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coincident critical eigenvalues is analyzed. In Sec. IV, some
numerical examples are illustrated. Some conclusions are drawn in
Sec. V. Finally, Appendix A supplies the background for the pertur
bation analysis, Appendix B gives some computational details, and
Appendices C and D address a related discussion.

II. Noncoincident Critical Eigenvalues

Let us consider a finite dimensional dynamical system, admitting
the equilibrium position x� 0 for any values of the control param
eters� :� f�; �gT . The motion around the origin is governed by the
linear (variational) equation

_x�A���x (1)

where x is the state vector, andA��� is the Jacobian matrix at�. The
goal of the analysis is to find the geometrical loci in the parameter �
plane at which A��� admits one or two eigenvalues with zero real
parts. Here, a bifurcation of codimension 1 or 2 takes place.

A. Eigenvalue Sensitivity

Let us assume first that the Jacobian matrix A�A��� of the
system admits two distinct critical eigenvalues at the (unknown)
bifurcation point C. In [7], it was shown that, given a matrix
A�A���, the following series expansion holds for its eigenvalues
�k��� (see Appendix A):
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in which Sk���� (k� 1; 2; �� �, �) are the eigenvalue sensitivities
at �, given by

�Sk����� :�
yH1 ���A����x1��� yH1 ���A����x1���
yH2 ���A����x2��� yH2 ���A����x2���

� �
(3)

and where A� :� @A=@�, A� :� @A=@�, the apex H denotes the
transpose conjugate and, moreover, xk��� and yk��� are the right
and left eigenvectors of A���, respectively, associated with �k���.

B. Searching for the Critical Point

The search for the (unknown) critical point C, at which
Re��k��c�� � 0 (k� 1; 2) (dynamic bifurcation), is performed
through an iterative scheme (Newton method) based on the linear
extrapolation of the eigenvalues. If an approximation�i � f�i; �igT
of�c is known, we look for parameter increments �� :� �i�1 � �i
such that Re��k��� ���� � 0; from Eq. (2), by neglecting the
reminder, it follows that

Re�S1���i�� Re�S1���i��
Re�S2���i�� Re�S2���i��

� �
�i�1 � �i
�i�1 � �i

� �
�� Re��1��i��

Re��2��i��

� �
(4)

If, in contrast, the bifurcation is of mixed static dynamic type, the Re
operator must be omitted in a row (the double zero case will be
analyzed later in the paper). It should be noted that Eq. (4) does not
require numerical evaluations of the sensitivities via incremental
ratios, as usually done in purely numerical methods, since these are
furnished by the perturbation analysis [Eq. (3)].

By resuming, the algorithm is as follows:
1) Evaluate (e.g., by a standard QR algorithm) the two eigenvalues

of matrix A�A��i� with the smallest real parts, likely to become
critical (e.g., one real and the other complex or two complex not
conjugate), with the associated right and left eigenvectors xk��i�,
yk��i�;

2) Compute, via Eq. (3), the four sensitivities Sk���i�;
3) Solve the linear system [Eq. (4)] for the i� 1 approximation of

the parameter vector �i�1 � f�i�1; �i�1gT ;

4) If j�i�1 � �ij> toll1 and jRe��k��i�1��j> toll2 (k� 1; 2),
then execute a new iteration with i� i� 1; if, instead, j�i�1 �
�ij 	 toll1 or jRe��k��i�1��j 	 toll2 (k� 1; 2), then assume
�c ��i�1.

C. Building Up Bifurcation Loci

Once the critical point C has been determined in the parameter
plane, the two curves originating from it, which are loci of simple
bifurcations, are sought for. On each of them, just one eigenvalue (�1
or �2, respectively) is critical, the other having a nonzero real part;
consequently, the relevant equation is Re��k��; ��� � 0 (or
�k��; �� � 0) for k� 1 or k� 2. This equation implicitly defines a
curve in the ��; �� plane, passing through C. After linearization
around a point �i � f�i; �igT , and according to Eq. (2), it reads

Re�Sk���i����i�1 � �i� � Re�Sk���i����i�1 � �i�
� �Re��k��i�� k� 1 or 2 (5)

An iterative scheme could directly be applied to Eq. (5) in order to
obtain a Cartesian representation for the curve of the form�� ����
or �� ����; however, as is well known, such a representation fails at
the turning points. Therefore, a parametric representation of the
curve [namely,�� ��s�, �� ��s�with s a parameter] is preferable.
To obtain it, a (constraint) scalar equation must be appended to
Eq. (5) in order to define themeaning of s; the more common choices
for the constraint are referred to in literature as the arclength method
or the pseudoarclength method [8] (Fig. 1). When a point �0 is
known on the curve [i.e., Re��k��0�� � 0], a close point is sought
iteratively as �i, �i�1; . . .. According to the arclength method,
j�i�1 � �0j � j�sj is fixed for some small increment j�sj of the
modulus of the parameter (with �s > 0 or �s < 0), and the
following constraint equation is appended to Eq. (5):���������������������������������������������������������

��i�1 � �0�2 � ��i�1 � �0�2
q

� j�sj (6)

According to the pseudoarclength method, ��i�1 � �0� 
 tk0 ��s
is instead prescribed, namely,

ak0��i�1 � �0� � bk0��i�1 � �0� ��s (7)

where tk0 � fak0; bk0gT is the unit vector tangent to the curve (k� 1
or 2) at �0 and, moreover,

ak0 :� �
Re�Sk���0���������������������������������������������������������������������

�Re�Sk���0���2 � �Re�Sk���0���2
q ; k� 1 or 2

bk0 :� �
Re�Sk���0���������������������������������������������������������������������

�Re�Sk���0���2 � �Re�Sk���0���2
q ; k� 1 or 2

(8)

are its components. Thus, in the two approaches, �i�1 moves on a
circle of radius j�sj centered at �0, or along a line that is parallel to

Fig. 1 Arclength and pseudoarclength iterative methods.

