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analyzed in a multi frequency forced system, giving rise to periodic, quasi periodic and chaotic motions. In [24],
interesting effects of synchronization and transitions to chaotic motions were observed for these kinds of problems.

Even in the case of structures exposed to turbulent wind, the three sources of excitations can interact. Indeed the
steady part of the flow is responsible for the self excitation, while the unsteady flow brings on parametric and

external forces. In this framework, in [25] a one dof system, bearing the simultaneous presence of the self, parametric
and external excitations, is considered to study the galloping phenomena of tall cantilever structures. There, the multiple
scales method (MSM) is used to analyze the response of the system to a mono frequent unsteady wind flow, in case of
primary and secondary resonances. It is shown that the unsteady component can cause a significant decrease in the wind
speed at which large amplitude oscillations occur; moreover, the contribution of the unsteady component is less
prominent at high wind velocities, where the amplitude of galloping oscillations is very similar to the case of steady
wind flow.

This paper aims to extend the analysis, carried out in [25], of self excited structures under turbulent wind. The
objective is to take into account the possible occurrence of Hopf bifurcations, obtained by varying the steady part of the
wind, and to analyze the modifications on the solutions due to the turbulent part, which herein is considered multi
frequent. To this end a tower, under the simultaneous presence of the self, parametric and external excitations, is
considered. The tower is a linear elastic multistory shear type frame, modeled through a corresponding homogeneous
scheme of continuous shear cantilever, and then reduced to a one dof system via a modal representation. The order of
magnitude of the error introduced by these approximations is discussed with reference to a specific example. The
nonlinear terms appearing in the system are provided by the aeroelastic force, while the nonlinear elastic terms are
considered negligible. The multiple scale method [2] is applied, under a specific resonance condition. A set of amplitude
modulation equations (AME) is obtained, describing the slow dynamics of the system in terms of amplitude of oscillations
and phase difference. A bifurcation analysis is carried out and the equilibrium solutions, representing periodic oscillations,
are analyzed in the space of the bifurcation parameters. Their stability is discussed, highlighting the influence, on the
response of the structure, of the three components of the excitations in different regions of the parameter space. In
particular, as a consequence of the multi frequency nature of the turbulence, the excitations can act separately. The
analysis is also extended to quasi periodic solutions.

2. The model

A tower of square section, constituted by a multistory shear type frame, is subjected to unsteady wind flow,

uniformly distributed all along its height. The dynamics of the structure are studied in the across wind plane

(see Fig. 1). The along wind forces modify the equilibrium position of the tower, which becomes curvilinear; this effect
is small and is typically considered as an imperfection in the model (see [26]). However, in this paper the along wind
dynamics are neglected.

In Fig. 1, vi(t) is the (time dependent) cross wind transversal displacement of the i th story of the tower. The inter story
height of the tower is h, and the dimensions of the cross section are b� b. The total height of the tower is ‘.

2.1. Homogeneous continuous model

A corresponding homogeneous scheme, constituted by a planar shear rod with square cross section, is introduced

(see Fig. 2). The rod is clamped at one end and free at the other end. Kinematics are assumed linear, according to the fact

that cantilever beams exhibit a weak nonlinear behavior (see [27]).

The shear rod is a one dimensional polar continuum, constituted by an axis line, whose transversal displacement is
indicated as v(s,t) and by cross sections which remain planar and are unable to rotate: jðs,tÞ � 0. The only non null strain
measure is the shear strain gðs,tÞ :¼ vuðs,tÞ, where the prime denotes differentiation with respect to the abscissa s, while the
curvature is identically null: kðs,tÞ :¼ juðs,tÞ � 0. The stress at the generic cross section is described by the shear force T(s, t)
and the bending moment M(s, t) and, if p(s, t) is the linear density of external in plane load (including the inertia forces),
the balance reads as

T uðs,tÞþpðs,tÞ ¼ 0

Muðs,tÞþTðs,tÞ ¼ 0 (1)

In Eq. (1), the bending moment is reactive, while the shear force is active. Assuming a linear homogeneous elastic
material, it holds that Tðs,tÞ ¼ GAgðs,tÞ, where GA is the shear stiffness of the rod, assumed constant. In this way,
Eq. (11) becomes

GAv00 mvþpni ¼ 0 (2)

where the contribution of the inertia force is introduced through the linear mass density m, the dot stands for time
derivative and pni is the non inertial contribution to the load. Once known v(s, t), one can get back to the bending moment



by integrating Eq. (12), namely

Mðs,tÞ ¼Mð0,tÞ

Z s

0
GAvuðz,tÞ dz¼Mð0,tÞ GAvðs,tÞ (3)

Fig. 1. Frontal (a) and top (b) views of the tower subjected to the wind flow uniformly distributed all along its height.

