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of the three sources of excitation were analyzed, and the bifurcation diagrams in terms of the unfolding parameters (wind
velocity and frequency detuning) were drawn.

In this paper, it is hypothesized that two towers, with different mechanical properties, are close enough to be linked by
a purely viscous device, able to mitigate the wind induced oscillations that each tower would experience if it were
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unlinked. The objective of the study is to investigate the effectiveness of the viscous connection, as passive controller, both
in linear and nonlinear regimes. To this end, a system constituted by two towers, subjected to turbulent multi frequency
wind, is considered. In particular one of the two towers is assumed to be resonant with the turbulent wind, while the other
tower, more stiff and not in resonance condition, is linked to the first tower by a nonlinear viscous device. The towers are
multistory shear type frames modeled, on the same framework of [18], through a corresponding homogeneous scheme of
continuous shear rods. After the application of a Galerkin projection, the resulting 2 d.o.f. coupled nonlinear system, in
which the three kinds of excitations are concurrently present, is handled with the Multiple Scale Method (see [19]).
A bifurcation analysis is carried out and the equilibrium solutions, representing steady (periodic or quasi periodic) oscillations,
are analyzed in the space of the bifurcation parameters. Their stability is discussed, highlighting the beneficial influence of the
viscous device on the response of the structure.

2. The model

2.1. Continuous model

Two multistory shear type towers of different square sections are exposed to unsteady wind, uniformly acting all along
their heights. They are linked by a nonlinear viscous device at the tip. The dynamics of the structure are studied in the
cross wind plane (see Fig. 1), by neglecting the curvature in the orthogonal direction, which is typically considered as a
small imperfection.

In Fig. 1, v1j
ðtÞ and v2k

ðtÞ are the (time dependent) cross wind displacements of the j th and k th stories of the left and
right tower, respectively. The inter story heights of the two towers are h1 and h2, and the dimensions of the cross sections
are B1 � B1 and B2 � B2, respectively. The total height of both the towers is ‘.

A corresponding homogeneous model, constituted by two planar rods, undergoing purely shear strain (shear rods),
clamped at one end and linked with the viscous device at the tip, is adopted (see Fig. 2). All geometrical and mechanical
nonlinearities are neglected for the rods, so that the passive controller and the aerodynamic forces are the unique sources
of nonlinearities of the system. This is a consequence of having linearized the kinematics, according to the fact that
cantilever beams exhibit a weak nonlinear behavior (see, e.g. [20]). A discussion on the implications of the continuous
modeling is carried out in [18], where additional details are given; here the model is briefly summarized.
B2

B2

B1

B1

Fig. 1. Frontal (a) and top (b) views of the two towers exposed to the wind.



The shear rod is a one dimensional, inextensional, polar continuum, constituted by a flexible axis line and by rigid cross
sections sliding in their plane. For the i th rod, its deformed configuration is described by the transverse displacement of the
axis line viðs,tÞ (i¼1,2) at abscissa s and time t. The balance equation, expressing equilibrium in transverse direction, is

T 0ðs,tÞþp ðs,tÞ ¼ 0 (1)

Fig. 2. Frontal view of the homogeneous model.
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where Tiðs,tÞ is the shear stress, piðs,tÞ the load linear density, and a dash denotes space differentiation. By assuming a visco
elastic constitutive law, obeying the Kelvin Voigt model, it follows that

Tiðs,tÞ ¼ GAiv
0
iðs,tÞþZi

_v 0iðs,tÞ (2)

where GAi is the elastic shear stiffness, Zi the internal damping coefficient and a dot denotes time differentiation. The load
includes inertial, external damping and aerodynamic effects, so that

piðs,tÞ ¼ miviðs,tÞ ci _viðs,tÞþpai
ðs,tÞ (3)

mi being the mass per unit length, ci the external damping coefficient and pai
ðs,tÞ the linear density of aerodynamic forces, to be

properly modeled. In conclusion, the balance equations read

GA1v00i ðs,tÞþZi
_v 00i ðs,tÞ miviðs,tÞ ci _viðs,tÞþpai

ðs,tÞ ¼ 0, i¼ 1;2 (4)

The value of the homogeneous shear stiffness for each tower is identified by equating the strain energy density of the
discrete and the homogeneous models: it holds that GAi ¼ nið12EIi=h2

i Þ, where ni is the number of columns in the generic
story and EIi is the bending stiffness of each column, assumed the same throughout the tower.

The aerodynamic part of the load is related to the wind, which blows with a time dependent velocity U(t). It applies lift
forces, on the i th rod (i¼1,2), lying on the plane of the structure (see [21]), of the type

pai
¼

1

2
rU2Bi A0þA1

_vi

U

� �
þA2

_vi

U

� �2

þA3

_vi

U

� �3
" #

(5)

where Aj (j¼ 0;1,2;3) are the aerodynamic coefficients relevant to square sections and r the air mass density. Coherently
with [18], the wind velocity is decomposed as UðtÞ ¼UþuðtÞ, where U is the average steady component, and u(t) is the
(small) turbulent part, assumed periodic in time. Taylor’s polynomial expansion provides the following expressions for the
lift force on the two towers:

pai
¼ 1

2rBi½C0þC1 _viþC2 _v
2
i þC3 _v

3
i � (6)

where C0 ¼A0ðU
2
þ2UuðtÞÞ, C1 ¼A1ðUþuðtÞÞ, C2 ¼A2, and C3 ¼A3ð1=U uðtÞ=U

2
Þ. Therefore, the aerodynamic force provides,

by means of its steady part, terms which can be responsible for galloping and, by means of its turbulent part, periodic time
dependent terms.

