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Conditional Autoregressive Hilbertian processes

Jairo Cugliari

INRIA Research Team Select, Université Paris Sud Bât. 425, 91405 Orsay Cedex, France

Abstract

When considering the problem of forecasting a continuous-time stochastic process over an entire
time-interval in terms of its recent past, the notion of Autoregressive Hilbert space processes (arh)
arises. This model can be seen as a generalization of the classical autoregressive processes to Hilbert
space valued random variables. Its estimation presents several challenges that were addressed by
many authors in recent years.

In this paper, we propose an extension based on this model by introducing a conditioning
process on the arh. In this way, we are aiming a double objective. First, the intrinsic linearity
of arh is overwhelm. Second, we allow the introduction of exogenous covariates on this function-
valued time series model.

We begin defining a new kind of processes that we call Conditional arh. We then propose
estimators for the infinite dimensional parameters associated to such processes. Using two classes
of predictors defined within the arh framework, we extend these to our case. Consistency results
are provided as well as a real data application related to electricity load forecasting.

Keywords: Functional Data, Nonparametric, Forecasting, Exogenous covariate
2000 MSC: 62G08, 62M10

1. Introduction

We consider a function-valued process Z = (Zk, k ∈ Z) where for each k, Zk is a random
element taking his values in some functional space F . A popular choice is to set F = H a real
separable Hilbert space because of the rich geometric properties of Hilbert spaces. As for classical
time series, an important task is the problem of obtaining some information about the future value
Zn+1 from the observed discrete sequence Z1, . . . , Zn. Then, the best predictor (in the quadratic
mean loss function sense) of the future observation Zn+1 is its conditional expectation given the
past

Z̃n+1 = E(Zn+1|Zn, . . . , Z1), (1)

which may depend on the unknown distribution of Z.
One important case arises when one assumes that Z is a strictly stationary zero-mean Autore-

gressive Hilbertian process of order 1 arh(1), introduced by Bosq [1] and defined by

Zk+1 = ρZk + εk, k ∈ Z, (2)

with ρ a bounded linear operator over H and ε = (εk, k ∈ Z) a strong H-valued white noise. For
this process, the best predictor of Zn+1 given the past observations is Z̃n+1 = ρZn. Notice that ρ is
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usually unknown. Two forecasting strategies can be followed here. The first one is to first estimate
ρ and then apply it to the last observation Zn to obtain a prediction of Zn+1 (see Bosq [1], Besse
and Cardot [2], Pumo [3]). Alternatively, one may directly predict Z̃n+1 by estimating the relevant
elements of the range of ρ∗ (see Antoniadis and Sapatinas [4]). Adopting this last strategy and
using some wavelet decomposition the later authors obtain considerable better prediction results.
The choice of a wavelet basis is guided by the good approximation properties they have to represent
quite irregular trajectories of Z. Kargin and Onatski [5] also use the second strategy but propose
to use a data-dependent basis adapted to the prediction task.

While arh processes are a natural generalization of the well known autoregressive processes in
Euclidean spaces, the infinite dimension of the spaceH produces new challenges for their estimation
and prediction (see Mas and Pumo [6] for a recent review on this topic). A second issue is the
study of some of the extensions developed on the scalar case to the Hilbertian framework, like for
instance higher order arh processes studied in Pumo [7].

We are interested in another extension taking into account some exogenous information modeled
by the influence of covariates in the model given by equation (2). We may cite Mas and Pumo [8]
that uses the derivative of Zk as a covariate, or Damon and Guillas [9] that introduces a function-
valued covariate also following an arh process. In both these works, the covariates are introduced
as additive terms in the equation (2).

Alternatively, one may introduce exogenous information through the linear operator ρ. Like
in the scalar case, one may consider a more general case where the parameter ρ depends on
some covariate. For such cases, the exogenous information may be incorporated in a non-additive
manner. Guillas [10] propose to model Z by a doubly stochastic Hilbert process defined by

Zk = ρVk(Zk−1) + εk, k ∈ Z, (3)

where V = (Vk, k ∈ Z) is a sequence of independent identically distributed Bernoulli variables.
The intuition behind the model is that there exists two regimes expressed through two different
operators, ρ0 and ρ1. At each instant k, one of the regimes is randomly chosen as the result of
the drawn of the associate Bernoulli variable Vk. The resulting process admits to have one of the
regimes to be explosive if it is not visited too often. In such a case, equation (3) has a unique
stationary solution.

In this paper, we introduce the Conditional Autoregressive Hilbertian process (carh), con-
structed such that conditionally on an exogenous covariate V , the process Z follows an arh pro-
cess. While carh definition is similar to equation (3), it differs mainly in two ways. The first one
is related to the nature of the process V which we assume to be a multivariate random process with
some continuous distribution. Second, we propose predictors that will accomplish the prediction
task using the exogenous information. Indeed, the exogenous information of the actual regime is
used to found similar local situations on the observed past.

The paper is structured as follows. In Section 2 we introduce the main definitions and we present
the model. Linear operators on Hilbert spaces are intensively used through out the article. On
Appendix A we recall some important facts on this topic that we use on the article. We also propose
estimators for the unknown parameters as well as two classes of predictors. The main results about
the convergence of the estimators and predictors are shown in Section 3 postponing the proofs
until the Appendix B. Finally, Section 4 contains a real data application of carh processes which
illustrates empirically the performance of the predictors.
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2. Conditional arh process: carh.

After some notations, we define the carh process and we propose estimators for the associated
parameters operators. Then, we follow prediction strategies similar to those adopted in previous
studies for arh processes, to obtain classes of predictors for the carh process.

2.1. Preliminaries

All variables are defined on the same probability space (Ω,F ,P). We consider a sequence
Z = (Zk, k ∈ Z) of Hilbert space valued random variables, i.e. each random variable Zk is a
measurable map from the probability space in an real separable Hilbert space H endowed with its
Borel σ-field, H. The space H is equipped with the scalar product < ., . >H and the induced norm
‖.‖H). We also consider a sequence of real Rd−valued random variables V = (Vk, k ∈ Z). Both
sequences Z and V are assumed to be stationary. We will focus on the behaviour of Z conditionally
on V . We will further assume that Z is strongly integrable.

