
HAL Id: hal-00788121
https://hal.science/hal-00788121

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring underwater target detection by imaging
polarimetry and correlation techniques

Dubreuil Matthieu, Delrot Paul, Isabelle Leonard, Ayman Alfalou, Christian
Brosseau, Aristide Dogariu

To cite this version:
Dubreuil Matthieu, Delrot Paul, Isabelle Leonard, Ayman Alfalou, Christian Brosseau, et al.. Explor-
ing underwater target detection by imaging polarimetry and correlation techniques. Applied optics,
2013, 52 (5), pp.997-1005. �10.1364/AO.52.000997�. �hal-00788121�

https://hal.science/hal-00788121
https://hal.archives-ouvertes.fr


 

 1 

Exploring underwater target detection by imaging 

polarimetry and correlation techniques 

M. Dubreuil,
1
 P. Delrot,

1
 I. Leonard,

1
 A. Alfalou,

1,*
  C. Brosseau

2
 and A. Dogariu

3 

1
Vision-L@BISEN, ISEN Brest, 20 rue Cuirassé Bretagne, CS 42807,  

29228 Brest Cedex 2, France 

2
Université Européenne de Bretagne, Université de Brest, Lab-STICC,6 avenue Le Gorgeu,  

CS 93837, 29238 Brest Cedex 3, France.  

3
CREOL, The College  of Optics and Photonics, University of Central Florida,  

P.O. Box 162700, Orlando, FL, USA 

*Corresponding author: ayman.al-falou@isen.fr 

Underwater target detection is investigated by combining active polarization imaging and 

optical correlation-based approaches. Experiments were conducted in a glass tank filled 

with tap water with diluted milk or seawater and containing targets of arbitrary 

polarimetric responses. We found that target estimation obtained by imaging with two 

orthogonal polarization states always improves detection performances when correlation is 

used as detection criterion. This experimentally study illustrates the potential of 

polarization imaging for underwater target detection and opens interesting perspectives for 

the development of underwater imaging systems. 
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1. Introduction and background 

 

 Underwater imaging is a challenging problem because of the intrinsic optical properties 

of water, dissolved organic and inorganic matter, and suspended particles. Light attenuates 

exponentially as it travels through water due to absorption and scattering (both forward and 

backward). Forward scattered light is reflected by an object and then is diffused back to the 

detector. It generally produces blurred images. Backscattered light is reflected by particles back 

to the detector before reaching the object. It has for main effect to degrade the contrast of 

immerged objects because of the veil that superimposes on the image. In addition, light 

absorption is wavelength-dependent (shorter wavelengths travel longer), which makes the 

images be dominated essentially by blue color. As a result questions remain whether one can 

overcome these issues. For example, image processing methods such as image restoration or 

image enhancement have been developed [1,2]. However, image restoration requires many 

model parameters that can be extremely variable depending on the target’s spatial position and 

water constitution. Consequently, it can be difficult to use in real situations. Image enhancement 

techniques do not rely on any physical model but aim at producing visually pleasing images. One 

drawback of these methods is that they are spatially invariant. They have the advantage that they 

are based on commonly used computer vision techniques. Hence, image enhancement methods 

are simpler and faster of use than restoration methods.  

 Previously, it has been shown that it is possible to use color information for underwater 

detection of objects [2]. Specifically, Beer-Lambert law permits to define underwater colors and 

attenuation coefficients depending on observation distance and illumination. It is noteworthy that 

this method permits to identify a specific object in underwater conditions [2]. However, it 

requires much larger computation time and resources compared to the method which is 
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developed in this work. Additionally, the method developed in Ref. [2] requires an a priori 

knowledge of the color of the underwater object and does not permit discrimination of two 

objects having similar colors.  

