
HAL Id: hal-00788283
https://hal.science/hal-00788283

Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connectivity condition for structural properties using a
graph theoretical approach: Probabilistic reliability

assessment
Manal Dakil, Christophe Simon, Taha Boukhobza

To cite this version:
Manal Dakil, Christophe Simon, Taha Boukhobza. Connectivity condition for structural properties
using a graph theoretical approach: Probabilistic reliability assessment. 5th Symposium on System
Structure and Control, IFAC Joint Conference 2013 SSSC, TDS, FDA, Feb 2013, Grenoble, France.
pp.72-77. �hal-00788283�

https://hal.science/hal-00788283
https://hal.archives-ouvertes.fr


Connectivity condition for structural properties
using a graph theoretical approach: Probabilistic

reliability assessment

M. Dakil ∗,∗∗ C. Simon ∗,∗∗ T. Boukhobza ∗,∗∗
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Abstract: In a structured system graphically represented, the satisfaction of structural properties depends
on graphical conditions. Among these conditions, we choose to study one of the most commonly used
conditions, the so-called connectivity condition. The validity of this condition depends on the validity
of some edges in the system graphical representation. The corresponding edges reflect the operating
state of the physical system components. To study the validity of the connectivity condition, this paper
describes a methodology which provides a Boolean expression of the connectivity condition based on
the components operating state. As an application of the proposed Boolean expression, we can define
the reliability characteristics of the connectivity condition and for how much time it remains satisfied
knowing the reliability characteristics of the system components.
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1. INTRODUCTION

Systems properties such as controllability, observability, distur-
bance rejection . . . are subject of many studies in automatic
control due to the major role they play in control systems
theory using algebraic and geometric tools. The most important
properties depend on the system structure more than the values
of its internal parameters [Willems, 1986]. In most cases, the
parameters of the studied system model are not always nu-
merically fixed in the early steps of its life-cycle. Thus, the
use of a generic representation can be considered which do
not directly depend on the system parameters. This model is
based on matrices containing “zero”and “non-zero”parameters
and it is useful for the graphical representation which reflects
the relationship between the variables of the system studied.
This allows to study the system and its structural properties
in a simple and intuitive way. [Lin, 1974] is the first one
which study the structured systems where the author provides
their graphical representation as a directed graph. The paper
gives the condition for the structural controllability of single-
input systems based on the existence of cycles, paths forming
“cactus”. Based on this original work, many other works have
been developed to study more structural properties by graphical
approaches (see [Dion et al., 2003, Boukhobza and Hamelin,
2011b, Boukhobza, 2010]).

All the cited papers are concerned by the verification if a struc-
tured system satisfies structural properties or not, but they do
not give enough informations about how long these structural
properties are still satisfied for this system and if their satisfac-
tion can tolerate one or several failures which can occur on the
system components.

In dependability engineering, reliability analysis is an impor-
tant engineering task in many sectors. By analyzing failures
of components and their propagation in systems, reliability
analysis addresses several problematic like safety, risk analysis,
sustainability in all steps of the system lifecycle. It character-
izes the ability of the system to perform its functions during
a specified period of time under certain conditions. Reliability
depends on the functional architecture of the studied system
and the characteristics of the system components. It is usually
expressed in term of the reliability of its subsystems or com-
ponents. Thus, reliability is relied to the occurrence of some
undesirable events (failures) on the system components and the
impact of these events on the whole system. We can find a
lot of usual tools of reliability [Villemeur, 1992] or Bayesian
networks in [Langseth and Portinale, 2007]. [Kaufmann et al.,
1977] also propose a graph theoretical approach based on a
function useful to compute system reliability.