The conditional expectation is characterized by the conditional distribution of Z given V , i.e.
by the conditional probability PZ|V on H. In order to ensure that this conditional probability is
properly defined as a measure (in the sense that it represents a regular version of the conditional
probability), it is assumed that a transition probability exists that associates to each v ∈ Rd a
probability measure Pv on (H,H) such that

PvZ|V (A) = Pv(A), for every A ∈ H, v ∈ Rd.

We call Pv the sampling measure and denote Ev the induced expectation. We restrict our attention
to functions defined over a real compact interval T and we assume hereafter T to be [0, 1] without
loss of generality. More precisely, we set H to be the subspace of continuous functions on the space
of classes of 4-th order P−integrable functions.

2.2. The model

A sequence (Z, V ) = {(Zk, Vk), k ∈ Z} of H × Rd-valued random variables is a Conditional
Autoregressive Hilbertian process (carh) of order 1 if it is stationary and such that, for each k

Zk = a+ ρVk(Zk−1 − a) + εk, (4)

where the conditional mean function av = Ev[Z0|V ], v ∈ Rd, is the conditional expectation (on V )
of the process, ε = (εk, k ∈ Z) is an H−valued white noise and (ρVk , k ∈ Z) is a sequence of random
operators such that, conditionally on V, ρV is a linear compact operator on H (see Appendix A).
Additionally, V and ε are independent process. Using the following assumptions we prove the
existence and uniqueness of the carh processes (see Appendix B for the proof).

Assumptions 2.1. Assume that:

1. There exists a map v 7→ P v that assigns a probability measure on (H,H) to each value v in
the support of V .

2. supn ‖ρVn‖L = Mρ < 1 .

Theorem 2.2. Under Assumptions 2.1, equation (4) defines a carh process with an unique sta-
tionary solution given by

Zk = a+
∞∑
j=0

(
j−1∏
p=0

ρVk−p

)
(εk−j),

with the convention
∏j−1

p=0 ρVk−p
= Id (the identity operator) for j = 0.
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The first condition in Assumption 2.1 has already been discussed. The second one ensures
the contraction of the conditional autoregressive operator through the supremum norm of linear
operators (see Appendix A).

2.3. Associated operators

Hereafter we make the additional assumption that Ev[‖Z‖4
H |V ] < ∞. Let us note H∗ the

topological dual of H, i.e. the space of bounded linear functionals on H. We introduce two
linear operators mapping from H∗ to H associated to the carh process. Thanks to the Riesz
representation, H∗ the topological dual of H can be identified with H, and the operators may be
defined as follows:

z ∈ H 7→ Γvz = Ev[((Z0 − a)⊗ (Z0 − a))(z)|V ] and

z ∈ H 7→ ∆vz = Ev[((Z0 − a)⊗ (Z1 − a))(z)|V ],

that we call conditional (on V ) covariance and cross covariance operators respectively. We have
used the tensor product notation (u⊗ v)(z) =< u, z >H v for u, v, z ∈ H.

For each v ∈ Rd, both Γv and ∆v are trace-class and hence Hilbert-Schmidt. In addition, Γv is
positive definite and self adjoint. Then, we may write down the spectral decomposition of Γv as

Γv =
∑
j∈N

λv,j(ev,j ⊗ ev,h)

where (λv,j, ev,j)j∈N are the eigen-elements of Γv. The eigenvalues may be arranged to form a
non-negative decreasing sequence of numbers tending towards zero.

As a direct consequence of the choice made for H, the operators have associated kernels γv and
δv defined over L2([0, 1]2) such that

Γv(z)(t) =

∫ 1

0

γv(s, t)z(s)ds,

∆v(z)(t) =

∫ 1

0

δv(s, t)z(s)ds, t ∈ [0, 1], v ∈ Rd, z ∈ H,

with γv(., .) a continuous, symmetric and positive kernel and δv(., .) a continuous kernel. The
kernels turn to be the conditional covariance function γv(s, t) = Ev[(Z0(s)−a(s))(Z0(t)−a(t))|V ],
and the one-step-ahead conditional cross covariance function δv(s, t) = Ev[(Z0(s)− a(s))(Z1(t)−
a(t))|V ], (s, t) ∈ [0, 1]2, v ∈ Rd.

A Yule-Walker like relation links the operators ∆v,Γv and ρv. For each v ∈ Rd we have

∆v = ρvΓv. (5)

Using the property of the adjoint and the symmetry of Γv, we obtain from (5) the following key
relation for the estimation of ρv (see Section 2.5),

∆∗v = Γvρ
∗
v. (6)

2.4. Estimation of a,Γv,∆v.

The parameters can be estimated from data. We call {(Z1, V1), . . . , (Zn, Vn)} the observed data
supposed to come from a carh process. We use nonparametric Nadaraya-Watson like estimators
to estimate the infinite-dimensional parameters av,Γv and ∆v. This is a popular choice when the
the parameters are defined through conditional expectations.
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2.4.1. Estimation of av.

We estimate the conditional mean function of the process av(t) = Ev[Z0(t)|V ] for all t ∈ [0, 1]
using the observations {(Z1, V1), . . . , (Zn, Vn)}. In order to properly define the framework, let us
introduce some quantities. For some fixed t ∈ [0, 1], set Y = Z0(t) and Yi = Zi(t), i = 1, . . . , n.
Let us assume that the distribution of V admits a density f with respect to the Lebesgue measure.
We define for v ∈ Rd

gv(t) = Ev[Z0(t)f(V )|V ],

and provided that f(v) > 0 we rewrite the parameter as the regression of Y against V ,

av(t) = Ev[Y |V ]

=
gv(t)

f(v)
.