Fig. 2. Frontal view of the homogeneous model.
The value of the homogeneous shear stiffness is identified by equating the strain energy density of the discrete and the
homogeneous models: it holds that GA¼ nc12EI=h2, where nc is the number of columns in the generic story and EI is the
bending stiffness of each column, assumed the same throughout the tower.



The boundary conditions read as

vð0,tÞ ¼ 0

GAvuð‘,tÞ ¼ 0 (4)
The non inertial contribution to the load in Eq. (2) can be decomposed as

pni ¼ pdþpa (5)

where pd and pa are the damping and the aerodynamic parts, respectively. In particular pd contains both internal (Kelvin
model) and external (drag) damping and reads as

pd ¼ Z _v 00ðs,tÞ c _vðs,tÞ Z _vuð‘,tÞdðs ‘Þ (6)

where Z and c are the internal and external viscous damping coefficients, respectively. Such a damping force is consistent
with the Rayleigh damping model used for discrete systems.

The aerodynamic part of Eq. (5) is related to the wind which blows orthogonally to the beam axis with time dependent
velocity U(t). It triggers a lift force on the rod lying on the plane of the structure (see [28]), of type

pa ¼
1

2
rU2b A0þA1

_v

U

� �
þA2

_v

U

� �2

þA3

_v

U

� �3
" #

(7)

where Aj ðj¼ 1,2,3Þ are the aerodynamic coefficients relevant to square sections, r the air mass density, and terms up to
power three have been considered. The wind velocity can be decomposed as UðtÞ ¼UþuðtÞ, where U is a constant
(average) part, representing the steady component, and u(t) is a periodically time dependent part, representing the
turbulence. In particular, considering the turbulent part small compared to the steady one and expanding with Taylor’s
polynomial, the lift force in Eq. (7) turns out to be

pa ¼
1
2rb½c0þc1 _vþc2 _v

2
þc3 _v

3
� (8)

where c0 ¼A0ðU
2
þ2UuðtÞÞ, c1 ¼A1ðUþuðtÞÞ, c2 ¼A2, and c3 ¼A3ð1=U uðtÞ=U

2
Þ. Therefore, the aerodynamic force

provides, by means of its steady part, terms which can be responsible for galloping and, by means of its turbulent part,
time dependent terms, assumed periodic. Here a slight difference is present with respect to the aerodynamic force used
in [25], where also the quadratic coefficient c2 was assumed to be time dependent, inconsistently with Eq. (7).

Non dimensional quantities are introduced by letting

s� ¼
s

‘
, t� ¼ot, v� ¼

v

‘
, U

�
¼

U

Uc

, u� ¼
u

U c

(9)

where o is the first natural frequency of the beam and Uc is the critical value of the wind velocity, to be determined later.
For convenience of notation, the star will be dropped ahead.

2.2. Discrete model

The continuous system (2) (4) is discretized as a one dof system via the Galerkin method, assuming as trial function the

first mode of the rod, evaluated in the absence of wind and damping, namely vðs,tÞ ¼ xðtÞfðsÞ, where
fðsÞ ¼ sin
p
2

s
� �

(10)

Possible internal resonances with higher modes are excluded.
The resulting non dimensional, second order, non homogeneous, time periodic, ordinary differential equation is

xþðcað1 U Þ b1uðtÞÞ _xþxþb2 _x
2
þ

b31

U
þ

b32

U
2

uðtÞ

 !
_x3
¼ Z1UuðtÞþZ2U

2
(11)

where the dot denotes differentiation with respect to the non dimensional time t. It contains elastic, viscous and inertial
linear terms, but also quadratic and cubic terms in the velocity, generated by the aerodynamic forces. The expressions of
the coefficients in Eq. (11) are reported in Appendix A, together with the dimensional critical velocity Uc , obtained by
vanishing the total (structural plus aerodynamic) linear damping. The critical condition (Hopf bifurcation) therefore occurs
at the non dimensional speed U ¼ 1, according to Eq. (94).