2048 LUONGO AND D’ANNIBALE



the normalnk0 to the curve at�0, at a distance j�sj from it (Fig. 1). In
both cases, the ambiguity of the sign of�s refers to the two opposite
directions in which the curve can be traveled.

The constraint equation (6) is nonlinear, whereas the constraint
equation (7) is linear. To keep the whole problem linear, the
pseudoarclength method is adopted here. The relevant algorithm is
detailed as follows:

1) Take the critical point �c as initial point �0 and evaluate the
sensitivities Sk���0� and Sk���0� via Eq. (3); then, compute the
direction cosines ak0 and bk0 [Eq. (8)];

2) Select a new point �1 (predictor phase) on the tangent tk0 �
fak0; bk0gT at�0 at a sufficiently small distance j�sj from�0, having
coordinates

�1 � �0 � ak�s; �1 � �0 � bk�s; k� 1 or 2 (9)

3) Solve iteratively (for i� 1; 2; . . .) the following equations in the
unknown �i�1, �i�1 (corrector phase):

Re�Sk���i�� Re�Sk���i��
ak0 bk0

� �
�i�1 � �i
�i�1 � �i

� �
� �Re��k��i��

�s

� �
(10)

4) If j�i�1 � �ij> toll1 and jRe��k��i�1��j> toll2 (k� 1 or 2),
then execute a new iteration [Eq. (10)]; if, instead, j�i�1 � �ij 	
toll1 or jRe��k��i�1��j 	 toll2 (k� 1 or 2), then assume as a new
point �0 ��i�1, and restart from step 2.

III. Coincident Critical Eigenvalues

A. Eigenvalue Sensitivity

The eigenvalue sensitivity analysis for a Jacobian matrix A��� is
more difficult when several eigenvalues coincide at the multiple
bifurcation pointC, being all zero (multiple zero bifurcation) or equal
to the same pair of complex conjugate purely imaginary numbers
(multiple Hopf bifurcation). In these cases, A��c� is (generally)
defective at the bifurcation; that is, it does not posses a complete set of
eigenvalues. Consequently, it is nearly defective close to the critical
point; that is, a complete set of eigenvectors does exist, but some of
them are nearly coincident. It was shown in [9] that sensitivities of
nearly defective eigenvalues cannot be evaluated independently, as in
Eq. (2), but they are, in contrast, coupled. Moreover, the nonana
lytical nature of the eigenvalues requires using fractional power
expansions in the parameters.

Here, we limit ourselves to the simplest case of two real critical
eigenvalues (double zero, or Takens Bogdanov, bifurcation), which
is generic in two parameter families of systems. As shown in [9], the
problem of two nearly coincident eigenvalues �1��� ’ �2��� of a
nearly defective matrixA��� is overcome by starting the expansion,
not from the actual system, but by an ideal system A0��; �����
belonging to an enlarged parameter space f�; �g in which the two
eigenvalues coalesce at �0��� :� ��1��� � �2����=2. To achieve
this goal, an inverse problem must be solved in which the small
additional parameter � 2 R must be determined in order to render
A0��; ����� defective. After that, the sensitivities of �0��� must be
evaluated.

According to [9] (see also Appendix A), the ideal defectivematrix
is

A 0��; ����� �A��� � ����x20���yH10��� (11)

where

����� 1
4
��1��� � �2����2

x20���� 1
2
�x1��� � x2����; y10���� ��1=2�y1���� y2����

x10���� 1
2
�1=2�x1���� x2����; y20���� y1��� � y2��� (12)

are the additional perturbation parameter � and the generalized right
and left eigenvectors �x20; y10� of A0��; �����, respectively; the
proper right and left eigenvectors �x10; y20� of the same matrix will
be used later. All these quantities are evaluated from the (nearly

coincident) eigenvalues�k and associated right and left eigenvectors,
xk and yk, of the given matrix A���. It should be noticed that, if the
eigenvalues �k are complex conjugate, than x10 and y10 are real,
while x20 and y20 are purely imaginary; based on this, it is easy to
check that all the quantities involved in the following analysis are
real.

Second order sensitivity analysis of A0��; �����, carried out
along the lines of [9], leads (after some manipulations) to the
following second degree sensitivity equation in the increment
��1;2 :� �1;2��� ��� � �0���:

��2 � �S1������� S1��������� � ����� � S2������
� S2������� �O�j��j3=2� � 0 (13)

where

S1���� :� yH20���A����x20��� � yH20���u�����
S2���� :� yH20���A����x10���; �� �; � (14)

are called sensitivities of order 1 and order 1
2
, respectively and,

moreover, u����� and u����� are solutions for the following linear
problems:(
�A0��� � �0���I�u����� � S2�x20��� �A����x10���
eThu

�
���� � 0; �� �; �

(15)

made unique by a normalization condition (here, eh is the hth N
dimensional canonical vector). Note that, when ��� ��� 0,
Eq. (13) correctly leads to �1 and �2. Therefore, ���� brings back
from the idealA0��; ����� to the actual systemA���, while �� and
�� account for the true perturbation; the two effects, however, cannot
be separated.

Equation (13) shows that ���O���� j��j�1=2�. If �� 0 (i.e.,
�� �c), then ��=��!1 when ��! 0, this denoting that
���c� is not analytical at the coalescence point. The increment�� is
therefore mainly governed by sensitivities of order 1

2
S2�; however,

there always exists a special combination of the increments of the
parameters �� (i.e., a singular direction in the parameter space) for
which S2� � 0, this entailing that ���O�j��j� in a narrow
angular sector containing this direction.