When f(v) = 0 we set av(t) = E[Y ].
The introduced quantities can be estimated by Nadaraya-Watson kernel based estimators. In

our case, we use the following estimators for f and gv respectively,

f̂n(v) =
1

nhda

n∑
i=1

K(h−1
a (Vi − v)) and (7)

ĝv,n(t) =
1

nhda

n∑
i=1

K(h−1
a (Vi − v))Yi, (8)

where K : Rd 7→ R is a unitary square-integrable d−dimensional kernel and the bandwidth ha =
(ha,n)n∈N is a decreasing sequence of positive numbers tending to 0 called the bandwidth. The
estimator of av(t) is then given by

âv,n(t) =
ĝv,n(t)

f̂n(v)
,

which can be written as âv,n =
∑n

i=1wn,i(v, ha)Yi which is a weighted mean of the observed values
with weights given by

wn,i(v, h) =
K(h−1(Vi − v))∑n
i=1K(h−1(Vi − v))

. (9)

2.4.2. Estimation of Γv.

For the estimation of Γv we proceed in an analogous way. Without loss of generality, we assume
that Z is centered. First, for (s, t) ∈ [0, 1]2 fixed, consider the real valued variables Y = Z0(s)Z0(t)
and the observations Yi = Zi(s)Zi(t) with i = 1, . . . , n. Now redefine the auxiliary quantity gv
using the new definition of Y and Yi, i = 1, . . . , n. Set gv(t) = Ev[Z0(s)Z0(t)|V ] and write the
parameter again as the regression of Y against V . Then, with a similar reasoning it follows that
the estimator of the kernel of γv at (s, t) is

γ̂v,n(s, t) =
n∑
i=1

wn,i(v, hγ)Zi(s)Zi(t),

with weights given by (9). Moreover, on the general case of a not necessarily centered process the
estimator of Γv can be written as

Γ̂v,n =
n∑
i=1

wn,i(v, hγ)(Zi − âv,n)⊗ (Zi − âv,n). (10)
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2.4.3. Estimation of the conditional cross covariance operator ∆v.

Again, the estimation of the operator is done through the estimation of its kernel, which is in
this case the conditional cross covariance function δv. We work first with the centered process.
Fix (s, t) ∈ [0, 1]2 and again redefine Y = Z0(s)Z1(t) and the observations Yi = Zi−1(s)Zi(t) for
i = 2, . . . , n. Define f and gv and their estimators of the same form as (7) and (8) respectively
using the bandwidth hδ and the new variables Y and Yi. The resulting estimator of δv(s, t) is

δ̂v,n(s, t) =
n∑
i=2

wn,i(v, hδ)Zi−1(s)Zi(t).

We can now plug-in the estimated kernel on the operator which yields the estimator of ∆v. We
write it for the general case of a non centered process as,

∆̂n,v =
n∑
i=2

wn,i(v, hδ)(Zi−1 − ân(v))⊗ (Zi − ân(v)),

where the weights are given by equation (9).

Remark

If the denominator on equation (9) defining the weights is equal to zero, i.e. f̂n(v) = 0, then
one usually sets the weights to wn,i(v, ha) = n−1 or wn,i(v) = 0 for all i = 1, . . . , n in order to
define the estimator for all v ∈ Rd. The weights are more important for those segments Zi with
closer value of Vi to the target v. The bandwidth plays a key role, tuning the proximity of the
scatter of Rd to v via the scaling of the kernel function. Large values of h lead to weights wn,i
that are not negligible for an important number of observations. Conversely, small values result
in only few observations having a significant impact on the estimator. This produces the common
trade-off between bias and variance of kernel regression estimators.

2.5. Estimation of ρv.

The intrinsic infinite dimension of the space makes difficult the estimation of the operator ρv. If
H is finite-dimensional, the equation (5) provides a natural way of estimating ρv. One may plug-in
the empirical counterparts of the covariance operators and solve the equation in ρv. However,
when H has infinite dimension, Γv is not invertible anymore. To well identify ρv from (5) the
eigenvalues of Γv need to be strictly positive. An analogous assumption is to ask the kernel of Γv
to be null (see Mas and Pumo [6]). In this case, a linear measurable mapping Γ−1

v can be defined
as Γ−1

v =
∑

j∈N λ
−1
v,j(ev,j ⊗ ev,j) with domain

DΓ−1
v

=

{
z =

∑
j∈N

< ev,j, z > ev,j ∈ H :
∑
j∈N

(
< ev,j, z >H

λv,j

)2

<∞

}
,

that is a dense subset of H. It turns to be an unbounded operator and in consequence continuous
nowhere. Hence, there is no hope to obtain any theoretical asymptotic result. However, from (5)
we obtain that

ρ�v = ∆vΓ
−1
v ,

where ρ�v is the conditional autoregression operator ρv restricted to DΓ−1
v

as a consequence of
ΓvΓ

−1
v = ID

Γ−1
v

. On the other hand, since the adjoint of a linear operator in H with a dense

6



domain is closed (closed graph theorem, see for example Kato [11, Theorem 5.20]) and since the
range of the adjoint of the cross-covariance operator, ∆∗v, is included in DΓ−1

v
we can deduce from

(6) that over DΓ−1
v

,

ρ∗v = Γ−1
v ∆∗v.

As pointed out by Mas [12] one can use classical results on linear operators to extend by continuity
the definition of ρ�v to H, in order to obtain

ρv = Ext(ρ�v) = (Γ−1
v ∆∗v)

∗ = (∆vΓ
−1
v )∗∗.

Therefore one may focus on the estimation of ρ∗v because of the theoretical properties are applicable
to ρv through the composition of ρ∗ by the adjoint operator.