The turbulent part is considered as periodic and constituted of its first two frequencies: uðtÞ ¼ u1sinðOtÞþu2sinð2OtÞ,
where u1 and u2 are two amplitudes and O is the fundamental frequency, whose critical value is Oc ¼ 1. In this way, both
external and parametric excitations are resonant. The wind velocity U and the forcing frequency O are taken as bifurcation
parameters, both having unitary critical values. The objective is to study the behavior of the system in the neighborhood of
the critical condition in the space of the bifurcation parameters.



3. The multiple scale analysis

A dimensionless small parameter e is introduced and the increments of the critical parameters are defined as

U ¼ 1þeV
O¼ 1þes (12)

moreover the dependent variable x and the coefficients of Eq. (11) are rescaled as follows: x¼ e1=2x̂; b1 ¼ eb̂1; b2 ¼ e1=2b̂2;
fZ1,Z2g ¼ e3=2fẐ1,Ẑ2g. The other coefficients are of order 1. It means that the linear damping is assumed small and the
coefficients of the external and parametric excitation, as well as the nonlinear terms, are ordered so that they appear at the
highest order perturbation equations considered here.

3.1. Perturbation equations

To apply the multiple scales method, the dependent variable is expanded as

x̂ ¼ x̂0þex̂1þ � � � (13)

After introducing two independent time scales t0 :¼ t and t1 :¼ et, the derivative with respect to the time assumes the
expression d=dt¼ d0þed1, where di :¼ q=qti. As a consequence, the perturbation equations, divided by e1=2, read (omitting
the hats) as

Oðe0Þ : d2
0x0þx0 ¼ 0

Oðe1Þ : d2
0x1þx1 ¼ 2d0d1x0þðcaVþb1uðt0ÞÞd0x0 b2ðd0x0Þ

2 b31þb32uðt0Þð Þðd0x0Þ
3
þZ1uðt0ÞþZ2 (14)

Eq. (141) admits the following solution:

x0 ¼ Aðt1Þexpðit0Þþcc (15)

where cc denotes the complex conjugate, i is the imaginary unit and A is an unknown complex amplitude. Using Eq. (122),
the turbulent part is written as

uðt0,t1Þ ¼ u1expðið1þesÞt0Þþu2expð2ið1þesÞt0Þþcc (16)

By substituting Eqs. (15) and (16) in Eq. (142) and by zeroing the resonant terms which arise on the right hand side, a
differential equation in A is obtained. Hence, by coming back to the true time t and reabsorbing e, this equation constitutes
the amplitude modulation equation (AME). It reads as

_A ¼
1

2
caVA

3

2
b31A2A

Z1u1

4
eistþ i

b1

4
u2Ae2istþ i

b32

4
u2A3e�2ist i

3

4
b32u2AA

2
e2ist (17)

It is worth noting how the turbulent component provides external excitation by its term of amplitude u1 and
parametric excitation (both linear and cubic), by its term of amplitude u2.

The polar form of Eq. (17), obtained by letting A :¼ 1
2aeiW and j :¼ st W, is

_a ¼
1

2
caV

1

4
b1u2sinð2jÞ

� �
aþ

3

8
b31þ

b32

4
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� �
a3 Z1

2
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a _j ¼ s b1

4
u2cosð2jÞ

� �
aþ

b32

8
u2a3cosð2jÞþ Z1

2
u1sinj (18)

3.2. Fixed points analysis

Fixed points of Eq. (18), obtained requiring _a ¼ _j ¼ 0, represent periodic oscillations of the rod. Here, analytical
expressions for them are sought.

In the absence of turbulence (u1=u2=0), the simple Hopf bifurcation case is obtained. Just Eq. (181) is interesting, the
phase j being a slave variable. In this case, besides the trivial solution a=0, the self excitation is responsible for galloping,
and the classical bifurcated solution occurs. That is the following:

a¼ 2
caV

3b31

s
(19)

which (when ca40) occurs for V Z0. It is always stable and indicates periodic oscillations of the rod.
Turbulence will be addressed considering first the sole external contribution (u1a0,u2 ¼ 0), then considering the sole

parametric contribution (u1 ¼ 0,u2a0) and finally considering the two contributions together (u1a0,u2a0). In all these
cases, the relevant equations are both Eqs. (18)12.