B. Searching for the Critical Point

Let us assume to know a trial set of parameters�i, close to�c, for
which the two critical conditions �1;2��c� � 0 are approximately
satisfied. To refine the approximation, we can use the sensitivity
equation (13) (with the remainder neglected), which furnishes, with
�� �i and ����i�1 � �i, the eigenvalues �1;2��i�1��
�0��i� ���1;2��i; ���; this guides us in choosing the increment
�� making �1;2��i�1� � 0. The operation is easily carried out if we
rewrite the sensitivity equation (13) in the form of a reduced
characteristic equation:

�2 � I1��; ����� I2��; ��� �O�j��j3=2� � 0 (16)

where

I1��; ��� :� S1������� S1������� 2�0���
I2��; ��� :� S2������� S2������ � �0���I1��; ���
� ���� � �20��� (17)

and we require the invariants to vanish simultaneously, namely,
I1��i; ��� � 0 and I2��i; ��� � 0; that is,

S1���i� S1���i�
S2���i� S2���i�

� �
�i�1 � �i
�i�1 � �i

� �
�� �1��� � �2���

��21��� � �22����=2

� �
(18)

From these equations, an enhanced approximation for the critical
parameters, �i�1 � f�i�1; �i�1gT , is drawn, and the procedure can
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be reiterated up to the desired tolerance. It is worth stressing that,
while the invariants are nonlinear in �, they are linear in the
increments ��, so that in the iterative approach, Eq. (18) still appears
in the linear form, as in the nondefective case [Eq. (4)].

By summarizing, the ith iteration of the algorithm is as follows:
1) Evaluate (e.g., by a standard QR algorithm) the two eigenvalues

of matrix A�A��i� having the smallest real parts (both real or
complex conjugate) and the associated right and left eigenvectors;

2) Compute the quantities in Eqs. (11) and (12);
3) Calculate u�����, u����� by using Eq. (15) and the sensitivity

coefficients in Eq. (14);
4) Solve Eq. (18) for the new parameter set�i�1 � f�i�1; �i�1gT ;
5) If j�i�1 � �ij> toll1 and jRe��k��i�1��j> toll2 (k� 1; 2),

then execute a new iteration with i� i� 1; if, instead, j�i�1 �
�ij 	 toll1 or jRe��k��i�1��j 	 toll2 (k� 1; 2), then assume
�c � �i�1.

C. Building Up the Bifurcation Loci

After having determined the critical point C, the construction of
the critical manifolds must be tackled. The two invariants in Eq. (17),
evaluated at���c and equated to zero, provide the equations of the
tangents to the two loci at the critical point: namely, I2��c; ��� � 0 is
the (straight line) tangent to the divergence locus, while
I1��c; ��� � 0 and I2��c; ���< 0 is the (straight semiline) tangent
to the Hopf locus. An iterative predictor corrector scheme, based on
the pseudoarclength method, is used again. A point�1 close to�c is
taken on one of these two lines (predictor phase); then (corrector
phase), the associated invariant is zeroed (i.e., Ik��1; ��� � 0, k� 1
or 2) together with a linear constraint equation. A new approximation
�2 � �1 � �� is obtained, and the procedure reiterated. When
convergence has been reached, a new point is predicted on the
tangent to follow the curve in the whole region of interest.

By summarizing, the algorithm is as follows:
1) Take the critical point �c as initial point �0 and evaluate the

sensitivities Sk���0� and Sk���0� (k� 1 or 2) and the vectorsu�����
and u�� ��� via Eqs. (14) and (15);

2) Select a new point �1 (predictor phase) on the tangent tk0 �
fak0; bk0gT at �0, at a sufficiently small distance j�sj from �0,
having coordinates

�1 � �0 � ak0�s; �1 � �0 � bk0�s; k� 1 or 2

(19)

where

ak0 :� �
S1���0�������������������������������������������������� �

�S1��2��0� � �S1��2��0�
q

bk0 :� �
S1���0���������������������������������������������������

�S1��2��0� � �S1��2��0�
q ; if k� 1 (20)

or

ak0 :� �
S2���0� � �0��0�S1���0�����������������������������������������������������������������������������������������������������������������������������

�S2���0� � �0��0�S1���0��2 � �S2���0� � �0��0�S1���0��2
q ;

bk0 :� �
S2���0� � �0��0�S1���0�����������������������������������������������������������������������������������������������������������������������������

�S2���0� � �0��0�S1���0��2 � �S2���0� � �0��0�S1���0��2
q ; if k� 2

(21)

3) Solve iteratively (for i� 1; 2; . . .) the following equations in the
unknowns �i�1 and �i�1 (corrector phase):

S1���i� S1���i�
ak0 bk0

" #
�i�1 � �i
�i�1 � �i

 !
�
�2�0��i�

�s

 !

if k� 1 (22)

or

S2���i� � �0��i�S1���i� S2���i� � �0��i�S1���i�
ak0 bk0

" #

�
�i�1 � �i
�i�1 � �i

 !
�

�20��� � ����
�s

 !
; if k� 2 (23)

4) If j�i�1 � �ij> toll1 and jRe��k��i�1��j> toll2 (k� 1 or 2),
then execute a new iteration equation (22) or equation (23); if,
instead, j�i�1 � �ij 	 toll1 or jRe��k��i�1��j 	 toll2 (k� 1 or 2),
then assume as a new point �0 � �i�1, and restart from step 2.