The boundary conditions for Eq. (4) are

við0,tÞ ¼ 0

GAiv
0
ið‘,tÞþZi

_v 0ið‘,tÞ ¼ 8 f ð _v1ð‘,tÞ _v2ð‘,tÞÞ (7)

where the upper (lower) sign holds for the left (right) tower. Moreover, f is the force exerted by the viscous device,
depending on the relative velocity of the tip sections. It is supposed to have a constitutive law of the f ð _DÞ ¼ k1

_Dþk3
_D

3

type, where _D :¼ _v1ð‘Þ _v2ð‘Þ, and where k1 and k3 are known parameters. It provides linear and cubic coupling terms in
the system.

Non dimensional quantities are introduced here:

sn ¼
s

‘
, tn ¼o1t, vn

i ¼
vi

‘
, U

n
¼

U

U 0

, un ¼
u

U0

(8)



where o1 is the first natural frequency of the left beam and U0 is a reference value of the wind velocity, defined in the
following subsection, whose meaning will be clear soon. The star will be dropped ahead for convenience of notation.

2.2. Discrete model

D. Zulli, A. Luongo / Journal of Sound and Vibration 331 (2012) 365–383368
The system (4) (7) is discretized as a 2 d.o.f. system, via the Galerkin method, assuming as trial functions the first in
plane mode for each rod, evaluated in the absence of wind, (external and internal) damping and viscous device.
As extensively discussed in [18], the use of the sole first mode for each tower is justified by the effect of damping.
According to the Rayleigh model adopted, the external viscous component (proportional to ci) entails a decrement of the
modal damping ratio with the mode number, while the internal viscous component (proportional to Zi) increases such a
ratio (see the later Eq. (113,4)). Since the system is internally damped at a sufficient extent (as it generally happens in
buildings), the higher modes weakly participate to the overall response. A numerical estimation of the contribution of the
second mode is given in [18].

According to the previous discussion, it is assumed that v1ðs,tÞ ¼ xðtÞf1ðsÞ and v2ðs,tÞ ¼ yðtÞf2ðsÞ, where xðtÞ,yðtÞ are the
unknown (non dimensional) amplitudes of the tips of the two rods, and

fiðsÞ ¼ sin
p
2

s
� �

(9)

It should be noted that, since f0ið1Þ ¼ 0, the internal viscous force Zi
_v 0ið‘,tÞ at the boundary (Eq. (7)) does not produce work

in the trial function, so that its contribution to the motion is lost. However, since Zioi5GAi, it is negligible with respect to
the elastic forces.

The two resulting second order, non homogeneous, time periodic, ordinary differential equations read

xþð2x1ð1 U Þ b1uðtÞÞ _xþxþb2 _x
2
þ

b31

U
þ

b32

U
2

uðtÞ

 !
_x3
þk1ð _x _yÞþk3ð _x _yÞ3 ¼ f1UuðtÞþ f3U

2

y ð2x2or ca2
U b4uðtÞÞ _yþo2

r yþb5 _y
2
þ

b61

U
þ

b62

U
2

uðtÞ

 !
_y3 k2ð _x _yÞ k4ð _x _yÞ3 ¼ f2UuðtÞþ f4U

2
(10)

where or :¼ o2=o1 is the ratio between the natural frequencies of the two rods; x1 and x2 are the structural modal
damping ratios; the dot represents here differentiation with respect to the non dimensional time. The expressions of the
coefficients of Eq. (10) are

o1 ¼
p
2‘

GA1

m1

s
, o2 ¼

p
2‘

GA2

m2

s
, x1 ¼

Z1o1

2GA1
þ

c1

2m1o1

x2 ¼
Z2o2

2GA2
þ

c2

2m2o2
, b1 ¼ 2x1, b2 ¼

4rA2B1‘

3pm1

b31 ¼
3rA3B1‘

2o1

8m1
, b32 ¼ b31, k1 ¼

2k1

m1o1
, k3 ¼

2k3o1

m1‘

U0 ¼
4m1o1x1

rB1A1
, b¼

B1

B2
, a¼ m2

m1
, f1 ¼

4rB1A0U
2

0

po2
1‘m1

, f3 ¼
f1

a

ca2
¼

b
a 2x1, b4 ¼ ca2

, b5 ¼
b
a b2, b61 ¼

b
a b31

b62 ¼
b
a

b32, k2 ¼
k1

a
, k4 ¼

k3

a
, f2 ¼

f1

a
, f4 ¼

f3

a
(11)

The natural frequencies o1,o2 are assumed to be incommensurable, i.e. there is no internal resonance. The turbulent
part is considered as periodic and constituted of its first two frequencies: uðtÞ ¼ u1 sinðOtÞþu2 sinð2OtÞ, where u1 and u2

are two amplitudes and O is the fundamental frequency. If the frequency of the turbulence is assumed close to Oc :¼ 1, the
external excitation becomes 1:1 resonant and the parametric excitation becomes 1:2 resonant with the left tower.