In the first case (u1a0,u2 ¼ 0), two nonlinear algebraic equations can be drawn in the following way: cosj is obtained
by zeroing the right hand side of Eq. (181), sinj is obtained by zeroing the right hand side of Eq. (182), and then the
variable j is condensed using the relation cos2jþsin2j¼ 1. The resulting equation, where only a appears as unknown, is
the following:
a2

16Z2
1u2

1

ð3a2b31ð3a2b31 8caVÞþ16ðc2
a V2þ4s2ÞÞ ¼ 1 (20)

Eq. (20) is bi quadratic, and its roots can be obtained analytically (not reported here for brevity). The trivial solution
does not exist in this case.

In the second case (u1 ¼ 0,u2a0), the corresponding two nonlinear algebraic equations can be obtained as follows:
sinð2jÞ is obtained by zeroing the right hand side of Eq. (181), cosð2jÞ is obtained by zeroing the right hand side of
Eq. (182), and then, again, the variable j is condensed using the relation cos2ð2jÞþsin2

ð2jÞ ¼ 1. The resulting equation,
where only a appears as unknown, is the following:

ð3a2b31 4caVÞ2

4u2
2ðb1 a2b32Þ

2
þ

64s2

u2
2ða

2b32 2b1Þ
2
¼ 1 (21)

As in the previous case, Eq. (21) is bi quadratic, and its roots can be obtained analytically. The trivial solution does exist in
this case.

In the third case (u1a0,u2a0), it is not possible to apply a corresponding procedure, since terms of type sin2j, cos2j,
sinj, cosj, are concurrently present. It means that, in this case, it is necessary to solve a nonlinear system of two equations
in j and a. The trivial solution does not exist in this case.

Solutions coming from Eqs. (20), (21) and from the generic case are discussed in the following section, and their
stability analyzed.

4. Numerical results

The following numerical values are used for a case study: the height of the tower is ‘¼ 36 m; the cross section is
b=16 m wide, the total stiffness of the single story is EI=115 318 000 Nm2, the mass longitudinal density is m=4737 kg/m,
the damping ratio is x¼ 0:5 percent (corresponding to Z¼ 128 513 Ns, c=34.8675 Ns/m2 in Eq. (A.3)). The inter story
height is assumed h=4 m. The aerodynamic coefficients Ai, i=0,y,3 are taken from [25] for the squared cross section:
A0 ¼ 0:0297, A1 ¼ 0:9298, A2 ¼ 0:2400, A3 ¼ 7:6770. The air mass density is r¼ 1:25 kg=m3. The (dimensional) natural
frequency of the rod is o¼ 5:89 rad=s. The (dimensional) critical wind velocity assumes the value Uc ¼ 30 m=s. The
equation of motion (11) becomes

xþð0:01 0:01ð1þVþuðtÞÞÞ _xþ0:0155 _x2
þ3:099ð1 V uðtÞÞ _x3

þx¼ 5:74� 10�5
ð1þ2Vþ2uðtÞÞ (22)

The numerical values assumed by the coefficients appear to be consistent with the ordering performed in the
perturbation analysis. A discussion on the validity of the approximations introduced in modeling this system is reported
in Appendix B.

In the absence of turbulence (u1=u2=0), the behavior of the system is described in Fig. 3 where the steady value of the
amplitude is shown in terms of the increment of the mean wind velocity (Eq. (19)). The trivial solution exists everywhere.
The branch of the stable bifurcated solution emanates from the bifurcation point B1, where the trivial solution changes its
stability. In correspondence with this branch, the tower experiences periodic oscillations in the across wind direction,
while, for sub critical values of the wind velocity, the tower is stationary.
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Fig. 3. Equilibrium branches in absence of turbulent wind. Continuous line: stable; dashed line: unstable.



When the external excitation is considered at the resonant value (u1a0, u2=0), the simple galloping is modified
according to Fig. 4: the trivial solution does not exist anymore, and the bifurcated solution changes as in the presence of a
slight imperfection on a pitchfork bifurcation. The (perfect) solution obtained in the absence of external excitation is
superimposed there to highlight that it behaves like a backbone (indicated in black in Fig. 4) for the imperfect solution. In

particular, the backbone splits into two separate solutions, one on the left, the other on the right, with different stability
properties. For all the possible values of u1, the two solutions do not merge. Due to the external excitations, no rest
conditions exist, so that the tower oscillates periodically for any V, with amplitudes provided by the stable branches.