IV. Numerical Examples

Numerical examples are worked out in this section to validate the
algorithm via a comparison with known analytical solutions. They
concern 1) low dimensional naturally discrete systems and 2) higher
dimensional systems obtained by discretization of continuous
structures.

Before starting a numerical investigation based on iterative
procedures, it is recommended to carry out sensitivity analyses of the
results to the tolerances toll1;2 to be used in the algorithms. Even
concerning this task, the perturbation method reveals its power.
Indeed, when a nondefective codimension 2 bifurcation point is
analyzed, since ���� ��� � ���� �O����, a certain accepted
error on Re��� � 0 entails an error of the same magnitude on the
critical point on �c. In contrast, when a defective codimension 2
bifurcation point is studied, since ���� ��� � ���� �O���1=2�,
the same error entails a smaller error on the critical point. Similar
arguments hold for the codimension 1 loci construction. All these
theoretical considerations were confirmed by preliminary numerical
tests. In particular, it was found that, even reducing the tolerances to
10�2, nearly indistinguishable linear stability diagrams were
obtained. Finally, tolerances of 10�4 were selected.

A. Two-Dimensional Systems

The double pendulums illustrated in Fig. 2 are considered. The
rods are rigid and massless, with masses m lumped at the ends; the
elastic springs ki and the dashpots ci are linear. System 1 (in Fig. 2a)
is loaded by a deadweight P and a follower force F; system 2 (in
Fig. 2b) is loaded by a follower force F only. The (nondimen
sionalized) follower force F is taken as the � parameter, while the
(nondimensionalized) dead loadP, or the stiffness k2, are taken as the
� parameter for the two systems, respectively.

By choosing the rotations qi (i� 1; 2) of the two rods as the
Lagrangian parameter and x� �q1; _q1; q2; _q2�T as the state vector,
the equations of motion, linearized around the trivial configuration,
appear in the form of Eq. (1), where the Jacobian matrix A is

A �

0 1 0 0

�3�� �� � �3� 2� � � � � 2�
0 0 0 1

4� � �� � 4� �3�� �� 2� �3�

2
664

3
775 (24)

for system 1, and
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A �

0 1 0 0
�3���

2

���3�	�
2

2���
2

�
0 0 0 1

5��2���
2

��5�	�
2

��4��2�
2

���2 � 	�

2
664

3
775 (25)

for system 2. In Eqs. (24) and (25), the following nondimensional
parameters appear: � :� k1=�m!2‘2�, � :� c1=�m!‘2�, and � :�
F=�m!2‘� for both systems; � :� P=�m!2‘� for system 1; and
	� c2‘2=c1 and � :� k2=�m!2� for system 2. Selected numerical
values are taken for the auxiliary parameters, namely, �� 0:1 and
�� 1 for system 1; and �� 1:5, �� 1, and 	� 0:5 for system 2.

From the characteristic polynomial of the Jacobian matrix in
Eq. (24), it follows that system 1 undergoes a divergence Hopf
bifurcation at �c � ��2:35; 5:77�, i.e., for tensile dead load and
compressive follower force. By applying the procedure of Sec. II.B,
the iterations displayed in Fig. 3a were performed, starting from
points �0 lying on circles centered at �c having radii j�0 � �cj�
0:3; 0:5, respectively. Convergence was reached in a few steps from
all points of the smallest circle (unfilled symbols in the figure), while
some divergent iterationswere observed from the largest circle (filled
symbols). Then, starting from �c, and applying the procedure of
Sec. II.C, the bifurcation loci depicted in Fig. 3bwere obtained.Here,
the region of Fig. 3a is also reported.

From the Jacobian matrix of Eq. (25), it is found that system 2
experiences a double zero (DZ) bifurcation at �c � �0:15; 5:83�. A
tentative point �0 � �0:08; 8� was chosen, and both the iterative
procedure for nondefective and defective systems were applied. As it
appears in Fig. 4a, the algorithm based on sensitivity of the distinct
eigenvalues diverges, while the method grounded on nearly
coincident eigenvalue converges fast. The bifurcation loci origi
nating from �c are shown in Fig. 4b.

The exact bifurcation loci can also be drawn by the characteristic
polynomials of the Jacobian matrices [Eqs. (24) and (25)] by

applying the Routh Hurwitz criterion. For system 1, they turn out to
have the following equations (whereD is divergence locus andH is
Hopf locus):

D: �� 1
2
�3 � �


��������������������������
5 � 6�� �2

p
�

H: �� 0:33�4:03

��������������������������������
�1:76� 2:67�

p
� (26)

and, for system 2,

D: �� 1� 5�

�

H: �� 6:74 � 1:41� � 1:41
���������������������������������������������
�0:16 � ���23:78� ��

p
(27)

Boundaries in Fig. 3b and in Fig. 4b are indistinguishable (in this
scale) from the exact bifurcation loci equations (26) and (27).

B. Discretized Continuous Systems

To test the algorithm on larger systems, two different continuous
beams are studied, for which analytical solutions are available, and a
Galerkin spatial discretization is then performed.

The structure depicted in Fig. 5a (system 3) consists of a planar
viscoelastic beam, fixed at end A, constrained by a linear elastic
spring of stiffnessK at endB, and loaded at the tip by a follower force
of intensity F. The material behavior is assumed to be described by
the Kelvin Voigt rheological model, having elastic modulus E and

a)

b)
Fig. 2 Double pendulum a) loaded by a follower force and a dead load

and b) loaded by a follower force and viscoelastically braced.

a)

b)

2.8

Fig. 3 System 1: a) iterations to divergence-Hopf bifurcation point and

b) bifurcation loci (; S: stable region).
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viscous coefficient � (acting as an internal damping); moreover, the
beam is considered to lie on a linear purely viscous soil of constant c
(representing the external damping). If damping were not present at
all, the system would coincide with that studied in [10], where a
degenerate (not generic) tangential bifurcation occurs, which is not
analyzable by the theory developed here.