Components failures can impact structural properties and sys-
tem reliability, that is why many researchers developed works
merging the reliability theories and automatic control studies.
[Doguc and Ramirez-Marquez, 2009] provides a method for
constructing a Bayesian network model for estimating system
reliability. In [Conrard et al., 2012] the authors are interested
in Fault Tolerant Control systems (FTC) and they introduce
the parameter Fault Tolerant Level (FTL) which characterizes
the number of tolerable failures in a system. [Staroswiecki,
2006] solves the general fault tolerance problem through a
structural analysis. The author studies the structural observabil-
ity in good/failed operating state and the link with two basic
dependability concepts named critical faults and reliability is
studied based on a graph-theoretical approach. In [Maza et al.,
2012], the authors characterize the reliability of controllability



knowing the reliability of the actuators using a graph theoretical
approach. They consider that only actuators can fail.

In structured systems, each structured property is satisfied when
it verifies some graphical conditions. The so-called connec-
tivity, complete matching, distance and linking conditions are
the most used graphical conditions. For example, structural
controllability and observability in linear systems should verify
the connectivity and complete matching conditions [Dion et al.,
2003] and state and input observability necessitates connectiv-
ity, complete matching and distance conditions for structured
switching systems[Boukhobza and Hamelin, 2011a].
In this paper, we choose to study the connectivity condition
since it is necessary for the satisfaction of several structural
properties. The originality of the paper is to combine struc-
tural analysis and reliability. The provided method is based on
graphical approach and consists on formulating the connec-
tivity condition depending on the validity of some edges in
the graphical representation of the studied system. Each edge
is linked to certain components in the system by a specific
function. Thus, the connectivity condition is expressed as a
Boolean expression based on the events (failures) that can occur
on the system components. Contrary to other works such as
[Maza et al., 2012] which consider that external components
(actuators and sensors) are the only components that can fail
and [Commault and Dion, 2007] where the authors classify the
sensors/actuators as essential, useful and useless, we assume
that connectivity condition depends on the events on both in-
ternal and external components. In a second step, we are not
interested just by the number of tolerable failures as in [Conrard
et al., 2012], but in the reliability of the connectivity condition.
Thus, the provided Boolean expression is used to compute the
reliability of the connectivity condition knowing the reliability
of the system components. In this paper, we propose to compute
reliability using a common tool of dependability engineering, it
is Bayesian networks.

The paper is organized as follows. Section 2 is dedicated to
the problem statement of connectivity conditions which is the
main idea of the study. In Section 3, we recall some graphical
definitions and notations useful for the rest of the paper. Sec-
tion 4 details the developed method to elaborate the graphical
connectivity conditions that determine the maintaining or not
of the connectivity between two sets of vertices. From this, in
Section 5, the reliability of this graphical condition is computed
knowing the reliability of the system components.

2. PROBLEM STATEMENT

Any structured system must satisfy some structural properties
in order to carry out its mission in good conditions. Each
structural property is compliant with some graphical conditions
(connectivity, complete matching, distance, linking, . . . ) which
are related to the type of the studied system (linear, bilinear,
switching system,. . .).

Connectivity condition is one of the most used graphical con-
ditions. It should be verified in many structural properties, such
as observability, controllability,. . . Using a directed graph (de-
noted digraph), the compliance of this condition can be veri-
fied graphically in relation with the validity of some edges or
paths in the digraph, and each edge is related to the system
components operating conditions. An edge (vi, vj) is valid if
the corresponding components is not failed. Thus, connectivity

condition will be formalized as a Boolean expression based on
the edges validity corresponding to the components availability.

In order to state the connectivity condition, let us consider a
digraph G(V, E), where V is the set of vertices, and E is the
set of edges. The connectivity condition between two sets of
vertices V1 ⊆ V and V2 ⊆ V in the digraph G consists on the
validity of at least one path from each elements of V1 to at least
one element of V2.

In order to keep satisfied a structural property depending on the
connectivity condition, we should make sure that the condition
is verified. This condition remains valid if some edges constitut-
ing the digraph remain valid, which means that the components
associated to these edges are not down (or failed). In this paper,
our goal is to provide a Boolean expression for the connectivity
condition. To keep this condition verified, the corresponding
Boolean expression must be true. The validity of this condition
is based on the validity or not of some edges which are related
to the system components in the digraph.
Based on the operating conditions, the obtained Boolean ex-
pression allows us to assess the probability to maintain a struc-
tural property verified thanks to the components reliability.

