On the other hand, the linear and nonlinear aeroelastic response of fixed-support horizontal cables with iced cross section, subjected to stationary wind flow causing self-excitation, was studied in [START_REF] Luongo | Postcritical behavior of cables undergoing two simultaneous galloping modes[END_REF][START_REF] Luongo | A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance[END_REF]. An attempt to roughly take into account the twist in the aerodynamic model of cables was performed in [START_REF] Luongo | On the influence of the torsional stiffness on non-linear galloping of suspended cables[END_REF]. In [START_REF] Yu | Threedegree-of-freedom model for galloping[END_REF][START_REF] Mcconnel | A study of the axialtorsional coupling effect on a sagged transmission line[END_REF][START_REF] White | The equations of motion for the torsional and bending vibrations of a stranded cabl[END_REF], while considering a more realistic extension-torsion coupled constitutive law, a strongly simplified kinematic model was developed. There twist, but not bending, was accounted for, and the influence of the initial curvature on the torsion strain was ignored. Recently, the free dynamics and the modal properties of cables with bending stiffness have been analyzed in [START_REF] Ricciardi | A continuous vibration analysis model for cables with sag and bending stiffness[END_REF][START_REF] Treyssède | Vibration analysis of horizontal selfweighted beams and cables with bending stiffness subjected to thermal loads[END_REF][START_REF] Ceballos | Determination of the axial force on stay cables accounting for their bending stiffness and rotational end restraints by free vibration tests[END_REF], while the bending effect on the damping of cables equipped with TMD has been studied in [START_REF] Hijmissen | On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-massdamper[END_REF]. Complete nonlinear models were proposed in [START_REF] Lu | Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust[END_REF][START_REF] Diana | Dynamic analysis of the transmission line crossing Lago de Maracaibo[END_REF]; these, however, lead to very complicated equations and suffer of some numerical problems related to the existence of boundary layers, due to the smallness of the flexural terms (nearly singular equations).

In [START_REF] Luongo | A linear curved-beam model for the analysis of galloping in suspended cables[END_REF][START_REF] Luongo | Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[END_REF][START_REF] Luongo | On the effect of twist angle on nonlinear galloping of suspended cables[END_REF] a consistent model of cable-beam accounting for the (small) curvature of the cable, as well as for bending and torsional stiffness was formulated. By retaining only the leading terms in each equations, nonlinear reduced equations were obtained, which are identical to those of the perfectly flexible model, plus an additional equation, of static nature, accounting for both bending and torsion. The model permitted to detect the influence of the dynamic twist on the critical wind velocity. In all these papers, the aerodynamic model was taken from [START_REF] Novak | Aeroelastic galloping of prismatic bodies[END_REF].

Dealing specifically with inclined cables, the formulation of nonlinear models, the analysis of free vibrations and the study of forced dynamics under motion of the support were reported in [START_REF] Srinil | Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I. Theoretical formulation and model validation[END_REF][START_REF] Srinil | Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II. Internal resonance activation, reduced-order models and nonlinear normal modes[END_REF][START_REF] Srinil | Large amplitude three-dimensional free vibrations of inclined sagged elastic cables[END_REF][START_REF] Nielsen | Super and combinatorial harmonic response of flexible elastic cables with small sag[END_REF][START_REF] Berlioz | A non-linear model for the dynamics of an inclined cable[END_REF][START_REF] Wang | Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions[END_REF]. On the other hand, wind-exposed fixed-support inclined cables were studied in a stochastic [START_REF] Ibrahim | Nonlinear vibrations of suspended cables. Part III. Random excitation and interaction with fluid flow[END_REF] and a deterministic [START_REF] Matsumoto | Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges[END_REF][START_REF] Wang | Wind-rain-induced vibration of cable: an analytical model (1)[END_REF][START_REF] Macdonald | Two-degree-of-freedom inclined cable galloping. Part 1. General formulation and solution for perfectly tuned system[END_REF] context. In particular, wind-tunnel tests were reported in [START_REF] Wang | Wind-rain-induced vibration of cable: an analytical model (1)[END_REF] for inclined cables with attached fixed or moving rain-induced rivulets, which possibly lead to galloping, induced by the asymmetry in the cross section. Furthermore, a two degree of freedom linear model was used in [START_REF] Macdonald | Two-degree-of-freedom inclined cable galloping. Part 1. General formulation and solution for perfectly tuned system[END_REF] to analyze the experimentally observed galloping of inclined cables in dry conditions.

Studies on the interaction among external, parametric and self-excitation have been carried out both in machine and structural dynamics. Among the for-mer, 1-d.o.f. systems were studied in [START_REF] Szabelski | Parametric self-excited nonlinear system vibrations analysis with inertial excitation[END_REF][START_REF] Eissa | Vibration control of a cantilever beam subject to both external and parametric excitation[END_REF][START_REF] Abdelhafez | Resonance of a nonlinear forced system with two-frequency parametric and self-excitations[END_REF] and nd.o.f. systems were reported in [START_REF] Szabelski | Vibration of a non-linear selfexcited system with two degrees of freedom under external and parametric excitation[END_REF][START_REF] Warminski | Nonlinear normal modes of a self-excited system driven by parametric and external excitations[END_REF]. Among the latter, a reduced 1-d.o.f. nonlinear model of a tall building, subjected to turbulent winds, was analyzed in [START_REF] Abdel-Rohman | Effect of unsteady wind flow on galloping of tall prismatic structures[END_REF]. There, the steady part of the wind is cause of self-excitation, while the turbulent part provides both parametric and external loads.