A similar structure is considered in Fig. 5b (system 4), obtained by
the previous one by removing all distributed damping and lumping it
at the tip of the beam bymeans of two linear dashpots of constantsCe
andCt of extensional and torsional types, respectively. System 4was
chosen to test the algorithm in a difficult case, since it was shown by
analytical methods in [11] that this beam exhibits a rich bifurcation
scenario containing several bifurcation points of different natures
close to each other.

Both beams are assumed to be inextensible and shear undeform
able, so that their deformed configurations are described by the
transversal displacement field u�s; t� only. AGalerkin discretization
is performed by assuming

u�s; t� �
Xn
k�1

qk�t�
k�s�

with 
k�s� known shape functions satisfying kinematic boundary
conditions and qk�t� unknown amplitudes leading to linearized
equations ofmotion, as in Eq. (1) (seeAppendix B for formulation of
the variational principle). In them, x� �q1; q2; . . . ; qn; _q1; _q2;
. . . ; _qn�T is the 2n vector of the Lagrangian coordinates, A�
A��; �� is the (2n � 2n) Jacobian matrix, and � and � are the
bifurcation parameters representing, for both systems, the non
dimensional tangential force F and the nondimensional spring
stiffness K, respectively.

1. Viscoelastic Beam

System 3 (Fig. 5a) is now analyzed. The first question to address
concerns the choice of the guess point �0 from which to start the
iterations. Although a hint about�0 could be derived by an analytical
solution for the original continuous system, a different strategy is
followed here in view of problems in which no exact solutions are
available, namely:

1) A rough discretization is preliminarily performed, leading to a
low dimensional system.

2) The Routh Hurwitz criterion is applied to gain coarse
information about the location of the codimension 2 bifurcation
point (if any).

3) The discretization is refined, and the iteration is started by the
point previously determined.

A rough discretization with n� 2 shape functions (four
dimensional system)was performed. Thefirst two bucklingmodes of
the (unbraced) cantilever under a conservative (dead load) axial force
were tentatively used. However, this coarse discretization lead to an
illusoryHopf divergence bifurcation point, whichwas not confirmed
by higher order discrete systems. Therefore, more accurate shape
functions were selected as the two first buckling modes of the
elastically braced cantilever under nonconservative (follower) load.
For a chosen value (�� 40) of the spring, they come out to be


1�s� � 1� 3:36s � cos�5:27s� � 0:64 sin�5:28s�

2�s� � 1 � 235:46s� cos�6:31s� � 37:31 sin�6:31s� (28)

From the Routh Hurwitz criterion, it follows that the four
dimensional system admits a divergence and a Hopf loci having
equations

D: �� 0:18�
 0:18
���������������������������������������������
�� � 4:81��� � 31:98�

p
� 9:81

H: �� 0:28�� 0:55
��������������������������������������������������
�2 � 281:84�� 2:2 
 106

p
� 808:84 (29)

intersecting each other at a DZ bifurcation point of coordinates
DZ: �c � �34:61; 17:54�.

The two loci in Eq. (29) are plotted in Fig. 6. If the proposed
algorithm is started from a point close to DZ, the same curves are
recovered for the four dimensional system.

a)

b)
Fig. 4 System 2: a) iterations to the DZbifurcation point (●: sensitivity

for nearly coincident eigenvalues;■: sensitivity for distinct eigenvalues)

and b) bifurcation loci (S: stable region).

a)

b)

Fig. 5 Planar beam under follower force: a) viscoelastic beam on
viscous soil, elastically braced, and b) elastic beam viscoelastically

braced.
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To refine the discretization, however, buckling modes of the
braced beam under follower force cannot be used, since they do not
constitute a complete system (their number is limited when � is
different from infinite, as it can be easily checked by the characteristic
equation). Therefore, use was made again of the buckling modes of
the unbraced beam under dead load:


k�s� � 1 � cos

�
�2k � 1��s

2

�
; k� 1; 2; . . . ; n (30)

and convergence was checked for increasing n. Results furnished by
the implemented numerical algorithm are displayed in Fig. 6 and
compared with that of the coarse system for eight dimensional
(n� 4) and 20 dimensional (n� 10) systems. Curveswere obtained
by adopting the starting point �0 � �34:61; 17:54�, thus finding
improved approximations for the DZ point, namely, DZ: �c �
�36:16; 18:81� for the eight dimensional system and DZ: �c �
�36:89; 18:72� for the 20 dimensional one. When these results are
compared with the analytical solution (see Appendix C), the more
refined solution is nearly undistinguishable from the exact one.

2. Elastic Beam with Lumped Damping

System 4 (Fig. 5b) is now addressed (see Appendix B for
formulation). For this beam, the presence of the viscous device at the
tip calls for selecting shape functions 
k�s� able to properly account
for the boundary conditions at B. Indeed, it was found that an
inaccurate choice of them would lead to erroneous results. Here,
consistently with the procedure suggested in [12], the following
shape functions were selected:


k�s� � 1 � cos

�
�2k � 1��s

2

�
; k� 1; 2; . . . ; n � 1 (31a)


n�s� � s2 �
Xn�1
k�1

ck
k�s� (31b)

where

ck �
�Z

1

o

s2
k�s� ds
�
=

�Z
1

o


2k�s� ds
�

are the coefficients of the series expansion of s2 in the basis f
k�s�g.
The first n � 1 elements of this set are the buckling eigenfunctions of
a cantilevered beam under a conservative axial load; the nth element
is a residue localized at the tip, obtained as the difference between a
parabola and its projection on the space spanned by the first n � 1
elements. The motivations for appending Eqs. (31a) and (31b) are
discussed in Appendix D.

