
HAL Id: hal-00788144
https://hal.science/hal-00788144

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid GATE : A GPU/CPU implementation for
imaging and therapy applications

Julien Bert, H Perez Ponce, S Jan, Z El Bitar, P Gueth, V Cuplov, H
Chekatt, D Benoit, D Sarrut, Y Boursier, et al.

To cite this version:
Julien Bert, H Perez Ponce, S Jan, Z El Bitar, P Gueth, et al.. Hybrid GATE : A GPU/CPU imple-
mentation for imaging and therapy applications. NSS-MIC 2012: IEEE Nuclear Science Symposium
and Medical Imaging Conference, Oct 2012, Anaheim, United States. pp.2247-2250, �10.1109/NSS-
MIC.2012.6551511�. �hal-00788144�

https://hal.science/hal-00788144
https://hal.archives-ouvertes.fr


Hybrid GATE: A GPU/CPU implementation for 

imaging and therapy applications 
Julien Bert, Hector Perez-Ponce, Sebastien Jan, Ziad El Bitar, Pierre Gueth, Vesna CupJov, Hocine Chekatt, 

Didier Benoit, David Sarrut, Yannick Boursier, David Brasse, Irene Buvat, Christian Morel, and Dimitris Visvikis 

Abstract-Monte Carlo simulations (MCS) play a key role in 

medical applications. In this context GATE is a MCS platform 
dedicated to medical imaging and particle therapy. Yet MCS are 
very computationally demanding, which limits their applicability 
in clinical practice. Recently, graphics processing units (GPU) 
became, in many domains, a cost-effective solution to access 
high power computation. The objective of this work was to 
develop a GPU code targeting MCS for medical applications 
integrated within the GATE software. An aim was to enhance 
GATE computational efficiency by taking advantage of GPU 
architectures. We first developed a GPU framework with basic 
elements to run MCS for different medical applications. The 
implementation was based on a GPU adaptation of the Geant4 
code. For each main GATE medical application, we developed a 
specific code from the GPU framework. Some of these GPU codes 
are currently being integrated in GATE as new features, and 
users can perform GPU computing in their GATE simulations. 
The acceleration factor resulting from the implementation of 
the tracking within the phantom on GPU was 60 for a PET 
simulation and 80 for a CT simulation. By using GPU architec
tures, we are also extending GATE to support optical imaging 
simulations that are heavily demanding in terms of computational 
resources. Radiation therapy applications currently supported by 
GATE V6.2 are also being adapted to run on hybrid GPU/CPU 
architectures. 

I. INTRODUCTION 

M
ONTE Carlo simulations (MCS) are random sampling 

methods used in many domains to simulate and solve 

physical and mathematical problems. MCS play a key role in 

medical applications. In this context, GATE is a MCS platform 

dedicated to medical imaging and particle therapy [1]. Yet, 

MCS are very computationally demanding, which limits their 

applicability in clinical practice. The use of computer clusters 

can help solve this intensive computational issue, but has not 

yet been widely adopted in clinical environment. 

Recently, graphics processing units (GPU) became, in many 

domains [2], a cost-effective solution to access high power 

computation. This architecture is able to deliver computation 

J. Bert and D. Visvikis are with the LaTIM, UMRIlOI INSERM, CHRU 
Brest, France (e-mail: julien.bert@univ-brest.fr). 

H. Perez-Ponce, Y. Boursier and C. Morel are with the CPPM, Aix
Marseille Universite, CNRS/IN2P3, Marseille, France. 

Z. El Bitar, H. Chekatt and D. Brasse are with the Institut Pluridisciplinaire 
Hubert Curien, UMR 7178 - CNRS/IN2P3, Strasbourg, France. 

P. Gueth and D. Sarrut are with the Universite de Lyon, CREATIS, CNRS 
UMR5220, INSERM U630, INSA-Lyon, Universite Lyon 1, Centre Leon 
Berard, France. 

V. Cuplov and S. Jan are with the DSV/I2BMlSHFJ, Commissariat 11 
l'Energie Atomique, Orsay, France. 

D. Benoit and I. Buvat are with the IMNC-UMR 8165 CNRS-Paris 7 and 
Paris II Universities, Orsay, France. 

power comparable to that of a small cluster on a single conven

tional workstation. Some previous studies [3]-[5] have shown 

that the use of GPUs in MCS is promising to significantly 

reduce execution times. However the proposed GPU codes 

were optimized and developed for specific applications. Such 

codes are proofs of concept but not user-oriented, which limits 

the simulation possibilities. 