The aim of this paper is to study the interaction among the three excitation sources (external, parametric and self-excitation) on a reduced 2-d.o.f. nonlinear model, describing the dynamics of an inclined cable belonging to a cable-stayed bridge. The model of the cable, able to twist, is taken from [START_REF] Luongo | On the effect of twist angle on nonlinear galloping of suspended cables[END_REF] and a sinusoidal vertical motion of given amplitude and frequency is imposed on the lower end, simulating the traffic on the deck. This is responsible for both external and parametric excitations. A uniform wind flow, blowing under a yaw angle with respect to the plane of the static configuration of the cable, is also applied. The presence of a fixed rivulet, breaking the crosssection symmetry, is accounted for by extending the aerodynamic model by Wang and Xu [START_REF] Wang | Wind-rain-induced vibration of cable: an analytical model (1)[END_REF] to include twist. The wind is responsible for the self-excitation, as well as for modification of the parametric and external terms. The resulting equations are discretized via the Galerkin method, by assuming one in-plane and one out-of-plane modes as trial functions, accounting for the internal resonance. The two resulting secondorder, non-homogeneous, time-periodic, ordinary differential equations are coupled, containing quadratic and cubic nonlinearities, both in the displacements and velocities. They are tackled by the Multiple Scale perturbation method [START_REF] Nayfeh | Nonlinear Oscillations[END_REF][START_REF] Verhulst | Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics[END_REF], with the help of advices included in [START_REF] Nayfeh | Perturbation Methods with Mathematica[END_REF][START_REF] Khanin | A computerized implementation of the multiple scales perturbation method using mathematica[END_REF]. Internal resonance between the two selected modes, and external resonance between the forcing and natural frequencies are accounted for. The algorithm leads to first-order amplitude-phase modulation equations, governing the slow dynamics of the cable. The wind speed, the amplitude of the support motion and the internal and external frequency detunings are set as control parameters. Numerical pathfollowing techniques provide bifurcation diagrams as functions of the control parameters, able to highlight the interactions between the three sources of excitation.

The paper is organized as follows: The equations of motion are formulated in Sect. 2. The discretization is performed in Sect. 3. The perturbation analysis is carried out in Sect. [START_REF] Hagedorn | On non-linear free vibrations of an elastic cable[END_REF], where the amplitude modulation equations are derived. These latter are numerically studied in Sect. 5 for a sample system. Finally, some conclusions are drawn in Sect. 6.

Model

Initial configuration

The cable is modeled as a flexible axis line with planar, rigid cross sections. The axis line is a curve whose positions, at the initial time, stay on a vertical plane and are identified as x(s), where s is the length parameter of the curve, s ∈ [0, ], and is the initial length of the cable. The corresponding configuration is called C

(the over-bar indicates terms related to the initial configuration). The components of x(s) on the canonical base are obtained in [START_REF] Irvine | Cable Structures[END_REF] for the extensible cable. However, in usual applications, the static stretching turns out to be negligible; consequently, the corresponding expressions for the Cartesian components of the inextensible catenary are

x(s) = H mg arcsinh mgs H + c -arcsinhc ȳ(s) = H mg 1 + mgs H + c 2 - √ 1 + c 2 (1) 
where m is the mass per-unit-length of the cable, g is the gravity acceleration, H is the constant horizontal stress. The axial stress of the cable is T = H / cos θ , where θ = arctan(mgs/ H + c) is the slope angle. The initial curvature, defined as κ(s) = θ (s), assumes the following expression:

κ(s) = mg H 1 1 + mg H s + c 2 (2)
The values of the constant c and of the horizontal force H are numerically obtained by the boundary conditions x( ) = x , ȳ( ) = y (see Fig. 1a).

An asymptotic expression for those constants is easily found for nearly taut cables, for which mg / H → 0. Indeed, in that condition, c = y /x = tan α is found, where α is the slope of the chord of the cable; consistently with this approximation, the initial curvature and axial stress must be taken as uniform along the cable, namely κ = mg H cos 2 α and T = H cos α , respectively. 

Current configuration

The configuration assumed by the cable at the time t > 0 is identified as C . In this configuration, which is generally not planar, the cable is considered as a polar continuum, excited by dynamic wind forces and by the motion of the right support.