The scenario furnished by the algorithm is displayed in Fig. 7 for
two different discretizations, namely, the eight dimensional system
(n� 4) and the 20 dimensional system (n� 10). Different kinds of
bifurcations, both defective and nondefective, are found to occur in
the parameter space. In particular, the algorithm finds four
bifurcation points (marked with filled symbols in Fig. 7), namely,
two divergence Hopf points (DH1;2), a DZ, and a Hopf Hopf (HH)
point. For the eight dimensional system, the algorithm furnishes the
following bifurcation points:DH1: �c � �36:43; 14:96�,DH2: �c�
�46:86; 21:48�, DZ: �c � �34:83; 16:53�, and HH: �c � �33:36;
15:62�. For the 20 dimensional system, they are DH1: �c�
�36:55; 14:92�, DH2: �c � �45:88; 21:35�, DZ: �c � �34:81;
16:47�, and HH: �c � �33:44; 15:61�. Some of the starting points
used in the algorithm are also shown in Fig. 7, represented by the
same unfilled symbol of the target point. In all cases, the procedure
converges after few iterations if the starting point is sufficiently close
to the bifurcation point. These results are compared with the exact
solutions furnished in [11] in order to check the error, both due to the
discretization procedure and to the tolerances of the algorithm. For
both the discretizations considered, the comparison is excellent, as
shown in Table 1.

The bifurcation loci originating from the various critical points are
shown in Fig. 7 for the two discretizations adopted. They are very
close to each other; moreover, the more refined solution is nearly
undistinguishable from the exact solution given in [11].

V. Conclusions

By exploiting the potentiality of an eigenvalue sensitivity analysis,
an iterative numerical perturbation method was implemented to
build up linear stability diagrams of two parameter dynamical
systems undergoing codimension 2 bifurcations. Both nondefective
and defective bifurcationswere studied, and specific algorithmswere
illustrated. Numerical examples were presented, relevant to discrete
or discretized mechanical systems, exhibiting Hopf divergence,
Hopf Hopf, or DZ bifurcations. The following conclusions were
drawn:

1) The new method consists of two steps:
a) Find the codimension 2 bifurcation point.
b) Build up the branches emanating from this point.

2) The method reverses the usual approach, according to which
one first looks for codimenson 1 bifurcation loci and then follows
them by checking, at each step, if a codimension 2 point is
encountered.

Fig. 6 System 3: bifurcation point and loci for different discretizations
(D: divergence locus; H: Hopf locus; S: stable region; �: nondimen-

sional follower force parameter; �: nondimensional stiffness parameter;

dim: dimensional).

Fig. 7 System 4: iterations to bifurcation points and bifurcation loci
(D: divergence locus; H: Hopf locus; S: stable region; �: nondimen-

sional follower force parameter; �: nondimensional stiffness parameter;

dim: dimensional).

Table 1 Relative error "‰ of the

critical points vs discretization degree

▲ DH1 ● DZ ■ HH

8 dimensional 2.87 1.25 2.53
20 dimensional 0.31 0.15 0.77
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3) Although, in the proposed method, the initial point of a Newton
procedure is likely more difficult to be determined, it was found that
the convergence to the codimension 2 bifurcation point is generally
fast when a sufficiently close initial guess of the point is chosen.

4) A strategy was suggested to facilitate the choice of the starting
point. It consists of a preliminary coarse (few degrees of freedom)
modeling of the system, making the search of the critical point
feasible via a Routh Hurwitz analysis. A successive numerical
analysis, carried out on a refined model, improves this result.

5) The algorithm gives results in excellent agreement with known
analytical solutions, when available.

6) Some interesting problems related to the choice of the shape
functions adopted in the discretizing continuous system were
discussed.

Appendix A: Eigenvalue Sensitivity Analysis

Sensitivity analysis consists of finding closed form expressions

for the eigenpairs � ~�; ~x� of a parameter dependent (perturbed)matrix
~A�A��� "��� (with "� 1 and j��j �O�1�) once the
eigenpairs ��0;x0� of a (unperturbed) matrix A0 :� A��� are

known. Accordingly, the solutions of the eigenvalue problem � ~A �
~�I� ~x� 0 are sought as a perturbation of the solutions of
�A0 � �0I�x0 � 0. Here, two different cases are shortly analyzed:

1) Variable �0 is a simple eigenvalue.
2) Variable �0 is a double defective eigenvalue; that is, only one

eigenvector is associated with it.
Then, the case of two nearly coincident eigenvalues with nearly

coincident eigenvectors is addressed.

I. Sensitivity of a Simple Eigenvalue

Matrix ~A and its eigenpairs are expanded in a series of perturbation
parameter ":

~A�A0 � "A1 �O�"2� ~�� �0 � "�1 �O�"2�
~x� x0 � "x1 �O�"2� (A1)

whereA1 �A;� �����. Substitution in the eigenvalue problem and
collection of the same order terms leads to the following perturbation
equations:

"0: �A0 � �0I�x0 � 0 (A2a)

": �A0 � �0I�x1 � �1x0 �A1x0 (A2b)

Equation (A2a) supplies the unperturbed�0 andx0. Then, solvability
of Eq. (A2b) requires the known term to be orthogonal to the left
eigenvector y0 [solution to �A0 � �0I�H y0 � 0], fromwhich the first
sensitivity follows:

�1 � yHk0A1xk0 (A3)

In Eq. (A3), the normalization condition yHk0xk0 � 1 has been used.
Equation (3) is grounded in Eq. (A3).