3. DEFINITIONS AND GRAPHICAL REPRESENTATION

The structure of a structured system can be represented by a
graph based on a knowledge model of the studied system. This
graph shows the relationship between the system variables.

• A digraph G is constituted of a set of elements called
“vertices” and a set of ordered pairs of vertices called
“edges”. We denote V the vertex set and E the edge set.
We will often write G(V, E). For an edge (vi, vj) ∈ E
connecting two vertices vi ∈ V and vj ∈ V , the first vertex
vi is its beginning vertex and the second vertex vj is its end
vertex.
• A path passing through the vertices vr0 , . . . , vri is denoted
p = vr0 → vr1 , . . .,→ vri where for j = 0, 1, . . . , i − 1
and (vrj , vrj+1) ∈ E .
• When a path p passes through the vertices vi and vj ,

the edge (vi, vj) is covered by the path p, we denote
(vi, vj) ∈ p.
• Paths are disjoints if they have no common vertex.
• Paths are simple if they do not pass several times by the

same vertex.
• V1 and V2 are two sets of vertices. A path p is called V1−
V2 path if its beginning vertex is in V1 and its end vertex
is in V2. Moreover, if the only vertices of p belonging to
V1 ∪ V2 are its beginning vertices and end vertices, then p
is called a V1 − V2 direct path.
• A set of ℓ V1 −V2 disjoint paths forms a V1 −V2 linking.

A maximum linking is a linking consisting of a maximum
number of paths.
• The set of vertices noted Vess(V1,V2) includes the ver-

tices contained in all the maximum V1−V2 linking. These
vertices are called essential vertices in a maximum V1−V2
linking.
• Pred(V1) is the set of all the vertices denoted vi prede-

cessors of vj ∈ V1, i.e. ∀vj ∈ V1 there exist vertices vi
such as there is at least one vi − vj path.



• φ : E → F(C), φ is a function from E to F(C) where
E is a set of edges states and F(C) is a set of Boolean
expressions of logical AND, OR and NOT based on the
components events. This function φ is useful to affect to
each edge state in the Boolean expression corresponding
to the connectivity condition another Boolean expression
based on the system components events (failures).
For example, let us consider a system with two compo-
nents c1 and c2 in parallel represented by the edge (x1,x2)
in the corresponding digraph. This edge is valid when c1
or c2 is not faulty i.e. C1 ∨ C2 with Ci represents the
failure of the component ci.

4. MAIN RESULTS

The connectivity condition is a graphical condition which eval-
uates the connectivity between two sets of vertices. Several
structural properties require the validity of this condition in
addition to other graphical conditions. Indeed, to satisfy these
structural properties, the connectivity condition should be veri-
fied systems. That is why the connectivity condition is interest-
ing to study.

As explained in Section 2, we have to connect, in a digraph
G(V, E), each element of a vertices set V1 ⊆ V to at least
one element of a vertices set V2 ⊆ V where V1 ̸= ∅ and
V2 ̸= ∅. The elements of V1 and V2 are defined according
to the property studied. For instance, we have to ensure the
connectivity between the state vertices and the output vertices
for the state observability. To satisfy this condition, we provide
the following approach.
Let us define two sets of vertices noted V0 and VT which are
represented as follows: V0 =

∪
vi∈V1

(Vess ({vi}, V2) \ {vi})

VT = V1 \ (V0 ∪ V2)
(1)

Using VT , we will not handle all the vertices in V1. All the
elements of V1 are connected to V2 if the elements of VT

are connected to V2. From this, we propose to write the con-
nectivity condition from V1 to V2 as follows: CC(V1, V2) =
Exp(VT , V2) where Exp(VT , V2) is a function which com-
putes the Boolean expression corresponding to the connec-
tivity condition between VT and V2. For the computation of
Exp(VT , V2), we propose a recursive formulation which pro-
vides a Boolean expression for the connectivity condition as
following:

Exp(VT , V2) =
∨

pj∈P({vi},V2)

(( ∧
(vℓ,vk)∈pj

(vℓ, vk)
)

∧Exp(VT \ {vm covered by pj}, V2)
) (2)

where P({vi}, V2) is the set of all simple and direct {vi} − V2

paths which connect each element vi of VT to at least one
element of V2.
We choose to study the connectivity of any vertex vi of VT .
The remaining vertices, which are not yet connected to V2,
are handled in the last part of Equation (2) i.e. Exp(VT \
{vm covered by pj}, V2) until having one element of VT to
handle. Note that the parameters of Exp(VT , V2) change and
it is never called with the same arguments. When we have only
one element {vi} of VT to connect to V2, the corresponding
expression is given below:

Exp({vi}, V2) =
∨

pj∈P({vi},V2)

( ∧
(vl,vk)∈pj

(vl, vk)
)

(3)

Obviously, if vi ∈ V2, vi is always connected to V2,
then Exp({vi}, V2) = 1 and if vi ̸∈ Pred(V2) then
Exp({vi}, V2) = 0.
The detail of the previous expressions Exp(VT , V2) and
Exp({vi}, V2) is given by Algorithms 1 and 2.

Algorithm 1 Computation of CC(V1, V2)

1: V0 ←
∪

vi∈V1

(Vess ({vi}, V2) \ {vi})

2: VT = V1 \ (V0 ∪ V2)
3: CC(V1, V2)← Exp(VT , V2)

Algorithm 2 Computation of M ← Exp(V, V2)

1: if V = ∅ then
2: M ← 1
3: else if card(V ) = 1 then ◃ V = {vi}
4: if vi ∈ V2 then
5: M ← 1
6: else if vi ̸∈ Pred(V2) then
7: M ← 0
8: else
9: M ←

∨
pj∈P(vi,V2)

( ∧
(vl,vk)∈pj

(vl, vk)
)

10: end if
11: else if card(V ) > 1 then
12: Choose any vi ∈ V
13: if vi ∈ V2 then
14: M ← 1
15: else if vi ̸∈ Pred(V2) then
16: M ← 0
17: else
18: M ← 0
19: for 1 < j ≤ card(P({vi}, V2)) do
20: if (pj ∈ P({vi}, V2) ∧ card(V \
{vm covered by pj}) ≥ 1) then

21:
M ←M ∨

( ∧
(vℓ,vk)∈pj

(vℓ, vk)
)
∧Exp(V \

{vm covered by pj}, V2)
22: else

23:
M ←M ∨

( ∧
(vℓ,vk)∈pj

(vℓ, vk)
)

24: end if
25: end for
26: end if
27: end if
28: return M

Proposition 1: Let us consider a digraph G(V, E). The connec-
tivity condition between each element of V1 ⊆ V to at least
one element of V2 ⊆ V is satisfied iff the Boolean expression
CC(V1, V2) computed according to Algorithms 1 and 2, and
based on the edges validity is equal to 1.

Proof: First, let us prove that in order to connect the element
of V1 to V2, it is necessary and sufficient to connect all the
elements of VT to V2. Since VT ⊆ V1, connecting all the
elements of V1 to at least an element of V2, implies that all
the elements of VT are connected to V2. So, connecting all the
elements of VT is necessary to ensure the connectivity condition



CC(V1, V2). Otherwise, we have that V1 = VT ∪V0, according
to the definition of V0, we have that vj ∈ V0 implies that
∃ vi ∈ VT such as vj ∈ Vess ({vi}, V2). Therefore, if vi is
connected to V2, then vj is also connected to V2. Each element
vj ∈ V0 is connected to V2, if every element vi ∈ VT is
connected to V2. So, it is necessary and sufficient to connect
the elements of VT to V2 in order to connect the elements of V1

to V2.