The objective of this work was to develop a GPU code 

targeting MCS for medical applications integrated within the 

GATE software. An aim was to enhance GATE computational 

efficiency by taking advantage of GPU architectures. The 

purpose of our work is to integrate GPU modules within the 

GATE simulation platform in a hybrid manner. At different 

point of the simulation it will be possible to track particles 

alternatively on GPU or CPU. The proposed implementation 

allows the use of CPU and GPU modules without limiting the 

overall capabilities of the GATE platform. 

II. MATERIALS AND METHODS 

A. Global strategy 
A GPU is composed of thousand of threads, each one 

representing a data unit, in other words a piece of data to 

be processed. All threads will execute the same program 

code, called kernel, in parallel on the different streaming pro

cessors, representing individual processor units. Recent GPU 

architectures contain more than one thousand processors. The 

paradigm we have chosen for the MCS GPU implementation 

is the use of one thread per particle, i.e. a thread handles a 

given particle from its birth to its death. Using thousands of 

processing units, thousands of particles will be simulated in 

parallel by executing the same code on the GPU. 

Starting from this basic paradigm, a GPU pipeline was 

developed for the MCS. As particles run simultaneously we 

need to keep in memory every particles by storing them inside 

a buffer. This buffer is then presented to a first kernel to 

perform the particles' navigation inside a voxelized geometry. 

Consequently all particles are moved by one geometrical step 

defined by the next voxel boundary, or one physical step 

determined by the next physics interaction. Particles reaching 

the phantom boundary will be stopped. Then a second kernel 

is used to apply the appropriate physics for each particle. For 

example some particles will be scattered or absorbed according 

to their states. At the end of this iteration on all particles, 

if there are still particles to process within the buffer, the 

navigation and interaction steps are repeated until all particles 

are processed. All basic functions used within a complete 

1



45000 

40000 

35000 

30000 

25000 

20000 

0.1 0.2 0.3 
Photon energy I MeV) 

1 = GATE I GATE-GPU 

0.4 0.5 

Fig. 1. Energy distribution for scattered photons from emission imaging 
simulation. 

MCS were developed within a GPU framework [6] using the 

parallel computing platform CU DA created by NVIDIA. The 

implementation was based on a GPU adaptation of the Geant4 

code [7]. This GPU framework was subsequently assessed 

against Geant4. 

For each main GATE medical application, we developed 

a specific code from the GPU framework. According to the 

specificities of the application, we implemented the relevant 

physics effects on the GPU. Some of these GPU codes are 

currently being integrated in GATE as new features, and users 

can perform GPU computing in their GATE simulations. The 

GATE application supporting GPU makes it possible to track 

particles alternatively on the GPU modules and on the regular 

GATE CPU components in a hybrid manner, so that GPU 

modules can be turned on and off. One challenge was the 

management of a hybrid implementation combining a sequen

tial CPU simulation and a parallel GPU simulation. Such 

hybrid implementation was made possible using a buffering 

system. For example, a simple GATE simulation could consist 

of a CPU source, our GPU particle tracker within a voxelized 

phantom and a CPU detector. The source produces particles 

sequentially inside the GATE workspace. Any particle crossing 

the phantom boundary is stored on the GPU buffer. When the 

buffer is full, the GPU simulation is triggered. Subsequently 

tracking within the voxelized object is performed in parallel 

by the GPU for all particles. Then each particle simulated 

by the GPU is passed sequentially on the standard GATE 

workspace in order to continue the simulation and reach or 

not the detector. 

B. Application for emission imaging 
The GPU framework has been used to perform a positron 

emission tomography (PE T) simulation in GATE. The GPU 

code only manages the particle tracking inside voxelized 

phantoms. The photon transportation in the detector and the 

25000 

1 = GATE I GATE-GPU 

20000 

15000 

10000 

5000 

8.03 0.07 0.08 
Photon energy [MeV] 

Fig. 2. Energy distribution for scattered photons from transmission imaging 
simulation. 

modelling of the detector response were performed on the 

usual CPU GATE code. The GPU code for PE T simulation 

was integrated within GATE as a new module named GPU

PE T that provides new input (i.e. photons) to the regular GATE 

engine once the photons exit the voxelized volume. 