II. Sensitivity of a Defective Double Eigenvalue

In this case, generalized right and left eigenvectors exist for A0,
solving the recurrence equations:

�A0 � �0I�x10 � 0 (A4a)

�A0 � �0I�x20 � x10 (A4b)

�A0 � �0I�Hy20 � 0 (A5a)

�A0 � �0I�Hy10 � y20 (A5b)

Here, x10 and y20 are proper eigenvectors, and x20 and y10 are
index 2 eigenvectors, satisfying the orthonormalization conditions

yHi0xj0 � �ij. The following series expansions hold for ~A and its
eigenpairs:

~A�A0 � "A1 �O�"2� (A6a)

~�� �0 � "1=2�1 � "�2 � "3=2�3 �O�"2� (A6b)

~x� x0 � "1=2x1 � "x2 � "3=2x3 �O�"2� (A6c)

With Eqs. (A6), the eigenvalue problem furnishes the following
perturbation equations:

"0: �A0 � �0I�x0 � 0 (A7a)

"1=2: �A0 � �0I�x1 � �1x0 (A7b)

": �A0 � �0I�x2 � �1x1 � �2x0 �A1x0 (A7c)

"3=2: �A0 � �0I�x3 � �1x2 � �2x1 � �3x0 �A1x1 (A7d)

By solving them in a chain, using Eq. (A4b), and enforcing
solvability at the " and "3=2 orders, the following conditions are
obtained:

�21 � yH20A1x10 2�1�2 � �1yH20�A1x20 � u�� (A8)

in which u� is a particular solution of Eq. (A7c). They could be
solved for �1 and �2 separately, but this solution would break down
when�1 is zero or small (see [13] for further comments). Therefore, it
is more convenient to recombine them (reconstitution principle) in a

second degree sensitivity equation in the increment��: ~�� �0. By
observing that ��2 � "�21 � 2"3=2�1�2 �O�"2� and ��: "1=2�1�
O�"�, retaining terms up toO�"3=2�, and reabsorbing ", the following
sensitivity equation is obtained:

��2 � yH20�A1x20 � u����� yH20A1x10 � 0 (A9)

III. Sensitivity of Nearly Coincident Eigenvalues

Let us consider a nearly defective matrix Â :� A��̂� admitting

nearly coincident eigenvalues �̂1, �̂2 associated with nearly
coincident eigenvectors x̂1, x̂2 and ŷ1, ŷ2. This case can be studied
(see [9]) by first looking for an (exactly) defective matrix

A0 :� Â � �A�, in which � 2 R is a small mistuning parameter and
A� a properly chosen matrix (inverse problem); after that, the
sensitivities of �0 must be evaluated as a function of both �� and �.
According to [9], it is found that

�� 1
4
��̂1 � �̂2�2 A� :� x20���yH10��� (A10)

where

x 20 � 1
2
��1=2�x̂1 � x̂2� y10 � ŷ1 � ŷ2 (A11)

From Eqs. (A6a) and (A11), the perturbed matrix then reads

~A� Â� "A;� ���O�"2� �A0 � "��A� �A;� ��� �O�"2�
(A12)

where the rescaling �! "� has been performed. By exploiting
results of the previous subsection, the sensitivity equation (A9) still
holds, with A1 now redefined as A1 :� �A� �A;� ��, i.e.,
including the mistuning parameter �. This form is the one used in
Eq. (13).
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Appendix B: Discrete Formulation
of Cantilevered Beams

Systems in Fig. 5a (system 3) and Fig. 5b (system 4) are
considered, for which the first variation of extended Hamilton’s
principle reads

�H�
Z
t2

t1

�Z
1

0

� _u� _u � u00�u00 � 2�u0�u0� ds

� ��uB � 2�u0B��uB � �Wd

�
dt� 0 (B1)

where �Wd is the virtual work done by damping forces; for the two
systems, it reads

�Wd �
Z

1

0

��� _u00�u00 � � _u�u� ds

�Wd ���e _uB�uB � �t _u0B�u0B (B2)

where u�s; t� is the transversal displacement of the beam at the
nondimensional abscissa s 2 �0; 1� and nondimensional time t;� :�
F‘2=2EI and � :� K‘3=EI (for both systems); � :� �!=E and
� :� c!‘4=EI (for system 3); and �e :� Ce!‘3=EI and �t :�
Ct!‘=EI (for system 4) are nondimensional parameters; ‘ is the
length of the beam,EI is the bending stiffness, and!� �EI=m‘4�1=2
is a frequency. The values of the auxiliary parameters are taken equal
to �� 0:4 and �� 0:3 for system 3 and �e � 0:25 and �t � 0:5 for
system 4.

By using

u�s; t� �
Xn
k�1

qk�t�
k�s�

�u�s; t� �
Xn
k�1

�qk�t�
k�s�

into Eq. (B1), and performing standard steps, the equations ofmotion
are found in the form of Eq. (1), where

A ��; �� :� 0 I
�M�1K �M�1C

� �
(B3)

is the (2n � 2n) Jacobian matrix, 0 is the (n � n) null matrix, I is the
(n � n) identity matrix, and

M :�
�Z

1

0


j
k ds

�
(B4)

K :�
�Z

1

0


00j �s�
00k�s� ds� 2�

Z
1

0


0j�s�
0k�s� ds� �
j�1�
k�1�

� 2�
0j�1�
0k�1�
�

(B5)

are the mass and stiffness matrices for both systems, respectively.
The damping matrix for system 3 is

C :�
�
�

Z
1

0


00j �s�
00k�s� ds� �
Z

1

0


j�s�
k�s� ds
�

(B6)

while, for system 4, it reads

C :� ��e
j�1�
k�1� � �t
0j�1�
0k�1�� (B7)