We can now propose two classes of estimators for ρ∗v (see Mas [12] for analogy with the estimators
on the arh setting). The first one, the class of projection estimators, projects the function space
valued observations on an appropriate subspace Hv,kn of finite dimension kn = kv,n. Let Πv,kn be the
projector operator over Hv,kn . Then one inverts the linear operator defined by the random matrix
Πv,knΓv,nΠv,kn and completes with the null operator on the orthogonal subspace. For example, the
space Hv,kn may be set equal to the one generated by the first kn eigenfunctions of Γv. Then, the

subspace Hv,kn is estimated by Ĥv,kn , the linear span of the first kn empirical eigenfunctions. By

this way, if Pv,kn is the projection operator on Ĥv,kn , the estimator of ρ∗v can be written as

ρ̂∗v,n,kn = (Pv,knΓ̂v,nPv,kn)−1∆̂∗v,nPv,kn . (11)

The estimation solution by projection over a finite dimensional space is equivalent to approximate
Γ−1
v by a linear operator with additional regularity Γ†v defined as

Γ†v =
kn∑
j=1

b(λv,j)(ev,j ⊗ ev,j),

where (kn)n is an increasing sequence of integers tending to infinity and b is some smooth function
converging point-wise to x 7→ 1/x. Indeed, Γ†v → Γ−1

v when kn → ∞. The choice of taking
b(x) = 1/x yields, for a finite kn, to set Γ†v equal to a spectral cut of Γ−1

v . However, this choice is
not unique. Mas [12] considers a family of functions bp,α : R+ 7→ R+ with p ∈ N such that

bp,α(x) =
xp

(x+ αn)p+1
,

with αn a strictly positive sequence that tends to 0 as n → +∞. With this, the second class of
estimators for ρ∗, the resolvent class, is defined as

ρ̂∗v,n,p,α = bp,α(Γ̂v,n)∆̂∗v,n, (12)

where we write bp,α(Γ̂v,n) = (Γ̂v,n + αnI)−(p+1) with p ≥ 0, αn ≥ 0, n ≥ 0. Then, the operator

bp,α(Γ̂v,n) can be associated to a regularized approximation of Γ−1
v (see Antoniadis and Sapatinas

[4] for a discussion on this topic applied to the arh estimation).
Finally, both classes of estimators allow one to predict the future value Zn+1 from the observa-

tions by first estimating the autocorrelation operator ρ∗v and then applying it to the last available
observation Zn.

7



3. Main results

In this section we announce the main theoretical results that justify the choices made on the
estimators presented in the previous section.

Neither (Vk, k ∈ Z) nor (Zk, k ∈ Z) are assumed to have independent components. We deal
with their dependence through a strong mixing hypothesis, that is, we assume each sequence to be
asymptotically independent by controlling the decay of the dependence. Many contexts of mixing
exist in the literature. In general one relies upon a measure of the decay of a dependence of two
observations as a function of their time gap. We use the 2-α-mixing setting, a slightly weaker
setting than the α-mixing one (see Bosq and Blanke [13]). Let X = (Xk, k ∈ Z) be a stationary
random process and consider the σ−algebras σ(X0) and σ(Xk) and the 2-α-mixing coefficients are
defined as

α
(2)
X (k) = sup

B∈σ(X0);C∈σ(Xk)

|P (B ∩ C)− P (B)P (C)|.

When limk→∞ α
(2)
X (k) = 0 we say that X is 2-α-mixing. If the mixing coefficients have a geometrical

decay, then the corresponding process is called geometrically mixing (GSM).

3.1. Convergence of the mean function estimator av.

We first prove the pointwise convergence, i.e. for a fixed t ∈ [0, 1], using the additional Assump-
tions 3.1. A uniform convergence is obtained by assuming the last two conditions of Assumptions
3.1 to hold uniformly on [0, 1]. See Appendix B for proofs together with explicit constants (de-
pending on v) for the convergence rate.

Assumptions 3.1. Assume that:

i. V admits a probability density function f and for each s 6= t, (Vs, Vt) has a density fVs,Vt such
that sup|s−t|>1 ‖Gs,t‖∞ <∞ where Gs,t = fVs,Vt − f ⊗ f .

ii. Both (Zk, k ∈ Z) and (Vk, k ∈ Z) are strong mixing processes with geometrically decaying
coefficients α(2)(k) = β0e

−β1k for some β0, β1 > 0 and k ≥ 1.

iii. ‖Zk‖H = MZ <∞, ∀k.

iv. The kernel K is a bounded symmetric density satisfying

1. limv→∞‖v‖dRdK(v) = 0,

2.
∫
Rd‖v‖3

RdK(v)dv <∞,
3.
∫
Rd |vi||vj|K(v)dv <∞ for i, j = 1, . . . , d.

v. The maps v 7→ f(v) and v 7→ gv(t), t ∈ [0, 1] belongs to C2
d(b) the space of twice continuously

differentiable functions z defined on Rd and such that∥∥∥∥ ∂2z

∂vi∂vj

∥∥∥∥
∞
≤ b.

vi. Ev[Z2
0(t)|V ]f(v), t ∈ [0, 1] is strictly positive, continuous and bounded at v ∈ Rd.

Proposition 3.2. Under Assumptions 2.1 and 3.1, for a bandwidth verifying ha,n = cn
(

lnn
n

)1/(d+4)
,

cn → c > 0, when n→∞, we have
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1.

f̂n(v)− f(v) = O

((
lnn

n

) 2
4+d

)
a.s., (13)

2.

âv,n(t)− av(t) = O

((
lnn

n

) 2
4+d

)
a.s.

Let us comment the assumptions for this result. The density condition 3.1(i) may be droped
if one uses a more general framework like in Dabo-Niang and Rhomari [14] where no density
assumption is done and the observations are independent. However, similar results for dependent
data are not available yet. The hypothesis concerning the decay of the mixing coefficients allows
us to control the variance of the estimators. We impose some weak conditions on the kernel K
that are usual in nonparametric estimation. All symmetric kernels defined over a compact support
verify the hypothesis, but also more general ones like the Gaussian kernel. Conditions v and vi
are used to control the bias terms of the estimators that is purely analytical.

The convergence rates obtained in Proposition 3.2 are the usual ones. They rapidly degrade
with the raise of the dimension of Rd, the space where V lives, as the consequence of the curse of
dimensionality. In one hand, the first result is well know on the estimation of a multidimensional
density functions, even for dependent data. We include it for sake of comprehension. Note that
only the observations of V1, . . . , Vn are used to estimate f(v) the density of V at v ∈ Rd. This
result is true for each t ∈ [0, 1]. On the other hand, the consistency of âv,n(t) is only valid for some
fixed value t ∈ [0, 1]. However, we can obtain a version of this result that holds true uniformly on
[0, 1] (conditionally on V ).

Proposition 3.3. Under Assumptions 2.1, 3.1(i-iv) and if 3.1(v-vi) hold true for all t ∈ [0, 1],

a bandwidth verifying ha,n = cn
(

lnn
n

)1/(d+4)
, cn → c > 0, when n→∞, yields

‖ân(v, .)− a(v, .)‖H = O

((
lnn

n

) 2
4+d

)
a.s.