Many underwater imaging systems based on range-gating (time discrimination), laser line 

scanning (spatial discrimination), structured lightning, modulation/demodulation techniques, 

multiple perspective image construction, and polarization discrimination have also attracted 

significant interest [3,4]. Polarization filtering is adapted to underwater target detection and 

identification [6-20]. In this context, combining polarization filtering and a correlation technique 

is justified because: (i) it is simple to implement, (ii) it is compatible with polarization filtering, 

and (iii) it allows us for simultaneous detect and identify target objects. 

 A basic issue in the field of underwater mine warfare concerns the development of 

compact, low-power-consumption, and high-speed underwater vehicles. A recent study [5] 

reported that optical correlation-based methods can be used for automatic underwater target 

detection. This study is based on visibility enhancement by image pre-processing and generation 

of a large reference database of target. Pushing back the limits of target recognition remains a 

clear challenge. Thus, developing image acquisition is a prerequisite for improved underwater 

target detection. For that purpose, polarimetric imaging is the ideal technique since it is simple to 

implement, needs small power, and can be used for real-time applications. In addition, it allows 

increasing the contrast of the target images and decreasing both illumination effects and 

backscattering phenomena.  

Here, the focus is on active polarization imaging and optical correlation-based methods to 

experimentally characterize underwater target detection. Experiments are conducted in a glass 

tank filled either with a scattering medium, or seawater. We perform active polarization imaging 
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to suppress the veil in the scene whereas correlation is used for detection criterion and target 

localization. 

The paper is organized as follows. Section 2 describes the use of polarization in 

underwater experiments. Section 3 describes the optical correlation-based method used for target 

detection. Section 4 presents the setup for experiment. The results of this analysis are described 

and discussed in Sec. 5. Finally conclusions are drawn in Sec. 6. 

 

2. Underwater polarization optics 

 

The behavior of polarized light in seawater is a topic attracting widespread attention [6-9]. 

Kouzoubov [6] reviewed experimental data and methods for calculating the Mueller matrix of 

sea water. Voss and Fry [7] were among the first to report angle-resolved Mueller matrix 

measurements of seawater. This study demonstrated that these matrices are generally consistent 

with Rayleigh-scattering regime by small particles. But only weak differences due to asymmetric 

particle shapes can be found using numerical simulations. The study of underwater polarized 

light led to the development of passive and active polarimetric imaging systems for improved 

target detection. Passive imaging uses ambient illumination from sunlight (or a cloudy sky) 

which is generally unpolarized. Light which has not reached the object becomes partially 

polarized by scattering and can be filtered by an analyzer placed in front of the detector [9,10]. 

However, natural illumination is inapplicable to dark environments where active imaging is 

preferred. It requires artificial illuminating systems and adapted detection schemes. 

For active polarimetric imaging systems, several studies have proposed to exploit the 

difference in polarimetric responses between backscatter and target. A full Mueller matrix 

imaging system in scattering medium was considered in Refs. [11-13]. By numerical 
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simulations, it was found that specific combinations of Mueller matrix elements lead to better 

contrast between a target and its background than ordinary radiance [11]. This was 

experimentally verified by Lewis [13]. In [12], the authors measured Mueller matrices of several 

underwater targets. However, full Mueller matrix measurements require considerable data 

acquisitions and are therefore time consuming. Recent studies [14-16] have pointed out that the 

strong backscatter created by artificial illumination can be reduced by performing a single 

acquisition with adapted input and output polarization states. For example, Gibert and Pernicka 

[14] showed that using circularly polarized light permits reduction of the backscatter and 

increase underwater visibility. Based on the assumptions of totally depolarizing target and 

change of handedness of the circularly polarized state after reflection by scattering particles, the 

contrast of the target should be improved. Their experimental results led to an increase by a 

factor of two of the visibility range with circular polarization measurements compared to 

intensity measurements. In a recent study, Bartolini and co-workers [15], showed that using a 

cross-linear polarization detection scheme enables an increase of about two attenuation lengths in 

the transmission capacities of a modulating retroreflector. They take advantage of the fact that 

linear polarization is mainly preserved in the backscatter signal. Mullen and co-workers [16] 

confirmed that imaging in the cross polarized state using linearly polarized light and in the co-