The validation of the hybrid code was performed by simu

lating the same PE T acquisition with and without the GPU

PE T module. An NCAT voxelized phantom and a Philips 

GEMINI PE T system model [8] were used. An activity map 

emitting pairs of gamma rays of 51lkeV and showing a lung 

tumor with a contrast of 5: 1 was defined. The total activity 

simulated was 28.7MBq. The simulation was performed by 

using photoelectric (PE) and Compton scattering processes 

provided by the standard model and a fictitious tracking [9], 

[10]. Both simulations modeled a 10 minutes acquisition. We 

measured the run time to track particles within the voxelized 

phantom. Finally all particles escaping the phantom were 

stored in a phase-space file. Each simulation was performed 

with a NVIDIA GTX580 GPU (512 cores - 1.23GHz) and an 

Intel Core i7 CPU (3.4GHz). 

C. Application for transmission imaging 
We also adapted the GPU framework for a transmISSIOn 

imaging simulation. This benchmark was close to a cone beam 

CT geometry, imaging a single phantom projection. The GPU 

handles only the photon transportation within the voxelized 

phantom. This specific GPU code was incorporated into GATE 

as a new feature called GPU-CT. 

To validate the GPU-CT implementation, we compared two 

GATE simulations, one using the GPU-CT code, and the other 

using only the CPU GATE code. A mono-energetic cone 

beam photon source at 80ke V and a voxelized head and neck 

phantom were used. A flat panel detector was used to count the 

number of detected particles. The distance between the source 

and the phantom was 100cm when it was 20cm for the flat 

2



100 

lil 80 

<3 
1: 
'" 
0-

o 60 

� 
§ 
z 

40 

20 

o -1 

-GATE 
-Standalone GPU 

-0.5 0 0.5 
Optical photon direction along y 

Fig. 3. Simulation of the optical photon direction along the y-axis for the 
Mie scattering. 

panel detector. The PE and Compton scattering effects were 

modeled. The particle tracking within the voxelized geometry 

on GPU was performed by a so-called "regular" navigator 

based on the one provided by Geant4. A total of 500.106 
photons were generated for each simulation. We measured 

the run time to track particles within the voxelized phantom. 

Finally all particles escaping the phantom were stored in a 

phase-space file. Each simulation was performed with the 

same graphical card and CPU as the ones used for the PET 

simulation. 

D. Application for optical imaging 
Optical imaging is an efficient and low-cost imaging tech

nique enabling real time study of biological processes. Several 

physics processes occur during the optical photon propagation 

in biological tissues: absorption, scattering, transmission and 

reflection at tissue boundaries. We extended the standalone 

GPU framework code by adding the Mie scattering process 

provided by Geant4. The GPU implementation was validated 

against GATE simulations running only on CPU. 

The simulation set-up used for validation consisted of a 

vox eli zed phantom made of a water box of 100x 100x 100 

4lmn3 voxels. The water anisotropy and Mie scattering length 

were set to 0.62 and 6mm respectively. We simulated an 

isotropic source of 20.106 optical photons of 6eV located at 

the center of the water box. After tracking all particles up to 

the water box boundary, the particles were stored in a phase

space file. 

E. Application for radiotherapy 
The targeted radiotherapy applications were the calcula

tion of the dose distribution induced by photon or electron 

beams in voxelized phantoms. For these applications, the 

GPU framework is being extended to support new physics 

effects, including electron ionisation, multiple scattering and 

45; ����------�--r=�==�===1 

I Geant4 I 
40 

35 

10 

- Standalone GPU I 

3 4 5 
Electron energy [MeV] 

Fig. 4. Simulation of the electron scattering angle as a function of its energy 
for the electron ionisation effect. 

Bremsstrahlung. Secondary particles also have to be taken 

into account. This GPU code is still under development, but 

a standalone GPU code for the electron ionization effect 

provided by Geant4 has already been implemented. 

A preliminary validation of the GPU code against 

Geant4 was achieved by simulating a voxelized water box 

(100x 100 x 100 lcm3 voxels) including an isotropic electron 

source (uniform energy ranging from 0 to 8Me V) at the center. 

We simulated 20.106 particles both for the GPU and Geant4 

codes. Information about the particle scattering angle was 

stored during the simulation. 

III. RESULTS

For the PET results, the run time for tracking one million 

particles inside the voxelized volume on standard GATE was 

75.4s against only 1.23s for hybrid GATE (acceleration factor 

of 61.3). This suggests that the use of GPU in GATE has 

the potential to convert hours of simulations into minutes. 