3.2. Convergence of Γ̂v,n and ∆̂v,n.

Similarly to the convergence of the conditional mean function, we first prove the pointwise
convergence of γ̂v,n(s, t) and δ̂v,n(s, t), and then extend the result to the uniform convergence of
these kernels over [0, 1]2. Then, the consistency of the operators follows. In addition, we obtain
the consistency for the estimators of the spectral elements of Γv.

Proposition 3.4. Under Assumptions 2.1 and 3.1, and if E[‖Z‖4
H |V ] <∞ then for a bandwidth

verifying hγ,n = cn
(

lnn
n

)1/(d+4)
, cn → c > 0, when n→∞, we have

γ̂v,n − γv = O

((
lnn

n

) 2
4+d

)
a.s..

Again, the result is valid uniformly for (t, s) ∈ [0, 1]2. Through the equivalence between Hilbert-
Schmidt norm and the integral operator norm (on L2([0, 1]2)) one has,

‖Γ̂v,n − Γv‖K2 =‖γ̂v,n(., .)− γv(., .)‖2
L2([0,1]2)

=

∫ 1

0

∫ 1

0

(γ̂v,n(s, t)− γv(s, t))2dsdt

9



and thus the strong consistency of Γ̂v,n follows.

Proposition 3.5. Under Assumptions 2.1, 3.1(i-iv) and if 3.1(v-vi) hold true for all t ∈ [0, 1],

and E[‖Z‖4
H |V ] < ∞, then a bandwidth verifying hγ,n = cn

(
lnn
n

)1/(d+4)
, with cn → c > 0, when

n→∞, yields

‖Γ̂v,n − Γv‖K2 = O

((
lnn

n

) 2
4+d

)
a.s..

Now, one may use the consistency properties of the empirical eigenvalues λ̂v,j,n as estimators of
the true ones λv,j, j ≥ 1, obtained by Bosq [15] in the dependent case. Also a result concerning the
convergence of the empirical conditional eigenfunctions êv,j,n is provided. See Mas and Menneteau
[16] for a general transfer approach of limit theorem properties and modes of convergence from the
estimator of a covariance operator to the estimators of its eigenvalues.

Corollary 3.6. Under the conditions of Proposition 3.5, we have

1.

sup
j≥1
|λ̂v,j,n − λv,j| = O

((
lnn

n

) 2
4+d

)
a.s.

2.

‖ê′v,j,n − ev,j‖H = ξv,jO

((
lnn

n

) 2
4+d

)
a.s.

where ê′v,j,n =< êv,j,n, ev,j) >H êv,j,n and ξv,1 = 2
√

2/(λv,1−λv,2), ξv,j = 2
√

2/min(λv,j−1−λv,j, λv,j−
λv,j−1) for j ≥ 2.

Note that the conditional eigenfunctions are estimated up to their sign. This causes problems
both in practice and in theory. The estimated object is the eigen-space generated by the associated
eigenfunction and not its direction.

Finally, using similar arguments we obtain the convergence of the conditional cross-covariance
operator.

Proposition 3.7. Under Assumptions 2.1, 3.1(i-iv) and if 3.1(v-vi) hold true for all t ∈ [0, 1],

and E[‖Z‖4
H |V ] < ∞, then for a bandwidth verifying hn = cn

(
lnn
n

)1/(d+4)
with cn → c > 0, when

n→∞, yields

‖∆̂v,n −∆v‖K2 = O

((
lnn

n

) 2
4+d

)
a.s..

3.3. Convergence of the predictors

The two proposed classes of estimators for ρ∗ can be use to predict Zn+1 by applying them to
the last observed function Zn. However, since Zn was used on the construction of the estimator
and the process has a memory length of 1, a better approach is to study the prediction error on
the next element of the sequence. We introduce a final set of assumptions needed to shown the

convergence in probability that we denote
P−→.

Assumptions 3.8.

1. E[‖Z‖4
H |V ] <∞.

10



2. Γv is one-to-one.

3. P(lim inf En) = 1, where En = {ω ∈ Ω : dim(Rg(P kn
v Γ̂v,nP

kn
v )) = kn}, with Rg(A) denoting

the range of the operator A.

4. nλ4
kn

(v)→∞ and (1/n)
∑kn

j=1 ξk(v)/λ2
k(v)→ 0, as n→∞.

A strong finite fourth conditional moment of Z was used for the definition of Γv and ∆v. The
second condition in 3.8 is necessary to uniquely define the conditional autoregression operator
ρv. The third one is necessary to guarantee that the random operator P kn

v Γ̂v,nP
kn
v is almost sure

invertible. Controlling the decay of the eigenvalues of the conditional covariance operator is used
for the consistency of the projection class operator (see Corollary 3.6 for the definition of ξ).
Alternatively, one may set Λv(k) = λk(v) where Λv : R→ R is a convex function (see Mas [17]).

Theorem 3.9. If Assumptions 2.1, 3.1 hold true ∀t ∈ [0, 1] and 3.8, if λk(v) = c0c
k
1, c0 > 0, c1 ∈

(0, 1) and if kn = o(lnn) as n→∞, then

‖ρ̂∗v,n,kn(Zn+1)− ρ∗(Zn+1)‖H
P−→ 0

Theorem 3.10. If Assumptions 2.1, 3.1 hold true ∀t ∈ [0, 1] and 3.8(i-ii), and if bn → 0, bp+2
n

√
n→

∞ for some p ≥ 0 as n→∞, then

‖ρ̂∗v,n,p,α(Zn+1)− ρ∗(Zn+1)‖H
P−→ 0

4. Empirical study

We apply the carh process model to predict the electricity daily load curve for the french
producer EDF (Électricité de France). Our aim is to introduce the temperature information as
an exogenous covariate on a functional prediction model using carh processes. The electricity
demand is highly sensitive to meteorological conditions. In particular, changes in temperature
during winter have a high impact on the French national demand. This relationship is not linear
and depends on the hour of the day, the day of the week and the month of the cold season.
Moreover, it is unknown in which way the temperature should be coded in order to extract the
relevant information for a prediction model. More details on this dataset are given in Antoniadis
et al. [18].