If V is kept fixed and s is varied, the amplitude of oscillations behave as shown in Fig. 5, where different values of V are
considered. For increasing values of V, the amplitude first increases, then the curve forms an island. On the left and right of
the equilibrium branches, periodic solutions are found (shown as vertical lines corresponding to the amplitude interval of
the limit cycle), which represent quasi periodic oscillations of the tower. They are coherent with the results reported
in [21]. The periodic solutions disappear as a consequence of homoclinic bifurcations, occurring when the limit cycles, with
period tending to infinite, touch the equilibrium branches.

A three dimensional plot of the amplitude of the motion as functions of V and s is shown in Fig. 6. It is quite evident
how the solution forms a sort of tube around the (not shown) perfect solution. Outside the tube, at its left and right,
periodic solution in terms of amplitude a are found.

When the system is parametric excited (u1=0, u2a0), the amplitude a depends on the velocity V as shown in Fig. 7. In
addition to the trivial solution, the (perfect) solution, relevant to the no turbulence case, also appears, but duplicated and
translated in opposite directions. Translation on its left (right) resembles a reduction (increase) of structural damping in a
Hopf bifurcation (or, in turn, of stiffness in a pitchfork bifurcation, as it occurs in the AME). In particular, the left branch is
stable and the right branch is unstable. As a result of the turbulence, the value of V at which galloping occurs is decreased.
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Fig. 4. Equilibrium branches in presence of turbulent wind when u2=0, s 0. Black line: absence of turbulence; blue line: u1=0.017; red line: u1=0.033;

green line: u1=0.10. Continuous line: stable; dashed line: unstable. (For interpretation of the references to color in this figure legend, the reader is
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In Fig. 8, plots of the amplitudes for fixed V=0.10 and 0.167 and varying s are shown. Outside the equilibrium branches,
periodic solutions are found.

A three dimensional (qualitative) plot of the amplitude vs. V and s is shown in Fig. 9. A tube is formed around the (not
shown) perfect solution, emerging from the plane of the trivial solution (a=0). Outside the tube, periodic solutions in terms
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Fig. 6. Equilibrium branch in presence of external excitation (u1=0.033, u2=0).
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of amplitude a are found.



When external and parametric excitations coexist (see Fig. 10, where u1=u2=0.033), a new branch adds to the scenario
relevant to the externally excited system (Fig. 4), appearing inside the old branch. If a section (of a three dimensional plot
not shown here) is taken at V=0.167, the plot of Fig. 11 is obtained, which highlights that the new branch is a loop of the
existing branch. Again, periodic oscillations of the tower occur here; in particular, when the loop is present, two different
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Fig. 9. Sketch of the equilibrium branch in presence of parametric excitation (u1=0, u2=0.033).
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Fig. 10. Equilibrium branches in presence of turbulent wind when u1=u2=0.033, s 0. Continuous line: stable; dashed line: unstable.
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Fig. 11. Equilibrium branches in presence of turbulent wind when u1=u2=0.033. Continuous line: stable; dashed line: unstable.
amplitudes of oscillation are possible. Outside the tube, periodic solutions (with two periods) are found for the amplitude
a, causing quasi periodic oscillations for the tower.



If the strengths of the turbulent components are increased (u1=u2=0.10), the equilibrium branches modify as shown
in Fig. 12. The new branch producing the loop is even more prominent. Sections at V=0.110 and 0.192 are shown in Fig. 13.
The red line is consistent with the results presented in [21].
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Fig. 12. Equilibrium branches in presence of turbulent wind when u1=u2=0.10, s 0. Continuous line: stable; dashed line: unstable.
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Fig. 13. Equilibrium branches in presence of turbulent wind when u1=u2=0.10. Red line: V=0.110; green line: V=0.192. Continuous line: stable; dashed

line: unstable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Conclusions

In this paper a one dof nonlinear dynamical system, drawn by a Galerkin projection of a continuous structure,

constituted by a rod subjected to turbulent wind, is considered. The system is subject to simultaneous self excitation,