From Eq. (101) it follows that, when the non dimensional wind velocity assumes the critical value U ¼Uc :¼ 1 and
uðtÞ ¼ 0, the total damping (i.e. structural plus aerodynamic) of the left tower vanishes. Therefore U0 in Eq. (84) represents
the dimensional critical (Hopf) value of the mean velocity, whose expression is shown in Eq. (1111), when this tower is
unlinked. Since the coupling of the viscous device is assumed small, it is expected that the critical velocity of the two
tower system is close to 1, but hopefully higher. Eq. (102) shows that, due to the different mechanical and geometrical
properties of the two sub systems, the right tower undergoes a Hopf bifurcation at a (non dimensional) velocity value
close to Uc2

:¼ 2x2or=ca2
. If Uc2

a1 (non interaction case), then the passive controller acts as if it connected the left tower
to the ground, so that its beneficial effects are quite obvious. In contrast, the most interesting case occurs when the right
tower bifurcates at a critical value Uc2

¼ 1 (interaction case), i.e. when a more degenerate non resonant double Hopf



bifurcation manifests itself for the coupled system. The perfect coincidence (for the unlinked system) occurs when
x2 ¼ x2c

:¼ ca2
=2or . To analyze this codimension two bifurcation, in conjunction with external/parametric excitation, three

bifurcation parameters are necessary. They are chosen as the velocity U , the damping ratio x2 and the forcing frequency O.
The objective is to study the behavior of the system in the space of the bifurcation parameters in the neighborhood of the
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critical point ðUc ,x2c
,OcÞ ¼ ð1,ca2

=2or ,1Þ. The remaining parameters (including x1) are taken as fixed auxiliary parameters.

3. The multiple scale analysis

A multiple scale perturbation analysis is carried out in Eqs. (10), to build up the bifurcation equations governing the
long time motion on the Center Manifold [1]. Since this manifold, in the double Hopf bifurcation under study, is four
dimensional, the 2 d.o.f. system (10) cannot be further reduced. However, by exploiting the capability of the Multiple Scale
Method to filter the fast dynamics, bifurcation equations for the slow flow are expected, already in normal form, whose
analysis is much more easier than the original equations (10).

A dimensionless small parameter e is introduced and increments of the critical parameters are defined as

U ¼ 1þeV

x2 ¼ x2c
ez

O¼ 1þes (12)

with OðVÞ ¼OðzÞ ¼OðsÞ ¼ 1; V will be referred to as the main bifurcation parameter, z the splitting and s the detuning
parameter. Moreover the dependent variables (x, y) and the coefficient of Eqs. (10) are rescaled as follows: ðx,yÞ ¼ e1=2ðx̂,ŷÞ;
ðb1,b4Þ ¼ eðb̂1,b̂4Þ; ðb2,b5Þ ¼ e1=2ðb̂2,b̂5Þ; ðk1,k2Þ ¼ eðk̂1,k̂2Þ; ðf1,f2,f3,f4Þ ¼ e3=2ðf̂ 1, f̂ 2, f̂ 3, f̂ 4Þ. The other coefficients are of order 1.
This means that linear damping, external and parametric excitation, as well as the nonlinearities are ordered so that they
appear, all together, at the highest order perturbation equations here considered.

3.1. Perturbation equations

To apply the Multiple Scale Method, the dependent variables are also expanded as

x̂

ŷ

( )
¼

x0

y0

( )
þe

x1

y1

( )
(13)

After introducing two independent time scales t0 :¼ t and t1 :¼ et, the derivative with respect to the time assumes the
expression d=dt¼ d0þed1, where di :¼ q=qti. As a consequence, the perturbation equations, divided by e1=2, read (omitting
the hats)

Oðe0Þ :
d2

0x0þx0 ¼ 0

d2
0y0þo2

r y0 ¼ 0

(

Oðe1Þ :

d2
0x1þx1 ¼ 2d0d1x0þð2x1V k1þb1uðt0ÞÞd0x0

þk1d0y0 k3ðd0x0 d0y0Þ
3 b2ðd0x0Þ

2

b31þb32uðt0Þð Þðd0x0Þ
3
þ f1uðt0Þþ f3

d2
0y1þo2

r y1 ¼ 2d0d1y0þðca2
Vþ2zor k2þb4uðt0ÞÞd0y0

þk2d0x0þk4ðd0x0 d0y0Þ
3 b5ðd0y0Þ

2

b61þb62uðt0Þð Þðd0y0Þ
3
þ f2uðt0Þþ f4

8>>>>>>>>><
>>>>>>>>>:

(14)

Eq. (141) admits the following solution:

x0

y0

( )
¼

A1ðt1Þexpðit0Þ

A2ðt1Þexpðiort0Þ

( )
þcc (15)

where cc denotes the complex conjugate, i is the imaginary unit and A1,A2 are unknown complex amplitudes. In terms of
the detuning parameter s, the turbulent part can be written as

uðt0Þ ¼
1

2
u1i expðið1þesÞt0Þþ

1

2
u2i expð2ið1þesÞt0Þþcc (16)