We compare in terms of prediction error, the AutoRegressive Hilbertian model (ARH) and the
Conditional AutoRegressive model (CARH). The data we use are the electricity load for the first
three months of 2009 (where the load is very sensitive to temperature changes) recorded at a 30
minutes resolution and an estimate of the national temperature computed by EDF recorded each
hour. The function-valued process Z is the sequence of daily loads of the national grid. As the
calendar has a very important effect on the electricity demand, we work only with one day-type,
namely the weekdays from Mondays to Friday excluding holidays. The covariate V is constructed
as an univariate summary of the daily temperature profile. Concretely, we compute the variation
coefficient of the temperature records for each day. The total number of observations is 41, where
we use the first 33 (approximately 80%) for calibration of the model and the last 8 to measure the
prediction quality of the calibrated model.

For both models we use projection type estimators (see Equation (11)). Using the calibration
dataset we estimate the parameter kn, that is the dimension of the projection space for both
models. In addition, we estimate the bandwidth parameters for the CARH model. The results of
the parameters’ estimation is summarised in Table 1. We also compute the in-sample estimation

11



ARH CARH

Dimension (kn) 2 5
Estimation error 1616 929
Prediction error 1522 1265

Table 1: Values of the estimated parameters for both ARH and CARH prediction models. The
estimated set of bandwidths is ha = 1.21× 10−1, hγ = ×10−4, hδ = 3.95× 10−1.

error as the prediction error obtained using the set of parameters that minimise the root mean
square error (RMSE) on the training dataset. The CARH model seems to obtain a better fit on
the calibration set since it presents a smaller estimation error.

Figure 1: Three days of the electricty demand (solid gray) with the one-day ahead predictions
using ARH (dashed) and CARH (solid black) models.

In order to estimate the prediction error we use the test dataset. We compute the error as
the RMSE. Again the CARH model presents a smaller error than the ARH model. On Figure 1
we present three days of the electricity demand as well as their predictions using the ARH and
CARH models. The effect of the covariate seems to be expressed locally in some parts of the day.
Effectively, it corresponds to the daytime demand which seems to be reasonable because the effect
of the temperature on the electricity demand is higher during day hours than night hours.

Appendix A. Linear operators in Hilbert spaces

We recall here some relevant facts about linear operators on Hilbert space (see Kato [11, Chap.
5] for details).

We note H∗ the topological dual of H, i.e. the space of bounded linear functionals on H.
Thanks to the Riesz representation H∗ can be identified with H. We note L the space of bounded
linear operators from H to H equipped with the uniform norm

‖ρ‖L = sup
‖z‖H≤1

‖ρ(z)‖H , ρ ∈ L, z ∈ H.

This space seems to be a too large space, so one usually consider the subspace of compact operators
K that is easier to deal with (see Mas [17]). For instance, if the operator ρ is compact then it
admits a unique spectral decomposition, i.e. for two bases (φj)j∈N and (ψj)j∈N and a sequence of

12



numbers (λj)j∈N that we can choose to be non-negative (choosing the sign of ψj) we have

ρ =
∑
j∈N

λjψj ⊗ φj,

where we use the tensor product notation (u⊗v)(z) =< u, x >H v for any elements z, u, v ∈ H. We
say that a operator ρ is self-adjoint if < ρu, v >H=< u, ρv >H for all u, v ∈ H. If ρ is symmetric
the decomposition becomes ρ =

∑
j∈N λjφj ⊗ φj with eigen-elements (λj, φj)j∈N. If ρ is not self-

adjoint, we call ρ∗ its adjoint. Finally we say that ρ is positive-definite if it satisfies < ρz, z >H≥ 0
for all z ∈ H. Two subspaces of K will be of our interest: the space of Hilbert-Schmidt operators
K2 and the space of trace class (or nuclear) operators K1 defined respectively as

K2 = {A ∈ K :
∑
j∈N

λ2
j <∞}, K1 = {A ∈ K :

∑
j∈N

|λj| <∞}.

The Hilbert-Schmidt operators form a separable Hilbert space with inner product < ρ, τ >K2=∑
j∈N < ρψj, τψj > with (ψj)j an orthonormal basis and ρ, τ ∈ K2 (the product does not depends

on the choice of the basis, see Kato [11, p. 262]). The associated norm yields from ‖ρ‖2
K2

=∑
j∈N‖ρψj‖2

H =
∑

j∈N λ
2
j . On the other hand the space of trace-class operator endowed with the

norm ‖.‖K1 defined as ‖ρ‖K1 =
∑

j |λj— is a separable Banach space. Finally, from the continuity
of the inclusions K1 ⊂ K2 ⊂ K ⊂ L we have that

‖.‖K1 ≥ ‖.‖K2 ≥ ‖.‖L.

Appendix B. Sketch of proofs.

Proof of Theorem 2.2.

We mimic the proof of Theorem 1 in Guillas [10]. To prove the existence, Let

ηm
′

m = E

∥∥∥∥∥
m′∑
j=m

(
j−1∏
p=0

ρVn−p

)
(εn−j)

∥∥∥∥∥
2

H

=
m′∑
j=m

E

∥∥∥∥∥
(
j−1∏
p=0

ρVn−p

)
(εn−j)

∥∥∥∥∥
2

H

≤
m′∑
j=m

E

∥∥∥∥∥
j−1∏
p=0

ρVn−p

∥∥∥∥∥
2

L

‖εn−j‖2
H


≤

m′∑
j=m

E

[
j−1∏
p=0

∥∥ρVn−p

∥∥2

L

]
E ‖εn−j‖2

H︸ ︷︷ ︸
=σ2

where we used the independence between V and ε gives

E

〈(
j−1∏
p=0

ρVn−p

)
(εn−j),

(
j′−1∏
p=0

ρVn−p

)
(εn−j′)

〉
= 0, for j 6= j′.
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Finally, we obtain

ηm
′

m ≤ σ2 E

[
j−1∏
p=0

∥∥ρVn−p

∥∥2

L

]
≤ σM2j

ρ .