external and parametric excitations, the first due to the steady part of the aerodynamic force, the last two due to the
turbulent part of the wind. The multiple scales method is used to obtain amplitude modulation equations, under the 1:1
resonance condition for the fundamental component of the turbulent wind. By taking the wind average speed and the
fundamental frequency of the turbulent part as bifurcation parameters, the dynamical behavior of the system is studied.
Different kinds of excitations are analyzed, in terms of equilibrium branches of the amplitudes. In particular, when the
wind is non turbulent, a galloping curve is found. When the turbulence produces external excitation only, it works as an
imperfection, slightly modifying the galloping curve, which acts as a backbone for the perturbed states. When the
turbulence produces parametric excitation only, the galloping curve splits and translates in opposite directions, thus
entailing reduction in the velocity of the incipient galloping. When the turbulence produces both external and parametric
excitations, new branches occur, descending from loops.
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Appendix A. Coefficients of the equations of motion

The expressions of the coefficients of Eq. (11) are

3EI
p

rA bh‘U
o¼ p
h‘ m
p , ca ¼

1 c

2p 3EIm
p , b1 ¼ ca,

b2 ¼
4rA2b1‘

3pm
, b31 ¼

3prA3b‘ 3EI
p

8hUc m3
p , b32 ¼ b31

Z1 ¼
4rA0bh2‘U

2

c

3p3EI
, Z2 ¼

Z1

2
(A.1)

and the dimensional critical wind velocity is

Uc ¼
4px 3EIm
p

rbA1h‘
(A.2)

Here, x is the modal damping ratio, depending on both the external and internal dampings, according to Eq. (6) and the
discretization adopted:

x¼
Zh2

24EI
oþ c

2mo (A.3)

Appendix B. Discussion on the approximation of the model

Several approximations were introduced in modeling the original structure, namely: (i) transformation of the (discrete)
shear type frame in a continuous one dimensional purely shear beam; (ii) reduction of the continuous model to a single
dof system, via a modal truncation. The validity, from an engineering point of view, of these approximations are discussed
here. First, the modal properties (eigenvalues and eigenfunctions) of the discrete and continuous models are compared;
then, a numerical estimate of the contribution of the most important mode ignored in the analysis is carried out.

B.1. Comparison of the modal properties

The equations of motion of an N stories planar shear type frame with story stiffness k and story mass ms are

kð vj�1þ2vj vjþ1Þþmsvj ¼ 0, j¼ 1, . . . ,N

v0 ¼ 0

kðvN vN�1ÞþmsvN ¼ 0 (B.1)

where vj(t) is the displacement of the j th story and the index j=0 indicates the base level of the frame. The general
solution for Eq. (B.11) has the form vjðtÞ ¼fjexpðiotÞ, with fj ¼Lj and L a parameter to be evaluated. Substituting this
expression for vj in Eq. (B.11), an algebraic equation in L is obtained:

L2 2Lcosaþ1¼ 0 (B.2)

where a is defined so that cosa¼ 1 o2ms=2k. Eq. (B.2) admits two roots: L1,2 ¼ expð7 iaÞ, therefore an expression for fj is
obtained:

fj ¼ c1cosðjaÞþc2sinðjaÞ (B.3)

with c1 and c2 arbitrary constants. The application of the boundary conditions equation (B.12,3) provides the relation c1=0
and the characteristic equation

sinððN 1ÞaÞþð2cosa 1ÞsinðNaÞ ¼ 0 (B.4)

that can be solved numerically to get values for a and consequently for the natural frequency o. An asymptotic solution to
Eq. (B.4) can, however, be obtained for large N. By ordering the variables as N¼ N̂=e, a¼ eâ with OðN̂Þ ¼OðâÞ ¼ 1, and
performing the limit for e-0, the characteristic equation reduces to cosðNaÞ ¼ 0. This admits the solution a¼ ð2n 1Þp=2N,
with n=1,2,y, which confirms the assumption on the order of magnitude of a, when n5N. By accounting for
1 cosaCa2=2, the natural frequency of the n th mode is on ¼ ðð2n 1Þp=2NÞ k=ms

p
and its shape fj,n ¼ sinðjð2n 1Þ

p=2NÞ. This asymptotic solution fully recovers the continuous solution relevant to the cantilever, namely
on ¼ ðð2n 1Þp=2‘Þ GA=m

p
, fnðsÞ ¼ sinðð2n 1Þps=2‘Þ, being GA¼ 12EI=h2, ‘¼Nh, m¼ms=h and s being sampled at sj=hj.