Obviously, the connectivity of each element vℓ ∈ V2 is always
verified. So, ∀vℓ ∈ V2, Exp(vℓ, V2) = 1. Otherwise, there is no
path that connects the element vm which are not predecessors
of V2 to V2. Therefore, ∀vm ̸∈ Pred(V2), Exp({vm}, V2) = 0.

The computation of CC(V1, V2) is mainly based on the com-
putation of Exp(V, V2) given in Algorithm 1 and 2 where
V ⊆ V1. When card(V ) = 1, there is only one element
vi predecessor of V2 in the set V . vi can be connected to V2

through a {vi} − V2 path in the paths set P(vi, V2). Therefore,
Exp is a logical OR between the elements pj of the paths set
P({vi}, V2) knowing that the path pj is a logical AND between
its edges (vl, vk). So,
Exp({vi}, V2) =

∨
pj∈P({vi},V2)

( ∧
(vl,vk)∈pj

(vl, vk)
)
.

Assume that ∀n0 ≤ card(V ), for all subsets V k
0 ⊆ V of

cardinality ≤ n0, Exp(V k
0 , V2) is the right expression for the

validity of the connectivity condition i.e. all the elements in
V k
0 are connected to V2 if Exp(V k

0 , V2) is equal to “1”. Let us
prove that the Boolean expression Exp is true ∀V k

1 ⊆ V of
cardinality n0 + 1. The corresponding expression Exp is:

Exp(V k
1 , V2) =

∨
pj∈P({vi},V2)

(( ∧
(vℓ,vk)∈pj

(vℓ, vk)
)

∧ Exp(V \ {vm covered by pj}, V2)
)
.

pj covers at least vi and V \ {vm covered by pj} which is of
cardinality ≤ n0, then Exp(V \ {vm covered by pj}, V2) gives
the correct expression according to the recurrence assumption
because card(V \ {vm covered by pj}) ≤ n0. If the path pj
is valid, then all the vertices covered by pj are connected to
V2, therefore, we have to connect the remaining vertices which
are not yet connected to V2 using the expression: Exp(V \
{vm covered by pj}, V2).
From this, the first part of the expression Exp(V k

1 , V2) is the
right expression to connect vi to V2 through a path pj ∈
P({vi}, V2), and the second part is the right expression to
connect the element not connected to V2. Therefore, for all
V k
1 ⊆ V of cardinality n0 + 1, Exp(V k

1 , V2) is correct.

We proved that if the expression Exp(V, V2) is correct for a
vertices set V of cardinality n0, then it is correct for V of
cardinality n0+1. We also proved that Exp(V, V2) is correct for
V = {vi} where the cardinality of V is n0 = 1. From this, the
expression is correct for the vertices set V of cardinality 2 and
so on. So the expression Exp(V, V2) is correct for any vertices
set V of cardinality n, therefore, for the vertices set V1. △

Example: In order to illustrate the proposed method, let us
consider an example of system represented by its digraph in
Figure 1. This figure represents a system which is quite simple
to better understand the aim of the provided approach.
For this example, we are interested in the structural state ob-

servability of this system. In this case, we have to connect
each element xi of the state vertices to at least one output
yi. Therefore, V1 = {x1,x2,x3,x4,x5}, V2 = {y1,y2,y3},
V0 = {x5} and VT = {x1,x2,x3,x4}.

Let us give the Boolean expression Exp(VT , V2) starting in

Figure 1. The digraph of example

connecting the vertex x1 to V2 as follows:

Exp(VT , V2) = ((x1,x2) ∧ (x2,y1) ∧Exp({x3,x4}, V2))
∨((x1,x3) ∧ ((x3,y2) ∨ (x3,y3)) ∧ Exp({x2,x4}, V2))
∨((x1,x3)∧ (x3,x4)∧ (x4,x5)∧ (x5,y3)∧Exp({x2}, V2)).

and so on for the computation of Exp({x3,x4}, V2),
Exp({x2,x4}, V2) and Exp({x2}, V2).