We have that the upper bound is the general term of a convergent series. For m,m′ tending
to infinity, ηm

′
m tend to zero and the Cauchy criterion gives the mean square convergence of the

solution.
Now, consider the stationary process Wn = a +

∑∞
j=0

(∏j−1
p=0 ρVn−p

)
(εn−j). From the almost

surely boundedness of ρVn we have that it is indeed a solution of the carh process:

(Wn − a)−ρVn(Wn−1 − a) =

=
∞∑
j=0

(
j−1∏
p=0

ρVn−p

)
εn−j −

∞∑
j=0

ρVn

(
j−1∏
p=0

ρVn−1−p

)
εn−1−j

=
∞∑
j=0

(
j−1∏
p=0

ρVn−p

)
εn−j −

∞∑
j=0

(
j∏

p=0

ρVn−p

)
εn−1−j

=
∞∑
j=0

(
j−1∏
p=0

ρVn−p

)
εn−j −

∞∑
j′=1

(
j′−1∏
p=0

ρVn−p

)
εn−j′

= εn.

Proof of Proposition 3.2

The proof is based on the classical decomposition in terms of bias and variance of the estimators.
The bias term is purely analytical. The variance term is composed by the variance and covariance
of the estimator’s terms. The dependency of the data is controlled by means of the following
exponential inequality (a proof can be founded in Bosq and Blanke [13, p. 140]).

Lemma Appendix B.1. Let W = (Wt) be a zero-mean real valued stationary process with
sup1≤t≤n ‖Wt‖∞ = M <∞, (M > 0). Then for q ∈ [1, n/2], κ > 0, ε > 0, p = n/(2q),

P

(∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ > nε

)
<

8M

εκ
(1 + κ)αX

([
n

2q

])
+

4 exp

(
− n2ε2/q

8(1 + κ)σ(q) + 2M
3

(1 + κ)n2q−2ε

)
, (B.1)

with σ(q) an intricate quantity involving the pairwise covariances of W . We will only need a bound
of σ(q) that in the stationary case turns out to be

σ(q) < ([p] + 2)(Var(W0) + 2

[p]+1∑
l=1

|Cov(W0,Wl)|). (B.2)

Proof of 1. One has

E f̂n(v)− f(v) =

∫
Rd

K(u)(f(v − hnu)− f(v))du
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Using Taylor formula and the symmetry of K one gets

E f̂n(v)− f(v) =
h2
n

2

∫
Rd

K(u)

(
d∑

i,j=1

uiuj
∂2f

∂vi∂vj
(v − θhnu)

)
du

where 0 < θ < 1. Finally, Lebesgue dominated convergence theorem gives

h−2
n |E f̂n(v)− f(v)| → b2(v) = 1/2

(
d∑

i,j=1

∂2f

∂vi∂vj
(v)

∫
Rd

uiujK(u)du

)
(B.3)

We use (B.1) to deal with the variance term f̂n(v)−E f̂n(v). Define Wi = Kh(v−Vi)−EKh(v−
Vi), with Kh(.) = K(./h). Then, M = 2h−dn ‖K‖∞. Let us choose qn = n

2p0 lnn
for some p0 > 0.

Which yields on a logarithmic order for pn = 1
p0 lnn

. This choices and the boundeness of f and Gs,t

entail on B.2,

σ(qn) < (pn + 2) Var(Kh(v − V1)) + (pn + 2)2 sup
|s−t|>1

‖Gs,t‖∞

< pnh
−d
n ‖K‖2

2f(v)(1 + o(1)).

Now take ε = η
√

lnn
nhdn

, for some η > 0, then

P

(
n−1

∣∣∣∣∣
n∑
i=1

Wi

∣∣∣∣∣ > η

√
lnn

nhdn

)
<

8β0c
d/2

ηκ
(1 + κ)‖K‖∞

n
2+d
4+d − β1p0

(lnn)
2+d
4+d

+ 4 exp

(
− η2 lnn

4(1 + κ)2‖K‖2
2f(v)(1 + o(1))

)
If we take η > 2(1 + κ)‖K‖2

√
f(v) and p0 > 2β, then where both terms are o(n−λ), for some

λ > 0, in which case ∑
n

P

{( n

lnn

) 2
4+d

∣∣∣∣∣n−1

n∑
i=1

Wi

∣∣∣∣∣ > ηc−d/2n

}
<∞.

So Borel-Cantelli lemma implies lim supn→+∞
(
n

lnn

) 2
4+d |f̂n(v)−E f̂n(v)| ≤ 2c

−d/2
n (1+κ)‖K‖2

√
f(v)

almost surely for all κ > 0. We have finally

lim sup
n→+∞

( n

lnn

) 2
4+d |f̂n(v)− f(v)| ≤ 2c−d/2n ‖K‖2

√
f(v) + c2|b2(v)|,

which gives (13).
Proof of 2. We use the following decomposition, omitting the argument v,

ân − a =
ĝv,n − af̂n

f̂n
.

From (13) we have for the denominator that f̂n → f(x) 6= 0 almost surely. We work out the numera-
tor through the following decomposition between variance and bias terms. Let ψn = (n/ lnn)2/(4+d),
then one has

ψn|ĝv,n − af̂n| ≤ ψn|ĝv,n − af̂n − E(ĝv,n − af̂n)|︸ ︷︷ ︸
:=An

+ψn|E(ĝv,n − af̂n)|︸ ︷︷ ︸
:=Bn

.
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We first study An using as before the exponential type inequality (B.1) with the redefined
random variables

Wi = Kh(v − Vi)(Yi − av)− E (Kh(v − Vi)(Y − av))
with the precedent choices of qn and pn. First, one has |Wi| ≤ 2h−dn ‖K‖∞(1 + o(1)). Next, using
Bochner lemma (Bosq and Blanke [13, p. 135]) we obtain

hdn Var(W1) ≤ h−dn E[K2
h(v − V1)(Y1 − av)2]→ f(v)‖K‖2

2Σ(v)

where Σ(v) = (Ev[Y 2
0 |V ]− av) is the conditional variance parameter. The logarithmic order of pn

and the control on F gives σ2(qn) ≤ pnh
−d
n f(v)2Σ(v)‖K‖2

2(1 + o(1)). As before, taking p0 > 2/β1

and for a large enough η, Borel-Cantelli lemma entails

lim sup
n→∞

An ≤ 2c−d/2
√

Σ(v)f(v) a.s.