The equations of motion governing the dynamics of the cable, referred to the configuration C , were derived in [START_REF] Luongo | On the effect of twist angle on nonlinear galloping of suspended cables[END_REF] under the hypothesis of small sag-to-span ratio, by taking into account the bending and torsional stiffnesses. There, the following strain measures, expanded up to second-order terms, were considered:

ε = u -κv + 1 2 (v + κu) 2 + w κ1 = ϑ + κw + κ2 vw + w v + κ uw κ2 = -w + κϑ + (u -κv)w + ϑ ( κu) + v κ3 = v + ( κu) + ϑw - 1 2 κ ϑ 2 + w 2 -( κu + v )(u -κv) (3) 
where ε is the stretching, k1 is the torsion, k2 and k3 are the bending strains, {u, v, w} are the component of the displacement vector u on the local ba-sis {ā 1 , ā2 , ā3 } (u is defined such that x = x + u, see Fig. 1b), and ϑ is the twist of the cross section. Displacements and twist depend on the curvilinear abscissa s and on time t. The equations of motion were derived via the extended Hamilton principle. The boundary value problem so far obtained is not reported here, since the equations are too complicated. They, however, assume a much simpler form if an order-of-magnitude analysis is performed (see [START_REF] Luongo | A linear curved-beam model for the analysis of galloping in suspended cables[END_REF][START_REF] Luongo | On the effect of twist angle on nonlinear galloping of suspended cables[END_REF]) and only the leading terms are retained in each equation. The analysis is based on the following assumptions: the initial curvature κ(s), assumed uniform, allows one to introduce a nondimensional small parameter δ := κ ; calling EA, GJ, EI the axial, torsional and bending stiffnesses respectively, the nondimensional prestress τ := T /EA is small of order δ 3 , where T is uniform; the nondimensional characteristic inertia radius R = r/ of the section is also small of order δ 3 ; the nondimensional stiffness parameter χ := GJ/EI is of order 1; the transversal displacements v and w are of the same order, while O(u/v) = δ and O(ϑ δ/w) = 1; the translations vary on a typical scale of length (since they vanish at the ends, if these are hinged) while the twist varies on a much greater length (since it does not vanish at the ends).

Consequently the nonlinear equations of motion, up to the third-order terms, become

EAε -m ü -c u u + b a 1 = 0 EA(εv ) + EA κε + T v -m v -c v v + b a 2 = 0 EA(εw ) + T w -m ẅ -c w ẇ + b a 3 = 0 GJk 1 + EI κk 2 -J θ -c ϑ θ + c a 1 = 0 (4)
where the relevant strain components assume the following reduced expressions:

ε = u -κv + 1 2 v 2 + w 2 k 1 = ϑ + κw + w v k 2 = -w + κϑ + ϑv (5) 
In ( 4), b a 1 , b a 2 , b a 3 and c a 1 are the external forces and couple densities, J is the inertia polar moment of the section and c u , c v , c w , c ϑ are the viscous damping coefficients. The boundary conditions, in case of spherical hinges and vertical (direction e 2 ) motion of the right support of amplitude ηf (t), read

u(0) = 0, u( )= ηf (t) sin α v(0) = 0, v( )= ηf (t) cos α w(0) = 0, w( )= 0 GJk 1 (0) = 0, GJk 1 ( ) = 0 (6)
Since the transversal-to-longitudinal (or -torsional) squared frequency ratio is small, stretching and torsion are quasi-steady, so that inertial and damping forces can be neglected in the relevant equations. Longitudinal displacements are consequently statically condensed as

u(s, t) = ηf (t) sin α - s 0 κv - 1 2 v 2 - 1 2 w 2 ds + s 0 κv(ξ, t) - 1 2 v (ξ, t) 2 - 1 2 w (ξ, t) 2 dξ (7)
where the boundary conditions (6) 1,5 have been used. In contrast, twist cannot be condensed in a such simple way, so that it is found convenient to append the relevant equation to the remaining ones. Consequently, (4) reduce to

EA ( κ + v ) ηf (t) sin α - 0 κv - 1 2 v 2 - 1 2 w 2 ds + T v + b 2 -m v -c v v = 0 (8) EA w ηf (t) sin α - 0 κv - 1 2 v 2 - 1 2 w 2 ds + T w + b 3 -m ẅ -c w ẇ = 0 GJϑ -EI κ2 ϑ + (EI + GJ) κw -EI κϑv + GJ(v w ) = 0
with boundary conditions (6) 2,4 and (6) 6,8 .

Equations [START_REF] Rega | Multiple resonances in suspended cables: direct versus reducedorder models[END_REF] show that, at the leading order, the dynamics of the cable are governed by the classical equations of the perfectly flexible model (8) 1 , (8) 2 , usually adopted in the literature) plus an additional (quasi-static) equation ( 8) 3 , governing the twist around the tangent. Accordingly, the twist is a slave variable, following the dynamics of the master transversal displacements. However, since the aerodynamic forces depend on the twist, this, in turn, affects the system dynamics. It is interesting to note that, while the bending does not affect the translational dynamics, it, in contrast, contributes to the twist dynamics, differently from certain models used in the literature [START_REF] Yu | Threedegree-of-freedom model for galloping[END_REF][START_REF] Mcconnel | A study of the axialtorsional coupling effect on a sagged transmission line[END_REF][START_REF] White | The equations of motion for the torsional and bending vibrations of a stranded cabl[END_REF], where it is inconsistently neglected.