From this, the connectivity is ensured between V1 and V2 iff
the Boolean expression given by Equation (4) is equal to “1”.

CC(V1, V2) =
(
(x2,y1) ∧ (x4,x5) ∧ (x5,y3) ∧

((x1,x2) ∨ (x1,x3)) ∧
(
(x3,y2) ∨ (x3,y3) ∨ (x3,x4)

))
∨
(
(x1,x2) ∧ (x2,y1) ∧ (x3,x1) ∧ (x4,x5) ∧ (x5,y3)

)
(4)

5. RELIABILITY OF THE CONNECTIVITY CONDITION

As automatic control is involved in many applications, extend-
ing the notion of reliability to structural properties of systems
is an important issue. It allows anticipating failures, loss of
properties and consequences of failures on the mission assigned
of the system. As structural properties rely on basic conditions,
computing the reliability of these elementary conditions based
on the reliability of the involved components is required. In
the recent literature [Weber et al., 2012, Pourret et al., 2008],
there is a growing interest to model the reliability of complex
industrial systems using Bayesian Networks (BN). This model-
ing method seems to be very relevant in the context of complex
systems [Langseth, 2008]. Even if the system proposed in this
paper is of low size and complexity, the purpose is to address
large scale systems. So, computing the reliability of a complex
condition is challenging.

We propose to use Dynamic Bayesian Networks (DBN) to com-
pute the reliability of the connectivity condition. BN perform
the factorization of variables joint distribution based on the
conditional (in)dependencies. The principles of this modeling
tool are deeply explained in [Jensen, 1996, Pearl, 1988]. Let
us define some basic notions of BN. BNs are Directed Acyclic
Graphs (DAG) used to represent uncertain knowledge. Those
graphs are distinct from the directed graphs G(V, E) represent-
ing the system state space model. DAG is defined as a couple:



DAG = ((N,A) , P ), where (N,A) represents the graph; N
is a set of nodes; A is a set of arcs and P represents the set of
probability distributions that are associated to each node. When
a node is not a root node, i.e. when it has some parent nodes, the
probability distribution is a conditional probability distribution
that quantifies the probabilistic dependency between this node
and its parents. A discrete random variable Z is represented by
a node Z ∈ N with a finite number of mutually exclusive states
SZ :

{
sZ1 , . . . s

Z
M

}
. The vector P (Z) denotes a probability

distribution over these states as Equation (5):

P (Z) =
[
P (Z = sZ1 ) . . . P (Z = sZm) . . . P (Z = sZM )

]
(5)

with P (Z = sZm) ≥ 0 and
M∑

m=1

P (Z = sZm) = 1 and where

P (Z = sZm) is the marginal probability of node Z being in
state sZm.
A DBN is a BN taking into account the temporal dimension.
At each time step k (k ≥ 0), a variable X is represented by
a node Xk. Thus, each time step k is represented by a set
of nodes Nk including all the variables of this time slice k.
The qualitative dependency between a node Xk and a node
Yk+1 is represented by a directed arc linking the two nodes.
In our problem the nodes Xk and Yk+1 represent the same
variable. This arc, denoting a transition function, is defined by
a conditional probability table (CPT) as follows:

F[Xk](Yk+1) =

 f [AXk
1 ](A

Yk+1

1 ) . . . f [AXk
1 ](A

Yk+1

QY
)

. . . . . . . . .
f [AXk

QX
](A

Yk+1

1 ) . . . f [AXk

QX
](A

Yk+1

QY
)


(6)

where AXk
i is the i-th state of Xk and A

Yk+1

j is the j-th state
of Yk+1.