By substituting Eqs. (15) and (16) in Eq. (142) and by zeroing the secular terms which arise in the right hand side, a set
of differential equations in A1,A2 is obtained. Hence, by coming back to the true (non dimensional) time t, this set of
equations provides the amplitude modulation equations (AME). They read as

_A1 ¼
1

2
ð2x1V k1ÞA1 3k3o2

r A1A2A2
3

2
ðk3þb31ÞA

2
1A1

f1u1

4
eistþ i

b1

4
u2A1e2istþ i

b32

4
u2A3

1e�2ist i
3

4
b32u2A1A

2

1e2ist



_A2 ¼
1
2 ðca2

Vþ2zor k2ÞA2 3k4A1A2A1
3
2ðb61þk4Þo2

r A2
2A2 (17)

It is worth noticing that the turbulent component provides external excitation by its component of amplitude u1, and
parametric excitation (both linear and cubic) by its component of amplitude u2. Eqs. (17) also give the (split) critical values of
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the main parameter, as a first order perturbation of the (coalescent) double Hopf value Uc ¼ 1. By zeroing the coefficients of the
linear part of the right member, it follows that the increments in the critical wind velocity are Vc1

¼ k1=2x1, Vc2
¼ ðk2 2

zorÞ=ca2
. They are due to the passive controller (namely, its linear characteristic) and to the splitting parameter.

The polar form of Eqs. (17), obtained posing A1 :¼
1
2 a1eiW1 , A2 :¼

1
2 a2eiW2 , j1 :¼ st W1 and j2 :¼ W2 (and referred as polar

amplitude modulation equations), is

_a1 ¼
1

2
2x1V k1

1

2
b1u2sinð2j1Þ

� �
a1

3

4
k3o2

r a1a2
2

3

8
k3þ

3

8
b31

b32

4
u2sinð2j1Þ

� �
a3

1

f1

2
u1 cos j1

_a2 ¼
1
2 ðca2

V k2þzorÞa2
3
4 k4a2

1a2
3
8o

2
r a3

2ðk4þb61Þ

a1 _j1 ¼ s b1

4
u2cosð2j1Þ

� �
a1þ

b32

8
u2cosð2j1Þþ

f1

2
u1 sin j1

a2 _j2 ¼ 0 (18)

The variable j2 turns out to be worthless, being Eq. (184) uncoupled and trivial.
Eqs. (17) suggest the following remarks. (a) The analysis includes the case in which the right tower possess a critical

velocity greater than 1 (simple Hopf bifurcation case). Indeed, by letting A2 ¼ 0, Eq. (171) is identically satisfied and
Eq. (172) (or, in polar form, Eqs. (181,3)) governs the system. Therefore, mono modal solutions A1a0,A2 ¼ 0, which are
going to be analyzed in the next subsection, can also be considered as the unique solutions of this non interaction case.
(b) The turbulence directly affects the left tower only, since u1 and u2 do not appear in Eq. (182); however, due to the
coupling term k4 in Eq. (182), the right tower is excited too. (c) If the towers are unlinked (ki¼0, i¼1,y,4), then, at the
leading order of the asymptotic solution, the right tower is insensitive to turbulence. (d) Finally, if A2¼0 is considered for
the unlinked system, the case of single tower, already studied in [18], is recovered.

3.2. Fixed points analysis

The fixed points of Eq. (18), obtained by letting _a1 ¼ _a2 ¼ _j1 ¼ _j2 ¼ 0, represent steady state (periodic or quasi
periodic) oscillations of the rods. Here, analytical expressions of them are sought.

In the absence of turbulence (u1 ¼ u2 ¼ 0), only self excitation is present and the non resonant double Hopf bifurcation is
obtained (see [4]). Just Eq. (181,2) are interesting, the phase j1 being a slave variable. In this case, in addition to the trivial solution
a1 ¼ a2 ¼ 0, indicated as O, the classical mono modal galloping responses occur. One of them, indicated as I, is the following:

a1e ¼ 2
2x1V k1

3ðb31þk3Þ

s

a2e ¼ 0 (19)

which occurs when V Zk1=2x1, 8z. It represents the amplitude of periodic oscillations of the left tower, while the right tower
experiences oscillations of higher order magnitude. It is worth noticing how the linear coefficient k1 of the viscous device modifies
the origin of the bifurcated branch, while the cubic coefficient k3 modifies its amplitude. In particular, in case of purely nonlinear
viscous device of hardening type (k1 ¼ 0, k340) and b3140, the mono modal galloping curve is always underneath the
corresponding branch of the unlinked tower. Its stability is ruled by the sign of the real part of the eigenvalues of the Jacobian
matrix, that read

l1;2 ¼
1

16ð3a2
1eð3ðb31þk3Þþ2k4Þþ4ð Vð2x1þca2

Þþk1þk2 2zorÞ7 ða2
1eð9ðb31þk3Þ 6k4Þ 4ðð2x1 ca2

ÞV k1þk2 2zorÞÞ
2

q
Þ (20)