The aerodynamic model

A simple aerodynamic model, allowing one to obtain the expressions for b 2 and b 3 in [START_REF] Rega | Multiple resonances in suspended cables: direct versus reducedorder models[END_REF], is obtained as an extension of the one proposed by Wang and Xu [START_REF] Wang | Wind-rain-induced vibration of cable: an analytical model (1)[END_REF], by adding the contribution of dynamic twist ϑ . It describes the forces exerted on a rigid circular cylinder with fixed rivulet (diameter ratio d/D = 0.1), inclined of an angle α. The cylinder is capable of inplane and out-of-plane motions and is subjected to an incident uniform wind of intensity U and yaw angle β (see Fig. 2a). It is based on the following simplifying assumptions: (a) the quasi-steady theory is adopted; (b) the curvature of the cable is neglected; (c) loads are evaluated taking into account the twist angle, but neglecting the (smaller) bending rotations; (d) a fixed rivulet is present on the cross section at a known phase angle; (e) the aerodynamic couples are neglected. Therefore, polynomial expressions for b 2 and b 3 in powers of v, w, ϑ are obtained, where the coefficients generally depend on the mean wind velocity.

Figure 2b shows the attitudes of the cross section in the initial configuration, identified by the axes ā2 , ā3 , and in the current configuration, identified by the axes a 2 , a 3 , rotated by the small but finite dynamic twist ϑ . The angle 0 describes the phase of the fixed rivulet. The projection of the wind velocity U on the plane of the cross section is denoted by Ũ in Fig. 2b and its modulus is

Ũ = U cos 2 (α) + sin 2 (α) sin 2 (β) ( 9 
)
where U = U , and the angle of attack (i.e. the angle between Ũ and a reference material axis, here taken as ā3 ) is easily obtained through geometric considerations:

γ : = -arcsin U U • ā2 = -arcsin sin α sin β cos 2 (α) + sin 2 (α) sin 2 (β) (10) 
According to the quasi-steady theory, the flow exerts on the section the aerodynamic force:

b a = 1 2 ρ a V r c d (ϕ)V + c l (ϕ)a 1 × V (11)
where ρ a is the air density, V = Ũu = (-Ũ sin γv)ā 2 + ( Ũ cos γ -ẇ)ā 3 is the relative velocity of the wind with respect to the center G of the section, V = V its modulus, r is the radius of the cross section, c d and c l the drag and lift coefficients, respec- 

ϕ = arcsin Ũ sin γ + v (-Ũ sin γ -v) 2 + ( Ũ cos γ -ẇ) 2 -Θ 0 -ϑ (12)
defined as the difference in phase between the normal to V and the rivulet (see Fig. 2b). The aerodynamic coefficients, expanded up to the third power of ϕ, read

c l (ϕ) = A 0 + A 1 ϕ + A 2 2 ϕ 2 + A 3 6 ϕ 3 c d (ϕ) = B 0 + B 1 ϕ + B 2 2 ϕ 2 + B 3 6 ϕ 3 (13) 
where the coefficients A k and B k , k = 1, 3, must be experimentally evaluated. It should be noticed that, following [START_REF] Luongo | On the effect of twist angle on nonlinear galloping of suspended cables[END_REF], the relative velocity V is evaluated ignoring the effect of the twist velocity θ , being its contribution negligible. In contrast, the twist ϑ does affect the aerodynamic forces via the angle ϕ (12); consequently, b a = b a (ϑ, v, ẇ; 0 , U). The two components of b a , along-wind b d and cross-wind b l are drag and lift forces, respectively (Fig. 2b). By substituting the expressions for V and ϕ in [START_REF] Rega | Nonlinear vibrations of suspended cables. Part I. Modeling and analysis[END_REF], expanding for small ϑ , v and ẇ up to cubic terms, and projecting on the ā2 , ā3 -axes, the following force components are derived:

b a i = 3 j =1 c ij (ϕ)ξ j + 3 j,k=1 c ij k (ϕ)ξ j ξ k + 3 j,k,l=1 c ij kl (ϕ)ξ j ξ k ξ l ( 14 
)
for i = 2, 3, where ξ := (ϑ, v, ẇ) T is the vector collecting the independent variables, c ij , c ij k and c ij kl are coefficients depending on c d , c l and their derivatives with respect to ϕ, all evaluated at C . The expressions of the coefficients, which are quite involved, are not reported here.