DBN are supposed to be:

• Stationary: F [Xk](Yk+1) does not depend on k.
• Markovian: F (Yk+1) depends only on the distributions of

its parent nodes. Thus, the future time step is condition-
ally independent of the past given the present time slice
[Murphy, 2002].

To model reliability, the root nodes represent the basic compo-
nents reliability involved in the reliability of the connectivity
condition. The nodes connected by the temporal arcs represent
the components reliability at two consecutive steps.
As developed in Section 4, we consider that the connectivity
condition is expressed as a Boolean expression from a com-
bination of logical ∧ and ∨ linking the edges state. Indeed,
in example of Section 4 the connectivity condition given by
Equation (4) as Boolean expression based on the digraph edges
can be written in another way from a logical combination of the
events (failures) that can occur on the system components. We
recall that φ is a function which associates to each edge state in
the Boolean expression an expression of events on the system
components. For the system provided in the previous example,
function φ is illustrated by Table 1.

Therefore, using function φ and Table 1, Equation (4) can be
written as given by Equation (7). We recall that Ci characterizes
the good operating of the component ci (no event on ci).

Edgestatei Ci Edgestatei Ci

(x1,x2) C1 ∧ C2 (x3,y3) C5

(x2,y1) C2 (x3,x4) C6 ∨ C3

(x1,x3) C1 (x4,x5) C7

(x3,x1) C3 (x5,y3) C8

(x3,y2) C4

Table 1. Edges and corresponding components
events logical expression

CC(V1, V2) = C1 ∧ C2 ∧ C7 ∧ C8 ∧ (C3 ∨ C4 ∨ C5 ∨ C6)
(7)

Any Boolean expression can be handled in a probabilistic way
by a BN through corresponding CPT. Table 2 defines the CPT
for ∧ and ∨ for 2 inputs where “Up” de is the good operating
state and “Down” is the failed state according to the binary
state assumption.

A B C = A ∧B C = A ∨B
Up Up

Up Up 1 1
Up Down 0 1

Down Up 0 1
Down Down 0 0

Table 2. CPT for ∧ and ∨ logical operators

Table 2 contains only the Up state for ∧ and ∨ and, obviously,
Down is the opposite state.
We assume that each components ci has a constant failure
rate λi. The components failure rates are considered different
from each other and equal to λi = i · 10−3 (per hour).
Then, the reliability follows an exponential distribution. To
model such reliability distribution in a DBN, the CPT given
in Table 3 is defined. Figure 2 represents the DBN model of
the connectivity condition. The dynamic aspect of the DBN
concerns the way the components may fail, thus affecting
the connectivity. The top node CC contains the probability
distribution of the connectivity condition.

X(k) X(k + 1)
Up Down

Up e−λi.t 1-e−λi.t

Down 0 1
Table 3. Temporal CPT

Figure 3 shows the reliability evolution of the provided con-
nectivity condition function depending on time. We can notice
from the this figure that after 200 hours of operation, there is a
low probability (less than 0.1) that the connectivity condition is
still verified.

6. CONCLUSION AND PERSPECTIVES

This paper deals with the connectivity condition which is com-
pliant with many structural properties in structured systems.
The connectivity condition is studied in a generic way, by
proposing a method which defines a Boolean expression based
on the edges state that reflect the operating state of all the
system components. This Boolean expression must be valid
to keep the connectivity condition verified. Thus, the Boolean
expression allows us to compute the reliability of the connec-
tivity condition knowing the reliability of the corresponding
components. In this paper, we used two kinds of graphs, a di-
rected graph G representing the state space model of the system



Figure 2. DBN of the connectivity condition

Figure 3. Reliability of the connectivity condition

and the relationship between its variables, and directed acyclic
graphs DAG as a tool to compute the connectivity condition
reliability. An example has been studied to show the application
of the proposed methodology.
As a complementary study to the proposed work, other graph-
ical conditions (complete matching, linking, distance) can be
developed in the same way, in order to evaluate all the structural
properties for several kinds of systems.
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