For the bias term we write

E(ĝv,n(v)− a(v)f̂n(v)) = h−dn

∫
Rd

Khn(v − t)(g(t)− f(t)a(v))dt.

Then, we use the Taylor formula to expand g(t)− f(t)a(v) and Assumptions 3.1(iii-iv) to obtain

ψn|Bn| → ba(v) =
1

2

∣∣∣∣∣
d∑

i,j=1

{
∂2g

∂vi∂vj
(v)− a(v)

∂2f

∂vi∂vj
(v)

}∫
uiujK(u)du

∣∣∣∣∣
Finally, putting all the elements together one obtains,

lim sup
n→∞

( n

lnn

) 2
4+d |ân(v)− a(v)| ≤ 2c−d/2‖K‖2

√
f(v)Σ(v) + c2 |ba(v)|

f(v)
(B.4)

from with the result is derived.

Proof of Proposition 3.3.

The only terms on equation B.4 that depends on the value fixed for t are the conditional variance
parameter Σ and the bias ba. With the new hypothesis holding uniformly, for each v ∈ Rd, Σ(v, t)
and ba(v, t) are bounded uniformly on [0, 1]. Then, recalling that

‖ân(v, .)− a(v, .)‖2
H =

∫ 1

0

(ân(v, t)− a(v, t))2dt,

we obtain the derived result.

Proof of Proposition 3.4.

The proof follows the same lines that those used to show Proposition 3.2(2). In particular,

r̂n − r =
ĝv,n − rf̂n

f̂n
.

gives the decomposition between variance and bias terms,

ψn|ĝv,n − rf̂n| ≤ ψn|ĝv,n − rf̂n − E(ĝv,n − rf̂n)|︸ ︷︷ ︸
:=An

+ψn|E(ĝv,n − rf̂n)|︸ ︷︷ ︸
:=Bn

.
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Which yields on
lim sup
n→∞

An ≤ 2c−d/2
√

Σ(v)f(v) a.s.

where, by the redefinition of Y , Σ(v) = Ev[(Z0(s)Z0(t))2|V ]− r(v, s, t).
Again using Taylor formula to expand g(t)−f(t)r(v) and the precedent Assumptions we obtain

ψn|Bn| → br(v) =
1

2

∣∣∣∣∣
d∑

i,j=1

{
∂2g

∂vi∂vj
(v)− r(v)

∂2f

∂vi∂vj
(v)

}∫
uiujK(u)du

∣∣∣∣∣
Finally, resembling the terms we get the equivalent of Equation (B.4) with the redefined Σ and

the bias br, from with the result is derived.

Proof of Proposition 3.5.
First, consider the following decomposition

Γ̂v,n = R̂n(v)− ãn(v)⊗ ân(v)− ân(v)⊗ ãn(v) + ân(v)⊗ ân(v),

where R̂n(v) =
∑n

i=1wn,i(v, hγ)Zi ⊗ Zi is the empirical counterpart of the second order moment
operator R(v) = Ev[Z0 ⊗ Z0|V ], and ãn(v) =

∑n
i=1wn,i(v, hγ)Zi. Second, we obtain that

Γv − Γ̂v,n = R(v)− R̂n(v)− a(v)⊗ a(v) + ãn(v)⊗ ân(v) + ân(v)⊗ ãn(v)− ân(v)⊗ ân(v).

Hence, we can control the estimation error regrouping the terms of the above decomposition (we
drop the argument v),

‖Γv − Γ̂v,n‖K2 = ‖R− R̂n‖K2 + ‖ãn ⊗ ân − a⊗ a‖K2 + ‖ân ⊗ (ãn − ân)‖K2 . (B.5)

From Propositions 3.4 and 3.3 it follows that

‖R− R̂n‖K2 = O
(( n

lnn

) 2
4+d

)
a.s.

The second term of the left hand side of equation (B.5) is equal to

‖ãn ⊗ (ân − a) + (ãn − a)⊗ a‖K2 ≤ ‖ãn‖H‖ân − a‖K2 + ‖ãn − a‖K2‖a‖H .
Since both ‖a‖H and ‖ãn‖H are bounded and using Proposition 3.3 successively for ãn and ân with
their respective sequences of bandwidths hγ,n and ha,n, we obtain that

‖ãn ⊗ ân − a⊗ a‖K2 = O
(( n

lnn

) 2
4+d

)
a.s.

With a similar reasoning, the same kind of result is obtained for the third term in (B.5). Putting
the result for the three terms together conclude the proof.

Proof of Corollary 3.6.
First item is a direct consequence of the following property on eigenvalues of compact linear

operators Bosq [15, p. 104],

sup
j≥1
|λj(v)− λ̂j,n(v)| ≤ ‖Γv − Γ̂v,n‖L,

and the asymptotic result obtained for ‖Γv − Γ̂v,n‖K2 .
For the second item, Bosq (2000, Lemma 4.3) shows that, for each j ≥ 1,

‖ej(v)− e′j,n(v)‖H ≤ ξj‖Γv − Γ̂v,n‖L.
Again, the rates of convergence follows from Proposition 3.5.
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Proof of Proposition 3.7.

The proof follows the same guidelines that those of Proposition 3.5, replacing R̂(v) and R(v)
by R̂1(v) =

∑n−1
i=1 wn,i(v, hγ)Zi(s)Zi+1(t) and R1(v) = Ev[Z0(s)Z1(t)|V ] respectively. Then, a

decomposition like B.5 and the same kind of observations done for that proof entails the result.

Proof of Theorem 3.9.

The proof follows along the same lines of Proposition 4.6 in Bosq [1] by using Propositions 3.3,
3.5, 3.7 and Corollary 3.6.

Proof of Theorem 3.10.

The proof follows along the same lines of Proposition 3 in [12, Chapter 3] by using Propositions
3.3, 3.5 and 3.7.
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