A second mono modal solution, indicated as II, is

a1e ¼ 0

a2e ¼ 2
ca2

V k2þ2zor

3o2
r ðb61þk4Þ

s
(21)

and occurs when V Zðk2 2zorÞ=ca2
. It represents the amplitude of the periodic oscillations of the right tower, while the

left tower undergoes oscillations of higher order magnitude. Its stability is governed by the following eigenvalues of the
Jacobian matrix:

l1;2 ¼
1

16ð3a2
2eo

2
r ð3b61þ2k3þ3k4Þ 4Vð2x1þca2

Þþ4k1þ4k2 8zor

7 ð3a2
2eo2

r ð3b61 2k3þ3k4Þþ4ð2x1V ca2
V k1þk2Þ 8zorÞ

2
q

Þ (22)



A bi modal solution, indicated as III, is

a1e ¼
4ðVð2x1ðb61þk4Þ 2ca2

k3Þ k1ðb61þk4Þþ2k2k3Þ 16k3zor

3ðb31ðb61þk4Þþk3ðb61 3k4ÞÞ

� �1=2
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a2e ¼
4ðVðca2

ðb31þk3Þ 4x1k4Þ k2ðb31þk3Þþ2k1k4Þþ8zorðb31þk3Þ

3o2
r ðb31ðb61þk4Þþk3ðb61 3k4ÞÞ

� �1=2

(23)

It represents the amplitude of coupled quasi periodic oscillations of the two towers. The corresponding eigenvalues of the
Jacobian matrix are not reported here for brevity.

The effect of turbulence will be addressed considering first the external contribution only (u1a0,u2 ¼ 0), then
considering the parametric contribution only (u1 ¼ 0,u2a0) and finally the contemporary presence of the two contribu
tions (u1a0,u2a0). In every cases, the relevant equations are Eq. (181,2,3).

In the first case (u1a0,u2 ¼ 0), two nonlinear algebraic equations for steady points can be drawn in the following way:
cos j1 is obtained by zeroing the right hand side of Eq. (181), sin j1 is obtained by zeroing the right hand side of Eq. (183), and
then the variable j1 is condensed using the relation cos2j1þsin2j1 ¼ 1. The resulting equation, where only a1 and a2 appear,
is the following:

a2
1ðð3a2

1ðb31þk3Þþ6k3o2
r a2

2 8x1Vþ4k1Þ
2
þ64s2Þ

16f 2
1 u2

1

¼ 1 (24)

Eq. (24) is sided by the equation obtained by setting the right hand side of Eq. (182) equal to zero.
In the second case (u1 ¼ 0,u2a0), the corresponding two nonlinear algebraic equations can be obtained as follows:

sinð2j1Þ is obtained by zeroing the right hand side of Eq. (181), cosð2j1Þ is obtained by zeroing the right hand side of
Eq. (183), and then, again, the variable j1 is condensed using the relation cos2ð2j1Þþsin2

ð2j1Þ ¼ 1. The resulting equation,
where only a1 and a2 appear, is the following:

ð3a2
1ðb31þk3Þþ6k3o2

r a2
2 8x1Vþ4k1Þ

2

4u2
2ðb1 b32a2

1Þ
2

þ
256s2

4u2
2ðb32a2

1 2b1Þ
2
¼ 1 (25)

As in the previous case, Eq. (25) is sided by the equation obtained by setting the right hand side of Eq. (182) equal to zero.
In the third case (u1a0, u2a0), it is not possible to apply a corresponding procedure, since terms of type sin 2j1,

cos 2j1, sin j1, cos j1 are concurrently present. In this case, it means that it is necessary to solve a nonlinear system of
three equations, considering also j1, besides a1 and a2.

Solutions of the systems coming from Eqs. (24) and (25), respectively, and from the generic case are sought by
numerical procedures and are discussed in the following section.

4. Numerical results

The following numerical values are used for a case study. For the left tower (which is the same one that was analyzed in [18]):
the cross section is B1 ¼ 16 m wide, the total stiffness of the single story is EI1 ¼ 115 318 000 N m2, the mass per unit length is
m1 ¼ 4737 kg=m, the damping ratio is x1 ¼ 0:5 percent (corresponding to Z1 ¼ 128 513 N s, c1¼34.8675 N s/m2). For the right
tower: B2 ¼ 15 m, EI2 ¼ 229 736 000 N m2, m2 ¼ 3265 kg=m. The height of the two towers and the inter story height are
assumed the same for the two towers, namely ‘¼ 36 m and h¼4 m. The aerodynamic coefficients Ai, i¼ 0, . . . ,3 are taken from
[17] for the square cross section: A0 ¼ 0:0297, A1 ¼ 0:9298, A2 ¼ 0:2400, A3 ¼ 7:6770. The air mass density is r¼ 1:25
kg=m3. The (dimensional) natural frequencies of the towers are found to be o1 ¼ 5:89 rad=s and o2 ¼ 10:01 rad=s, respectively,
so that or ¼ 1:7. The (dimensional) critical wind velocity for the unlinked left tower assumes the value U0 ¼ 30 m=s and the
critical value for the damping ratio of the right tower is x2c

¼ 0:4 percent. The linear coefficient of the viscous device has the value
k1 ¼ 100 kg=s (corresponding to k1 ¼ 1:99� 10�4), while different values are used for the cubic coefficient. In particular, a
distinction between the categories of the viscous damping is made with respect to the value of the ratio n :¼ k3=b31, namely if
0onr1 the device is hard, if n41 it is very hard. In this case study, the following values are considered: for a hard device
k3 ¼ 12:5 kg s=m2 (corresponding to k3¼1.12 and to n¼ 0:36), for a very hard device k3 ¼ 112:5 kg s=m2 (corresponding to
k3¼10.8 and to n¼ 3:25). Soft devices, i.e. k3o0 kg s=m2 (corresponding to no0), have been also considered, leading to
disadvantageous results in comparison with the case of unlinked towers and therefore not reported here.