polarized state using circularly polarized light increases the precision of phase measurements in 

amplitude modulated laser experiments. Other studies [17-20] have demonstrated that 

performing measurements with two orthogonal states permits decrease of the backscattering 

effect. This arises because a substantial part of the backscatter is still present in the orthogonal 

state image. As the co-polarized image gives insight into the shape of the backscatter, the 

suggested idea is to subtract a fraction of the co-polarized image from the opposite-polarized 

image in order to completely remove it.  
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Since we adopt Schechner’s approach [20] that deals with arbitrary polarimetric response 

a brief discussion of this algorithm is in order. Underwater images are composed of the object 

signal, the forward scattered signal, and the backscattered signal [21]. We ignore the forward 

scatter part of the total signal which is responsible for image blurring. Thus the measured image 

 ,I x y  is  

     , , ,I x y S x y B x y  ,        (1) 

 

where  ,S x y  is the target signal, and  ,B x y  corresponds to the backscatter. A cross-linear 

(circular) image is obtained with a given input polarization illumination and a detection in the 

orthogonal state. A co-linear (circular) image is also obtained with detection in the same state as 

the illumination. These two images, namely Imin and Imax, are acquired, corresponding 

respectively to the cross-linear (co-circular) image and the co-linear (cross-circular) image. Since 

an important fraction of linear (circular) polarization is preserved (reversed) upon backscattering 

at large angles, imaging in the cross linear (co-circular) state gives an image with less backscatter 

and target signal. The images are expressed as 

     , , ,
m ax m ax m ax

I x y S x y B x y           (2) 

     , , ,
m in m in m in

I x y S x y B x y  .         (3) 

 

The degree of polarization (DOP) of both target and backscatter can be described as 

 
   

   

, ,
,

, ,

m ax m in

targ

m ax m in

S x y S x y
p x y

S x y S x y





,         (4) 

 

and 



 

 7 

 
   

   

, ,
,

, ,

m ax m in

scat

m ax m in

B x y B x y
p x y

B x y B x y





.         (5) 

 

The target signal and the backscatter can be expressed as 

     , , ,
m ax m in

S x y S x y S x y  ,         (6) 

 

and 

     , , ,
m ax m in

B x y B x y B x y  ,        (7) 

 

which lead to the expression for the target estimation Ŝ  and the backscatter estimation B̂  

   
1ˆ 1 1

min scat max scat

scat targ

S I p I p
p p

     


,       (8) 

 

and 

   
1ˆ 1 1

max targ min targ

scat targ

B I p I p
p p

    
 

 .       (9) 

 

The target estimation can thus be deduced from two measurements, i.e. Imin and Imax, given the 

value of pscat, because ptarg only contributes to a scale factor to the signal reconstruction. In the 

following, the target estimation will always be calculated from Eq.(8) assuming ptarg = 0. It is 

worth noting that the value of pscat is critical to our analysis and needs to be evaluated precisely. 

For that purpose, it is necessary to find in a region in the image with no target to estimate pscat. In 

our experiments, it is calculated by averaging the DOP values in the designated region displayed 

as the red square in Fig. 3(a),. 
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Schechner’s analysis is general and can be applied with linearly as well as circularly 

polarized light. In these earlier studies optical thickness was assumed to be less than 10. 

Consequently, the polarization memory effect [22] is irrelevant for seawater. 

 Based on the above survey, we conclude that studies on underwater target detection often 

quantify the improvement supplied by polarization by comparing the contrast between the target 

and background in intensity imaging mode and that obtained with polarized light. Other 

parameters are defined to assess image quality, include sometimes subjective criteria [23]. But, 

these parameters are not well suited to automatic target detection. On the contrary, optical 

correlation-based approaches can perform a comparison between a target image and a reference 

image, and are fully consistent with automatic target recognition and localization. The primary 

aim of this work is to quantify the improvement supplied by polarization imaging by using 

correlation as the detection criterion.  

