0876 rad=s for
CS2 in no wind conditions (this perceptible difference is due to dif
ferent values of cable mass per unit length). Fig. 8 shows the mod
al amplitudes for CS1. The basic case (Fig. 8a) admits mono modal
galloping only, with appreciable differences due to the dynamic
twist. No bi modal galloping occurs since the in plane amplitude
remains comparatively small. If, in contrast, the cable cross section
is rotated (i.e. it is no more symmetric) in no wind conditions
(Fig. 8b), the first bifurcation occurs when the aerodynamic coeffi
cients are closer to the most dangerous values, so that branch III
takes place. Differences produced by the twist angle are still appre
ciable. Fig. 9 shows the modal amplitudes for CS2. The basic sample
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(Fig. 9a) admits a mono modal galloping (branch II) only when the
dynamic twist angle is considered; in any case, this path is con
fined in a narrow region, both of velocity and amplitude. To obtain
more relevant equilibrium patterns, it is necessary to reduce the
detuning and slightly to increase the sag (thus enhancing the mod

rotated with respect to the basic sample (thus moving the post
critical branches towards higher mean velocities). Fig. 9b shows
the (restricted) bi modal galloping obtained, highlighting changes
due to the dynamic twist angle. It should be noted the greater dif
ficulty in obtaining branch III, compared to the analyses by Luongo
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Fig. 6. Real parts of the eigenvalues (a) CS1; (b) CS2. Perturbation solutions of the complete model (continuous lines) and of the reduced one neglecting the circulatory matrix
(dashed lines); M: numerical solutions.
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Fig. 7. Real parts of the eigenvalues (a) CS1 (d 3 m, symmetry axis of the cross-section initially rotated of �1�, damping coefficients equal to 0:65%); (b) CS2 (d 3 m,
symmetry axis of the cross-section initially rotated of �47�). Perturbation solutions of the complete model (continuous lines) and of the reduced one neglecting the
circulatory matrix (dashed lines); M: numerical solutions.
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model; dashed lines: no dynamic twist angle effect).
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al coupling); moreover, it needs to start with a section considerably
 and Piccardo [3] where the sole effect of the static twist was



partially taken into account. This occurs because of changes in the
aerodynamic coefficients, which do not remain constant (at the
most dangerous values, as in [3]) when the mean velocity (i.e.
the static rotation u) increases. Therefore, in internal resonant con
ditions, branch III can only be obtained if the detuning is substan

6. Conclusions

In this paper, a nonlinear model of cable beam has been formu
lated, accounting for both torsion and bending. After a consistent
analysis of the order of magnitude of the terms (mainly based on
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Fig. 9. Modal amplitudes for CS2 in internal resonance conditions: (a) basic sample; (b) d 6:51 m, symmetry axis of the cross-section initially rotated of �55� (continuous
lines: complete model; dashed lines: no dynamic twist angle effect). The scale of ordinates is different.
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tially small (examples seem very sensitive to negative detuning)
and the cross section is suitably rotated in no wind conditions
(which helps the occurrence of oscillations of sufficiently high in
plane amplitudes).

Concerning the non resonant case, the two systems already
studied (see Fig. 7 and Luongo et al. [10]) in the linear range
(d 3 m) are reconsidered in Fig. 10. For both these examples the
sole branch II exists, at least in the range of velocities considered
here. Moreover, differences induced by the dynamic twist are very
remarkable. The possible presence of a branch III has been checked
through methods discussed in Section 4.1. For both the cross sec
tions studied, a branch III, independent from the mono modal
branch II, has been discovered at high mean velocities only (of about
20 m/s). Moreover, the presence of the twist angle modifies also the
cable frequencies and shifts the resonance; so, an initial non reso
nant problem (i.e. cable with a small but finite sag) can become
1:1 resonant when velocities suitably increases. For the systems
investigated here, this phenomenon occurs at a mean wind velocity
of about 23 m/s (Fig. 11). Such a kind of branch III, however, cannot
be studied with the proposed methods, but it requires specific treat
ments which go beyond the objectives of the present paper.
the hypotheses of large slenderness ratio, small initial curvature
and quasi steady stretching and twisting), a set of reduced inte
gro differential equations of motion has been obtained, which



captures the essential dynamics of the cable. As a main result, it has
been proved that, while the bending stiffness does not significantly
affect the translational dynamics, it, in contrast, contributes to twist
ing, since bending and torcent moments are coupled by equilibrium.