In the following subsections four different wind loads are considered separately, namely: (a) non turbulent wind
ðu1 ¼ 0, u2 ¼ 0Þ for which only self excitation is triggered at V Z0; (b) turbulent wind, producing self and simultaneous
external excitation ðu1a0,u2 ¼ 0Þ; (c) turbulent wind, causing self and parametric excitation ðu1 ¼ 0,u2a0Þ; (d) turbulent
wind, entailing simultaneous self , parametric and external excitations ðu1a0,u2a0Þ.

4.1. Non turbulent wind

The behavior charts of the system, relevant to non turbulent wind, are shown in Fig. 3 for both hard and very hard
viscous devices. According to a common representation of bifurcation analysis (see e.g. [1]), these charts organize the



parameter space in regions (sub families of equivalent physical systems) in which the same qualitative dynamics occur,
the regions being separated by bifurcation loci at which the behavior abruptly change. For each sub family, the relevant
dynamics are displayed by a sketch of the ða1,a2Þ phase plane for Eqs. (181,2). From these sketches it emerges that
(periodic) mono modal solutions (equilibrium points on the axes) and (quasi periodic) bimodal solutions (equilibrium
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points not belonging to the axes) do not exist in the whole plane, but only in some regions. Moreover, the orientation of
the orbits denotes stability or instability of the motion. The solution O exists in the whole plane ðV ,zÞ. The lines labeled
with I and II are the boundary limits for the existence of the mono modal solutions I and II, respectively; the lines
indicated as III represent the boundary limits for solution III.

The significant difference between the hard and very hard cases is related to the stability of the solutions inside the
region of existence of the bi modal III: in the hard case the bi modal motion is stable and the mono modal motions are
unstable; the opposite happens for very hard viscous devices. In particular, starting from the condition of Fig. 3a, if the
value of k3 is gradually increased, with all the other parameters fixed, the upper line III of Fig. 3a rotates clockwise, while
the lower line III rotates counterclockwise, reducing the amplitude of the domain of existence of the solution III. For a
specific value of k3 (corresponding to n¼ 1), the two lines overlap. Further increasing k3 produces a separation of the two
lines, allowing again the existence of the bi modal motion III, which is unstable. The two chosen values for k3 are those
leading to the same amplitudes of the domain of existence of the solution III, in the two plots of Fig. 3.



Path 1 in Fig. 3a is the trace of the section of the ðak,V ,zÞ bifurcation diagram, shown in Fig. 4, for z¼ 0:0005.
In particular, for low values of V (i.e. on the left of B1), just the stable trivial solution O exists. Increasing V, after the
bifurcation point B1, two solutions exist: the trivial one O, which becomes unstable, and the mono modal galloping II of
the right tower, which is stable. It is worth noticing how the viscous device increases the actual critical wind velocity and
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decreases the amplitude of oscillations for the second tower (a2), in comparison with the unlinked tower case (thin line).
Further increasing the value of V leads to the bifurcation point B2, from where the other mono modal branch I emanates; it
is unstable. Even in this condition, a strong advantage is produced by the device, since the left tower (a1) experiences
oscillations of higher amplitude order, differently from the unlinked case (thin line). The bi modal branch, which is stable,
starts from the bifurcation point B3, and the oscillation amplitudes are always lower than those in the unlinked case.
To check the reliability of the results obtained through the method of multiple scales, the amplitudes resulting from direct
numerical integrations (variable step Runge Kutta method) of the original equations (10) are superimposed (filled boxes)
in Fig. 4, showing good agreement. The numerical time laws of x(t) and y(t) for V¼0.3, corresponding to the stable
bi modal solution III, are shown in Fig. 5 as well, compared with the response of the unlinked towers.

The second path, corresponding to z¼ 0:0003 (line marked as 2 in Fig. 3a), is shown in Fig. 6. The stable mono modal
branch I bifurcates from the trivial solution at B4, and loses stability at B6; here the bi modal stable branch III emanates
from. The other mono modal solution II is unstable and starts from B5. When these amplitudes are compared, the
beneficial effect of the viscous device is remarkable too.

A different behavior is obtained following the path of line 3 of Fig. 3b, i.e. for very hard devices, when z¼ 0:0005 (see
Fig. 7). Here, after the bifurcation point B3, the bi modal branch III is unstable, while the two mono modal branches are
stable. The mitigation of the oscillation, in comparison with the unlinked case, is even more evident along this path.

Following the path of line 4 of Fig. 3b, the bifurcation diagram of Fig. 8 is obtained where, again, the viscous device
works well.