 

3. Optical correlation 

 

In this work we propose a procedure which combines polarization imaging and an optical 

correlation-based method to remove backscatter signal and enhance the target detection in the 

scene. On the one hand, this procedure crucially relies on the compatibility of optical correlation 

methods with this experimental approach. On the other hand, it has been reported in several 

studies [26-33] that the correlation method employed has good detection and identification 

performances. However, due to practical reasons, only a numerical implementation of the 

correlator was considered. Optical correlation techniques have generated considerable interest in 

recent years to develop automatic target recognition systems [24-25], and face recognition 

algorithms [26]. New correlation filters [26-27] and metrics for decision criteria [28-29] were 



 

 9 

proposed to increase robustness and/or discriminating capacities. Moreover, numerical 

correlation techniques were compared to independent component analysis based approaches for 

biometric recognition applications [30]. The advantage of using correlation relies on the 

possibility to create multiple-reference composed filters allowing us to increase robustness and 

speed [31]. Recently, electronic implementation of correlation filters on field programmable gate 

array [32] and graphics processing unit [33] give the possibility to perform numerically 

correlation in real time with good performance and less difficulties than optically. 

The principle of image correlation is to compare a target image and a reference one. This 

results in a more or less intense peak in the correlation plane, depending on the degree of 

resemblance between the target and the reference images. The location of the correlation peak 

also gives the location of the target in the image. Two architectures are of particular interest: the 

Vanderlugt correlator (VLC) [34] and the joint transform correlator (JTC) [35]. The former is 

preferred for object identification whereas the latter is more suited for object tracking. Figure 1 

shows the synoptic diagram of VLC architecture used in this study. It is based on the 

multiplication of the spectrum of the target image by a correlation filter H fabricated from a 

reference image. An inverse Fourier transform is then performed which give the correlation 

plane. 

 

Much research has been done to create robust and/or discriminating filters, see, e.g. [26] 

and references therein. In this study, we use the phase-only filter (POF), which is defined as: 

 
 

 

*
,

,
,

R
H

R

 
 

 
 ,                (10) 

 

where µ and  are the coordinates in the frequency plane, R(µ,) is the spectrum of the reference 

image and * denotes the complex conjugate. POF is used instead of a matched filter because it is 



 

 10 

highly discriminating, i.e. the false alarm rate is strongly decreased. In this work, a segmented 

composite filter developed in Refs. [26-27] is used to increase the robustness of POF. This filter 

is built by including several reference images corresponding, e.g. to different orientations and/or 

scales of the target [26]. Thus, our filter represents a good compromise between the properties of 

discrimination and robustness.  

The criterion used for target recognition is the peak-to-correlation energy, which is 

defined as follows: 

 

 

,

,

,

,

M

peak

i j

N

correlation plane

i j

E i j

PCE

E i j







,          (11) 

 

where E  is the intensity of the correlation plane, N is the size of the correlation plane and M is 

the size of the correlation peak (9 pixels around the maximum were considered here). This 

criterion evaluates energy contained in the correlation peak compared to energy contained in the 

correlation plane. A high value of the PCE means a strong resemblance between the target and 

the reference image. A threshold value for the PCE can thus be chosen which is well suited for 

automatic target detection. The degree of similarity between the target object and the reference 

image is related to the height and width of the correlation peak. Good similarity is associated 

with a narrow and high correlation peak. However, the latter is not localized on a single pixel. In 

the current study dealing with noisy data we define the energy within the correlation peak as the 

energy around the correlation peak up to a 3 dB height. This corresponds to a 9 pixel 
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neighborhood around the correlation peak. Other criteria could have been chosen to determine 

the degree of similarity such as in Ref.[29].  