From the saved phase-space files given by both simulations, we 

compared the scattered photon energy distribution by plotting 

the number of particles as a function of the photon energy 

(Fig. 1), showing a good agreement between standard and 

hybrid GATE implementations. 

Results from transmission imaging simulations led to simi

lar conclusions. The run time for tracking one million particles 

wihtin the voxelized phantom on standard GATE was 89.4s 

and only 1.16s for hybrid GATE. The GPU module was 77.1 

times faster that the CPU one. A comparison of the plotted 

scattered energy distribution given by both phase-space files 

also showed a very good agreement in Fig. 2. 

For the optical imaging application, Fig. 3 shows the optical 

photon direction along the y-axis obtained with GATE and 

the standalone GPU implementation of the Mie scattering 

process. For the radiotherapy application, the distribution of 

the scattering angle as a function of the electron energy is 

shown in Fig. 4 for the GPU implementation and for the 

3



pure CPU Geant4 code. These two figures also confirm the 

accuracy of the GPU implementation of the corresponding 

physics process. 

IV. CONCLUSION AND FURTHER WORK 

The aim of our work is to develop a GPU code for the 

main medical applications available in the GATE software. 

In this work, we described GATE emission and transmission 

tomography applications taking advantage of a GPU architec

ture to enhance their computational efficiency. By using GPU 

architectures, we are also extending GATE to support optical 

imaging simulations that are heavily demanding in terms of 

computational resources. Radiation therapy applications cur

rently supported by GATE V6.2 are also being adapted to run 

on hybrid GPU/CPU architectures. Further work will include 

the implementation of additional GATE modules running on 

GPU and the complete validation of a hybrid GPU-CPU GATE 

version. 

ACKNOWLEDGMENT 

This work was funded by the French National Research 

Agency through hGATE project (A NR-09-COSI-004-01). 

REFERENCES 

[1] S. Jan et aI., "Gate v6: a major enhancement of the gate simulation 
platform enabling modelling of ct and radiotherapy," Physics in medicine 
and biology, vol. 56, pp. 881-901, 2011. 

[2] J. Nickolls and W. J. Dally, "The gpu computing era," IEEE Micro, 
vol. 30, no. 2, pp. 56-69, Mar./Apr. 2010. 

[3] B. Toth and M. Magdics, "Monte carlo radiative transport on the gpu," 
in Fifth Hungarian Conference on Computer Graphics and Geometry, 
2010, pp. 1-8. 

[4] S. Hissoiny, B. Ozell, H. Bouchard, and P. Desprs, "Gpumcd: A new 
gpu-oriented monte carlo dose calculation platform," Medical Physics, 
vol. 38, no. 2, pp. 754-764, 2011. 

[5] L. Jahnke, J. Fleckenstein, F. Wenz, and J. Hesser, "Gmc: a gpu 
implementation of a monte carlo dose calculation based on geant4," 
Physics in medicine and biology, vol. 57, pp. 1217-1229,2012. 

[6] H. Perez-Ponce, Z. E. Bitar, Y. Boursier, D. Vintache, A. Bonissent, 
C. Morel, D. Brasse, D. Visvikis, and J. Bert, "Implementing geant4 on 
gpu for medical applications," in IEEE Nuclear Science Symposium and 
Medical Imaging Conference, 2011, pp. 2703-2707. 

[7] J. Allison et aI., "Geant4 developments and applications," IEEE Trans

actions on Nuclear Science, vol. 53, no. 1, pp. 270-278, 2006. 
[8] F. Lamare, A. Turzo, Y. Bizais, C. C. L. Rest, and D. Visvikis, 

"Validation of a monte carlo simulation of the philips allegro/gemini 
pet systems using gate," Physics in medicine and biology, vol. 51, pp. 
943-962, 2006. 

[9] L. L. Carter, E. D. Cashwell, and W. M. Taylor, "Monte carlo sampling 
with continuously varying cross sections along flight paths," Nuclear 
Sience and Engineering, vol. 48, pp. 403-411, 1972. 

[10] N. S. Rehfeld, S. Stute, J. Apostolakis, and M. Soret, "Introduction 
improved voxel navigation and fictitious interaction tracking in gate 
for enhanced efficiency," Physics in medicine and biology, vol. 54, pp. 
2163-2178, 2009. 

4