4.2. Turbulent wind as external excitation

When the wind is turbulent, a third parameter s (the detuning) must be taken into account, in addition to the two

bifurcation parameters V ,z previously considered. To simplify the analysis, the splitting damping parameter is fixed at the
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value of z¼ 0:0005. The limit cycle amplitudes ak are plotted vs. the main parameter V or the detuning s. These planar
bifurcation diagrams should be considered as sections of a 3 D plot in the (ak,V ,s) space. When they are compared with
Fig. 4, the effect of the turbulence is highlighted. With regard the unlinked case, in which the turbulence does not affect the
right tower, the relevant a2 response, identical to that of Figs. 4 to 8, will be omitted. All the analyses are carried out in the
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case of a hard viscous device.
Turbulence leading to external excitation is first considered, by taking u1 ¼ 0:033,u2 ¼ 0.
When the turbulence is perfectly tuned (s¼ 0), the response appears as in Fig. 9. With respect to Fig. 4, the trivial

solution O does not exist anymore, and mono modal (I) and bi modal (III) branches change as in the presence of a slight
imperfection in a pitchfork bifurcation. The (perfect) solutions, relevant to non turbulent wind, are superimposed in the
figures (thin lines), to highlight that they behave like backbones for the imperfect solutions. In particular, each perturbed
backbone splits into two separate solutions, one on the left, the other on the right. The bifurcation point B1 indicates the
origin of stable bi modal branches III, where branch I becomes unstable. It is worth noticing how the mono modal branch
II does not exist anymore, but it is actually substituted by the bi modal III. Comparison with the unlinked solution, also
reported in the figure, leads to the conclusion that, except for oscillations of small amplitude (on the left of the point B1),
the beneficial effect of the viscous device is preserved, since the amplitudes a2 of branch III are practically overlapping
branch II of Fig. 4. Again the reliability of the results obtained through the method of multiple scales is verified
superimposing, in Fig. 9, also the amplitudes read on the results of direct numerical integrations on the original equations
(10) (filled boxes), showing good agreement. The numerical time laws of x(t) and y(t) for V¼0.3, corresponding to the
stable bi modal solution III, are shown in Fig. 10, compared with the response of the unlinked left tower.

When the steady wind velocity is fixed (V¼0.3) and the detuning s is varied, the limit cycle amplitudes are shown in
Fig. 11. From Figs. 9 and 11 it appears that, when a 3 D bifurcation diagram ðak,V ,sÞ is considered, the upper parts of branches I
and III form a tube around the relevant backbone curves, as already noticed in [18]. For higher and lower values of s, the tubes
are surrounded by (not shown) amplitude periodic solutions (representing quasi periodic oscillations of the towers).

4.3. Turbulent wind as parametric excitation

When the turbulence acts as a parametric excitation (u1 ¼ 0,u2 ¼ 0:033), the relevant bifurcation diagram appears as
Fig. 12. The main effect of parametric excitation consists in splitting and shifting the non turbulent curves on the left and
right sides (like a modification of stiffness in a pitchfork). Differently from the former case, the trivial solution O is not
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destroyed by the turbulence. The left branch III, which emanates from the bifurcation point B3, is stable. Nevertheless, the
actual value of V at which galloping occurs is not modified by the turbulence (at B1), because the branch II, which is also
stable, is unaffected by the parametric excitation. The beneficial effect of the viscous device is still preserved, since the
amplitudes a2 of branch II are practically the same of those of Fig. 4. Results from numerical integrations of Eq. (10) are
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superimposed in Fig. 12, exhibiting good agreement, while numerical time laws are shown in Fig. 13.
The limit cycles amplitude solutions are then shown vs. s in Fig. 14 when V¼0.3. The steady state motions I and III

again form tubes around the perfect solution, and they are surrounded by (not shown) quasi periodic motions.

4.4. Turbulent wind as simultaneous external and parametric excitations

When external and parametric excitations act simultaneously (see Fig. 15, relevant to u1 ¼ u2 ¼ 0:033), a new mono
modal branch appears, for high values of V, compared with the purely external excitation case. Actually, it is a loop of
branch I, as it is highlighted by the section of the 3 D plot taken for fixed V¼0.3 (see Fig. 17). This behavior also occurs for
the unlinked tower and, in general, for 1 d.o.f systems [18,22]. In the present problem, however, a second loop also appears
in the bi modal branch III, which did not appear in Fig. 15 because it is not intersected by the plane s¼ 0. Outside the tube,
quasi periodic motions (not shown) are found. As in the previous case, solution III substitutes solution II, which
disappears. Numerical results from direct integrations of Eq. (10) are also shown in Fig. 15, while in Fig. 16 the time
laws of x(t) and y(t) are reported. The viscous device again mitigates the oscillations of the unlinked tower.

5. Conclusions

In this paper, a 2 d.o.f. nonlinear dynamic system, representative of two planar towers, linked by a nonlinear viscous device,
hit by turbulent wind flow acting orthogonally, has been studied. The wind causes simultaneous self , external and parametric
excitations, the first due to the steady part of the aerodynamic force, the last two due to the turbulent part of the wind. The
Multiple Scale Method has been used to obtain Amplitude Modulation Equations, under (a) 1:1 resonance condition between
the fundamental component of the turbulent wind and one of the two towers, and (b) in no internal resonance conditions.