 

4. Experimental setup 

 

 The experimental setup used for underwater target detection is depicted in Fig. 2. The 

source is a He-Ne Laser emitting at 632.8 nm. The spatial coherence of the laser beam is 

scrambled by a rotating diffuser (BFI Optilas) in order to avoid speckle patterns. The beam is 

then expanded to illuminate the scene composed of a suspended immersed target. We used linear 

polarizers purchased from Newport and precision quarter wave plates (QWPs) obtained from 

Meadowlark Optics. All optical elements were antireflection-coated at 633 nm. The camera is a 

14 bits digital CCD camera (Stingray F-033, AVT) with a 656 492 resolution. The field of view 

for the experiments was 5 cm 5 cm. Input and output polarization states were selected with 

proper orientation of the polarizers and the QWPs. Linear polarization states (horizontal and 

vertical) are obtained by removing the QWPs and circular polarization states (right and left) are 

obtained by placing the QWPs at ±45° to the polarizers. The detection angle was set to =10° for 

the experiments. 

 

We used a glass tank filled with a scattering medium composed of 10 L of tap water and 

semi-skimmed or skimmed milk. Milk is composed of spherical particles of different size (casein 

molecules ~0.04-0.3 µm and fat globules ~1-20 µm). It has been a long-time that scattering 

experiments have suggested that milk can mimic the scattering properties of sea water. While 

semi-skimmed milk contains more fat globules resulting in a Mie scattering regime skimmed 

milk is mostly composed of small particles resulting in a dominant Rayleigh scattering regime. 
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The scattering coefficient s for skimmed milk and semi-skimmed milk are 0.42c cm
-1

 and 

1.40c cm
-1

, respectively, where c is the concentration of milk in water [36]. The attenuation 

length (or optical thickness)  is defined as the product of the scattering coefficient s by the 

physical depth d, so that  =sd. For the wavelength considered here, the absorption coefficient 

of milk can be safely ignored with respect to the scattering coefficient. Extinction coefficient 

data ranging between 0.1 and 4 m
-1

 were reported earlier for seawater. Milk concentration was 

adjusted to obtain extinction coefficient in this range. In realistic environment, targets have 

different reflectance and polarimetric responses [37]. Three targets with different reflectance and 

polarimetric responses were used, i.e. a plastic plug (DOP=0.1), a painted metal (DOP=0.3), and 

a rusted metal (DOP=0.9). Calculations were made with ptarg=0, because ptarg only contributes to 

a scale factor to the reconstructed signal image, i.e. Eq.(8). Several acquisitions were 

sequentially taken: intensity image (with no polarizers) denoted hereafter I, co- and cross-

linearly polarized light respectively abbreviated COL and CRL, and co- and cross-circularly 

polarized light respectively abbreviated COC and CRC. The signal estimations were then 

calculated from Eq.(8) for linearly and circularly polarized lights.  

 

5. Results and discussion 

 

The panels of Fig. 3 show images of the plastic plug for 20ml of skimmed milk (µs=0.08 cm
-1

, 

scattering mean free path ls = 12.5cm). Typically, the distance that light travels before reaching 

the target is 15cm, corresponding to an optical thickness of 1.2. Images taken with I and CRL 

modes, linear estimation, and in pure water are presented. Differences between these images 

merit discussion. 
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It is interesting to observe that the backscatter clearly appears in the intensity image (Fig. 

3(a)) in its left part. Another interesting feature is that the contours of the plastic plug are not 

well defined in the intensity image. In the CRL image shown in Fig. 3(b), most of the backscatter 

is suppressed. We observe that the backscatter has the same polarization as the incident polarized 

light so imaging in the opposite polarization mode is a way to limit the backscatter. However, the 

backscatter is not fully polarized and a substantial part of it is still present in the CRL image. In 

the estimation signal, i.e. Eq.(8), the backscatter is totally removed and the image is very close to 

the image obtained in pure water. Based on these observations, it appears that performing two 

measurements with two orthogonally polarized states leads to better performance than a single 

measurement. A photograph of the plastic plug is shown in Fig. 3(e). 

Fig. 4 shows a comparison between correlation planes and PCE for each image shown in 

Fig. 3. The reference image is taken as the image in clear water, i.e. Fig. 4(d), leading to the 

autocorrelation plane. Note that we consider normalized correlation planes with respect to the 

peak height in Fig. 4 and PCE values are multiplied by a factor of 10
4.