Quasi-static solution

System (8) has non-homogeneous boundary conditions. A transformation is introduced in order to obtain an equivalent system with homogeneous boundary conditions. In particular it is assumed v(s, t) := v(s)ηf (t)+ ṽ(s, t), where v(s) is the quasi-static component and ṽ(s, t) is the dynamic component of the solution. The quasi-static component is obtained as the solution of the following linearized non-homogeneous system, describing the planar linear statics of the cable when a vertical unitary time-independent motion of the support is applied:

EA κ sin α - EA κ2 0 vds + T v = 0 v(0) = 0, v( ) = cos α ( 15 
)
In particular, from [START_REF] Yu | Threedegree-of-freedom model for galloping[END_REF] one obtains v(s) = C 1 s 2 + C 2 s, where the expressions for C 1 and C 2 are

C 1 = 3EAmg cos 3 (α)(mg cos 3 (α) -2 H sin α) EAm 2 g 2 3 cos 5 (α) + 12 H 3 C 2 = 12 H 3 -2EAmg cos 3 (α)(mg cos 3 (α) -3 H sin α) EAm 2 g 2 3 cos 5 (α) + 12 H 3 (16) 
A further transformation is performed to deal with nondimensional quantities. It is performed by letting

s * = s , ω= π T m , t * = ωt u * = u , v * = v , w * = w , ϑ * = ϑ c * n = ω 2 EA c n , c * ϑ = ω EA c ϑ , m * = ω 2 2 EA m J * 1 = ω 2 EA J 1 , b * a i = EA b a i , c * a 1 = c a 1 EA τ = T EA , χ= GJ EI , κ * = κ (17) 
where the index n assumes the values u, v, w, and by introducing the following nondimensional control parameters:

η * = η , U * = U U c ( 18 
)
where U c is the critical value of the wind velocity. Under those transformations, [START_REF] Rega | Multiple resonances in suspended cables: direct versus reducedorder models[END_REF] and relevant boundary conditions become:

( v ηf + v ) ηf sin α - 1 0 κ( vηf + v) - 1 2 ( v ηf + v ) 2 - 1 2 w 2 ds + κ 1 0 1 2 ( v ηf + v ) 2 + 1 2 w 2 ds + τ v + b a 2 -m( vη f + v) -c v ( vη ḟ + v) = 0 ( 19 
)
w ηf (t) sin α -

1 0 κ( vηf + v) - 1 2 ( v ηf + v ) 2 - 1 2 w 2 ds + τ w + b a 3 -m ẅ -c w ẇ = 0 χϑ -κ2 ϑ + 1 + χ 2 κw -κϑ v ηf (t) + v + χ ( v ηf + v )w = 0
and:

v(0) = 0, w(0) = 0, χ ϑ + κw + w ( v ηf + v ) s=0 = 0 v( ) = 0, w(1) = 0, χ ϑ + κw + w ( v ηf + v ) s=1 = 0 ( 20 
)
where the tilde on the dynamic component and the star on the nondimensional terms have been omitted.

Discretization

A discrete model is drawn by ( 19)-( 20) via a Galerkin procedure. The displacement field is discretized as follows: v(s, t) = M j =1 φ v j (s)q i j (t) where q i j (t), j = 1, . . . , M, are the unknown amplitudes of the in-plane trial functions φ v j (s); w(s, t) = N k=1 φ w k (s)q o k (t) and ϑ(s, t) = N k=1 φ ϑ k (s)q o k (t) where q o k (t), k = 1, . . . , N, are the unknown amplitudes of the out-of-plane trial functions φ w k (s), φ ϑ k (s). The trial functions are the modes deduced from the associated linearized Hamiltonian problem. In this paper a sole in-plane, φ v (s), and a sole out-of-plane, {φ w (s), φ ϑ (s)}, eigenfunctions are selected (M = N = 1). Two non-autonomous ordinary differential equations are obtained:

q1 + Γ 1,1 q1 + Γ 1,2 q 1 + Γ 1,3 q 2 + Γ 1,4 q2 + Γ 1,5 q 2 1 + Γ 1,6 q 2 2 + Γ 1,7 q 3 1 + Γ 1,8 q 3 2 + Γ 1,9 q 1 q 2 2 + Γ 1,10 q2 1 + Γ 1,11 q1 q2 + Γ 1,12 q2 2 + Γ 1,13 q1 q 2 + Γ 1,14 q2 q 2 + Γ 1,15 q3 1 + Γ 1,16 q3 2 + Γ 1,17 q2 1 q 2 + Γ 1,18 q1 q 2 2 + Γ 1,19 q 2 q2 2 + Γ 1,20 q 2 2 q2 + Γ 1,21 q 2 q1 q2 + Γ 1,22 q2 1 q2 = Γ 1,23 (21) q2 + Γ 2,1 q1 + Γ 2,2 q2 + Γ 2,3 q 2 + Γ 2,4 q 2 2 + Γ 2,5 q 1 q 2 + Γ 2,6 q 3 2 + Γ 2,7 q 2 1 q 2 + Γ 2,8 q2 1 + Γ 2,9 q2 2 + Γ 2,10 q1 q 2 + Γ 2,11 q 2 q2 + Γ 2,12 q1 q2 + Γ 2,13 q 2 2 q2 + Γ 2,14 q1 q2 q 2 + Γ 2,15 q 2 2 q1 + Γ 2,16 q 2 q2 1 + Γ 2,17 q3 1 + Γ 2,18 q2 1 q2 + Γ 2,19 q 2 q2 2 + Γ 2,20 q1 q2 2 + Γ 2,21 q3 2 = Γ 2,22
where modal damping has been added, and where q 1 (t) and q 2 (t) describe the in-plane and out-of-plane time-laws, respectively. Partial expressions of the coefficients Γ i,j are reported in Appendix A; they depend on the wind velocity U and the amplitude of the support motion η.