The dynamic behavior of the system, consequent to different kinds of excitations, analyzed separately, has been
investigated in the space of the bifurcation parameters. Limit cycles involving just one (mono modal) or two (bi modal)
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components have been detected, and their amplitude and stability evaluated. In particular, the non resonant double Hopf
bifurcation scenario, known in the literature, has been recovered for non turbulent wind. The following conclusions have
been obtained.
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1. The viscous device increases the galloping wind velocity; moreover, hard nonlinear viscosity mitigates the amplitude of
the limit cycle, with beneficial effects which increase with the magnitude of nonlinearity.

2. When the turbulent wind produces external excitation only, it works as an imperfection for the self excitation case,
leading to limit cycle amplitude close to the previous ones. When turbulence causes parametric excitation only, it splits
3.

and moves apart the self excitation branches.
When external and parametric excitations coexist, some loops in branches already observed in the literature for 1 d.o.f.
systems, are found to occur also in bi modal branches.
4.
 In all the studied cases of turbulent wind, when the two tower system is compared with the single tower system, the
viscous device is found to reduce the critical wind velocity at which the trivial solution loses stability and to reduce the
amplitude of the stable limit cycles. Therefore it represents an efficient passive controller against wind induced instability

phenomena.
App
endix A. Notation The following list contains the symbols used in this paper, with corresponding meaning and unit:

AiðtÞ complex amplitude of the first-order solution of the i-th rod (nondim.)

Aj aerodynamic coefficients for squared sections (nondim.)

aiðtÞ real amplitude of the first-order solution of the i-th rod (nondim.)

aie stationary amplitude of the first-order solution of the i-th rod (nondim.)

B side of the cross-section of the i-th tower (m)
i
bj
 parametric coefficients due to the aerodynamic force (nondim.)
Cj
 redefinition of the aerodynamic coefficients (j 0 : nondim:; j 1 : s=m, j 2 : ðs=mÞ2 , j 3 : ðs=mÞ3)
ci
 external damping coefficient of the i-th tower (N s/m)
ca2

linear aerodynamic coefficient of the right rod (nondim.)
dj
 derivatives with respect to the j-th time scale (nondim.)
2
EIi
 elastic bending stiffness of the i-th tower (N m )
f ðtÞ
 viscous device restoring force (N)



fj external forcing coefficients due to the aerodynamic force (nondim.)

GAi elastic shear stiffness of the i-th tower (N)

hi inter-story height of the i-th tower (m)

i imaginary unit

kj coupling coefficients due to the viscous device (nondim.)

R
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‘

m

total height of the towers (m)
i

n

mass per unit length of the i-th tower (kg/m)

number of columns per story of the i-th tower (nondim.)
i

p ðs,tÞ
 aerodynamic load linear density of the i-th tower (N/m)
ai

p ðs,tÞ
 load linear density of the i-th tower (N/m)
i

s
 curvilinear abscissa of the rods (m)

n
 non-dimensional curvilinear abscissa of the rods
s

T ðs,tÞ
 shear force of the i-th tower (N)
i

t
 time (s)
tn
 non-dimensional time
t
 time scales (nondim.)
j

UðtÞ
 wind velocity (m/s)
average wind velocity (m/s)
U
n

U
 non-dimensional average wind velocity
U 0
 critical average wind velocity (m/s)
U c
 non-dimensional critical average wind velocity of the left rod
U c2

non-dimensional critical average wind velocity of the right rod
uðtÞ
 turbulent wind velocity (m/s)
ui
 amplitudes of the turbulent wind velocity components (nondim.)
unðtnÞ
 non-dimensional turbulent wind velocity
V
 mean wind velocity increment (nondim.)
Vci

v ðtÞ
critical increments of the wind velocity of the i-th rod (nondim.)
1j

displacement of the j-th floor of the left tower (m)
v2j
ðtÞ
 displacement of the k-th floor of the right tower (m)
xðtÞ
 modal displacement of the left rod (nondim.)
x̂
 rescaled variable x (nondim.)
xj
 series expansion terms for x̂ (nondim.)
yðtÞ
 modal displacement of the right rod (nondim.)
ŷ

y

rescaled variable y (nondim.)
j
 series expansion terms for ŷ (nondim.)
a
 mass ratio (nondim.)
b
_

cross-section side ratio (nondim.)
DðtÞ
 relative velocity of the tips of the two rods (m/s)
e
 perturbation parameter (nondim.)
z
 damping splitting parameter (nondim.)
Zi
 internal damping coefficient of the i-th tower (N s)
WiðtÞ
 phase of the first-order solution of the i-th rod (nondim.)
2
k1 ,k3

l

linear and cubic coefficients of the viscous device (kg/s,kg s/m )
j
 j-th eigenvalue of the Jacobian matrix (nondim.)

characteristic parameter of the viscous device (nondim.)
n

x2c
critical modal damping ratio of the right rod (nondim.)
xi
 modal damping ratio of the i-th rod (nondim.)
3
r
 air mass density (kg/m )

frequency detuning parameter (nondim.)
s
f ðsÞ
i
 first modal shape of the i-th rod (nondim.)

redefinition of the phase of the first order solution of the i-th rod (nondim.)
jiðtÞ

O

O

fundamental forcing frequency of the turbulent component (nondim.)

critical forcing frequency (nondim.)
c

o
 natural circular frequency of the i-th rod (rad/s)
i
natural circular frequency ratio (nondim.)
or
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