The model is able to describe the dependence of the aerody

The following perturbation equations are obtained:

� : GJ#001 EIj2#1 j GJ þ EIð Þw00;
�2 : GJ#002 EIj2#2 EIjv00#1 GJðv00w0Þ0;

ð33Þ
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namic forces on the actual, time dependent, cross section attitude,
which consists of a large static contribution produced by the stea
dy wind forces, and a small but finite dynamic contribution, de
scribed by the centerline velocity and the twist rotation.
Therefore, linear velocity dependent and circulatory (twist depen
dent) forces act on the body, together with nonlinear forces, of qua
dratic and cubic type, depending on any combinations of structural
velocities and twist.

A simplified two degree of freedom system, drawn by the con
tinuous one by a Galerkin procedure, has been used to investigate
the critical and post critical aeroelastic behavior of the cable. By
applying the Multiple Scale perturbation method, an equivalent
amplitude phase set of equations has been drawn, both for 2:1
internally resonant systems, i.e. for cables close to the so called
first cross over point, and for not internally resonant systems, i.e.
for cables with smaller sag. The parametric study carried out lead
to the following conclusions.

1. The static twist angle remarkably modifies the natural frequen
cies of the cable, through alteration of the internal prestress. In
particular, cables that are not resonant in absence of wind can
become 1:1 resonant under static wind forces (resonance shift
phenomenon). Moreover, the static rotation changes the section
aerodynamic properties and, consequently, the critical wind
velocity value. Such modifications are more significant when a
section initially non symmetric with respect to the wind direc
tion is considered.

2. The influence of the dynamic twist on the critical velocity is
appreciable when galloping modes are of symmetric type; it
can become remarkable for non symmetric cross sections in
no wind conditions.

3. The post critical scenario of 2:1 internally resonant case is not
qualitatively modified by twisting (except for particular cases
where the dynamic twist is responsible for bifurcations). Limit
cycles of (a) mono modal in plane oscillations and (b) bi modal,
in plane and out of plane coupled oscillations are found, simi
lar to that ones exhibited by the perfectly flexible model. How
ever, significant quantitative changes are noticed.

4. Even more pronounced differences between the two models
exist for non resonant cables. Here, only mono modal solutions
were found at low wind velocities. Bi modal oscillations also
exist at higher velocity where, however, the resonance shift
invalidates the non resonant solution.
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Appendix A. Quasi-steady twist

Since the torsional frequencies of a single cable turn out to be
much higher than the transversal ones, the inertia couple J1#

and the damping couple c# _# are neglected in Eq. (6)d. To solve
this equation with the boundary conditions (7) in the unknown
#, v and w are first scaled by a perturbation parameter �� 1, then
# is expanded in � series:

v! �v; w! �w; # �#1 þ �2#2 þ � � � : ð32Þ
where c1 0 has been taken for simplicity. The relevant boundary
conditions read:

� : GJð#01 þ jw0Þ 0;

�2 : GJð#02 þ v00w0Þ 0:
ð34Þ

By solving in chain Eq. (33), it follows:

#1ðs; tÞ
GJ þ EI

GJEI
p Z s

0
w00ðn; tÞ sinh½kðs nÞ�dn

þ A1 cosh ksþ B1 sinh ks;

#2ðs; tÞ
EI
GJ

s Z s

0
v00ðf; tÞ#1ðf; tÞ sinh½kðs fÞ�df

1
k

Z s

0
ðv00ðn; tÞw0ðn; tÞÞ0 sinh½kðs nÞ�dn

þ A2 cosh ksþ B2 sinh ks;

ð35Þ

where k : �j EI=GJ
p

has been set and where the arbitrary constants
A1;B1;A2, B2 are determined by Eq. (34). By substituting Eq. (35) in
(32)c and reabsorbing the perturbation parameter, Eq. (11) is
drawn.

Appendix B. Static wind forces and aerodynamic coefficients

The static wind force components �bai
and the coefficient c’s

expressing the dynamic wind force components ðbai
�bai
Þ, all

appearing in Eq. (15), are listed below (k 0:5qar):

ba2 kU2ð cl cos uþ cd sin uÞ; c21 kU2ð c0d sinuþ c0l cos uÞ;
c22 kUðcd cl cos u sin uþ cd sin2 u

c0d cos u sinuþ c0l cos2 uÞ;
c23 kUðcl þ cl cos2 u cd cos u sinu c0d sin2 uþ c0l cos u sinuÞ;
c211 0:5kU2ðc00d sinu c00l cos uÞ;
c212 kUfc0dð1þ sin2 uÞ þ cos u½ ðc0l þ c00dÞ sinuþ c00l cos u�g;
c213 kU½ c0d cos u sin uþ c0lð1þ cos2 uÞ

þ sin uð c00d sin uþ c00l cos uÞ�;
c222 0:125k½4cl cos3 u cdð9 sinuþ sin 3uÞ þ 8c0d cos u