 

 We point out that Fig. 4(a) shows a very noisy correlation plane because the backscatter 

creates additional contours that correlate with the reference image ones. Consequently, PCE is 

small. The correlation plane looks better in the CRL image (Fig. 4(b)), and even better for the 

target estimation (Fig. 4(c)). The PCE parameter provides valuable information about images and 

can be useful for automatic target recognition. 

 In order to validate the advantage supplied by polarization imaging, several experiments 

were conducted with varying milk concentration and for three different targets (plastic plug, 

painted and rusted metal). Figure 5 illustrates that as the optical thickness increases in skimmed 

and semi-skimmed milk, the PCE tends to decrease for I, COL and CRL, COC and CRC imaging 

modes, and target estimations for linear (ESTL) and circular (ESTC) polarizations. It should be 
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noted that the PCE values are normalized by the highest value for one set of experiment 

(corresponding to a specific target). Hence, these values can safely be compared for different 

polarizations states.  

 

We find that all curves have the same behavior. For depolarizing media (plastic plug and 

painted metal) the PCE values (and thus the detection efficiency) are lower for COL and CRC 

than for I. Imaging with such polarization modes does not allow for backscatter suppression. 

Moreover, a part of the target signal is filtered with these modes. The PCE is higher for COC and 

CRL because of backscatter suppression. Larger PCEs are obtained for ESTL and ESTC for 

which full backscatter is suppressed. For polarization-maintaining medium (rusted metal) one 

should note that imaging with COC and CRL is not beneficial because a large part of the target 

signal is filtered as well as the backscatter. However, target estimation leads to better detection 

efficiency than for I, CRC, and COL. We note also that no significant differences can be seen 

between imaging with circularly and linearly polarized lights. We further find that higher optical 

thickness can be achieved in the case of semi-skimmed milk. This agrees with the fact, in Mie 

scattering regime, the backscatter is smaller than in Rayleigh scattering regime, and thus it 

requires more milk concentration to obtain significant veil. 

An important issue when dealing with target estimation is the value of pscat. Figure 6 

shows pscat as a function of optical thickness for experiments using skimmed milk. 

As one can see, pscat increases slightly at small optical thickness. This behavior is due to 

the small amount of backscatter which is almost non uniform over the averaging area. For optical 

thickness ranging between 0.2 and 0.4, pscat reaches its highest value (  0.8). If optical thickness 

is further increased, pscat progressively decreases because of the increasing number of multiply 

scattered photons collected by the detector. One should keep in mind that these values strongly 
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depend on the detector field of view [16]. As the signal estimation is very sensitive to pscat and 

because it is difficult to predict its evolution, the detection scheme must include a specific 

measure of pscat for each image. It requires selecting an area with no target but only the 

backscatter.  

 To gain more insight with realistic environment of target detection, e.g. underwater mine, 

experiments using turbid seawater (from Brest Bay area) and river water (Penfeld, Brest, France) 

were conducted. Painted metal like that used in experiments with milk is considered as the target. 

As the turbidity of the water is fixed target was progressively moved to vary optical thickness. 

Figure 7 (a) and (b) present PCE as a function of target depth for respectively seawater and lake 

water. The reference images are the painted metal in pure water taken at different depths. 

Likewise, our analysis suggests that adapted polarization imaging (CRL and COC) 

improves target detection compared to intensity imaging. Target estimation is the best way to 

achieve good detection when turbidity of the embedding medium is large. As turbidity ofwater is 

fixed and given the dimensions of our glass tank smaller optical thicknesses can be achieved in 

these experiments compared to our previous experiments with diluted milk. The turbidity of the 

lake water was found to be much smaller than that of seawater. 