As a general discussion on (21), self-, parametric and external excitations are noticed, and both quadratic and cubic nonlinearities appear. The twist ϑ , related to the aerodynamic forces, leads to a stiffness coupling and also contributes to some nonlinear mechanical coefficients, consistently with the circulatory nature of the forces. Moreover, it appears in mixed velocity-displacement terms. It can be seen, that the simultaneous presence of the motion of the support and wind produces terms otherwise absent when one of the two sources of excitation is missing. For The Multiple Scales perturbation Method (MSM) is used on [START_REF] Hijmissen | On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-massdamper[END_REF] to asymptotically describe the slow dynamics of the system. Since both quadratic and cubic terms occur in [START_REF] Hijmissen | On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-massdamper[END_REF], three orders of perturbation equations are needed.

It is assumed that in-plane and out-of-plane natural frequencies are in 1:1 ratio, ω 1 ω 2 , i.e. the cable is 1:1 internally resonant. The support motion is taken of sinusoidal type, f (t) = sin(Ωt), where the forcing frequency is close to the natural ones. Therefore a 1:1 external resonance occurs with both the modes, simultaneously. In order to express the closeness of the three frequencies, two detunings σ 1 and σ 2 are taken, such that

ω 1 = Ω + ε 2 σ 1 , ω 2 = Ω + ε 2 σ 2 ,
where ε is a dimensionless perturbation parameter (ε 1). These definitions, according to [START_REF] Chen | Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations[END_REF], are found computationally more convenient than the "classical" definitions Ω = ω 1 + ε 2 σ and ω 2 = ω 1 + ε 2 ρ where an external (σ ) and an internal (ρ) detunings appear. Of course the following relations hold between the two sets of detunings: σ = -σ 1 and ρ = σ 2σ 1 . Following the MSM, the dependent variables q 1 , q 2 are expanded in series of ε, q k = εq k1 + ε 2 q k2 + ε 3 q k3 , k = 1, 2 and several time scales are introduced; the structural damping is assumed small, of order ε 2 ; the aerodynamic terms, assumed small too, are ordered so as to appear at the third order; η is assumed of order ε, while the coefficients are ordered so that the resonant external and parametric excitation terms appear at the highest-order perturbation equations.

After performing standard steps, not reported here, Amplitude Modulation Equations (AME) up to the third order are obtained. They describe the evolution in time of the complex amplitudes A 1 (t) and A 2 (t) of the variables q 1 and q 2 , respectively (namely q k = A k exp(iω k t) + Āk exp(-iω k t) + higher-order terms, with the over-bar denoting the complex conjugate and i the imaginary unit). The AME assume the form:

Ȧ1 = F 1 (A 1 , Ā1 , A 2 , Ā2 ; η, U, σ 1 , σ 2 ) Ȧ2 = F 2 (A 1 , Ā1 , A 2 , Ā2 ; η, U, σ 1 , σ 2 ) ( 22 
)
where η, U , σ 1 and σ 2 are control parameters. The complex equations [START_REF] Lu | Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust[END_REF] are expressed in real form by using both polar and Cartesian representation, each having specific conveniences. In polar form, by defining the real amplitudes a 1 (t), a 2 (t) and phases Φ 1 (t), Φ 2 (t), so that A 1 = a 1 exp(iΦ 1 ) and A 2 = a 2 exp(iΦ 2 ), [START_REF] Lu | Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust[END_REF] read

ȧ1 = p 1 (a 1 , a 2 , Φ 1 , Φ 2 ; η, U, σ 1 , σ 2 ) ȧ2 = p 2 (a 1 , a 2 , Φ 1 , Φ 2 ; η, U, σ 1 , σ 2 ) a 1 Φ1 = p 3 (a 1 , a 2 , Φ 1 , Φ 2 ; η, U, σ 1 , σ 2 ) a 2 Φ2 = p 4 (a 1 , a 2 , Φ 1 , Φ 2 ; η, U, σ 1 , σ 2 ) (23)
In Cartesian form, by defining the components r 1 (t), s 1 (t), r 2 (t), s 2 (t) so that A 1 = r 1 + is 1 and

A 2 = r 2 + is 2 , they read ṙ1 = g 1 (r 1 , s 1 , r 2 , s 2 ; η, U, σ 1 , σ 2 ) ṡ1 = g 2 (r 1 , s 1 , r 2 , s 2 ; η, U, σ 1 , σ 2 ) ṙ2 = g 3 (r 1 , s 1 , r 2 , s 2 ; η, U, σ 1 , σ 2 ) ṡ2 = g 4 (r 1 , s 1 , r 2 , s 2 ; η, U, σ 1 , σ 2 ) (24)