4c00d cos2 u sinuþ 4c00l cos3 u�;
c223 kfcd cos3 u cl sin3 uþ c0d sinu

þ cos u½c0l þ sin uð c00d sin uþ c00l cos uÞ�g;
c233 0:125kð9cl cos u cl cos 3u 4cd sin3 uþ 8c0l sinu

4c00d sin3 uþ 4c00l cos u sin2 uÞ; ð36Þ

c2111 kU2ð c000d sin uþ c000l cos uÞ=6;
c2112 0:25kUfc00dð 3þ cos 2uÞ

þ 2 cos u½ðc00l þ c000d Þ sin u c000l cos u�g;
c2113 0:25kU½c00l ð3þ cos 2uÞ 2c000d sin2 uþ sin 2uð c00d þ c000l Þ�;
c2122 0:125kfc0dð9 sin uþ sin 3uÞ

4 cos u½2c00d þ cos uð c000d sinuþ ðc0l þ c000l Þ cos uÞ�g;
c2123 kfc0d cos3 uþ c00l cos u

þ sinu½c00d sinuðc0l sinuþ c000d cos uÞ þ c000l cos2 u�g;
c2133 0:125kfc0lð 9 cos uþ cos 3uÞ

þ 4 sin u½ 2c00l þ sin uððc0d þ c000d Þ sin u c000l cos uÞ�g;
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c2222 fk cos3 u½ ðc0d 3ðcl þ c00l Þ þ c000d Þ sin u
þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ cos u�g=ð6UÞ;

c2223 fk cos2 u sin u½ ðc0d 3ðcl þ c00l Þ þ c000d Þ sinu
þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ cos u�g=ð2UÞ;

h1
EAj
2m2‘

Z ‘

0
/v ds �

Z ‘

0
/02v ds

EAj
m2‘

Z ‘

0
/00v/v ds �

Z ‘

0
/v ds;

h2
EAj
2m2‘

Z ‘

0
/v ds �

Z ‘

0
/02w dsþ c211

m2

Z ‘

0
/v/

2
# ds;

EA
Z ‘

00
Z ‘

02
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c2233 fk cos u sin2 u½ ðc0d 3ðcl þ c00l Þ þ c000d Þ sin u
þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ cos u�g=ð2UÞ;

c2333 fk sin3 u½ ðc0d 3ðcl þ c00l Þ þ c000d Þ sin u
þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ cos u�g=ð6UÞ; ð37Þ

ba3 kU2ðcd cos uþ cl sin uÞ; c31 kU2ðc0d cos uþ c0l sin uÞ;
c32 kUðcl þ cd cos u sin uþ cl sin2 u

c0d cos2 u c0l cos u sin uÞ;
c33 kUðcd þ cd cos2 uþ cl cos u sin u

þ c0d cos u sin uþ c0l sin2 uÞ;
c311 0:5kU2ðc00d cos uþ c00l sinuÞ;
c312 kUfc0d cos u sin uþ ð1þ sin2 uÞc0l

cos u½c00d cos uþ c00l sinu�g;
c313 kUðc0dð1þ cos2 uÞ þ sin u½ðc0l þ c00dÞ cos uþ c00l sin u�Þ;
c322 0:125k½4cd cos3 uþ clð9 sinuþ sin 3uÞ 8c0l cos u

þ 4c00d cos3 uþ 4c00l cos2 u sinu�;
c323 kfcl cos3 uþ cd sin3 uþ c0l sin u

cos u½c0d þ sin uðc00d cos uþ c00l sin uÞ�g;
c333 0:125kð9cd cos u cd cos 3uþ 4cl sin3 uþ 8c0d sinu

þ 4c00d sin2 u cos uþ 4c00l sin3 uÞ; ð38Þ

c3111 kU2ðc000d cos uþ c000l sin uÞ=6;

c3112 0:25kU½c00l ð 3þ cos 2uÞ þ 2c000d cos2 uþ ð c00d þ c000l Þ sin 2u�;
c3113 0:25kUfc00dð3þ cos 2uÞ þ 2 sin u½ðc00l þ c000d Þ cos u

þ c000l sin u�g;
c3122 0:125kfc0lð9 sinuþ sin 3uÞ þ 4 cos u½ 2c00l

þ cos uðc000l sinuþ ðc0d þ c000d Þ cos uÞ�g;
c3123 kfc0d sin3 uþ c0l cos3 uþ c00l sin u

cos u½c00d þ c000d cos u sin uþ c000l sin2 u�g;
c3133 0:125kf c0dð 9 cos uþ cos 3uÞ