 

6. Summary 

 

In summary, we find that polarization imaging associated to an optical correlation-based method 

as a decision criterion can improve underwater target detection. In case of a depolarizing object, 

performing one measurement using adapted polarization states (cross-linear or co-circular) leads 

to better performance than intensity imaging because it filters the major part of the backscatter 

and only a small part of the target signal. For polarization-maintaining objects, performing only 
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one measurement is insufficient to improve target detection because an important part of the 

signal is lost. However, whatever the target is, performing two measurements with two 

orthogonal polarization states improves recovery of the target signal by suppressing the 

backscatter that veils the object. The contours of the target are thus well defined which enhances 

correlation performance. Experiments performed in different scattering media and different 

targets showed that there is always an improvement in target detection when target estimation is 

considered. No difference in decision performance was found between linear and circular 

polarized lights. Although the two measurements required for signal estimation were obtain 

sequentially, it would be interesting to use recent progress made in snapshot polarization imaging 

[38,39] to obtain these measurements instantaneously.  
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Figure captions 

Fig.1: (Color online) Synoptic diagram of VLC architecture. FT denotes the Fourier transform. 

Fig.2: Experimental setup for underwater target detection. Pol denotes a linear polarizer. QWP is 

a quarter wave plates. L1, L2, L3, L4 are plano-convex convergent lenses. The detecting angle was 

set to =10°. 

Fig.3: (Color online) Images of the plastic plug when 20ml of skimmed milk were added to 10L 

of tap water. (a) intensity image, (b) cross linear image, (c) signal estimation image and (d) clear 

water (no milk) image. The red square indicates the area where the degree of polarization of the 

backscatter was measured for target estimation. (e) Photograph of the plastic plug. 

Fig.4: : (Color online) Correlation plane and PCE values (x10
4
) corresponding to the correlation 

of images displayed in Fig.3 with reference image (image in pure water). (a) intensity image I, 

(b) cross linear image (CRL), (c) target estimation image and (d) pure water (no milk) image. 

Fig.5. (Color online) (a,d) PCE versus optical thickness for the plastic plug and different 

imaging modes showed in the inset. (b,e) Same as in (a,d) for the painted metal. (c,f) Same as in 

(a,d) for the rusted metal. The scattering medium is composed of skimmed milk (a,b,c) and semi-

skimmed milk (d,e,f) diluted in tap water. 

Fig.6. Degree of polarization of the backscatter (pscat) versus optical thickness for experiments in 

skimmed milk. 

Fig.7. (Color online) (a) PCE as a function of target depth for painted metal in ocean water. (b) 

Same as in (a) for lake water.  
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Fig.1: (Color online) Synoptic diagram of VLC architecture. FT denotes the Fourier transform. 
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Fig.2: Experimental setup for underwater target detection. Pol denotes a linear polarizer. QWP is 

a quarter wave plates. L1, L2, L3, L4 are plano-convex convergent lenses. The detecting angle was 

set to =10°. 
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(e) 

Fig.3: (Color online) Images of the plastic plug when 20ml of skimmed milk were added to 10L 

of tap water. (a) intensity image, (b) cross linear image, (c) signal estimation image and (d) clear 

water (no milk) image. The red square indicates the area where the degree of polarization of the 

backscatter was measured for target estimation. (e) Photograph of the plastic plug. 
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Fig.4:  (Color online) Correlation plane and PCE values (x10
4
) corresponding to the correlation 

of images displayed in Fig.3 with reference image (image in pure water). (a) intensity image I, 

(b) cross linear image (CRL), (c) target estimation image and (d) pure water (no milk) image. 
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Fig.5. (Color online) (a,d) PCE versus optical thickness for the plastic plug and different 

imaging modes showed in the inset. (b,e) Same as in (a,d) for the painted metal. (c,f) Same as in 

(a,d) for the rusted metal. The scattering medium is composed of skimmed milk (a,b,c) and semi-

skimmed milk (d,e,f) diluted in tap water. 
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Fig.6. Degree of polarization of the backscatter (pscat) versus optical thickness for experiments in 

skimmed milk. 
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Fig.7. (Color online) (a) PCE as a function of target depth for painted metal in ocean water. (b) 

Same as in (a) for lake water. 