In the examined example, the number of stories is N=9, the story stiffness is k¼ 12EI=h3 ¼ 21 622 204 N=m and the
story mass is ms=18 947 kg. The (exact) natural frequencies for the first three modes turn out to be o1 ¼ 5:57 rad=s,
o2 ¼ 16:58 rad=s, o3 ¼ 27:14 rad=s, while the homogeneous model furnishes o1 ¼ 5:89 rad=s, o2 ¼ 17:66 rad=s,



o3 ¼ 29:44 rad=s, i.e. an error of 5 percent on the first mode. The first mode is shown in Fig. B1, in comparison with the first
mode of the homogeneous model. They are in good agreement. The choice of the homogeneous model, rather than the
discrete one, was suggested by the greater facility of the first in evaluating the modal forces via Galerkin projection.
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Fig. B1. First mode for the shear-type frame (red points) and for the homogeneous rod (blue line). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
B.2. Estimate of the contribution of the second mode

The previous analysis revealed the possible occurrence of internal resonance of 1:3 type between the first and second
modes (being their frequency ratio equal to 2.976 in the discrete model and exactly to three in the homogeneous model).
Therefore, in principle, the second mode should not be neglected in a Galerkin projection, but rather should be accounted for
as active variable, in a center manifold perspective [3,29]. This is a well known problem, frequently encountered in dealing
with continuous systems, which usually possess nearly commensurable frequencies (see e.g. [2, Chap. 7]). However, it must
also be considered that, according to the Rayleigh model adopted for damping (Eq. (6)), while the external component (c in
Eq. (6)) entails a decrement of the modal damping ratio xn with the mode number n, the internal component (Z in Eq. (6))
instead increases such a ratio [30]. Indeed, for the shear cantilever rod under discussion it results as

x2 ¼
3Zh2

24EI
oþ c

6mo (B.5)

to be compared with x1 � x of Eq. (A.3). On the other hand, the aerodynamic effects, which entail a negative damping, are
unaffected by n, since the projection of uniformly distributed lift forces on the n th modal shape is proportional to the n th
modal mass. All these circumstances suggest that, when the system is internally damped to a sufficient extent (as it happens
in a true building), the second mode acts as a passive variable, i.e. it contributes as a small component to the overall response.
In other words, it does not participate with its own frequency, although it is resonant, but rather it is forced by the (active)
first mode.

To check this conjecture, a two dof Galerkin projection was performed, by assuming vðs,tÞ ¼ xðtÞf1ðsÞþyðtÞf2ðsÞ. By
using the numerical values of the sample system, the following (non dimensional) coupled equations were drawn, instead
of the single Eq. (22):

xþð0:01 0:01ð1þVþuðtÞÞÞ _xþxþ0:0155 _x2
þ0:0119 _y2

0:0062 _x _yþ3:099ð1 V uðtÞÞ _x3 3:099ð1 V uðtÞÞ _x2 _y

þ6:119ð1 V uðtÞÞ _x _y2
¼ 5:74� 10�5

ð1þ2Vþ2uðtÞÞ

yþð0:08 0:01ð1þVþuðtÞÞÞ _yþ9y 0:0031 _x2
þ0:0052 _y2

þ0:0239 _x _y 1:033ð1 V uðtÞÞ _x3
þ3:099ð1 V uðtÞÞ _y3

þ6:199ð1 V uðtÞÞ _x2 _y ¼ 1:91� 10�5
ð1þ2Vþ2uðtÞÞ (B.6)

First of all, it is noticed that the non dimensional critical wind speed relevant to the second mode is U ¼ 0:08=0:01¼ 8,
corresponding to 240 m/s. This entails that no Hopf bifurcations can involve such a mode in a realistic wind velocity range.
Then, if one takes only the leading term in the x expansion, i.e. xðtÞ ¼ acosðtÞ, a (perfectly) resonant forcing term appears in
the y equation, generated by _x3

ðtÞ and proportional to ð1=4Þa3cosð3tÞ. By taking the maximum value of V=1/3 considered in
the numerical investigation, the amplitude of the corresponding y response is

jyðtÞj ¼
0:689a3

4�0:066�3
¼ 0:869a3 (B.7)



It follows that jyðtÞj=jxðtÞj ¼ 0:869a2, with aC0:03 in the field of investigation. Therefore, the response of the system is
essentially in the first mode.
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