Appendix C: Exact Bifurcation Loci for System 3

The actual configuration of the rectilinear beam in Fig. 5a is
described by the transversal displacement field of the beam axis
u�s; t�, where s 2 �0; ‘� is a curvilinear abscissa and t is the time. The
motion around the trivial configuration is governed by the following
nondimensional equations and boundary conditions:

�u� uIV � � _uIV � � _u� 2�u00 � 0 (C1a)

uA � 0 (C1b)

u0A � 0 (C1c)

u00B � � _u00B � 0 (C1d)

u000B � � _u000B � �uB � 0 (C1e)

where � :� F‘2=2EI, � :� K‘3=EI, � :� �!=E, and � :�
c!‘4=EI are nondimensional parameters and !� �EI=m‘4�1=2 is
a frequency; ‘ is the length of the beam,EI is the bending stiffness, a
dot denotes the time differentiation, the index A evaluation is at
s� 0, and the index B evaluation is at s� ‘.

By letting u�s; t� � 
�s� exp��t�, a differential eigenvalue
problem follows:

�1� ���
IV � 2�
00 � ��2 � ���
� 0 (C2a)


A � 0 (C2b)


0A � 0 (C2c)

�1� ���
00B � 0 (C2d)

�1� ���
000B � �
B � 0 (C2e)

with � 2 C as the eigenvalue, and 
�s� 2 C as the associated (right)
eigenvector. Equation (C2a) admits the solution


�s� � c1�cos�ps� � cosh�qs�� � c2
�
sin�ps� � p

q
sinh�qs�

�
(C3)

where

q2 :�
���������������������������������������������������
�2 � �1� ������� �2�

p
� �

�1� ��� (C4a)

p2 :�
���������������������������������������������������
�2 � �1� ������� �2�

p
� �

�1� ��� (C4b)

Moreover, c :� �c1; c2�T are arbitrary constants, and boundary
conditions at A have already been accounted for. It should be noted
that factorp=q has been introduced in Eq. (C3), in order it holds even
when q! 0.

By enforcing boundary conditions at B, two algebraic equations
follow:

S �c� 0 (C5)

where

S � :�
��1� ����p2 cos�p� � q2 cosh�q�� �p�1� ����p sin�p� � q sinh�q��

��cosh�q� � cos�p��� �p�1� ����p2 cos�p� � q2 cosh�q���
�p3�1� ����sin�p� � sinh�q�� �� sin�p� � p� sinh�q�=q

" #
(C6)
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is the dynamic stiffness matrix of the system, depending on the
eigenvalue �. This matrix, however, also depends on the control
parameters ��; �� and the auxiliary parameters ��; ��; that is,
S� � S���; �;�; ��.

The characteristic equation supplies the eigenvalues as roots of
detS���; �; �; �� � 0. To restate the problem in real variables, the
eigenvalues are written as �� 	� i!, with 	, ! 2 R, and then the
characteristic equation is rewritten in the form

f�	; !;�; �; �; �� � ig�	; !;�; �;�; �� � 0 (C7)

withf,g 2 R. For afixed set of parameter ��; �;�; ��T, the systemof
two real equations f� 0, g� 0 furnishes the unknowns 	, !.

Hopf bifurcation occurs at themanifoldH onwhich 	� 0,! ≠ 0,
defined by �

f�0; !;�; �;�; �� � 0

g�0; !;�; �;�; �� � 0
(C8)

These equations, for a given pair of damping coefficients ��; ��,
implicitly define a multibranch curve H in the ��; �� plane,
parameterized by the ! parameter. No closed-form solutions (only
numerical) can be pursued for Eqs. (C8).

Divergence occurs at locusD on which f�0; 0;�; �;�; �� � 0 and
g�0; 0;�; �; �; �� � 0. Since g is found to vanish identically, and f is
found to be independent of the damping coefficients,D is implicitly
defined by f�0; 0;�; �; 0; 0� � 0.

Appendix D: Discussion on Shape Functions
Used for System 4

Motivations for adopting the shape functions in Eq. (31) for
Galerkin discretization of system 4 are discussed here.

1) Since the buckling eigenfunction equation (31a) is not able to
describe the bending moment at end B caused by the torsional
dashpot, it needs to enlarge the set of the shape functions by including
an element for which the second derivative does not vanish atB (e.g.,
a parabola).

2) If 
n�s� � s2 were simply taken due to the fact that

lim
n!1

Xn�1
k�1

ck
k�s� � s2 � 0

s 2 �0; 1� [i.e., the series of eigenfunctions tends to s2 when n!1
(everywhere, except at s� 1)], large stiffness and mass matrices
would be found to be nearly singular. Indeed, the nontrivial set of
Lagrangian coordinates qk�t� � ck (k� 1; 2; . . . ; n � 1), qn�t� �
�1 describes the trivial motion

u�s; t� �
Xn
k�1

qk�t�
k�s� � 0

To avoid this occurrence,
n�s�must bemade orthogonal to the space
of the first n � 1 shape functions, as made in Eq. (31b). Figure D1
shows that, when n!1, the second derivative of 
n�s� tends to the
Dirac delta at s� 1.

In closing, it is worth noticing that, since the mechanical behavior
of the system is strongly dependent of the concentrated bending
moment at B, if a discretization were performed not including a
function 
n�s�, as in Eq. (31b), some critical points would have been
lost and, consequently, a wrong scenario would have been obtained
that was different from that of Fig. 7.
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Fig. D1 Second derivative of the residue function for different

discretizations (dashed line: five buckling eigenfunctions; solid line: 20
buckling eigenfunctions).
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