þ 4 sinu½2c00d þ sin uððc0l þ c000l Þ sin uþ c000d cos uÞ�g;
c3222 fk cos3 u½ðc0d 3ðcl þ c00l Þ þ c000d Þ cos u

þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ sinu�g=ð6UÞ;
c3223 fk cos2 u sinu½ðc0d 3ðcl þ c00l Þ þ c000d Þ cos u

þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ sinu�g=ð2UÞ;
c3233 fk cos u sin2 u½ðc0d 3ðcl þ c00l Þ þ c000d Þ cos u

þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ sinu�g=ð2UÞ;
c3333 fk sin3 u½ðc0d 3ðcl þ c00l Þ þ c000d Þ cos u

þ ðc0l þ 3ðcd þ c00dÞ þ c000l Þ sinu�g=ð6UÞ: ð39Þ

Appendix C. Coefficients of the discrete model

The aerodynamic and mechanical coefficients of the discrete
model (17) are
2 Z ‘� �2 Z ‘ Z ‘
x2
2 EA

j
m2‘ 0

/v ds þ T
m2 0

/00v/v ds; h23
c21

m2 0
/v/# ds;

ca22
c22

m2

Z ‘

0
/2

v ds; ca23
c23

m2

Z ‘

0
/v/w ds;
h3 2m2‘ 0
/v/v ds �

0
/w ds;

h4
EA

2m2‘

Z ‘

0
/00v/v ds �

Z ‘

0
/02v ds;

h5
c2111

m2

Z ‘

0
/v/

3
# ds; d1

c212

m2

Z ‘

0
/2

v/# ds;

d2
c213

m2

Z ‘

0
/v/w/# ds;

d3
c222

m2

Z ‘

0
/3

v ds; d4
c223

m2

Z ‘

0
/2

v/w ds; d5
c233

m2

Z ‘

0
/v/

2
w ds;

d6
c2112

m2

Z ‘

0
/2

v/
2
# ds; d7

c2113

m2

Z ‘

0
/v/w/2

# ds;

d8
c2122

m2

Z ‘

0
/3

v/# ds;

d9
c2123

m2

Z ‘

0
/2

v/w/# ds; d10
c2133

m2

Z ‘

0
/v/

2
w/# ds;

d11
c2222

m2

Z ‘

0
/4

v ds;

d12
c2223

m2

Z ‘

0
/3

v/w ds; d13
c2233

m2

Z ‘

0
/2

v/
2
w ds;

d14
c2333

m2

Z ‘

0
/v/

3
w ds;

m2 m
Z ‘

0
/2

v ds; ð40Þ

x2
3

T
m3

Z ‘

0
/00w/w ds; h33

c31

m3

Z ‘

0
/w/# ds;

ca32
c32

m3

Z ‘

0
/v/w ds; ca33

c33

m3

Z ‘

0
/2

w ds;

h6
EAj
m3‘

Z ‘

0
/00w/w ds �

Z ‘

0
/v ds

EIj
m3

Z ‘

0
/00v/

2
# ds

þ GJ
m3

Z ‘

0
/000v /0w/# dsþ

Z ‘

0
/00v/

00
w/# ds

� �
;

h7
c311

m3

Z ‘

0
/w/2

# ds; h8
EA

2m3‘

Z ‘

0
/00w/w ds �

Z ‘

0
/02v ds;

h9
EA

2m3‘

Z ‘

0
/00w/w ds �

Z ‘

0
/02w dsþ c3111

Z ‘

0
/w/3

# ds;

d15
c312

m3

Z ‘

0
/v/w/# ds; d16

c313

m3

Z ‘

0
/2

w/# ds;

d17
c322

m3

Z ‘

0
/2

v/w ds;

d18
c323

m3

Z ‘

0
/v/

2
w ds; d19

c333

m3

Z ‘

0
/3

w ds;

d20
c3112

m3

Z ‘

0
/v/w/2

# ds;

d21
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m3

Z ‘

0
/2

w/2
# ds; d22
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m3

Z ‘

0
/2

v/w/# ds;

d23
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m3

Z ‘

0
/v/

2
w/# ds;

d24
c3133

m3

Z ‘

0
/3

w/# ds; d25
c3222

m3

Z ‘

0
/3

v/w ds;

d26
c3223

m3

Z ‘

0
/2

v/
2
w ds;

d27
c3233

m3

Z ‘

0
/v/

3
w ds; d28

c3333

m3

Z ‘

0
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m3 m
Z ‘

0
/2

w ds: ð41Þ



Appendix D. Eigenvectors of the matrix of the generating
problem

The eigenvalue problem for the matrix of the generating prob-
lem (19)
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Appendix E. AME’s linear coefficients

The linear coefficients p’s of the AME are:
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