Numerical results

Numerical results are reported here for a sample cable (almost identical to the one presented in [START_REF] Wang | Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions[END_REF]) of length = 121.9 m, position of the right support of components x = 99.6 m and y = -70.3 m respectively, diameter of the cross section D = 0.119 m, diameter of the rivulet d = 0.1D, inclination of the chord α = -35.2 • , axial stiffness EA = 29.7 × 10 6 N, torsional stiffness GJ = 159 Nm 2 , bending stiffness EI = 2100 Nm 2 , mass per-unit-length m = 51.8 Kg/m, structural damping ratio ξ s = 0.4%; the initial axial tension turns out to be H = 3142 KN. The cable is very taut and the trial functions are the first in-plane symmetric mode (nondimensional natural frequency ω 1 = 1.004) and the first out-ofplane symmetric mode (nondimensional natural frequency ω 2 = 1), both normalized as the maximum displacements are 1. The drag and lift coefficients are taken from [START_REF] Wang | Wind-rain-induced vibration of cable: an analytical model (1)[END_REF], where they were obtained by windtunnel tests. Their values are A 0 = -0.48, A 1 = 0.84, A 2 = 4.69, A 3 = 0.86, B 0 = 1.25, B 1 = -0.65, B 2 = -0.08, B 3 = 6.81. The critical (dimensional) wind velocity is U c = 36 m/s. Equilibrium branches and periodic solutions of ( 22) are numerically sought using the software Auto [START_REF] Doedel | AUTO-07P: continuation and bifurcation software for ordinary differential equation[END_REF], producing periodic and quasi-periodic oscillations in the variables q i . The resulting nondimensional amplitudes a 1 and a 2 , accord-Fig. 3 Amplitude a 1 vs. wind velocity, in absence of support motion (η = 0). Continuous line: stable; dashed line: unstable ing to [START_REF] White | The equations of motion for the torsional and bending vibrations of a stranded cabl[END_REF], denote the in-plane and out-of-plane dimensional amplitudes of motion, respectively, divided by the length of the cable.

A parametric analysis is carried out below, in which the internal detuning is fixed at ρ = -0.004 while the external detuning σ = -σ 1 , the wind velocity U and the amplitude of the support motion η are varied. Bifurcation diagrams are illustrated, in which the amplitudes a 1 , a 2 are plotted vs. one of the three parameters, for fixed values of the remaining two.

First, the effect of the wind is investigated, in absence (Fig. 3) or in presence (Fig. 4) of support motion. When η = 0 (Fig. 3), the classic mono-modal galloping occurs at the critical (nondimensional) wind velocity U = 1 and a stable super-critical equilibrium branch of amplitude

a 1 = 2 (-ξ s UΩ -ζ 11 U 2 ) 3ζ 8 Ω 2 (25) 
is observed in addition to the trivial solution a 1 = 0 (see Fig. 3). The effects of support oscillations of small amplitude, simultaneous to the wind, are illustrated in Figs. 4a,4b,4c, where σ = 0.01 is fixed, and η = 1.6 × 10 -4 , 3.2 × 10 -4 , 4.1 × 10 -4 are taken, respectively. It is seen that the impressed motion causes a perturbation of the pure galloping: the trivial solution modifies to a small-amplitude non-trivial solution (since the system is no more autonomous), and the bifurcated path manifests itself in the shape of a looped island, increasing its amplitude as η increases (thick lines). Moreover, a stable periodic solution in a 1 , leading to a quasi-periodic motion in q 1 is found, whose maximum and minimum values are plotted (thin lines) in the same Fig. 4. This periodic solution almost takes the place of the non-trivial equilibrium branch (relevant to η = 0) and it acts as a backbone for the islands of equilibrium points. Finally, the filled boxes represent Hopf bifurcation points, where unstable periodic branches (not reported) move out.

The response of the cable at the sole support motion (i.e. in no-wind conditions, U = 0) vs. the excitation frequency, is addressed in Figs. 5 and6, for small (η = 8.2 × 10 -5 , 4.1 × 10 -4 ) and large (η = 1.4 × 10 -3 ) amplitude, respectively. While low excitations trigger in-plane mono-modal solutions only (denoted by I in Fig. 5), high excitations, in addition to mono-modal responses (marked as I, II in Fig. 6) also induce bi-modal motions (denoted by III-V in Fig. 6). As a general comment, the typical behavior of externally forced systems is observed at low excitation (i.e. the external excitations prevails on the parametric excitation), while the effect of the latter becomes significant only when the amplitude of the support motion is high. In Fig. 6, II indicates an island of mono-modal equilibria, while III, IV and V indicate secondary bi-modal branches arising from pitchfork bifurcation points.

The simultaneous presence of support motion and wind, already analyzed in Fig. 4, is now reconsidered in the amplitude-frequency plane. Two values of the wind velocity (namely U = 0.7, sub-critical, and U = 1.3, super-critical), and two values of the forcing amplitude (namely η = 4.1 × 10 -4 , small amplitude, and η = 1.4 × 10 -3 , large amplitude) were selected, and the relevant four combinations displayed in Figs. 7, 8, 9, and 10, where the amplitudes a 1 and a 2 are shown vs. the external detuning. Figures 7 and8 illustrate the response to undercritical wind, for both low and high excitations, respectively. Here branches I and II represent bi-modal solutions, in which a 2 is very close to zero. The actual effect of the wind manifests itself by the existence of the branch II, which does not exist in no-wind conditions for the same excitation amplitude (Fig. 5b). Moreover, wind modifies the position of the Hopf bifurcation points (filled squares) and the stability of the equilibrium points. Periodic motions (quasi-periodic in q i ) with very high amplitudes are found, but are not reported here.

When the amplitude of the support motion is increased, as already noticed, the effect of parametric excitation increases, and the previous bifurcation diagrams change as in Figs. 9 and 10. It can be observed, if Figs. 5 (no-wind case), 9 (sub-critical wind) and 10 (super-critical wind) are compared, that, when the wind increases, it drastically reduces the amplitude of the out-of-plane motion. However, wind leaves the shape of the branches I and II almost unchanged, while the extension of the stable zone and the position of the Hopf bifurcation points are modified. From these points, short, unstable branches of periodic solutions start, which quickly die at a homoclinic tangency (not reported in the figures). Other periodic solutions in the amplitudes a 1 , a 2 are found; for example, when η = 1.4 × 10 -3 , σ = -0.042, U = 1.3, the evolution in time of the solution is shown in Fig. 11.

The previous result, according to which aerodynamic forces reduce out-of-plane motions, otherwise triggered by support excitation, appears as the main result of the analysis. Although the phenomenon is quite surprising, it must be ascribed to the fact, already noticed, that aerodynamic and parametric excitation interact (in an a priori unpredictable way) in modifying the coefficients of the equations of motion, or even creating new terms. This behavior has been checked by direct numerical integration of the original equations ( 21), whose results are marked by empty boxes in Figs. 9 and 10. A good accordance is highlighted, which corroborates the analytical findings. The same results might be obtained just considering a (simpler) 1-d.o.f. system, obtained from [START_REF] Lu | Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust[END_REF] for A 2 = 0 and retaining only the first equation. In this case, it can be shown that the parametric excitation due to the combined wind-support motion provides terms of the same nature of those due to both super-harmonic and sub-harmonic excitations, responsible for the existence of the island (see [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]), plus a new term due to the quadratic parametric excitation.

Conclusions

A nonlinear continuous model has been formulated to describe the non-planar of an inclined cable, subjected to stationary wind and sinusoidal motion at the lower support. Torsional and flexural stiffnesses of the cable have been accounted for in the model, by using a consistent asymptotic analysis grounded on the smallness of the sag-to-span ratio. A quite simpli-fied aerodynamic model of cable-rivulet has been employed, by adapting and extending a model taken from literature. A 2-d.o.f. model has been deduced by a Galerkin projection, leading to time-dependent o.d.e., expanded up to the third order. The motion enforced at the ground is found to be responsible for external and parametric excitation, while the wind causes selfexcitation; moreover, it modifies the effects of the excitation at the support. The equations have been tackled with the Multiple Scales technique, in the case of 1:1 external resonance and 1:1 internal resonance. The mechanical behavior of the cable has been described for different amplitudes of support motion, wind velocity and excitation frequency. It has been shown that, when the motion of the support has small amplitude, the galloping is perturbed, and islands of non-trivial periodic motions of large amplitude exist, also for velocities smaller than the critical one. When the motion of the support is large, remarkable out-of-plane oscillations occur in no-wind case. Those, however, and quite surprisingly, are drastically reduced in the presence of wind, due to the combined effect of the two sources of excitation. Finally, the existence of quasiperiodic motions and homoclinic bifurcations has been ascertained. The coefficients k ij , h ij , ζ ij , ξ ij , ζij , ξij , m 0 come from integrations of the shape functions. In particular, k ij , h ij contain elastic parameters, ζ ij , ξ ij , ζij , ξij contain aerodynamic parameters, m 0 is the modal mass. Their analytical expressions are not reported here for brevity.
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 1 Fig. 1 Inclined cable: (a) initial configuration C and chord; (b) current C and initial C configurations
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 2 Fig. 2 Inclined cylinder subjected to wind: (a) slope α and yaw angle β; (b) section of the cable with fixed rivulet
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 4 Fig. 4 Amplitude a 1 vs. wind velocity in presence of support motion when σ = 0.01: (a) η = 1.6 × 10 -4 ; (b) η = 3.2 × 10 -4 ; (c) η = 4.1 × 10 -4 . Continuous line: stable; dashed line: unstable; thin lines: boundaries of periodic motions
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 567891011 Fig. 5 Amplitude a 1 vs. excitation frequency, in absence of wind: (a) η = 8.2 × 10 -5 ; (b) η = 4.1 × 10 -4 . Continuous line: stable; dashed line: unstable
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Appendix A: Coefficients of the discrete equation of motion

In this section, the partial expressions of the coefficients of ( 21) are reported. The in-plane and out-ofplane natural nondimensional frequencies of the cable are ω 1 and ω 2 ; ξ s is the modal damping ratio. The coefficients Γ ij are the following: